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The evolution equation for the flame surface
density in turbulent premixed combustion

By Arnaud Trouvé

1. Motivation and objectives

~ The mean reaction rate in flamelet models for turbulent premixed combustion
depends on two basic quantities: a mean chemical rate, called the flamelet speed,
and the flame surface density (Section 1.1). Our previous work had been primarily
focused on the problem of the structure and topology of turbulent premixed flames,
and it was then determined that the flamelet speed, when space-averaged, is only
weakly sensitive to the turbulent flow field (Haworth & Poinsot 1992, Rutland &
Trouvé 1991, Trouvé 1991). Consequently, the flame surface density is the key quan-
tity that conveys most of the effects of the turbulence on the rate of energy release.
In flamelet models, this quantity is obtained via a modeled transport equation called
the $-equation. Past theoretical work has produced a rigorous approach that leads
to an exact but unclosed formulation for the turbulent £-equation (Section 1.2). In
the exact ¥-equation, it appears that the dynamical properties of the flame surface
density are determined by a single parameter, namely the turbulent flame stretch.
Unfortunately, the turbulent flame stretch as well as the flame surface density is
not available from experiments, and, in the absence of experimental data, little is
known on the validity of the closure assumptions used in current flamelet models.
Direct Numerical Simulation (DNS) is the alternative approach to get basic in-
formation on these fundamental quantities. In the present work, three-dimensional
DNS of premixed flames in isotropic turbulent flow is used to estimate the different
terms appearing in the £-equation (Section 1.3). A new methodology is proposed to
provide the source and sink terms for the flame surface density, resolved both tem-
porally and spatially throughout the turbulent flame brush (Section 2.1). Using this
methodology, our objective is to extract the turbulent flame stretch from the DNS
data base and then perform extensive comparisons with flamelet models (Section
2.3). Thanks to the detailed information produced by the DNS-based analysis, it is
expected that this type of comparison will not only underscore the shortcomings of
current models, but also suggest ways to improve them.

1.1 The flamelet approach for turbulent premized combustion

Flamelet models constitute one of the most common approaches for turbulent
premixed combustion (Bray 1980, Williams 1985, Peters 1986). Such models are
very attractive as they conveniently separate the combustion problem from the
analysis of the turbulent flow field. These models are based on the “flame sheet”
assumption, which requires chemical reaction to occur at fast time scales and short
length scales relative to the turbulence. In this situation, the flame is confined
to relatively thin layers within the turbulent flow field, and the topology of the
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reaction zone corresponds to a surface burning mode. Experimental, theoretical,
and numerical evidence suggest that the domain of validity of the flamelet picture
is indeed large and that many technologically important reacting flows occur in the
flamelet regime.

In the flamelet regime, it is convenient to describe the flame-flow interactions
in terms of the following two basic ingredients: a flame speed that characterizes
the flame inner structure and the flame front surface area. For instance, the mean
reaction rate may be written as a mean integrated chemical rate times the flame
surface density:

() = ( / wrdn)s (), (1)

where wg is the mass of fuel consumed per unit time and per unit volume; [ wgdn
is the local integral of the reaction rate along the flame normal direction and charac-
terizes the local combustion intensity; L' is the flame surface area per unit volume.
The flame surface density is defined as the expected value for ¥': ¥ = (¥'). Note
that in Eq.(1), while ( ) denotes a standard, unweighted ensemble-average, ( )s de-
notes a surface mean, defined as an area-weighted ensemble-average (see Section
1.2).

In Eq.(1), the integral of the reaction rate is simply related to the local fuel
consumption speed, S¢, defined as:

1 .
Sec = PuYR,u/wRdn’ (2)

where p, and Yg,, are respectively the density and the fuel mass fraction in the
unburnt gas. The mean reaction rate may then be expressed as the surface mean
of S¢, called the flamelet speed, times the flame surface density:

(wr) = (puYr,u(Sc)s) E. (3)

Eq.(3) is the classical flamelet expression for the ensemble mean of the reaction
rate. In general, this mean reaction rate is a function of both position and time,
(wr)(x,t). An overall reaction rate can also be obtained by space-averaging Eq.(3)
over an arbitrary volume, V', that encloses the reaction zone:

@) = 5 [ or)x.0V = (puYiBe(t)) 242, )

where Sy(t) is the total flame surface area within the volume V, Sy (t) = [ TdV;
and Sc(t) is a mean fuel consumption speed, Sc(t) = [ (Sc)s TdV /[ £dV. Sc
can also be expressed as the area-weighted, space-averaged value of S¢ integrated
along the turbulent flame surface: Sc = [ Sc 64/ [ 6A, where 64 designates the
area of an infinitesimal flame element and where integration takes place along the
flame surface. Sc and Sy are global flame properties and are simply related to the
turbulent flame speed (see Section 2.2).



The evolution equation for the flame surface density 395

The flamelet speed, (Sc)s, in Eq.(3) and the mean fuel consumption speed, Sc,
in Eq.(4) account for local variations of the reaction rate along the flame surface.
Laminar flame theory indicates that the local flame structure is modified by flow
divergence, usually characterized by the strain rate acting in the flame tangent
plane as well as by flame front curvature (Clavin 1985, Williams 1985). Under
certain conditions, these variations can become critical and lead to partial or total
quenching of the flame. Recent studies using DNS, however, suggest that quenching
is a rather unlikely event for turbulent premixed flames (Poinsot et al. 1991). In
addition, although the local combustion intensity may exhibit large fluctuations
along the turbulent flame front, particularly for non-unity Lewis number flames,
and although these fluctuations may in turn result in strong spatial variations of
the flamelet speed, (Sc)s, across the turbulent flame brush, DNS suggest that
these departures from the laminar consumption rate always tend to cancel in the
mean (Haworth & Poinsot 1992, Rutland & Trouvé 1991, Trouvé 1991). In the
simulations, the mean fuel consumption speed, 'S¢, remain within 10% to 30% from
the one-dimensional, laminar flame speed value, si.

Thus, it appears that in the absence of quenching, the mean fuel consumption
speed, S¢, is only weakly sensitive to the flow field, and the principle effect of
turbulence is for the fluctuating velocity field to wrinkle the flame and greatly
increase its surface area. This phenomenon accounts for most of the increase in the
overall burning rate due to the turbulence and is represented in Eq.(3) through the
flame surface density, Z.

1.9 The evolution equation for the flame surface density, X

In current flamelet models, the flame surface density, T, is obtained via a modeled
transport equation. This equation was first postulated by Marble & Broadwell
(1977) based on phenomenological grounds. A more rigorous approach was later
proposed by Pope (1988) and Candel & Poinsot (1990) who derive an exact balance
equation for the flame surface-to-volume ratio, T

62' O ! O U ]
¥ +V.XE =(VX-nn:VX) T, (8)
where X is the displacement speed of the flame surface, given by the sum of the fluid
velocity and the flame propagation speed in the normal direction: X = u+wn;nis
the unit vector normal to the flame surface; and where we use tensorial notations:
(nn: VX) = n,-nj%-zx:ji.

The right-hand side of Eq.(5) can also be expressed in terms of flame stretch.
The flame stretch, k, is defined as the rate of change of a Lagrangian flame surface
element, 6 A:

k

_d(6A) 0(6A)
T odt T ot
A more useful expression for k is in terms of strain rate, flame curvature, and flame
propagation speed (see for example Candel & Poinsot 1990):

+ X.V(8A). (6)

k= ar + 2wk, (N
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where ar is the rate of strain acting in the flame tangent plane: ar = V.u—nn : Vu;
and k,, is the flame surface curvature, as given by the divergence of the flame normal
direction: 2k, = V.n. In Eq.(7), positive curvature is chosen convex towards the
reactants.
Using Eq.(7), the balance equation for the flame surface-to-volume ratio can be
re-written as:
%’

—— + VXS =k T

= (®)

When ensemble-averaged, this equation yields an exact balance equation for the
flame surface density (Pope 1988, Cant et al. 1990):

 +V.(X)sT = (ks T, (9)
where the flame surface mean of any quantity Q is given by: (Q)s = (QT")/(Z') =
(QX')/X. Note that surface means are different from standard means. In partic-
ular, the surface mean of a quantity Q is different from the ensemble mean of Q
conditioned on being at the flame location (see Section 2.1).

Eq.(9) can be cast in various forms. For modeling purposes, it is useful to split the
velocity vector into a mean component and a turbulent fluctuation: u = (U) + u'.
We can then re-write Eq.(9) as follows:

% + V(U)S + V.(u')sT + V.(wn) T = (ar)s T+ (Ar)s &+ 2(wkm)s T, (10)

where we use the following notations:
{ar)s = (V.u' — nn: Vu')s,

(Ar)s = V(U) — (nn)¢ : V(U).

The three convective terms on the left-hand side of Eq.(10) are transport terms
that correspond respectively to convection by the mean flow, turbulent diffusion,
and flame propagation. The terms on the right-hand side of the equation are the
source and sink terms for the flame surface density: {ar)s is the turbulent strain
rate acting in the flame tangent plane, {A7)s is the strain rate due to the mean
flow field, and 2(wk.,)s is a term that accounts for the combined effects of flame
curvature and flame propagation.

Eq.(10) is an exact expression of the evolution equation for the flame surface
density, £, in a turbulent flow field. Unfortunately, many terms remain unclosed in
this exact turbulent X-equation. Modeling assumptions are, therefore, required, in
particular to calculate the turbulent diffusion term and the turbulent flame stretch.
Different formulations of the modeled T-equation have been proposed in the litera-
ture (Marble & Broadwell 1977, Darabiha et al. 1987, Maistret et al. 1989, Candel
et al. 1990, Cant et al. 1990, Borghi 1990, Mantel & Borghi 1991). However, since
the turbulent flame stretch as well as the flame surface density is not available
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from experiments, little is known on the validity of the closure assumptions used in
current flamelet models. DNS is an attractive alternate approach to get basic in-
formation on these fundamental quantities. In the present work, three-dimensional
DNS of premixed flames in isotropic turbulent flow is used to estimate the differ-
ent terms appearing in the $-equation, with particular emphasis on the source and
sink terms on its right-hand side that determines production or dissipation of flame
surface area.

1.8 Direct Numerical Simulation of turbulent premized flames

We use DNS to analyze the different terms in the equation for the flame surface
density. The simulations are performed using a three-dimensional, compressible
Navier-Stokes solver that fully resolves the turbulent flow field. Spatial derivatives
are computed with a modified Padé scheme that is sixth-order accurate (Lele 1992).
Solutions are advanced in time using a third-order Runge-Kutta method (Wray
1990). Boundary conditions are specified using the NSCBC method (Poinsot &
Lele 1992). Because of the otherwise prohibitive computational cost, simulations
are limited to simple but finite-rate reaction schemes. In this work, the chemistry
model is a single step, irreversible chemical reaction where the reaction rate depends
exponentially on temperature (Arrhenius kinetics):

or = BoY exp (—Tf) , (11)

where 7T, is the activation temperature and B a constant that depends on the
selected flame speed. This formulation corresponds to a binary reaction in which one
of the reactants, Y, is strongly deficient as, for example, in fuel-lean combustion.
Also, it is worth emphasizing that the simulations are not limited by the constant
density assumption, and heat release effects are fully accounted for.

Following Williams (1985), we re-write the reaction rate as:

wr = ApYrexp (—1—__—16?.(%1_—_9(—;—)) , (12)

where O is the reduced temperature, © = (T —T)/(Ts — Ty ); Ty is the temperature
of the fresh reactants; T} is the adiabatic flame temperature; and the coefficients
A, a, and 8 are, respectively, the reduced pre-exponential factor, the heat release
factor, and the reduced activation energy:

A= Bexp(—ﬂ/a), a = (Tb - Tu)/Tba and B = aTa/Tb- (13)
In the following, we use & = 0.75 and 3 =8.
Another important feature of the simulations is that the transport coefficients

are temperature dependent. These coefficients satisfy the following relations:

p = pu(T/Ty)®, Le = A/pDc, = constant, Pr = uc,/) = constant, (14)
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where g, A, and D are the molecular diffusivities of, respectively, momentum, inter-
nal energy, and species mass, b is a constant, and Le and Pr are, respectively, the
Lewis number and the Prandtl number. We use b = 0.76, Pr = 0.75. Simulations
have been performed for different Lewis numbers, Le = 0.8,1.0, and 1.2.

The selected computational configuration corresponds to a premixed flame em-
bedded in a three-dimensional, decaying, isotropic turbulent flow, The left- and
right-hand sides of the computational domain are inflow and outflow boundaries,
while periodic boundary conditions are applied at lateral walls. The calculations
are initialized with fresh reactants on one side of the domain and burnt products on
the other side; the two are separated by a plane laminar flame. Isotropic turbulence
is initially located in the flow of fresh reactants, its velocity field being specified
according to a model spectrum. The turbulence is characterized by a Kolmogorov
length scale smaller than the thermal thickness of the laminar flame, n /67 = 0.1
where ér = (T — T,)/(dT/dz)maz, and a turbulence intensity that is much higher
than the laminar flame speed, u'/s; = 10. The initial turbulent Reynolds number,
based on the Taylor microscale, is 50. The initial turbulent Reynolds number, based
on the integral length scale, is 70. The grid resolution is 1293.

The simulations describe the wrinkling of the flame zone due to turbulent motions
as well as the combustion feedback due to dilatation and temperature-dependent
transport properties. Note that the turbulence is decaying in time, and flow condi-
tions are non-stationary.

2. Accomplishments

2.1 Diagnostics

All terms appearing in Eq.(10) can be obtained from the simulations. We now
briefly describe how. The velocity vector and the velocity gradient tensor are readily
obtained from the resolved flow field. To define flame-based quantities, we make
use of concepts based on the thin flame picture. First, a progress variable, c, is
introduced to indicate location within the reaction zone, ¢ = 1 — Yg, where Yj
is the normalized fuel mass fraction. The progress variable varies monotonically
through the flame from 0 in the reactants to 1 in the products. Constant progress
variable surfaces may conveniently be used to define the flame front location: we
use the surface ¢ = c; = 0.8. In addition, at any location on this surface, the local
gradient of ¢ defines the normal direction to the flame front:

Ve

iZ) (15)

n=
where n points into the fresh reactants.
The propagation speed of the flame surface, w, is obtained from an expression
analog to the well-known field equation (also called the G-equation, see for example
Kerstein et al. 1988). Let us first consider a point on the flame surface, ¢ = c¢. The
velocity, X, at which this point must move to remain on the surface, is given by:
Oc

5+ X.Ve =0, (16)
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which, using Eq.(15), implies that:

1 dc

X.n= NZER (17)

and yields the following expression for the flame propagation speed:

, 1 Dec
w=X.n—un= Vel Dt’ (18)
where the quantities are estimated at the surface c = ¢y. In the simulations, we solve
for a conservation equation for the fuel mass fraction, Yk, and since by definition
¢ =1— Yg, the expression above can be readily obtained from the DNS data base.

The flame surface density, &, is a more subtle quantity. It includes both geomet-
rical and statistical information. Following Pope (1990), the flame surface density
is expressed as the product of the expected value for the magnitude of the gradient
of ¢, conditioned on being on the flame surface, times the probability of being on
that surface:

T =|Ve| §(c—cs), and Z=(T) =(|Vel|c=cy) ples), (19)

where p(cy) is the probability of ¢ = ¢y. An equivalent expression for I, also
proposed by Pope (1990), is in terms of the joint probability of the scalar ¢ and the
magnitude of its gradient:

Y= /0 ~ yples,v)dy, (20)

where v = |V¢|.

We now turn to the averaging problem. In the simulations, the flame brush
propagates along the z direction, and the problem remains homogeneous in the
y — z planes. Therefore, averaged quantities depend on z and time t only, and
ensemble-averaging can be performed in the y — z planes:

(@Q)(z,1) = f—l—L— / Qz,y, 2 t)dydz, (21)

where Ly and L, are the y and z dimensions of the computational domain. Since the
flow field is non-stationary, time-averaging cannot be used and the present analysis
is based exclusively on the slicing of the DNS data base in planes perpendicular to
the direction of mean flame propagation.

Let us now consider a particular y — z plane, T = zo. In that plane, the flame
contour ¢ = ¢y is a set of closed lines. The flame surface density as well as the
various surface and conditional means in the analysis can be expressed in terms of
line-integrals along this (¢ = cf,# = o) line-contour. For instance, as suggested
by Eq.(20), the flame surface density, I, can be obtained via the joint probability
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FIGURE 1. A geometrical expression for the joint probability of the progress

variable and the magnitude of its gradient in a given y — z plane: p(cy,v) dc dy =
prob(cy < c<cp+dey £ |Ve| £ v+dy)=485/ LyL., see Eq.(22).

p(cg,7). Simple geometrical considerations lead to the following relation (Figure
1):
) 1 & dl
Ples,)dy = T J:Zl S Teosd] (22)

where dl designates the arc-length of an infinitesimal flame element on the line-
contour ¢ = ¢y and € is a measure of the orientation of this flame element with
respect to the z = z¢ plane. In Eq.(22), summation is over all occurrences of the
event (¢, |Ve|) = (cf,7). Eqs.(ZO) and (22) then give the following expression for Z:

1 |V
S=—r dl, 23
LyL,/C |cose| L L,/C ot JE P+ (20 (23)

where we use the geometrical relation: |cosé| = ,/(%)2 +(4)2/|Vel.

Eq.(23) differs from the original formulation proposed by Trouvé & Poinsot (1992)
due to an error in their original expressions for surface means and conditional means.
However, their estimate of the probability p(cs) remains unchanged:

() /oo ( )d 1 / dl 1 / dl
5 cfyy)ay = =
plcy A pcy L,L, e=cy |cosb||Ve| LyL. e=cy (%)2 + (g%)z

(24)
and, compared to the new formulation, the results of Trouvé & Poinsot (1992) still
hold within a few percents.

Using Eq.(22), the correct expression for conditional means is as follows:

Joze, @ (lcos8] [V dI
(Q I c = Cf)(-l",t) = fc=c! (ICOSOI |VC')"1 -

(25)
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The surface means are then obtained using the following relations:

_Qx) _ @V |c= cf) Joze, @ |cos8| ™" di
@s(=0 =57 = (Ve Te=cp) f;c, lcos6] ™" dI

(26)

Clearly, surface means differ from conditional means.

The relations above provide a methodology to estimate the different means needed
in our analysis. The accuracy of these expressions depends on the size of the com-
putational domain with respect to the turbulent length scales. In the simulations,
the integral length scale of the turbulent flow field grows as the kinetic energy de-
cays; this growth, however, is rather slow, and it has been determined that the
integral length scale remains at least 8 times smaller than Ly and L. Although
we recognize that the statistics are somewhat undersampled, reasonable accuracy
is expected when estimating the first moments.

2.2 Global flame properties

As described in the previous section, the analysis takes advantage of the fact that
the problem is statistically one-dimensional and provides the various quantities of
interest as a function of time ¢ and position z within the turbulent flame brush. We
now discuss briefly the relationship between these spatially-resolved quantities and
the more familiar, global (space-averaged) flame properties.

By definition, the total flame surface area, Sy, within the computational domain
is equal to the volume-integral of the flame surface density, which, in the present
case, translates to the following relation:

i‘y’g) = / »(z,t)dz. (27)

Using Eq.(9), it can be shown that the time-derivative of the relative increase in
flame surface area is equal to the total flame stretch, k, space-averaged across the
turbulent flame brush:

k(1) =% i‘;(Lt)) = / (kYs(z,t) (z, t)dz. (28)

% gives the instantaneous rate of change of the total flame surface area in the
computational domain. If positive, the flame surface grows; if negative, the flame
surface contracts.

The mean fuel consumption speed, S¢, can also be expressed in terms of space-
integrals of the flamelet speed, (Sc)s, and the flame surface density, , across the
turbulent flame brush:

f(Sc)s(a,t) S(z,t)de
[ S(z, t)dz ‘

Sc(t) = (29)
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Finally, using Eq.(4), the turbulent flame speed, S, is simply related to the
product of Sy and S¢:

1
PuYR u

/(QR)(x,t)dx =/(Sc)5(:t:,t) Z(Jr,t)dl‘ =-§C(t) i‘;gz) (30)

Sr(t) =

As described in the previous sections, the present study uses three-dimensional
direct numerical simulations of turbulent premixed flames in isotropic flow. Three
different cases have been studied that correspond to turbulent flames characterized
by the same laminar thermal thickness, 67, the same laminar flame speed, s,
embedded in the same initial turbulent flow field, but with different Lewis number,
Le =038, 1.0, and 1.2

The three cases exhibit large differences in the time history of the turbulent flame
speed, St(t). As suggested by Eq.(30), these differences may be related to a modi-
fication of the turbulent flame structure through changes in S¢, to a modification
of the total flame surface area through changes in Sy, or to a combination of both,
In fact, irrespective of the value of the Lewis number and in agreement with the
findings from previous studies (Ashurst et al. 1987, Haworth & Poinsot 1992, Rut-
land & Trouvé 1991), the mean fuel consumption speed, S¢, is found to be only a
weak function of the turbulence. At all times, departures of S¢ from the laminar
value, s, remain within 20%. This result implies that the large effect of the Lewis
number on ST observed in the simulations is primarily a flame surface effect and
that the flame surface density is the key quantity that to first order determines the
mean reaction rate. For more details, see Trouvé & Poinsot (1992).

2.8 Comparison of DNS results with flamelet models

Using the methodology described in Section 2.1, we now analyze the spatial distri-
bution of flame surface density across the turbulent flame brush. Figure 2 compares
several 3-profiles taken at different instants in the simulations. The Lewis number is
0.8. At ¢t =0, T is a delta function located at r = 0. As time evolves, the turbulent
flame brush gets thicker and propagates deeper into the reactants. Accordingly, the
¥-profile spreads out and shifts towards negative values of 2. In the simulations,
this shift is rather weak but can clearly be seen at the latest times (¢t = 67 in Figure
2).

Figure 3 compares the Z-profiles obtained for different Lewis numbers. The
comparison is performed at the same instant in the simulations, t = 47. The effect
of the Lewis number is clearly seen in this plot with a turbulent flame brush that
propagates faster and deeper into the reactants for more diffusive mixtures. Note
that as shown in Eq.(27), the z-integral of £ gives the relative increase of total
flame surface area and the local differences in the profiles plotted in Figure 3, when
integrated, correspond to large global differences in the total amount of flame surface
area, Sy.

A different perspective is adopted in Figure 4 where z-location within the tur-
bulent flame brush is indicated by the local mean progress variable, (¢). Although
they are different in physical space, the Z-profiles obtained for different Lewis num-
bers collapse when mapped in {c)-space. This result indicates that the effect of the
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FIGURE 2. Time evolution of the flame surface density, £, in the computational
domain (reactants on the left; products on the right). Le = 0.8. ¥ and z are made
non-dimensional by the laminar thermal thickness, é7. Time is measured in units
of the initial turbulent eddy turn-over time, 7.
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FIGURE 3. Lewis number effects on the spatial distribution of flame surface

density, T, in the computational domain (reactants on the left; products on the
right). t = 4r. T and z are made non-dimensional by the laminar thermal thickness,
ér.

Lewis number on the spatial distribution of flame surface density is primarily an
effect on the turbulent flame thickness.

Also plotted in Figure 4 is the flame surface density predicted by the Bray-
Moss-Libby (BML) model. The BML model is a well-documented, second order
closure model designed to avoid gradient transport assumptions (see for example
Bray 1980, and 1990, Libby & Bray 1980). The model pre-assumes a bimodal shape
for the probability density function of the progress variable, an assumption that is
consistent with a laminar flamelet description of the reaction zone and represents the
intermittent presence of packets of unburnt and fully burnt mixture at any location
within the turbulent flame brush. Various degrees of refinement are possible within
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FIGURE 4. The spatial distribution of flame surface density, T, across the turbulent
flame brush: comparison between DNS and the Bray-Moss-Libby model. ¢t = 4r. ©
is made non-dimensional by the laminar thermal thickness, é7.

the BML framework, in particular with respect to the chemical source terms and the
flame surface density. Although a transport equation for £ could be incorporated
easily (Cant et al. 1990), current formulations of the model are limited to a simple
algebraic closure (Bray et al. 1984, 1989). The expression for ¥ in a y — z plane,
T = z9, where {c) = constant, is:

p- 0o 1)
Tyly

~

where g is a constant of order unity, L, is a length that characterizes the flame
wrinkling, and 7 is the mean of a direction cosine defining the flamelet orientation
relative to the plane, z = ro. Both fly and 7, are assumed to be constant across
the turbulent flame brush. ij is specified empirically as follows:

Ly=CLi(Go (32)

where [ i1s the integral length scale of the turbulence,and C; and n are model
constants. Following Bray (1990), weusen =1, Cy, =1, ¢ =1.5,5, = 0.5.

Figure 4 shows that the structure of the L-profile is not well captured by the BML
model which predicts a symmetric distribution of ¥ in (c)-space, whereas DNS gives
a skewed profile with a maximum close to {¢) = 0.7. Furthermore, although the
comparison between DNS and the BML model is rendered difficult by the turbu-
lence decay, some qualitative observations can still be made about the accuracy or
inaccuracy of the model. For instance, the BML predictions always overestimate
the flame surface densities across the turbulent flame brush by a factor decreasing
from more than 5 to approximately 2 in the course of the simulations. Although
the exact magnitude of the error might not be meaningful, the fact that it is time-
dependent underscores the limits of an algebraic closure that cannot account for
memory effects and is, therefore, expected to perform poorly in transient problems.
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FIGURE 5. The spatial distribution of turbulent flame stretch, (k)s, across the
turbulent flame brush: comparison between DNS and the Coherent Flame Model.
¢ = 47. k is made non-dimensional by the laminar flame time, é7/sL.

We now turn to the more promising approach based on a modeled turbulent
T-equation. Different formulations of this equation have been proposed in the liter-
ature (Marble & Broadwell 1977, Darabiha et al. 1987, Maistret et al. 1989, Candel
et al. 1990, Cant et al. 1990, Borghi 1990, Mantel & Borghi 1991). These models are
based on the exact but unclosed formulation given in Eq.(10). The right-hand side
of Eq.(10) is the total flame stretch, which can be decomposed into a strain term
and a propagation term. While the strain term, (ar)s, remains approximately
constant through the turbulent flame, the propagation term, 2(wkm)s, exhibits
strong variations and decreases from positive values on the unburnt side, close to
(c) = 0, to negative values on the burnt side, close to {c) = 1 (Trouvé & Poinsot
1992). Interestingly enough, both contributions to stretch have the same order of
magnitude.

Figure 5 presents the mean flame stretch profile, (k)s, across the turbulent re-
action zone, plotted for different Lewis numbers at ¢ = 47. At the leading edge,
strain rate and flame propagation effects are locally cumulative, and the overall
balance is strongly positive. The leading edge of the turbulent flame is a region
of strong production of flame surface area. On the contrary, the propagation term
takes large negative values on the burnt side. In that region, strain rate and flame
propagation effects are locally opposite, and the overall balance is negative. The
rear edge of the turbulent flame thus appears as a region where flame surface area
gets strongly dissipated. In addition, while the effect of the Lewis number is not
visible on the burnt side of the turbulent flame, there are large differences between
the cases Le = 0.8,1.0, and 1.2 close to (c) = 0. This suggests that the turbulent
flame is most sensitive to Lewis number effects on the unburnt side, whereas it
remains relatively unaffected on the burnt side.

Using Eq. (28), one can quantify the overall differences due to the Lewis number;
we find (in units of the laminar flame time): k = 2.6 for Le = 0.8, and the flame
surface area is quickly growing; k ~ 0.0 for Le = 1.0 and Le = 1.2, and the flame
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surface area remains roughly constant.

Also plotted in Figure 5 is a comparison with the Coherent Flame Model proposed
originally by Marble & Broadwell (1977) and further developed by Candel and his
co-workers (Darabiha et al. 1987, Maistret et al. 1989, Candel et al. 1990). In this

formulation, the turbulent flame stretch is written as:

€ b

(k)s = E - SL(Y_R)’

(33)

where k, is the turbulent kinetic energy and ¢ its dissipation, both measured in the
unburnt gas; (Yg) is the ensemble-averaged fuel mass fraction. The first term on
the right-hand side of Eq.(33) represents the straining due to the flow motions and
is assumed to scale with the integral time scale of the turbulence; the second term is
a disparition term associated with flame propagation and is assumed to scale with
the laminar flame speed, sy, and the flame surface density, Z.

Figure 5 shows that this model is indeed able to reproduce qualitatively the
spatial structure of the balance between production and dissipation of £, going from
production at the leading edge of the turbulent flame to dissipation at the rear edge.
However, the 1/(Yx) behavior of the disparition term leads to numerical difficulties
on the burnt side of the flame. The model, therefore, overpredicts the dissipation
of £ near (¢} = 1 and gives a negative mean flame stretch, k¥ = —3.6, in strong
disagreement with the values reported above. In addition, the disparition term
in Eq.(33) is always and everywhere negative and cannot account for the possible
transition to unstable thermo-diffusive conditions as observed in the simulations

(Trouvé & Poinsot 1992).

3. Conclusion and future plans

In flamelet models, the flame surface density is a central ingredient that conveys
most of the effects of the turbulence on the rate of energy release. The flame
surface density can be obtained using an algebraic closure, as in current formulations
of the Bray-Moss-Libby model, or via a modeled transport equation, called the
Y-equation. The E-equation was first postulated by Marble & Broadwell (1977)
based on phenomenological grounds. Recent theoretical work has produced a more
rigorous approach that leads to an exact but unclosed formulation for the turbulent
E-equation (Pope 1988, Candel & Poinsot 1990). Since the flame surface density and
the different terms of interest in the turbulent X-equation are not experimentally
accessible, little is known on the validity of the closure assumptions used in current
formulations of flamelet models.

Direct Numerical Simulation (DNS) is an attractive alternative approach to get
basic information on these fundamental quantities. In the present work, three-
dimensional DNS of premixed flames propagating in isotropic turbulent flow have
been used to estimate the different terms appearing in the -equation. A new
methodology has been proposed to provide the flame surface density, T, as well as
the source and sink terms for L, estimated as a function of time and position within
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the turbulent flame brush. Using this methodology, comparisons with flamelet
models are possible at a level of detail never reached before.

Principal findings are that: (1) the Bray-Moss-Libby formulation overestimates
the flame surface densities; more importantly, the error is a function of time, which
underscores the limits of using an algebraic closure; (2) the Coherent Flame Model
(CFM), based on a modeled turbulent ¥-equation, is shown capable of reproducing
qualitatively the spatial variations in the balance between production and dissi-
pation of flame surface area — the leading edge of the turbulent flame is correctly
described as a region of production of flame surface area, whereas the rear edge is
a region where flame surface gets strongly dissipated - however, the CFM model
tends to overpredict flame surface dissipation and is unable to reproduce variations
due to thermo-diffusive phenomena.

Ongoing plans include the development of a new formulation of the ¥-equation
that would incorporate thermo-diffusive mechanisms. Also, the effect of the mean
flow field as represented by (Ar)s in Eq.(10) is currently studied using three-
dimensional DNS of a turbulent flame embedded in homogeneous shear flow.

Finally, it is worth emphasizing that theoretical descriptions of turbulent com-
bustion are aimed at providing tractable expressions for the following two categories
of unclosed terms: (1) the mean chemical source term; (2) the double and/or triple
correlations representing turbulent transport phenomena. We have focused exclu-
sively so far on the first category of problems, 1.e. predicting the mean reaction
rate. The second category is also a promising field for DNS of turbulent combus-
tion. Indeed, in most current models, turbulent transport terms are treated using
conventional, first-order closure assumptions based on the concept of an eddy vis-
cosity. However, since flames of practical interest feature large changes in mass
density which affect significantly the turbulent flow field, it is somewhat suspicious,
although very common, to directly extend the empirical closures developed in the
context of constant density, non-reacting flow problems to the case of turbulent
fames. Future work will include studying and modeling of turbulent transport in
a combustion environment.
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