1	The evolution of antimicrobial resistance in Salmonella Typhi
2	
3	Abhilasha Karkey ¹ , Guy E Thwaites ^{2,3*} and Stephen Baker ^{2,3,4}
4	
5	1. Oxford University Clinical Research Unit – Nepal, Patan hospital, Kathmandu, Nepal
6	2. Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
7	3. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University
8	of Oxford, United Kingdom
9	4. Department of Medicine, University of Cambridge, United Kingdom
10	
11	* Corresponding author. Professor Guy Thwaites, Oxford University Clinical Research Unit, 764
12	Vo Van Kiet, Ho Chi Minh City, Vietnam. gthwaites@oucru.org
13	
14	• Antimicrobial resistance is a continuing clinical challenge in treating typhoid fever
15	• Resistance to first and second line antimicrobials in <i>Salmonella</i> Typhi is common and
16	associated with treatment failure
17	• A specific genotype of Salmonella Typhi is associated with multi-drug resistance and
18	resistance to fluoroquinolones and is spreading internationally
19	• Resistance to alternative antimicrobials such as azithromycin and ceftriaxone is rare but
20	has been reported

21 Abstract

22	Purpose of review: Increasing antimicrobial resistance in Salmonella Typhi is a serious public
23	health concern, especially in industrializing countries. Here we review recent clinical and
24	laboratory data concerning the evolution of antimicrobial resistance, with particular reference to
25	the emergence resistance against fluoroquinolones, third generation cephalosporins, and
26	azithromycin.
27	Recent findings: The last 40 years have witnessed the sequential emergence of resistance to all
28	first-line antimicrobials used in the treatment of Salmonella Typhi infections. Multi-drug
29	resistance (MDR), defined by resistance to chloramphenicol, amoxicillin, and co-trimoxazole,
30	emerged in the 1990's, followed rapidly by reduced susceptibility to fluoroquinolones. In the
31	current decade, high level fluoroquinolone resistance has emerged in south Asia and threatens to
32	spread worldwide. Increasing reliance is now being placed on the activity of third generation
33	cephalosporins and azithromycin, but resistance against these agents is developing. Carbapenems
34	and tigecycline may be alternatives, although clinical data are sparse, and in some settings
35	reversion to chloramphenicol and co-trimoxazole susceptibility is occurring. Therefore, older
36	drugs may yet have a role in the treatment of Salmonella Typhi infections.
37	Summary: Good surveillance, improved diagnostics, more prudent use of antimicrobials, and
38	effective vaccines will all be critical to reducing the burden of disease caused by Salmonella
39	Typhi.
40	
41	Keywords
42	Salmonella Typhi, enteric fever, antimicrobial resistance, typhoid
43	
44	
45	

47 Introduction

Bacteria belonging to the genus *Salmonella enterica* are a leading cause of community acquired bloodstream infection in low and middle-income countries (LMICs). *Salmonella enterica* serovar Typhi (*Salmonella* Typhi), a human restricted pathogen, causes a non-specific febrile illness called 'typhoid' or 'enteric' fever that is clinically difficult to distinguish from many other infectious diseases (1,2). The disease is common in many LMICs in Asia and parts of Africa and without effective antimicrobial treatment infection can lead to lead to serious, life-threatening complications, such as small bowel perforation and meningitis (3).

55

56 Several efforts have been made to estimate the global burden of typhoid fever (4,5). The most 57 recent estimate, performed by Buckle et al. in 2010, suggested that between 13.9 and 26.9 million 58 cases occur worldwide annually (6). However, these estimates provide only a broad measure of 59 the typhoid burden and there are major regional gaps in these calculations (7). The lack of a 60 reliable, rapid, and widely available diagnostic test for typhoid fever is a serious limitation for 61 both for doctors caring for patients and for those attempting to define burden of disease (8). 62 Diagnostic confirmation and antimicrobial susceptibility profiling is currently dependent upon the 63 isolation of the bacteria from blood cultures, but the required microbiology laboratory capacity is 64 limited in many typhoid endemic LMICs. This lack of diagnostic capacity has led to a particular 65 reliance on serological testing and with the Widal test, which is associated with a high proportion 66 of false positives. A consequence of a high rate of misdiagnosis is the likely overtreatment of 67 patients, incomplete data regarding drug susceptibility, and potentially inaccurate estimates of 68 disease incidence (9).

69

70 **Text of the review**

71 Clinical and epidemiological features

72	The clinical manifestations and the severity of typhoid fever can vary by patient population. The
73	majority of patients presenting to hospitals in LMICs with typhoid fever are children or young
74	adults between the ages of 5-25 years (10,11). In endemic areas with a high disease burden,
75	community population based studies have indicated that many patients with typhoid have a non-
76	specific febrile illness that is not recognized clinically as typhoid (12). Between 60 and 90 per
77	cent of people with typhoid do not receive adequate medical attention or are treated as
78	outpatients. For hospitalized patients, effective antimicrobials, good nursing care, adequate
79	nutrition, careful attention to fluid electrolyte balance, and prompt recognition and treatment of
80	complications are necessary to avert complications and the progression to severe and potentially
81	fatal typhoid fever (13).
82	
83	Antimicrobial therapy and resistance
84	Typhoid fever has a low mortality when it is recognized early and treated with effective
85	antimicrobials. But if treatment is delayed or is rendered ineffective by resistance the
86	complication and case-fatality rate increases substantially (13).
87	
88	Chloramphenicol was the first widely used antimicrobial treatment for typhoid fever. Discovered
89	in 1947, chloramphenicol was introduced into clinical practice throughout the 1950s and quickly
90	recognized as highly effective in typhoid fever treatment. By the 1980s, chloramphenicol,
91	ampicillin, and co-trimoxazole were the first line treatments for typhoid fever globally, until
92	resistance to these three drugs emerged in the late 1980s. These bacteria were defined as
93	multidrug resistant (MDR) and their spread led to the increasingly common use of
94	fluoroquinolones, such as ciprofloxacin and ofloxacin (14-16). By the late 1990s, widespread use
95	of these fluoroquinolones led to the emergence of decreased ciprofloxacin susceptibility [MICs
96	$\geq 2 \mu g/ml$]. These bacteria, which were (are) generally defined by <i>in vitro</i> resistance to nalidixic

acid, were observed non-endemic countries and usually associated with international travel to
South and Southeast Asia (7,17–19).

99

100 More recently, decreased ciprofloxacin susceptibility in south Asia has been followed by the 101 emergence high level fluoroquinolone resistance, which is associated with sequential mutations in 102 the chromosomal quinolone-resistance-determining regions (QRDR) of the genes encoding DNA 103 gyrase (gyrA), and the topoisomerase IV (parC) (20). By 2011, there were reports from South 104 Asia of highly fluoroquinolone resistant Salmonella Typhi (MIC $\geq 256 \text{ µg/ml}$) with a novel gyrA 105 mutation (21-24). In work conducted during a randomized controlled trial in Nepal researchers 106 found a new variant of *Salmonella* Typhi that was significantly associated with prolonged fever 107 clearance times and treatment failure (25). Phylogeographic analysis has defined an on-going 108 intercontinental epidemic of a specific antimicrobial resistant Salmonella Typhi lineage. This 109 lineage, which is known as H58 (now defined as genotype 4.3.1) began to emerge in South Asia 110 in the early 1990s, is associated with incH1 plasmids carrying the genes encoding an MDR 111 phenotype. This very successful lineage, which may have been driven and selected by its ability 112 to maintain and traffic MDR plasmids, is also associated with reduced susceptibility and 113 resistance to fluoroquinolones through the common gyrA/parC mutations. The on-going 114 dissemination of H58 Salmonella Typhi from Asia and into Africa suggests that the regional and 115 global dispersal of a lineage exhibiting high level resistance to fluoroquinolones is now a real 116 possibility (26–28).

117

118 Third generation cephalosporin resistance

Increasing resistance to fluoroquinolones in *Salmonella* Typhi has led to an increased use of
azithromycin and third generation cephalosporins in the treatment of typhoid in South Asia.
These agents have subsequently become the first line therapy for uncomplicated infection in
many endemic countries, including India.

124	Ceftriaxone has been the principal third generation cephalosporin evaluated in recent clinical
125	trials, although cefixime, cefotaxime, and cefoperazone have also been investigated with variable
126	clinical success (29). Cefixime is the only third generation cephalosporin that can be given orally
127	and has thus achieved widespread popularity amongst physicians looking to avoid the in-patient
128	complication associated intravenous antimicrobial therapy. However, data from a randomized
129	controlled trial conducted in Nepal, before the emergence of high-level fluoroquinolone
130	resistance, indicated that cefixime was substantially less efficacious than gatifloxacin (29).
131	
132	Resistance to third generation cephalosporins in has not yet emerged as widely as resistance
133	against the fluoroquinolones. However, Extended Spectrum Beta Lactamase (ESBL) producing
134	Salmonella Typhi organisms are being increasingly reported, particularly among patients in Asia
135	and in travellers returning from South Asia (Table 1) (30–33). Reports have shown that in some
136	isolates the MIC for ceftriaxone has gradually increased from $<1\mu$ g/ml to isolates exhibiting an
137	MIC of $>20\mu g/ml$ (34). Salmonella Typhi has been reported to be associated with a variety of
138	ESBL genes including those encoding the TEM, SHV, PER, and CTX-M enzymes and also Amp-
139	C (35,36). The emergence of ESBL producing organisms is extremely concerning, particularly if
140	they have already acquired MDR and/or fluoroquinolone resistance associated determinants and
141	mutations.
142	

143 Azithromycin resistance

144 Initial clinical studies of azithromycin for typhoid treatment suggested uncertain efficacy (37).

145 However, more recent investigations have demonstrated that it is associated with prompt

146 resolution of clinical symptoms, and low rates of relapse and convalescent faecal carriage (16,38–

147 42). However, the doses of azithromycin in these studies varied between 10 and 20 mg/kg/day for

between 5 to 7 days and the optimum azithromycin treatment regimen for typhoid remainsuncertain.

151	In the last decade there have been sporadic reports, predominantly again from South Asia, of
152	Salmonella Typhi with azithromycin MIC of \geq 32 µg/ml, although there are limited published data
153	on the clinical response to azithromycin in such infections (Table 1)(43-45). In addition, there is
154	lack of agreement as to how to define azithromycin susceptibility in vitro. The CLSI only
155	provided azithromycin disc diffusion and MIC interpretive criteria for Salmonella Typhi in 2015
156	(46). Resistance to azithromycin may be more problematic in Salmonella enterica Paratyphi A,
157	with reports from various parts of South Asia (Table 1).
158	
159	To date there is only a single case report of clinical and microbiological failure using
160	azithromycin in Salmonella Typhi (47). The mechanism for resistance was not defined in this
161	specific report, despite the macrolide efflux pump genes, macA and macB, being reported in some
162	Salmonella Typhi strains circulating in India (47).
163	
164	Evolving resistance and treatment strategies
165	Increasing drug resistance has necessitated the investigation of other antimicrobials for typhoid,
166	especially for severe disease. Carbapenems (meropenem, imipenem, and ertapenem) and the
167	glycylcline antimicrobial, tigecycline, have become increasingly common empirical therapy for
168	severe typhoid (48)(16). A recent study reported tigecycline was highly active at a concentration
169	of 2 µg/ml against Salmonella Typhi in vitro, inhibiting growth of >97% of isolates (48). These
170	data were comparable to data released by the European Committee on Antimicrobial
171	Susceptibility Testing (EUCAST) and a further study performed on a large number of Salmonella
172	isolates (48–50). Notably, tigecycline was found to have good in vitro activity against ceftriaxone
173	resistant Salmonella isolates (48). Data from clinical trials are now required to assess the relative

merits of tigecycline in comparison to alternative antimicrobials for the treatment of typhoidfever.

176

177 Attention has also turned back to the use of older antimicrobials, such as chloramphenicol and co-178 trimoxazole, for the treatment of uncomplicated typhoid fever. The avoidance of these agents in 179 treatment over the last two decades has led to the re-emergence of Salmonella Typhi susceptible 180 to them and some recent reports from Asia have reported their successful use in typhoid fever 181 treatment (51,52). Some studies have suggested that the MDR prevalence may now be as low as 182 10% in some settings that were previously dominated by MDR variants (35). A trial comparing 183 azithromycin with co-trimoxazole for the treatment of undifferentiated fever in Nepal (around one 184 third of which is caused by Salmonella Typhi) is currently underway and should provide valuable 185 data as alternative treatment strategies are being considered (53).

186

187 Conclusion

188 The continuous evolution of resistance to commonly used antimicrobials in *Salmonella* Typhi is 189 an important public health concern. With the emergence and circulation of the H58 Salmonella 190 Typhi genotype in South Asia, fluoroquinolones should no longer be recommended as first line 191 typhoid treatment. Ceftriaxone and azithromycin are being increasingly used, but Salmonella 192 Typhi resistant to these agents is now being reported. Carbapenems and tigecycline may be 193 effective in the treatment of more severe disease, but comparative clinical trials are required. The 194 declining prevalence of MDR *Salmonella* Typhi mean that older drugs such as chloramphenicol 195 and co-trimoxazole may offer renewed therapeutic options, but the rapid re-emergence of 196 resistance seems likely if these drugs are widely used. Future reductions in the burden of 197 Salmonella Typhi disease are likely to depend upon better surveillance systems and an effective 198 vaccine. Routine vaccination for typhoid in LMIC will become a real possibility in coming years 199 should Vi conjugate vaccines be prequalified by the World Health Organization. These new

200	generation vaccines have the potential to have a major impact in typhoid endemic areas. We
201	should, however, remain vigilant and continue to evaluate the most effective antimicrobial
202	treatments and monitor the ever-changing landscape of Salmonella Typhi antimicrobial
203	resistance.
204	
205	Acknowledgements
206	We wish to acknowledge our colleagues at Oxford University Clinical Research Unit - Nepal,
207	Patan hospital, Kathmandu, Nepal for providing the impetus for our work on antimicrobial
208	resistance in Salmonella Typhi.
209	
210	Financial support and sponsorship
211	This project was funded by the Wellcome Trust of Great Britain (106158/Z/14/Z) and the
212	Bill and Melinda Gates foundation. SB is a Sir Henry Dale Fellow, jointly funded by the
213	Wellcome Trust and the Royal Society (100087/Z/12/Z). Abhilasha Karkey is a fellow of
214	the Oak foundation.
215	
216	Conflicts of interest
217	None
218	
219	References
220	1. Reddy EA, Shaw A V, Crump JA. Community-acquired bloodstream infections in Africa:
221	a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(6):417-32.
222	2. Deen J, von Seidlein L, Andersen F, Elle N, White NJ, Lubell Y. Community-acquired
223	bacterial bloodstream infections in developing countries in south and southeast Asia: a
224	systematic review. Lancet Infect Dis. 2012 Jun;12(6):480-7.

225 3. Parry C, Hien T, Dougan G, White N, Farrar J. Typhoid fever. N Engl J Med.

226 2002;347(22):1770–82.

- 4. Global Burden of Disease Pediatrics Collaboration, Kyu HH, Pinho C, Wagner JA, Brown
- 228 JC, Bertozzi-Villa A, et al. Global and National Burden of Diseases and Injuries Among
- 229 Children and Adolescents Between 1990 and 2013: Findings From the Global Burden of
- 230 Disease 2013 Study. JAMA Pediatr. 2016;98121:1–21.
- Crump JA, Mintz ED. Global Trends in Typhoid and Paratyphoid Fever. Clin Infect Dis.
 2010;50(2):241–6.
- 2336.Buckle GC, Walker CLF, Black RE. Typhoid fever and paratyphoid fever: Systematic
- review to estimate global morbidity and mortality for 2010. J Glob Health.

235 2012;2(1):10401.

- 236 7. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical
- 237 Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial
- 238 Management of Invasive Salmonella Infections. Clin Microbiol Rev. 2015;28(4):901–37.
- Parry CM, Wijedoru L, Arjyal A, Baker S. The utility of diagnostic tests for enteric fever
 in endemic locations. Expert Rev Anti Infect Ther. 2011;9(6):711–25.
- Parry CM, Threlfall E. Antimicrobial resistance in typhoidal and nontyphoidal
 salmonellae. Curr Opin Infect Dis. 2008 Oct;21(5):531–8.
- 243 10. Karkey A, Arjyal A, Anders KL, Boni MF, Dongol S, Koirala S, et al. The burden and
- characteristics of enteric fever at a healthcare facility in a densely populated area of
- 245 Kathmandu. PLoS One. 2010 Jan;5(11):e13988.
- 246 11. Mogasale V, Maskery B, Ochiai RL, Lee JS, Mogasale V V, Ramani E, et al. Burden of
- 247 typhoid fever in low-income and middle-income countries: a systematic, literature-based
- 248 update with risk-factor adjustment. Lancet Glob Heal. 2014;2(10):e570-80.
- 249 12. Thompson CN, Blacksell SD, Paris DH, Arjyal A, Karkey A, Dongol S, et al.
- 250 Undifferentiated febrile illness in Kathmandu, Nepal. Am J Trop Med Hyg.

- 2015;92(4):875-8.
- Wain J, Hendriksen RS, Mikoleit ML, Keddy KH, Ochiai RL. Typhoid fever. Lancet.
 2015 Mar;385(9973):1136–45.
- 254 14. Bhan MK, Bahl R, Bhatnagar S. Typhoid and paratyphoid fever. Lancet.
- 255 2005;366(9497):1603.
- 256 15. Bhutta ZA. Current concepts in the diagnosis and treatment of typhoid fever. BMJ. 2006
 257 Jul 8;333(7558):78–82.
- Parry CM, Basnyat B, Crump JA. The management of antimicrobial-resistant enteric
 fever. Expert Rev Anti Infect Ther. 2013 Dec;11(12):1259–61.
- 260 17. Jayshree D, Millar M, Maxeiner H, Freedman J, Meade R, Rosmarin C, et al. East London
- 261 experience with enteric fever 2007-2012. PLoS One. 2015;10(3):e0120926.
- 262 18. Dave J, A S. Enteric fever and its impact on returning travelers. Int Health.

263 2015;7(3):16308.

- Barrett F, Knudsen J, Johansen I. Cases of typhoid fever in Copenhagen region: a
 retrospective study of presentation and relapse. BMC Res Notes. 2013;11(6).
- 266 20. Chau TT, Campbell JI, Galindo CM, Hoang NVM, Diep TS, Thu T, et al. Antimicrobial
- 267 Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism
- 268 of Reduced Susceptibility to the Fluoroquinolones. Antimicrob Agents Chemother.
- 269 2007;51(12):4315–23.
- 270 21. Koirala KD, Thanh DP, Thapa SD, Arjyal A, Karkey A, Dongol S, et al. Highly resistant
 271 Salmonella enterica serovar Typhi with a novel gyrA mutation raises questions about the
 272 long-term efficacy of older fluoroquinolones for treating typhoid fever. Antimicrob
- 273 Agents Chemother. 2012;56(5):2761–2.
- 274 22. Gopal M, Elumalai S, Arumugam S, Durairajpandian V, Kannan M, Selvam E, et al.
- 275 GyrA ser83 and ParC trp106 Mutations in Salmonella enterica Serovar Typhi Isolated
- 276 from Typhoid Fever Patients in Tertiary Care Hospital. J Clin Diagn Res.

277 2016;10(7):DC14-8.

- 278 23. Qamar FN, Azmatullah A, Kazi A., Khan E, Zaidi A. A three-year review of antimicrobial
 279 resistance of Salmonella enterica serovars Typhi and Paratyphi A in Pakistan. J Infect Dev
 280 Ctries. 2014;8(8):981–6.
- 24. Ahmed D, Nahid MA, Sami AB, Halim F, Akter N, Sadique T, et al. Bacterial etiology of
 bloodstream infections and antimicrobial resistance in Dhaka, Bangladesh, 2005–2014.
- 283 Antimicrob Resist Infect Control; 2017 Jan;6:2.
- 284 25. Pham Thanh D, Karkey A, Dongol S, Ho Thi N, Thompson CN, Rabaa MA, et al. A novel
- 285 ciprofloxacin-resistant subclade of H58 Salmonella Typhi is associated with
- fluoroquinolone treatment failure. Elife. 2016;5.
- 287 ** First report of a fluoroquinlone resistant Salmonella Typhi associated with treatment
 288 failuire
- 289 26. Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, et al. Phylogeographical
- analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies
- inter- and intracontinental transmission events. Nat Genet. 2015;47(6):632–9.

^{**} Defines the emergence and spread of an MDR genotype of *S*. Typhi

- 293 27. Baker S, Favorov M, Dougan G. Searching for the elusive typhoid diagnostic. BMC Infect
 294 Dis. 2010;10:45.
- 28. Baker S, Thanh DP, Tran Vu Thieu N, Voong Vinh P, Thuy CT, Turner KA, et al. Fitness
 benefits in fluoroquinolone resistant Salmonella Typhi in the absence of antimicrobial
- 297 pressure. Elife. 2013;(10;2:e01229).
- 298 29. Pandit A, Arjyal A, Day JN, Paudyal B, Dangol S, Zimmerman MD, et al. An open
 299 randomized comparison of gatifloxacin versus cefixime for the treatment of
- 300 uncomplicated enteric fever. PLoS One. 2007;2(6):e542.
- 301 30. González-López JJ, Piedra-Carrasco N, Salvador F, Rodríguez V, Sánchez-Montalvá A,
- 302 Planes AM, et al. ESBL-Producing Salmonella enterica Serovar Typhi in Traveler

303		Returning from Guatemala to Spain. Emerg Infect Dis. 2014 Nov;20(11):1918–20.
304	31.	Harrois D, Breurec S, Seck A, Delauné A, Hello S Le, Gándara MP de la, et al. Prevalence
305		and characterization of extended-spectrum β -lactamase-producing clinical Salmonella
306		enterica isolates in Dakar, Senegal, from 1999 to 2009. Clin Microbiol Infect. WHO
307		Collaborating Centre for Reference and Research on Salmonella, Institut Pasteur, Paris,
308		France; 2014 Feb;20(2):O109–16.
309	32.	Ahmed D, Hoque A, Mazumder R, Nahar K, Islam N, Gazi SA, et al. Salmonella enterica
310		serovar Typhi strain producing extended-spectrum -lactamases in Dhaka, Bangladesh. J
311		Med Microbiol; 2012 Jul;61(Pt_7):1032–3.
312	33.	Al Naiemi N, B Z, MC R, R R, Debets-Ossenkopp YJ MJ. Extended-spectrum-beta-
313		lactamase production in a Salmonella enterica serotype Typhi strain from the Philippines.
314		J Clin Microbiol. 2008;46:2794–5.
315	34.	Patel SR, Bharti S, Pratap CB, Nath G. Drug Resistance Pattern in the Recent Isolates of
316		Salmonella Typhi with Special Reference to Cephalosporins and Azithromycin in the
317		Gangetic Plain. J Clin Diagn Res. 2017;11(6):DM01-DM03.
318	35.	Kaurthe J. Increasing antimicrobial resistance and narrowing therapeutics in typhoidal
319		salmonellae. J Clin Diagn Res. 2013 Mar;7(3):576–9.
320	36.	Gokul BN, Menezes GA, Harish BN. ACC-1 beta-Lactamase-producing Salmonella
321		enterica Serovar Typhi, India. Emerg Infect Dis. Centers for Disease Control and
322		Prevention; 2010 Jul;16(7):1170–1.
323		* Emergence of ESBL producing Salmonella Typhi in South Asia
324	37.	Wallace MR, Yousif AA, Habib NF, Tribble DR. Azithromycin and typhoid. Lancet.
325		Elsevier; 1994 Jun;343(8911):1497-8.
326	38.	Dolecek C, Tran TP La, Nguyen NR, Le TP, Ha V, Phung QT, et al. A multi-center
327		randomised controlled trial of gatifloxacin versus azithromycin for the treatment of
328		uncomplicated typhoid fever in children and adults in Vietnam. PLoS One. 2008

Jan;3(5):e2188.

330 39. Misra R, Prasad KN. Antimicrobial susceptibility to azithromycin among Salmonella
331 enterica Typhi and Paratyphi A isolates from India. J Med Microbiol. Microbiology
332 Society; 2016 Dec;65(12):1536–9.

333 *Paper indicating increasing resistnace to azithromycin in Salmonella from India

40. Ohnishi K, Kobayashi K-I, Iwabuchi S, Nakamura-Uchiyama F. Treatment of Japanese
patients with enteric fever using azithromycin and MIC levels for causative organisms.

336 Southeast Asian J Trop Med Public Health. 2013 Jan;44(1):109–13.

- 41. Aggarwal A, Ghosh A, Gomber S, Mitra M, Parikh AO. Efficacy and safety of
- azithromycin for uncomplicated typhoid fever: an open label non-comparative study.
- 339 Indian Pediatr. 2011 Jul;48(7):553–6.
- Trivedi N, Shah P. A meta-analysis comparing the safety and efficacy of azithromycin
 over the alternate drugs used for treatment of uncomplicated enteric fever. J Postgrad
 Med; 2012;58(2):112.
- 43. Molloy A, Nair S, Cooke FJ, Wain J, Farrington M, Lehner PJ, et al. First report of
- 344 Salmonella enterica serotype paratyphi A azithromycin resistance leading to treatment
- failure. J Clin Microbiol. American Society for Microbiology; 2010 Dec;48(12):4655–7.
- 346 44. Sjölund-Karlsson M, Joyce K, Blickenstaff K, Ball T, Haro J, Medalla FM, et al.
- Antimicrobial susceptibility to azithromycin among Salmonella enterica isolates from the
 United States. Antimicrob Agents Chemother; 2011 Sep;55(9):3985–9.
- 45. Hassing R-J, Goessens WHF, van Pelt W, Mevius DJ, Stricker BH, Molhoek N, et al.
- *Salmonella* Subtypes with Increased MICs for Azithromycin in Travelers Returned to the
 Netherlands. Emerg Infect Dis. 2014 Apr;20(4):705–8.
- 352 46. CLSI. Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational
- 353 Supplement, CLSI document M100-S24. Clinical and Laboratory Standards Institute;
- 354 2014.

355	47.	Manesh A, Balaji V, Kumar DRN, Rupali P. A case of clinical and microbiological failure
356		of azithromycin therapy in Salmonella enterica serotype Typhi despite low azithromycin
357		MIC. Int J Infect Dis. 2017 Jan;54:62–3.
358		*Early reported case of clinical failure during typhoid witj azithromycin
359	48.	Capoor M, Nair D, Posti J, Singhal S, Deb M, Aggrawal P, et al. Minimum inhibitory
360		concentration of carbapenems and tigecycline against Salmonella spp. J Med Microbiol.
361		2009;58(3):337–41.
362	49.	European Committee on Antimicrobial Susceptibility Testing (EUCAST) Steering
363		Committee DFJ, Canton R, MacGowan AP, Mouton JW, Rodloff A, Goldstein F, et al.
364		EUCAST technical note on tigecycline. Clin Microbiol Infect; 2006 Nov;12(11):1147–9.
365	50.	Morosini M-I, García-Castillo M, Coque TM, Valverde A, Novais A, Loza E, et al.
366		Antibiotic coresistance in extended-spectrum-beta-lactamase-producing
367		Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother;
368		2006 Aug;50(8):2695–9.
369	51.	Karki M, Pandit S, Baker S, Basnyat B. Cotrimoxazole treats fluoroquinolone-resistant
370		Salmonella typhi H58 infection. BMJ Case Rep. 2016 Oct;2016.
371	52.	Ramesh U, Das S, Balasubramanian A. Re-emergence of chloramphenicol-susceptible
372		Salmonella Typhi and Paratyphi A strains in India. Indian J Med Microbiol;
373		2016;34(2):262–3.
374	53.	Pokharel S, Basnyat B, Arjyal A, Mahat SP, KC RK, Bhuju A, et al. Co-trimoxazole
375		versus azithromycin for the treatment of undifferentiated febrile illness in Nepal: study
376		protocol for a randomized controlled trial. Trials. 2017;18(1):450.
377	54.	Fernando S, Molland JG, Gottlieb T. Failure of oral antibiotic therapy, including
378		azithromycin, in the treatment of a recurrent breast abscess caused by Salmonella enterica
379		serotype Paratyphi A. Pathog Glob Health. 2012; 106(6):366-9.
380	55.	Rai S, Jain S, Prasad KN, Ghoshal U, Dhole TN. Rationale of azithromycin prescribing

381		practices for enteric fever in India. Indian J Med Microbiol. 2012;30(1):30-3.
382	56.	Vlieghe ER, Phe T, De Smet B, Veng CH, Kham C, Bertrand S, et al. Azithromycin and
383		ciprofloxacin resistance in Salmonella bloodstream infections in Cambodian adults. PLoS
384		Negl Trop Dis. 2012 Jan;6(12):e1933.
385	57.	Choudhary A, Gopalakrishnan R, Nambi PS, Ramasubramanian V, Ghafur KA,
386		Thirunarayan MA. Antimicrobial susceptibility of Salmonella enterica serovars in a
387		tertiary care hospital in southern India. Indian J Med Res. 2013;137(4):800-2.
388	58.	Kobayashi T, Hayakawa K, Mawatari M, Mezaki K, Takeshita N, Kutsuna S, et al. Case
389		report: failure under azithromycin treatment in a case of bacteremia due to Salmonella
390		enterica Paratyphi A. BMC Infect Dis. 2014;14:404.
391	59.	Akinyemi KO, Iwalokun BA, Alafe OO, Mudashiru SA, Fakorede C. bla CTX-M-I group
392		extended spectrum beta lactamase-producing Salmonella typhi from hospitalized patients
393		in Lagos, Nigeria. Infect Drug Resist. 2015; 8:99–106.
394	60.	Thompson CN, Karkey A, Dongol S, Arjyal A, Wolbers M, Darton T, et al. Treatment
395		Response in Enteric Fever in an Era of Increasing Antimicrobial Resistance: An
396		Individual Patient Data Analysis of 2092 Participants Enrolled into 4 Randomized,
397		Controlled Trials in Nepal. Clin Infect Dis. 2017;64(11):1522–31.
398		*Largest ever individual patient data analysis of typhoid treatment regimes
399	61.	Akinyemi KO, Iwalokun BA, Oyefolu AOB, Fakorede CO. Occurrence of extended-
400		spectrum and AmpC β -lactamases in multiple drug resistant Salmonella isolates from
401		clinical samples in Lagos, Nigeria. Infect Drug Resist. 2017;10:19-25.
402		

Investigation	Country/location	Year	Reference
Azithromycin resistance			
First report of resistance in <i>Salmonella</i> Paratyphi A leading to treatment failure	Pakistan	2010	(43)
Failure of oral antimicrobials (including azithromycin) in the treatment of a breast abscess caused by <i>Salmonella</i> Paratyphi A	Bangladesh	2012	(54)
Rationale for azithromycin prescribing practices for enteric fever in India	India	2012	(55)
Azithromycin and ciprofloxacin resistance in Salmonella bloodstream infections	Cambodia	2012	(56)
Antimicrobial susceptibility of <i>Salmonella enterica</i> serovars in a tertiary care hospital in	India	2013	(57)
Failure with azithromycin treatment in a case of Salmonella Paratyphi A	India	2014	(58)
Salmonella subtypes with increased MICs for azithromycin in travellers returning to the Netherlands	Predominantly South Asia	2014	(45)
Third generation cephalosporin resistance			
blaCTXM-1 ESBL producing Salmonella Typhi from hospitalised patients	Nigeria	2015	(59)
ESBL producing <i>Salmonella</i> serovar Typhi in a traveller returning from to Spain	South America	2016	(30)
Individual patient data analysis of 2092 participants enrolled in to 4 randomised controlled trials	Nepal	2017	(60)
Occurrence of extended spectrum and AmpC beta lactamases in Salmonella isolated from clinical samples	Nigeria	2017	(61)
Azithromycin and third generation cephalosporin resistance			
Drug resistance pattern in <i>Salmonella</i> Typhi with special reference to cephalosporins and azithromycin in the Gangetic plain	India	2017	(34)

Table 1. Reports of resistance to azithromycin and third generation cephalosporins in organisms causing enteric/typhoid fever

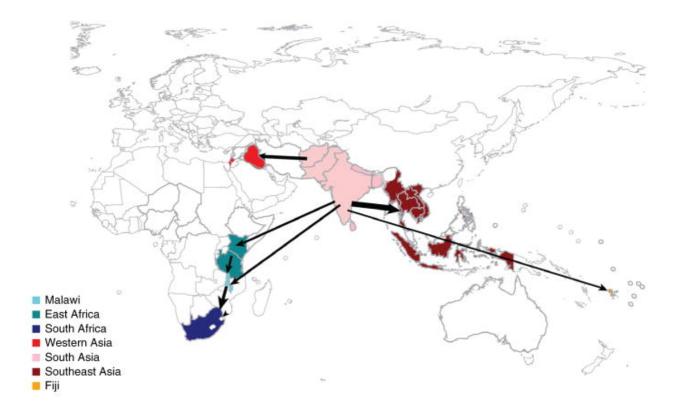


Figure 1. Major geographical transfers within the H58 lineage, inferred from a phylogenetic tree constructed through genome sequences. The size of each arrow indicates the relative number of likely transfers between regions or countries. Taken from Wong et al. 2015 (26).