
Lawrence Berkeley National Laboratory
Recent Work

Title
THE EVOLUTION OF A TURBULENT VORTEX

Permalink
https://escholarship.org/uc/item/9sh2x6gh

Author
Chorin, A.J.

Publication Date
1981-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9sh2x6gh
https://escholarship.org
http://www.cdlib.org/


..... 
~I'" 
~ . ~ 

• ~ I· 

" 

'i , 
'{ . / .. , .. 

• ~ ... r 
.t " 

LBL-13301 
Preprint 

rrnI Lawrence Berkeley Laboratory 
~ UNIVERSITY OF CALIFORNIA 

Physics, Computer Science & 
Mathematics Division 

. \ 

To be submitted for pUblication 
.... WRi 

t ;v ~.A;_: ; ...• ; 

THE EVOLUTION OF A TURBULENT VORTEX 
Inll Ii '1'\U1 

\'1 U"'""l I:J U 

LJ r "'~.. ,',' " 

Alexandre Joel Chorin r-------------__________ __ 

September 1981 

TWO-WEEK LOAN COpy 

This is a Library Circulating Copy 

which may be borrowed for two weeks. 

For a.personal retention copy, call 

T ech.-Info. Division, .Ext. 6782 
; . 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 
1'"\0 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 

Government. While this document is believed to contain correct information, neither the 

United States Government nor any agency thereof, nor the Regents of the University of 

California, nor any of their employees, makes any warranty, express or implied, or 

assumes any legal responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by its trade name, trademark, manufacturer, or otherwise, does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof, or the Regents of the University of 

California. The views and opinions of authors expressed herein do not necessarily state or 

reflect those of the United States Government or any agency thereof or the Regents of the 

University of California. 

", 

" 
J" 

.'~ 

4 . 



.' 

THE EVOLUTION OF A TURBULENT VORTEX 

Alexandre Joel Chorin 

Department of Mathematics and Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

September 1981 

This work was supported in part by the Director 
Office of Energy Research, Office of Basic Energy Sciences, 

Engineering, Mathematical, and Geosciences Division 

LBL-13301 

of the U.S. Department of Energy under Contract No. W-7405-ENG-48. 

This manuscript was printed from originals provided by the author. 



ABSTRACT 

We examine numerically the evolution of a perturbed vortex in a periodic 

box. The fluid is inviscid. We find that the vorticity blows up. The 

support of the L2 norm of the vorticity converges to a set of Hausdorff 

dimension -2.5. The distribution of the vorticity seems to converge to 

a lognormal distrihution. We do not observe a convergence of the higher 

statistics towards universal statistics, but do observe a strong temporal 

intermittency. 

(i i i) 
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§l INTRODUCTION 

We consider a straight line vortex imbedded in a three-dimensional 

periodic domain. We perturb the vortex and follow its evolution by a vortex 

method, in the hope that the calculation will shed light on aspects of the 

dynamics of vorticity which are significant for the understanding of 

turbulence. 

The equations of motion are Euler's equations. The reasOns for asstL.'1ling 

that the viscosity is absent are spelled out in [3], [8J: It is reasonable 

and consistent with both numerical experience and available theory to assume 

that in a periodic domain the solution of the Navier-Stokes equations 

converge to the solution of the Euler equations strongly enough for the 

properties of the energy-containing and inertial ranges to be analyzable 

in the inviscid case. Such an assumption is implicity made in Kolmogorov's 

theory of the inertial range. 

The calcula.tions can of course be pursued only.for a short time, 

until the complexity of the flow outstrips the available compu;~:er memory 

and time. However, significant information can be glea.ned in this short 

time. Long time calculations require a rescaling or a renormalization 

group procedure [8], [22], [29], [30]. 

We obtain numerical results consistent with the conclusion reached 

in [8], [27] that the Ll and L2 norms of the vorticity become infinite 

in a finite time. We .confirm the conclusion, reached in [8] by a rescaling 

procedure, that the L2 support of the vorticity shrinks to an object of 

Hausdorff dimension ~2.5, a~~ predicted bytvlandelbrot [231, [24]. Graphical 

representations of the "olut ion display the complexity of the flow and 

provide an intuitive explanation for the occurrence of strange sets. 



The vortex motion presents an interesting mixture of coherence and 

disorder. Universal statistics are not achieved in our calculation, --and 

support is found for the coherent structure model of the inertial range 

[3], [6]. The distribution of vorticity is seen to be approximately 

lognormal, in asense different from both the Saffman model [28] and 

K01mogorov's assumption (17]. A striking temporal intermittency is observed, 

somewhat similar to a phenomenon observed by Siggia (29]. 

In summary, the vorticity stretches wildly but the constraint of energy 

conservation prevents it from spreading evenly and forces it into tight 

knots. In general, the amount of disorder in a turbulent flow is presumably 

a function of the available energy. 

§2 THE EQUATIONS OF IITOTION AND THEIR APPROXIMATE SOLUTION 

The general framework for our calculation is similar to the one in [8] '.~; 

The Euler equations for incompressible inviscid flow can be written in the form 

E, = curl !,d, div u = 0, 

where ~ is the velocity, ~ is the vorticity, t is the time, and V is the 

differentiation vector. These equations are to be solved in a box of 

side 1, with periodic bounda.ry conditions. 

Suppose the initial data can be approximated by M vortex tubes of 

small but finite cross-section. The circulation of the i-th tube is f
i

. 

( la) 

(lb,c) 

Let E(t) be the radius vector of a point moving with the fluid. The velocity 

induced by the tubes at L( t), as determined by Euler I s equation, can be 

approximated by the Biot-Savart law (see (11): 

(2) 



~(E) = J 
~xd~ 

a 3 

i-th 
tube 

wheres = ~(r') is the unit t&~gent to the i-th tube at E', ds is the 

element of arc length along that axis, d~ = ~ ds, ~ = E - E', and a = lal 

is the length of~. If L lies on one of the tubes, formula (2) has to 

be modified and the finite cross-section taken into account, because a can 

vanish and the velocity induced by close-neighbor interaction on infinitely 

thin tubes is, in general, infinite (see, e.g., [1]). Thus, if ..E(t) is 

a point on the axis of one of the tubes, its velocity is given approximately by 

1 
M 

J 
a x ds 

~(E) L 
-

( 3 ) = -4n 
[. 

lJ;(a) l 

i=l 
i-th 
tube 

where \~( a) = a 3 ,,;hen a is large, and \ji( a) satisfies, among other constraints, 

the condition 

6 

J 

£!. x d2 

~:~ lJ;( a) = O. 

-6 

The motion of r is then given by 

(4 ) 

Equation (3) is our point of departure for approximating equations (1). 

We assume that the initial data are such that the initial vorticity can 

be approximated by N vortex segments, i. e., short, thin, circular cylinders 

whose axis is tangent at a point to the vorticity vector (fig. 1). Tne 



( 1 ) 
coordinates of the center of the base of the i-th segment- are r. = 

-1 

and the coordinates of the center of the top are_ 

7(.2)). "" ~ The i-th segment has a circulation r., 
1 1 

r i = J~. dl:, 

cross 

section 

and radius a., i = 1, ••• ,N. Connected segments remain connected,-
1 

(2) (1) [ 
r. = r.+

l
• {For another example of the use of such segments, see I]; 

-1 -1 

in the present inviscid calculation, the difference between an algorithm 

based on the use of segments and the filament a180rithm of [8] is merely 

one of bookkeeping). No segment is allowed to be longer than a predetermined 

small number 11, I.I~ 2
) -.Ii 1 ) I ~ h for all i. 

(1) (2) 
The vectors r i ,r

i 
move according to an approximation of, equations (4): 

_ r~2) (nk), n integer, k = 
-1 

1 N 
= -- I r 

4rr j=l j 

(1 ) 
- r 
-j 

a = I§:I 

time step; 

(2)n+l 
with similar expressions for r. . We choose the following form of ¢ (which 

-1 

( 4 ) 

o 

,. 



corresponds to ~ in (3)): 

1 
<p( a) = 

( 2 )-1 a . a 
mln 

-3 
a 

o 

if 

if 

if 

a~a. 
mln 

a. ~ a ~ a 
mln max 

a>a 
max 

a . ,a are parameters to be chosen. The assumption l/<P = 0 if a > a 
mln max max 

is convenient, and is reasonable since l/<P is small when a is large. If 

the vortex tubes are closed, there is no need to compute both r~l)n+l and 
1 

(2)n+l 
r. • The time step k is chosen by requiring that 

1 

max 
i 

Ir~l)n+l _ r~~)nl = 
-1 -l 

There are thus four parameters: 

I (l)n I k max u. ~ K, K = 
1 

small constant. 

a . , a ,h and K to be chosen; this 
ffiln max 

( 6) 

will be done in the next section. Note that in a periodic box each vortex 

element interacts not only with each other segment but also with an infinite 

1 
set of images of that other segment; however, if a < -2 only one of these 

max 

interactions is non-zero. 

Note also that the function <P is independent of the curvature of 

the vortex tubes. Numerical methods with such geometry-independent cut-o~f 

functions <P have been tested, e.[~., in [7], [8], and have been shown to converge 

in [2]. On the other hand, it is known that for a single vortex line the 

leading term in an asymptotic expansion of its induced velocity field is 

curvature-dependent (see, e.g., [1], [14], [19]). The paradox is resolved 

by the fact that a single physical vortex may have to be approximated by 

a cloud of vortex segments, ,{hose collective motion resolves all effects, 

including local curvature effects. A similar situation holds for vortex 



motion in the plane, where clouds of non-deformable numerical vortex elements 

approximate well the motion of deformable physical vortices [13]. Furthermore, 

I have run three-dimensional calculations in which every vortex was moved 

only by its local curvature-dependent self-induction, following Hama [14]. 

The resulting motion turned out to be slow and the vortex stretching insig-

nificant. This suggests that even though the self-induction, curvature-

dependent term may be large for a single vortex with an arbitrarily chosen 

geometry, in its natural motion a vortex rearranges itself so that the 

self-induction effect is lessened. 

We shall assume that the vortex segments retain a cylindrical cross-

section throughout their evolution, in the expectation that an arbitrary 

vorticity configuration can be approximated by cylindrical segments. 

The theory in [2] and the analogy with the two-dimensional situation lend 

support to this expectation. Furthermore, we assume that the distribution 

of vorticity remains uniform within each segment. This assumption is not 

essential, but does simpli~J the bookkeeping. 

As the flow evolves, the vortex segments stretch. If a segment 

becomes longer than h, it is broken up into two segments, each with half 

the original length. The new end-points are determined by linear interpolation. 

The cumulative stretching of the line is tracked as follows: Each segment 

(1) (2) . 
r. r. 1S assigned a tag q .• When the i-th segment is broken up into 
-1 -1 1 

two halves, each one of the new segments is assigned a tag equal to 2q .. 
1 

Initially, q. = l/V., where V. is the volume of the i-th segment. The 
1 1 1 

number of segments, N, increases with time. In our calculations, we 

assumed that initially Vi = Vo for all i; we also assumed that the segments 

had equal initial lengths to ~ h. 

Let t. be the length' of the i-th segment, t. = Ir~2) _ r~l)l, 
1 1 -1 -1 

(6) 



If. I ~ h. The tag assigned to that segment had been doubled each time the 
1 

length of a segment had been halved. The cross-section of the segment is 

thus fO/fiqi' and its volume is fO/qi. Thus, the total volume occupied 

by the vortex segments is 

it is easy to see that V is constant in time with our computing scheme, 

as equation (lc) requires. 

Assume that initially each vortex segment contains vorticity t;;, 

parallel to its axis, with ls.I = t;;o equal for all segments. Tte Ll norm 

of the vorticity, II t;;11
1 

= J I s.1 dV, can be evaluated as follows: Since the 

cross-section of· the i-th segment is fO/f. q ., the vorticity in thei-th 
1 1 

segment is proportiona] to f. q., and, therefore, up to an immaterial constant, 
1 1 

N 

I.e.. 
i=l 1 

By a similar argument, the L2 norm of t;; equals 

N 

L 
i=l 

2 
q.f. 

1 1 

where, again, an immaterial constant has been ommitted. 

( 8) 

All the calculations below were made with the following initial data: 

A vertical cylindrical vortex is deformed in such a way that its axis 

consists of four straight lines through the points (%,~,O), (~,~,~), 

1 1 311 4 1 1 
(2' 2+0 •1 , 5)' (2'2'5)' (2'2,1). This vortex is then divided into segments 

of length smaller than h, a,nd is assigned sOme cross-section SO. r = 1 
j 



for all j. 

Note that in [7] we set O. = a. for all i. This identification 
1 mlIl . 

was natural, but in no way logically required, and will not be used here. 

§3 ACCURACY AND NL~ICAL PARAMETERS 

In the present section we show how the numerical parameters needed 

in our calculation are picked, and demonstrate that under suitable conditions 

the results obt?-ined are independent of these parameters. 

Consider first the dependence of the computed solution on the parameter K 

which determines the time step k. The behavior of the solution as a function 

of time is hard to use in assessing accuracy, since the velocity u increases 

very fast and a substantial part of the total time elapsed in 40 time steps 

is in fact spent in the first time step. Since the initial data are 

fixed, the length of the first step is proportional to K, and solutions with 

different K' s appear as translates of each other in time. In order to 

remove this effect, we consider the (L
l

,L
2

) portrait of the flow, i.e., 

the curve traced by the flow in a plane where the coordinates are /I ';11
1 

and 

IIsli 2. From formulas (7), (8 ) it is seen that" ';11
2 

depends .more on the total 

stretching than does IIsll
l

. 

In figure 2 we display the (L
l

,L
2

) portraits of calculations performed 

with a. = .1, a = .3, h = .1, and K = .075, .05, .03. One can see 
ml.n max 

that as K~O the curves converc;e to a limiting curve. A calculation with 

K = .02 is indistinguishable in this representation from the calculation 

with K = .03, for the times under consideration. When a. =. 1, a =. 3 , 
ml.n max 

h = .1, we choose K = .03. 

The runs made with 11 = .075 and h = .05 (a. = .1, a = .3, 
Inln max 

K = .03) are indistinguisha.ble in the (L
l

,L
2

) plane from the one made with 

(8 ) 

,. 
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h = .1. The runs made with h = .1, K = .03, a. =.1, and a = ,.2, 
mln ma.x 

.3, 

.4, .5 are also indistinguishable. 

However, if a. is reduced, K and h have to be reduced also. When 
mln 

they are reduced substantially the calculation returns to the portrait it 

had with a. = .1. One can see that all that happens is that the time and 
mln 

space scales are reduced and the calculation merely rescaled. Thus, we shall 

pick in all the r1.IDS below a. =.1, a =.3, h = .1, K = .03. 
mln max 

We also made some r1..L."1S with a. variable, and dependent on the local 
mln 

cross-section of the segments. With appropriate value~ of K, a and h 
max 

the calculation gives the same results as the one with constant a . 
nun 

The lack of sensitivity of the results to parameters such as a . , 
mln' 

a underscores, once again, the fact that some of the properties of 
max 

turbulence are reasonably independent of the exact form of the equations 

of motion, a phenomenon already familiar from the theory of critical 

phenomena (see, e.g., [301). 
\.' 

Another check on the accuracy of the calculation is the verification 

of energy conservation. The energy in the periodic box is 

1 I 2 E =2" 12:!.1 dV, u = velocity vector. 

E should be approximately constant in time. ~ can be computed at an 

arbitrary point by an obvious extension of formulas (5). The flow is 

very complex (see below) and it is hope less to try to evaluate E by 

classical quadrature. The best we can do is distribute some points evenly 

2 
in the box, evaluate I~I at these points, and average; in table I we 

display t'he results of two such calculations, with K = .03, a. =.1, 
mln 

a ='.3, h = .1, and with 53 and 9 3 sample points respectively. Energy 
max 

does appear tobe as constant as the method by which it is evaluated would 



step 

1 

5 

10 

15 

20 

25 

30 

TABLE I 

Energy conservation, K = .03. 

53 sample points 9
3 

sample 

.17 

.16 

.15 

.16 

.18 

.18 

.20 

TABLE II 

Energy (non)conservation, K = .l. 

9
3 

sample points 

step energy 

1 .14 

5 .15 

10 .21 

12 .77 

1h .32 

16 .45 

(10) 

.19 

.18 

.17 

.16 

.15 

.17 

.18 

points 

~ 



allow. In table II we di splay the results of a run made with K = .1 

(a value which we already know is too large). Energy is not conserved. 

Each one of the major calculations below has been checked to see how 

sensitive it was to a variation in the numerical parameters. 

§4~lATN FEA'rURES OF THE FLOW. 

As soon as the flow begins, the vorticity be8ins to stretch, and the 

stretching is extraordinarily rapid. In figure 3 we plot the evolution of 

II t;;lI
l 

as a function of time. The graph is consistent with the conclusion in 

[8] that 1It;;lI
l 

(and a fortiori 1It;;1I
2

) become infinite in a finite time. 

Of course, as II t;;ll
l 

increases, the number of segments needed in the calculation 

increases, and the calculation cannot be continued forever. 

Attach to each sevnent a stretching number s. = q.l., where q. is 
,1 1 1 1 

(2 ) 
the tag attached to the vortex segment and i. is its length, i. = Ir. -

, 1 1 -1 

r.(l) I ~ h. The length scale associated with each vortex is the square root 
1 

of its cross-section; that scale is proportional to l/~. By step 40, 
1 

some segments have been stretched by a factor of ~400, while others have 

been stretched only by a factor of -2. The ratio of the largest to the smallest 

scale at the end of step 40 is thus about 20 to 1. This is not a large 

enough spread to allow a determination of the inertial range exponent. 

2 
We tried to calculate the average value of (~(~ + ~) - ~(~)) ,where ~ 

is the velocity and r = I~I is comparable with the scales present in the 

calculation, and then approximate this function by rB. The values of B obtained 

in this way were not independent of the range of scales chosen, and 

ranged between .9 and 1.4. 

As the flow evolves, u 
, max = m~x l~il)1 increases rapidly even though 

1 

the energy remains constant, and k, the time step, decreases from .37 at 

(11) , 



step 1 to .013 at step 40. An interesting interpretation of that fact is 

presented below. 

In figures 4 we present the general configuration of the vortex 

segments after 10 steps (t = .65), 20 steps (t = .88), 30 steps (t = 1.04) 

and 40 steps (t = 1.21). The pattern of increasing complexity is obvious.' 

However, the vortex does not forget the fact that its initial configuration 

was vertical (for a quantitative discussion, see below). Some entrainment 

of irrotational fluid does take place, and can be measured as follows: 

Define the horizontal center of gravity of the vortex, 

X 1 N (1) 
= >'1 L xi 

I i=l 

The entrainment radius R is 

1 N 
R = N L 

i=l 

1 N (1) 
y = N L y. 

.1 1 
1= 

R increases from R = .025 at t = .37 to R = .137 at t = 1.17. 

The most remarkable feature of figures 4 is the fact that as the vortices 

stretch they organize themse.lves into coherent narrow sheaves. In figures 5 

we show details of the structure at step 28, i.e., relatively ,F;:arly. At 
'.., 

later times, the packing of the segments is so tight that it is difficult 

to discern in them a consistent pattern. (Indeed, one would not expect to 

have an intuitive grasp of an object of Hausdorff dimension ~2.5.) Some 

of the "legs" in figure 4(d) contain 20 to 30 separate segments. 

The explanation for this phenomenon is as follows: As the vortices 

stretch, their cross-section decreases and the energy associated with them 

would increase unless they arranged themselves in such a way that their 

(12 ) 



velocity fields cancelled. The folding achieves such cancellation; it viII 

be reinterpreted in the next section in terms of Hausdorff dimension;-

The large degree of coherence in the physical vortex cores, and the 

fact that stretching and folding rearrange the vorticity in thin. well-

defined vortex structures, provide some support to the conjecture in [3J. 

[6] that the inertial range spectrum is related to the spectral tail of 

. the vorticity distribution in discrete vortex structures. 

§5 HAUSDORFF DIMENSION OF THE SUPPORT OF VORTICITY 

In [8] we presented a calculation which verified Mandelbrot's conjecture 

that the L2 support of the vorticity shrinks into a set of Hausdorff 

dimension "'2.5. The calculation in [8] vas based on a rescaling arguInent 

whose validity is not rigorously established (for an example where rescaling 

has been applied and can be proved to be valid, see [9J). In the present 

section we obtain the same result by a different method. 

We first define Hausdorff dimension. Consider a compact set C; 

cover i.t by a finite collection of balls of radii p., p. ~ p. Form the sum 
·11 

S(D) D = positive number. 

Consider the quantity 

h(D) = lim lim inf S(D). 
P-10 

h(D) is the Hausdorff dimension of C in dimension D. h(D) is zero for D 

large, usually infinite for D small; the number 

lover bound of D for vhich h(D) is infinite, 

smallest upper bound of D for which h(D) is infinite, 

( 13) 



* * is the Hausdorff dimension of C. For a cube D = 3, for a square D = 2, 

* * for a line segment D = 1, for the tertiary Cantor set D = log2/1og3 

* (see [16]). The balls used in the definition of D can be replaced by any 

family of non-degenerate self-similar objects ([12]). 

The conjecture verified in [8] is the following: Consider 1It:1I2 = 

II~12dV. Consider any £ > O. There is a time T such that for t > T 

~ = S.l + .s.2' the supports of .s.1 and S2 are di sj oint, the support of t:l 

* has dimension D ==2.5, and 1111112 = (1 - dllt:112; i.e., ab'TIOst all the vorticity 

. * 
has support of dimension D . 

, 

To verify this conj ecture, we consider the stretching number~,;si = ti qi • 

* * We pick an £, and determine s = s (£) such that 

(see formula (8)). 

~ 2 
~q . .t. 

1 1 
segments 

such that 
s>s* 

I· 

= (1 - d ~ q . .t~ 
all 1 1 

segments 

Ttle cover the segments for which s. > s by cylinders 
1 

with circular bases whose heights are equal to the radius p. of their bases. 
1 

A segment of length t. with tag q. has cross-section l/t.q. aea can be 
1 1 1 1 

covered by f cylindei with Pi = 1/11iQio The s~'TI S(D) which corresponds 

to this cover is 

S(D) 
> - ~ 1 D/2 

= -- t. vi. q. (-e.-) 
> * 1 1 1 . i qi s. s 

1 

* * s =s (£). 

S (D) approximates the lim inf of sums corresponding to covers \dith 

(10) 

such cylinders. Indeed, consider one segment. A cover with smaller cylinders 

will only increase S(D) (since when we double the number of cylinders we 

(14) 



D 
decrease the factor p by less than two); on the other hand, if we cover 

, ' 

the segment by} larger cylinde~of radi~, say, a, there will be -t. /a 
1. 

such cylinders and the corresponding contribution to S(D) will be 
D 

- (,t. /0,) a = 
1. 

o D-l ( 
~ia • If D > 1 which will turn out to be the case in all the calculations 

below) the contribution to S(D) is smallest when a is as smaliCas possible. 

\'le follow the sums S(D) in time, relying on the fact that the 

segments are stretching, and thus that the l//.f.iqi are decreasing, to 

produGe the limit of vanishing linear dimension. 

In figure 6 we plot the evolution of S(D) for several values of D, 

with E = 0.1. For small t, S(D) is not always defined because there are not 

enough segments for s* to be defined. Note that at t = 1.21, 3(3) = .08; 

initially 3(3) = .45; i.e., at t = 1.21, 90% of the squared vorticity is 

contributed by 16% of the volume originally occupied by vorticity. For 

* D <D , 3(D) should be increasing; for D > D*, 3(D) should be decreasing. 

* An inspection of figure 6 leads to the estimate D -2.5, in agreement with 

the conclusion of [8]. 

The notion of Hausdorff dimension provides an interpretation of the process 

of vortex folding described in the preceding section. The vorticity keeps 

on stretching and eventuallY, after a finite or infinite time has elapsed, 

some cro'ss-section of a vortex line should have zero Lebesgue measure. 

However, that cross-section cannot shrink to a point because the energy associated 

with a point vortex is infinite. Sets of non-integer Hausdorff dimension 

appear in problems where, for example, one tries to characterize sets of 

zero Lebesgue measure which can carry a finite charge while giving rise 

to a b01mded potential (see [12]). It seems likely that the constraint of 

finite energy requires that a cross-section of an infinitely stretched 

vortex have a sufficiently large Hausdorff dimension. The cross-section 

(15) 



of a set of Hausdorff dimension 2 + a will in general have Hausdorff dimension 

1 + a. (See [26J.) The process of vortex folding is the process by--which 

such a cross-section is generated. 

In [11], Frisch et al. presented an interesting derivation of the 

relationship between an energy cascade and Hausdorff dimension. They 

considered eddies of typical linear dimension L, containing energy pro-

2 
portional to BU , where B is the decreasing fraction of volume occupied 

by active eddies of linear dimension L. The characteristic time T of 

such eddies is ~L/U, and the Kolmogorov assumption is that in a characteristic 

time T the eddies lose their energy to smaller eddies, the rate of energy 

transfer B~/T = BU
3

/L being constant. It is difficult to verify such 

assumptions on the computer, since quantities such as U, Land T are not 

sharply defined. However, consider the flow in the periodic cube as making 

up a single eddy. 
2 . 

U = constant, and we should have BIT ~ constant. 

B is decreasing. A characteristic time for the eddy is k, the time step, ,. 

and thus k should decrease as the energy.cascade proceeds. We have already 

shown that this was the case. The quantity maxlu.1 increases while 
i 1 

JU2
dV remains constant because the activity is confined to an ever decreasing 

volume. 

§6 LOGNORMALITY OF THE VORTICITY DISTRIBUTION 

As the vortex lines stretch, the range of values s. = q . .t., i = 1, ... N, 
111 

assumed by the vorticity, increases. 

distribution of the s .• 
1 

It is of interest to determine the 

In [2], Saffman provided an argument to show that the distribution of 

values assumed by the vorticity is lognormal; he assumed that the local 

rate of stretching is proportional to the local vorticity multiplied by a 

(16 ) 



random coefficient: 

By integration we find 

d~ = 
dt 

t 

log(~(t)) - 10g(~(0)) = I b(t)dt, 

o 

(11) 

' .. 

and· if the valu'es of b( t) for distinct values of t are reasonahly independent, 

and if all the log~( 0) are equal, it follows that the di stri bution of 

~(t) is lognormal. Assumption (11) is reasonable for a short time, for 

indeed the more'vorticity has been stretched in a neighborhood, the more 

vorticity is available to perform further stretching; the stretching also 

depends on the geometrical configuration of the vortex which can quite 

reasonably be viewed as random. However, once the vorticity has been 

stretched a lot, vorticity contributions generated in one part of the flow 

interact with vorticity contributions generated in another part of the flow, 

so that (10) is no longer a convincing model. 

A different lognormality was assumed to hold in Kolmogorov's theory 

[17]. He assumed that the distribution of dissipation in disjoint, 

fi xed small vol urnes is lor;normal. rfIle twa lor;normali ty 

assumptions are different, and, as shown in [18] and [23J, probably incompatible. 

We have been able to verify neither. 

However, if we consider the distribution of the s. 's obtained by 
1 

our algorithm, we see that it does at least approximately converge to a 

lognormal distribution. In table III we display the skewness and flatness 

of the distribution of the computed log s. as functions of time. These 
1 



quantities are defined as follows: Let a be a random variable, and let an 

overbar denote an average at a fixed time. v(o.) = (a - a)2 is the variance 

of a, Z(o.) = (a - a)3/V(o.)3/
2 

is the (normalized) skewTIess of a, and K(o.) = 

(a - o.)4/(V(o.))2 is the flatness of o.. For a gaussian variable a, z(o.) = 0 

and K(o.) = 3. The values of Z(log s) 8l1d K(log s) have an error of approximately 

±.3 (as can be seen by making several runs with different numerical parameters) 

and are compatible with the conclusion that log s has a normal distribution. 

In figure 7 we display the distribution of (log s - log s)/V(log s) as well 

as the gaussian distribution with the same variance, after the 40th step. 

In view of the fairly small sample size, the assumption that log s is 

.gaussian becomes quite tenable. 

This conclusion agrees with Saffman's conjecture if the total amount 

of stretching is small, but differs from Snffman's conjecture when the 

stretching is substantial. Indeed, in our calculation each vortex is 

divided into shorter vortices when its length exceeds h, and each new piece 

contributes a value of log s when the statistics of log s are computed. 

On the other hand, in Saffman's model, each vortex contributes a single 

value however much it may have been stretched. Our distribution is therefore 

much less "intermittent" than Saffman's, and allows fewer extreme values 

of s. Our conclusion would agree with Kolmogorov's if the segments 

were equidistributed in space and if one could apply his conjecture to 

volumes which contain exactly one segment; the fi rst condition is unlikely 

to hold (see figures 4) and the second condition is not compatible with the 

analysis in [17J. 

§7 TEMPORAL INTERMITTENCY AND HIGHER STATISTICS 

It has already been mentioned that during the short time interval for 

(18) 



TABLE III 

Skewness and flatness of log s. 

step skewness flatness 

1 .40 1.16 

5 .77 2.11 
('j: 

10 .14 2.22 

15 .54 2.43 

20 .34 2.59 

25 -.60 3.35 , 
\ .. : 

30 -.29 2.39 

35 -.19 2.25 

40 -.19 2.81 



which our problem can be run, the flow does not forget its initial 

data; in particular, the velocity field remains on the whole the ve16city 

field of a vertical vortex. Let u = (u,v,w) be the velocity vector. 

. . h 2 2 2 h th b d + t' 1 Quantltles suc as u , v , w , were e over ar eno~es spa la averages, 

can be computed by the sampling method described eru'lier for computing 

2 -2 
= 0 w - 0; w increases slowly (to about 20% of 2E = At t energy. 

u
2 

+ v
2 

+ w
2

) and then starts to decrease again. 

I f · 8 . 1 2 2 2 d th t 1 b . n 19ure we dlSP ay u , v ,w average over e cen ra su reglon 

1 ·1 1 1 
C

R
: 2' - R :;;;;; x :;;;;; 2' + R, 2' - R :;;;;; Y :;;;;; '2 + R, 0 :;;;;; z :;;;;; 1, where R is the entrain-

ment radius defined in equation (9). We picked that region because the 

fluid can be viewed as more fully turbulent there and one could have expected 

a closer approximation to energy equipartition between u, v, w in that 

region than in the cube as a whole. However, just the opposite is the 

case. u
2 

and v
2 

oscillate, as one would expect from the fact that the 

vortex as a whole precesses as a consequence of its initial perturbation; 

w
2 

increases sharply but then decreases sharply, leaving an almost two-

dimensional flow. 
. 2 

The graph of w describes a sharp blip. 

I was curious to see if a similar blip could be seen in any other 

statistical description of the flow. None could be seen in quantities 

such as the flatness or the skewness of the distribution of u or v (which 

remain roughly constant and merely reflect the fact that we have approximately 

a velocity field associated with a vertical vortex). I therefore tried 

to compute the skewness and flatness of velocity derivatives such as 

u can be computed formally from (5) by differentiation: 
x 

u (r) 
x -

N 

= C L (a x 6£j)1!¢ 
j=l 

(20) 



where 

- r 

a = I~I , 

- r 
(1) 
j 

(~ x Ij)l denotes the x component of ~ x 6£j ,and 

-2 -2 
if a~a a a 

min min 

'" 
l/¢(a) 

-4 
l/¢ = = a if a ~a ~a 

min max 

0 if a > a 
max 

The constant C incorporates the factors -1/4n and r. of (5) as well 
J 

as numerical coefficients which arise in the differentiation. It is 

not at all obvious that this differentiation leads to 3.l1 approximation of 

and indeed the moments of u depend on a . ,a as well as on the 
x nun max 

size of the region in which they are evaluated; only their qualitative 

behavior is of possible significance. The flatness of u exceeds the 
x 

flatness of ufor all choices of parameters. 

It is not at all obvious either that the moments of u remain bounded 
x 

in time (and indeed, we claimed earlier that II E;;1I
2 

does not remain bounded). 

Also, the theorem on equality of Hausdorff dimension and capacitory 

dimension [12J suggests that moments of sufficiently high derivatives 

of u do not exist, a conclusion reached by other means in [25]; this possi-

bility casts a further doubt on the validity of the calculation of the 

(21) 



moments of u . 
x 

Be that as it may, we have plotted in figure 9 the behavior of the 

skewness Z(u ) and flatness K(u ) of u averaged in space over the central 
x x x 

region CR. The temporal blip ob~3erved in the evolution of w
2 

has its clear-

equivalent here. Changes in the region over which the average is taken and 

in a . , a change the numerical values of Sand K, but do not change the 
mln max 

shape of the curve. The sudden increase in activity associated with the 

blip resembles the temporal intermi tt'ency observed by Siggia [29]. We 

have no good explanation for thi'l phenomenon. It may be due to a vortex 

breakdown, such as the one observed numerically in [lOJ, which could be 

responsible for the horizontal loops in figure 4(d). 

Note that nowhere in figures 8 and 9 do we observe a convergence 

towards statistics independent of the initial data. This may be due to the 

fact that the integration time is too short, but it could also be due to 

the non-existence of "universal" statistics. The experimental data (see, 

e.g., [31]) do not rule out the latter hypothesis. Arguments for and 

against the existence of "universal" statistics can be' found i. a. in 

[25] and [29]. 

§8 CONCLUSION 

We have provided quantitative and qualitative information about the 

evolution of a three-dimensional vortex, which has a substantial bearing 

on the assessment of various theoretical models of turbulent flow. Most 

importantly, we have demonstrated the eminent suitability of vortex methods 

for the analysis of turbulence. Long thin objects which arise in fluid 

turbulence are easier to represent as long thin objects than in any other way. 

(22) 



The calculations above were performed on a VAX computer at the 

Lawrence Berkeley Laboratory. Listings of the programs used are ava~lable 

from the author. 

(23) 

, . 



BIBLIOGRAPHY 

[1] G.K. Batchelor, An Introduction to Fluid Mechanics, Cambridge Univ. 

Press, Cambridge (1967). 

[2] T. Beale & A. Majda, Vortex Methods: Convergence in three dimensions, 

to appear in Math. Compo 

[3] A.J. Chorin, In Proc. 2d Int. Conf. Num. Meth. Fluid Mech., 289 (1970). 

[4] A.J. Chor.in, J. Fluid Mech. , 'L[, 785 (1973). 

[5] A.J. Chorin, J. Fluid Mech., 63,21 (1974). 

[6] A.J. Chorin, Lectures on Turbulence Theory, Publish/Perish, Boston (1975). 

[7] A.J. Chorin, SIAM J. Sc. Stat. Comp.,!, 1 (1980). 

[81 A.J. Chorin, Comma Pure Appl. Math., (1981). 

[9] A.J. Chorin, Numerical estimates of Hausdorff dimension, to appear 

in J. Compo Phys. 

[10] V. del Prete, Numerical Simulation of Vortex Breakdown, LBL Math 

& Computing Report, Berkeley, (1978). 

[11] U. Frisch, P.L. Salem & M. Nelkin, J. Fluid Mech., 87, 719 (1978). 

[12] O. Frostman, Potential d'Equilibre & Capacite des Ensembles, thesis,~ 

Lund (1935). 

[13] O. Hald, SIAM J. Nurn. Anal., 10, 726 (1979). 

[14] F. Hama, Phys. Fluids, ~, 526 (1963). 

[15] F. Hausdorff, Dimension und Ausseres Mass, Math. Annalen 79 (1919). 

[16] J.P. Kahane & R. Salem, Ensembles parfaits et s~ries trigonometriques, 

Hermann, Paris (19J6). 

[17] A.N. Kolmogorov, J. Fluid Mech., 13, 82 (1962). 

[18] R. H. Kraichnan, J. Fluid Mech., 62, 305 (1974). 

(24) 



[19] H. Lamb, Hydrodynamics, Dover, London (1960). 

[20] A. Leonard, Proc. 4th Int. Conf. Num. Meth. Fluid t1ech., 245, Springer, 

N • Y. ( 1975 ) • 

[21] A. Leonard, J. Compo Physics, 37, 289 (1980). 

[22] S.K. Ma, Modern Theory of Critical Phenomena, Benjamin, Reading (1977). 

[23] B. Mandelbrot, in "Statistical Models and Turbulence", M. Rosenblatt 

& C. Van Atta (Eds.), 333, Springer (1972). 

[24]. B. Mandelbrot, J. Fluid Mech., 62, 331 (1974). 

[25] B. Mandelbrot, in "Turbulence and NS Equation", R. Temarn (Ed.), 

Springer (1976). 

[26] P. M.attila, Ann. Acad.Sci. Finn, 6., 1 (1975). 

[27J R. Morf, S. Orszag& U. Frisch, PhysicalReview Letters, ~, 572 (1980). 

[?8] P. Saffman, Phys. Fluids, 13, 2193 (1970). 

[29] E. Siggia, J. Fluid Mech., 11, 669 (1968). 

[30] P.L. Salem, J. D. Fournier & A. Pouquet, in "Dynar.1ical critical 

phenomena and related topics", C. Enz (Ed.), Springer (1979). 

[31] C. Van Atta & R. Antonia, Phys. Fluids, 23, 252 (1980). 

(25) 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

LIST OF FIGURES 

A vortex segment. 

(L
l

,L
2

) portrait of the calculations. 

11.;11
1 

as a function of time. 

The evolution of the vortex: (a) step 

(b) step 

(c) step 

(d) step 

10, 

20, 

3O, 

40, 

Figures 5(a), (b). Two details of the flow, step 28. 

Figure 6. Hausdorff sums as functions of time. 

Figure 7. Histcgram of the vorticity distributicn. 

Figure 8. 
2" 2 2 
u , v ,was functions of time. 

time = .65 

time = .88 

time = 1.04 

time = 1.21 

Figure 9. Qualitative behavior of the skewness and flatness of u • 
x 

(26) 



It _ 

,-- 12,j 

/ 

/ 

. .:.. ... 



600 

400 

200 

~ K=O.075, h=0.1 

oK = 0.05, h = 0.1 

o K= 0.03, h=O.1 

K=0.075 

K= 0.05 

, K= 0.03 

/ 
-..35 steps with 

K=0.03 

°o~~~--~----~--~---L--~----~ 
") 2 4 6 8 10 12 14 liE. 

(28) 

- .. 



/1 ~ // 
// '-)1/ 1 

8 

r 
6 

4L-

2 

I 

~~~-=~ .. ~--=~=~~~~=--~----~~----~----~I~ t 
o 

r. \~') 
'f (t1 0 

0.2 0.4 0.6 

(29) . 

. 0.8 1.0 1.2 



~ 
ru 

0 '--
.,.> 

..... 

"l 
l:: 
0 
..... 
~ 
:U 

'D 
rJ') 

\ . 
\) 

~ ... -........ - ...... -- .. -- ... -oo-- .... oo .. - ..... - .... -oo~- - ... _ ... - --",,,,, - _. _ .... -_ .... _ ............. ---. --_ ...... oo-- ....... _ ...... . 



N··············· 

u') 

:1.) ~ 
~ ~ 

+' 
U) . 

I'd <9 lSI .,...-i 

~ 
.-i 

'1:1 
s... III ~ g 
0 ("i') M 
(> 

. . 
U 

0 0 

X >- rJ 



) 

2f. 
0 '. ,...J 

~ 

\I') 

s;; 
0 
.~ 

,...J 

~ .a:l 
ill) 

r .... J. ............... -......... -........................................... -.................................... -..... -.- ...... : 

11) 
['-

~ 
ru Q) 

(0 ( . ..-4 ...., . 
rt1 0 0 ..-4 

~ ~, 

,. 

.-4 

"'U 
s... ..... 

~ ru 
0 ["'"J 

0 
. . . 

L) 
Q 0 l'S) 

X ->- I -J -

\) 
(32) ~ 



N-.... -.. -.. 

o 
~) 

U 

1'-, 0 ~ r: C1.~ ~ 
,~ ,"S;l ~ 

.~ 

Q 
~ 

(Ui 

0; 
~-

11) 

~ 

o 
--1> 

~':,: 

:tJ 
:(U 
:' I/) 

o 
'T< 

0.:> 
V-',' 

,...J'" 
11), 



....... -~ ....... -
~I""- -." ••••••••.••• 

(34) 

'. 



," 

.... '" 

.--.-"-



A 
1.0 

0.8 

0.6 

0.4 

0.2 

,--<) 0 = 2.5 

:) 0= 2.6 

·0=2.7 

0=3.0 

I I I -~- ;..~ .. o ~ ____ ~ ____ ~ ____ ~ ____ ~. ____ ~ ____ -L ____ ~ 

0·2 04 0.6 Or; 1.0 1.'2 1.4 
(36) 

·:1 

<9 



. ' 

I 
9 

1/ LtJ00 •• ·I •••• I •••••••• I •••••••• ·.'I· .•••••.•• ; •.•• ' ••. I.·.1 ••• 1.1 .•• 11.11 •.•• 1 •• :.1 ••••••••.••••• 

1 

~ . 



1.0 

I 

I 
I 

! 
I 
I 

l 

I 
0.5 

--

\ 

--...... ....... ....... 
...... 

" " \. 
\ 
\ 
\ 

\ 
\ 

\ 

\ 

V 

\. 
1 

I' 
/\ 

I 
/'\ 

\ 

// \ 
/j \ 
I· \ \ 

r '\ --' 

\ U 2 
\ 
\ 

\ 
\ 

'\ I f\ \ IF.: \ \ 

....... \ ! ff ~ \ \ ........ IF.: \, 
" I t:: \ "-

" . I I;: '" " :... /:' "' 

. . . . . 

_/- . . . 
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · . . . . . . . . . 

· · · · · · · · · I 
I 

I 

I . 
I . 
: ,., 
: w l-
I 

I 

I . 
I 

I . 
I 

I 
I 

I 

I 

I 

I · · · · I 

I 

I 
I 
I 

· I 

I 

I 

· · · · · · · · · · · I 

· · · · · · · · · · . . . . . . 
n .... 

, ••••• I 
....................... ~ ......................... ' ______ --____ i ___ i-

(38) -

. . . . . . . . . . 
__ -1. ". 

r· '.:....' ~"" '9 

T, 

.... I .... ~ 



5 

4 

3 

2 

1 

0.2 0.4 0.6 1.2 

-1 . 



I"; 

• -. 

This report was done with support from the 

Department of Energy. Any conclusions or opinions 

expressed in this report represent solely those of the 

author(s) and not necessarily those of The Regents of 

the University of California, the Lawrence Berkeley 

Laboratory or the Department of Energy. 

Reference to a company or product name does 

not imply approval or recommendation of the 

product by the University of California or the U.S. 

Department of Energy to the exclusion of others that 

may be suitable . 



-
TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATOR Y 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

..... .-. 


