
EasyChair Preprint
№ 2741

The Evolution of Architectural Decision Making
as a Key Focus Area of Software Architecture
Research: a Semi-Systematic Literature Study

Manoj Bhat, Klym Shumaiev, Uwe Hohenstein, Andreas Biesdorf
and Florian Matthes

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 21, 2020



The evolution of architectural decision making as a
key focus area of software architecture research:

A semi-systematic literature study
Manoj Bhat

Corporate Technology
Siemens AG

81739 München, Germany
manoj.mahabaleshwar@siemens.com

Klym Shumaiev
Corporate Technology

Siemens AG
81739 München, Germany

klym.shumaiev@siemens.com

Uwe Hohenstein
Corporate Technology

Siemens AG
81739 München, Germany

uwe.hohenstein@siemens.com

Andreas Biesdorf
Corporate Technology

Siemens AG
81739 München, Germany

andreas.biesdorf@siemens.com

Florian Matthes
sebis

Technische Universität München
85748 Garching, Germany

matthes@tum.de

Abstract—Literature review studies are essential and form
the foundation for any type of research. They serve as the
point of departure for those seeking to understand a research
topic, as well as, helps research communities to reflect on the
ideas, fundamentals, and approaches that have emerged, been
acknowledged, and formed the state-of-the-art. In this paper,
we present a semi-systematic literature review of 218 papers
published over the last four decades that have contributed to
a better understanding of architectural design decisions (ADDs).
These publications cover various related topics including tool
support for managing ADDs, human aspects in architectural
decision making (ADM), and group decision making. The results
of this paper should be treated as a getting-started guide for
researchers who are entering the investigation phase of research
on ADM. In this paper, the readers will find a brief description
of the contributions made by the established research community
over the years. Based on those insights, we recommend our
readers to explore the publications and the topics in depth.

Index Terms—software architecture, decision making, archi-
tectural design decisions, literature review

I. INTRODUCTION

Over the last years, the topic of architectural decision mak-
ing (ADM) keeps receiving steady attention in the software
architecture research community. Only from 2014 to 2018, we
observe at least 14 publications every year being published at
relevant scientific conferences and journals. The last extensive
systematic mapping study on architectural design decisions
(ADDs) by Tofan et al. [1] was published in 2014 which
discussed publications from 2005 to 2011. This paper had a
significant impact on the research community; being cited 59
times since then, it lays forth a research roadmap presenting
future research topics for researchers and practitioners.

In our work, 6 years later, we revisit four decades of ADM
research and summarize those publications that made ADM
an established research area. We do it to support researchers

and practitioners to navigate the growing body of knowledge,
as well as, for them to reflect on the presented concepts and
ideas related to ADDs, tool support for managing ADDs,
ADM concepts, optimization-based ADM, and group decision
making (GDM). We refer to our work presented in this paper
as a getting-started guide to explore the existing work on
ADM. We recommend our readers to pick their topic of
interest within this paper, browse through the description of
the papers corresponding to that topic, and read the selected
papers to the full merit of those papers’ scientific contributions.
Furthermore, we strongly suggest our readers to refer to
the recently published literature studies by Tang et al. on
ADM [2], [3]. These publications not only provide future
research directions but also share guidelines on how the future
research in ADM should be conducted. In the subsequent sec-
tions, we present the literature review protocol used to identify
the publications and then discuss the identified publications.

II. RESEARCH METHODOLOGY

Our literature review protocol adheres to the guidelines
prescribed by Kitchenham and Charters [4]: (a) For the iden-
tification of research, we defined the inclusion and exclusion
criteria. (b) For the selection of relevant publications, we
described a search strategy. (c) Data extraction was performed
based on the inclusion and exclusion criteria. (d) Finally, the
collected publications were analyzed and summarized. We did
not conduct (a) commissioning the review, (b) evaluating the
protocol, and (c) evaluating the review report and these steps
are also not considered mandatory in [4]; hence, we refer to
this review as a semi-systematic literature review.



A. Inclusion and exclusion criteria

For the inclusion criteria, we considered those papers that:
(a) refer to software architecture or design and (b) discuss
ADDs as the main topic (this could include architectural
knowledge management (AKM), ADD models, and ADM.
Since the search query was formulated using English terms, we
restricted to those studies published in English. Furthermore,
to retrieve all relevant studies, no lower boundary was set
on the publication date. However, since the search queries
were executed on 17.06.2019, that is considered as the up-
per boundary. The following list of exclusion criteria were
considered: (a) publications describing conference/keynote, (b)
publications discussing specific system’s architecture (e.g.,
architecture of a decision support system), and (c) publications
on specialized topics (e.g., requirements negotiation, modeling
service-oriented process decisions, pattern-based approaches).

B. Search strategy

We considered four digital libraries: ACM, IEEE Xplore,
ScienceDirect, and Springer Link. These libraries include
proceedings of the major software architecture conferences
such as ICSE, WICSA, ICSA, ECSA, SHARK, MARCH and
QoSA. To ensure the retrieval of all relevant publications,
we formulated a broad search query based on the inclusion
criteria. First, we wanted to include publications related to
“software architecture” or “software design” (Q1). Second, we
considered those publications that discuss “decision making”
or “design decisions” (Q2). Given that both Q1 and Q2 had
to be satisfied, they were combined using an AND clause.
It should be noted that, typically, the keywords used in the
search strategy are derived from the study’s research questions.
However, in our case, we conducted this study to position our
past five years of work on managing ADDs and supporting
ADM, which is published in a dissertation report [5].

The final search query was matched against publications’
title, abstract, and keywords. Only for Springer Link, we
could not match the query against the three publication fields.
Instead, we had to perform a full-text search that resulted in a
larger number (1,471 publications) of retrieved publications.

Automatic search of 
ACM Digital Library

399 publications

Filter by title and 
abstract

97 publications

Automatic search 
of ScienceDirect

144 publications

Filter by title and 
abstract

26 publications

Automatic search 
of Springer Link

1,471 publications

Filter by title and 
abstract

71 publications

Automatic search of 
IEEE Xplore Digital Library

257 publications

Filter by title and 
abstract

182 publications

Merge publications

376 publications Remove duplicates (19)

357 publications

Filter by content

255 publicationsLegend: Process step Outcome

Fig. 1. Search process that resulted in 255 publications for this study

C. Data extraction and synthesis

On executing the search query, we found 399, 144, 1,471,
and 257 publications in ACM, ScienceDirect, Springer Link,
and IEEE Xplore respectively. Next, each publication was
filtered by reading the title and abstract according to the
inclusion criteria. This filtering step resulted in 97, 26, 71, and
182 publications from ACM, ScienceDirect, Springer Link,
and IEEE Xplore respectively. These 376 publications were
merged into a new CSV file. Out of these 376 publications,
we found 19 duplicate publications and were removed. For
357 publications, their full-text was thoroughly read by the
first and second authors of this paper. During this step, those
publications that were marked as deleted by both the reviewers
as per the exclusion criteria were removed. As shown in
Figure 1, the final step resulted in a total of 255 publications
and were summarized.

D. Overview of review results

Figure 2 shows the distribution of 255 publications accord-
ing to their publication year. The first publication about design
decisions was in 1980. Note that, in Figure 2, we see a steep
increase in publications per year after 2004 (paradigm shift in
software architecture [6]). Since 2004, researchers started to
look at architecture not only as a composition of components
and their relationships but instead began to reflect on how
those components and relations come into existence. There
has been a plethora of publications addressing various aspects
of ADDs since 2004, e.g., models and tools for managing
ADDs, ADM strategies, and factors influencing ADM. Today,
we observe at least one research track dedicated to ADDs and
ADM in architecture conferences such as ECSA and ICSA.

0

5

10

15

20

25

1
9
8
0

1
9
8
6

1
9
9
0

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

N
o

. 
o

f 
p

u
b

lic
at

io
n

s

Publication year

Fig. 2. Publications related to AKM, ADDs, and ADM over the past years

To analyze the identified 255 publications, we categorized
them into: Architecture Knowledge Management (AKM),
ADDs, formal ADD models, ADD tools, Architectural Design
Rationale (ADR), ADM, and Group Decision Making (GDM)
topics. One could argue that many of the publications cover
more than one topic, GDM is part of ADM or managing
ADDs is part of AKM. However, it should be noted that
this categorization scheme was used only for the convenience
of summarizing the results depending on the context and
publication’s theme. For instance, if a publication presented



an ADM strategy but specifically emphasized GDM, it was
sorted into the GDM category. In this paper, especially due
to space constraints, we do not discuss 37 publications that
emphasize AKM and ADR and focus on the remaining 218
papers. However, the summary of those 37 papers are made
available in a report [5]. Two papers in the references section,
namely [5] and [4] are not part of our review. The replication
package for the above review steps are available online1.

III. A SUMMARY OF IDENTIFIED PUBLICATIONS

In this section, we summarize the publications related to
ADDs, formal models for ADDs, ADD tools, ADM, and
finally, GDM. In each category, we have tried to discuss
the publications in a chronological order. However, in some
situations, we have also grouped them to fit the context.

A. Architectural design decisions

The very first mention of design decisions was in 1980. Dur-
ing that time, software architecture, as a field of study, had not
yet been well established, and the reference to design decisions
was in the programming context. In [7], the author captured
design decisions (e.g., replace recursion by iteration) using an
applicability predicate (antecedent) and a predicate expressing
the desired qualitative effect (consequent). Next, in 1990, the
authors of [8] argued that design decisions could be detected in
the source code using reverse engineering. Also, in the early
90s, when building software through model transformations
was becoming popular, the authors of [9] proposed to map
these models through design decisions. They presented the first
tool (traceability support system) that allowed programmers
to capture the problem, alternatives, decisions, rationale, and
links between the source and the target models.

The authors of [10] used the Issue Based Information
System (IBIS) for capturing design argumentation. They in-
troduced a model to help developers answer questions such as
“Why certain decisions were made?”, “What alternatives have
been explored?”, and “Will a change violate any constraint?”.

Kruchten in his seminal work [11] stated that “architec-
ture documentation captures design decisions that must be
respected to maintain the architectural integrity”. To docu-
ment those decisions, the authors of [12] proposed to use
a tree structure; wherein, each node contains “concerns and
constraints, decisions, new concerns raised by a decision,
and references to other decisions”. Kruchten highlighted that
architects must be able to communicate ADDs to stakeholders
and should consider others’ decisions [13]. He further went
on to say that an architect must “make some decisions very
quickly, based on experience and gut feelings rather than
pure, thorough analysis”. [14] also suggests that the soft-skills
and external influences are important in the socialization of
decisions. Kruchten et al. argued that since the effort in cap-
turing decisions outweighs the immediate benefits, we should
automate the collection of decisions and their rationale [15].

Quality concerns are the drivers for ADDs [16], [17].
Kazman presented the Cost Benefit Analysis Method (CBAM)

1https://github.com/manoj5864/evolutionOfADM

to model the costs and the benefits of ADDs. CBAM was
further revised to incorporate an iterative process with a
decision analysis framework [18]. [19] also investigates the
economic perspective of ADDs and presents a “structured
intuitive model for product line economics”. Furthermore, to
compute the savings in effort, [20] proposes a cost-benefit
framework for ADM. By analyzing the differences in an
architectural refactoring activity, this framework correlates the
developer effort to the change in coupling.

The very first explicit mention of the statement “architec-
ture is a collection of design decisions that are expensive
to change” was in 2001 [21]. Alexander Ran argued that
the “expensive to change” decisions are those decisions on
which most other decisions depend. Jan Bosch, in 2004, also
emphasized that “architecture is a composition of ADDs” and
“designing a system can be viewed as a decision process” [22].
Jansen and Bosch pointed out that ADD tools must: (a) support
multiple views, since ADDs affect various architectural ele-
ments (AEs) and (b) support the modification of ADDs [23].
However, given that ADDs are not explicitly documented, they
proposed Architectural Design Decision Recovery Approach
to recover ADDs by comparing different releases of a soft-
ware [24]. Miesbauer and Weinreich [25] argued that the non-
existence or ban decisions are not captured and some places
for documenting ADDs include code, meeting minutes, project
diaries, issue trackers, and wikis. Van der Ven and Bosch
also showed that ADDs are implicitly captured in commit
messages of code repositories [26]. To document ADDs made
at the source code level, [27] presents Java annotations to
mark operations of reused components and [28] proposes to
use Java Doc comments to inject architectural information.
Another data source for reverse engineering ADDs is the bug
reports of software systems [29]. Hence, Bhat et al. applied
machine learning (ML) techniques to automatically extract
ADDs from issue management systems [30]. [31] also presents
an automated approach to extract ADDs from information
maintained in issues and commit messages. TREx [32] uses
domain ontologies to annotate text with architectural topics
and predefined rules in TREx tag statements as either design
decisions or design structures. Soliman et al. proposed a
search mechanism to retrieve architectural information from
StackOverflow which is an online developer community [33].

The proposal to extend the 4+1 view model with the deci-
sion view was made in [34]. In that paper, the authors capture
the following requirements for managing ADDs: (a) the system
should have multi-perspective and multi-user support, (b)
ADDs should have visual representation so that they can be
easily understood, and (c) ADDs in large systems should have
some classifications (hierarchy, abstraction). ADDs can be
classified into strategic and tactical decisions [35]. To capture
such ADDs, “architectural decision description template” was
proposed which includes concepts such as Issue, Decision,
Assumptions, Constraints, and Related decisions [36]. Another
method to capture ADDs is to use mind-maps. Using which,
the internal structure of ADDs can be captured in the form of
diagrams [37]. A template-based approach used in the context



of service-oriented design is presented in [38]. It contains basic
concepts related to ADDs but does not capture relationships
between ADDs and software artifacts. On the other hand, [39]
shows how to link structural and technological decisions with
requirements and the corresponding architectural models.

In 2007, Clerc et al. found that even though, representing
architecture as a set of ADDs was not completely adopted in
practice, the concept of ADDs had gained importance among
practitioners [40]. These ADDs address system behavior,
components’ interaction, system deployment, and evolution a
system [41]. To reduce the effort in capturing ADDs, [42]
presents a three-step approach: flag, filter, and form. When
architects encounter an ADD, they flag it; then, with filtering,
they find relevant ADDs, and lastly, forming means to create
an ADD entry based on the decision model.

Selecting an architectural pattern is an essential ADD [43].
ADD recovery can be improved by focusing on those ADDs
related to the application of specific architectural patterns [44].
In [45], a pattern model is linked to the component meta-
model and the selection of a pattern and the corresponding
components implicitly captures that ADD. Similarly, design
patterns can be associated with specific quality attributes and
addressing a quality concern by selecting a design pattern
forms an ADD [46]. [47] presents a concept called Tradeoff-
oriented Development and emphasizes that the realization of
ADDs are based on quality attributes trade-offs.

Heijstek et al. found that neither diagrams nor textual
descriptions were significantly more efficient for conveying
ADDs [48]. It should be noted that the diagrams that were
used was either component or class diagrams. We believe
that it would have been more interesting, if those authors had
conducted similar studies with, for instance, decision graphs.
Shahin et al. evaluated rationale visualizations of ADDs and
showed the improvement in architects’ understanding [49].
They indicated that “in comparison to less experienced par-
ticipants, experienced ones benefited more from ADDs” [50].

Tofan et al. [1] presents a systematic mapping study from
2005 to 2011 and confirms the growing interest in ADDs.
A.1. Formal representation of ADDs

Jansen and Bosch [51] presented Archium to represent
ADDs as first-class entities. In [52], the authors proposed an
ontology that is composed of architectural assets, ADDs, and
concerns. Since this was a position paper, not much details
about the ontology have been presented. However, Kruchten
et al. [53] presented a detailed ontology for AK representation
that captures a taxonomy of ADDs and their relationships. [54]
also presents a taxonomy of ADDs to support system’s runtime
behavior analysis using models. [55] proposes to model and
capture ADDs in an ontology using OWL.

Despite the importance of ADDs, they remain tacit and
are lost over time. Hence, the authors of [56] provided a
vocabulary for operations that change the design: addCom-
ponent, addConnector, deleteQualityRequirement, and so on.
Such operations can be versioned to preserve ADDs’ history.

The AK models presented in [57]–[62] capture concepts and
links between stakeholders, architecture significant require-

ments (ASRs), ADDs, alternatives, rationale, AEs, and other
software artifacts. The authors of [63] extended the model
presented by Zimmermann et al. [61] to include links between
decision outcomes and software artifacts. The authors of [64]
discussed two types of ADDs (recurring and project-specific)
and their effects on requirements and their prioritization. An
approach called ADVERT helps architects to document ADDs,
their rationale, and links ADDs to requirements and AEs [65].

To capture the traceability from ADDs to AEs in UML
diagrams, [66] proposes UML profiles for capturing ADDs
and non-functional requirements (NFRs). SysML also has
been extended to support the design rationale model [67].
[68] proposes specific decision types and links them with
UML diagrams. The link between ADDs and AEs is explicitly
discussed in the models presented in [69]–[72]. Using these
links and a constraint graph, impact analysis can be performed
to identify the effects of changing ADDs. For documenting
ADDs, authors of [73] presented “Maps of Architectural De-
cisions” which includes concepts such as concern, connector,
solution, and decision-maker. In a related publication [74], a
Concept-Requirement-Decision tree is used to hierarchically
organize architectural topics. Similarly, a design map is used
in [75] for capturing ADDs and tracing ADDs to NFRs.
With the focus on facilitating traceability from requirements
to design, [76] links concepts from the goal-oriented modeling
language to the concepts in an ADD model. The authors
of [77], [78] captured links between NFRs, ADDs, and AEs
in their traceability information models. They proposed to
recover ADDs and their traceability links from documents by
training a ML classifier. Since ADDs are interrelated, [79]
shows the application of a ripple effect algorithm on ADD
networks to estimate the effect of change in a decision on
other ADDs as well as to assess stable and unstable ADDs.

Capilla and Babar [80] showed how the models of the
PAKME and ADDSS can be merged to support Product
Line Engineering (PLE). The integrated model captures links
between ADDs and the variability rules in the feature model.
Furthermore, the need to capture a related concept – vulnera-
bility of ADDs along with the rationale is discussed in [81].

Tang and Van Vliet categorized design constraints into
requirement-, quality requirement-, context-, and solution-
related constraints [82], [83]. These constraints influence
ADDs. Che and Perry presented a Triple View Model [84],
[85] to capture the What (element view), Why (intent view),
and How (constraint view) of ADDs.

Zimmermann presented an ADM framework for service-
oriented architecture (SOA) which assists the selection of
a design that supports runtime models [86]. In another pa-
per [87], [88], Zimmermann et al. investigated the use of ADD
models for microservice architectures. Since understanding
ADDs’ context is critical for recommendations and reuse, they
emphasized the need for capturing decision context [89].

In a series of publications [90]–[92], Zdun et al. presented
CoCoADvISE. In the context of software ecosystems, it uses
a knowledge base (KB) to support ADM. The KB maintains
patterns, tactics, quality attributes, decision drivers, ADDs,



and domain experts’ feedback. CoCoADvISE uses the KB to
generate recommendations and questionnaires for ADM.

Technology decisions are one of the most often made
ADDs [124]. Soliman et al. extended the AK model to capture
technology decisions [125]. The AK model was also extended
in [126]–[128] to reflect ADDs’ sustainability. [129] presents
metrics to measure the AK quality of decision models. Shahin
et al. [130] stated the following: (a) “ADD models have
consensuses on capturing ADDs, rationale, constraints, and
alternatives”, (b) “Tools do not exist for all the ADD models,
some use text templates”, and (c) “ADD personalization is a
desired feature that is missing in many ADD tools”.
A.2. Architectural design decisions - tools

We found 19 tools that have been proposed over the years
to manage ADDs and to support the ADM process. These
19 tools have been briefly summarized in Table I. We agree
with Alexeeva et al. [131] who suggest the following reasons
for the lack of tools’ adoption: (a) the absence of industrial
applicability requirements, (b) marginal support of brownfield
development, (c) insufficient consideration of documentation
overhead, (d) missing perspective on the evolution ADDs, and
(e) lack of integration with commercial tools. However, with
recent developments in lightweight bottom-up approaches,
some of these challenges are being addressed.

B. Architectural decision making

The first publication which highlights that architects follow
Naturalistic Decision Making (NDM) was in 1996 [132]. In
that work, the author states that: “ADDs are handled intuitively
and alternatives for an ADD are influenced by experiences
from earlier designs”. For ADM, [133] presents “system
architecture analysis” method to ensure the consideration of
alternatives, their pros and cons, and analyses of ADDs.

Zannier and Maurer [134] presented the definitions of Ra-
tionalistic Decision Making (RDM) and NDM and introduced
factors such as expertise and mental modeling affecting ADM.
In their subsequent work [135], they highlighted that NDM
dominates RDM and in NDM, experience and intuition play
a crucial role. They also found that agile projects supported
better communication and debate about alternatives [136].
They suggested that, if a design problem is well-structured,
architects tend to use RDM, whereas if it is ill-structured,
then NDM is preferred [137]. Zannier and Maurer concluded
that architects do not always strive for optimal alternative
and do not always consider alternatives [138]. However, they
mentioned that “alternatives are considered more often in
groups (during casual conversations)” and ADM is a highly
cognitive and a social process. [139] reports that architects
use their expertise to arrive at an ADD without performing
extensive [mental] search for an optimal alternative. Tang et
al. too discussed that architects do not explore many options
and finalize their decisions as soon as they have good enough
supporting reasons [140]. They found that capturing design ra-
tionale helps architects improve architecture quality, backtrack
ADDs [141], and avoid architectural assumptions (AAs) [142].
Furthermore, even though the term AAs is not commonly

used, architects and developers frequently make AAs during
ADM [143], [144]. Weinreich et al. argued that “education,
experience, and biases” influence ADM [145] and classified
ADDs according to granularity, scope, and impact [146].

[147] is one of the very first works, that discusses the
influence of specific biases in ADM. In this work, Wirfs-Brock
indicated the presence of confirmation and information biases
in design discussions. In her recent work [148], based on an
industrial case study, she (a) reflects on GDM and factors
such as decision scope and trust influencing ADM and (b)
shares recommendations on how to manage ADDs. Zalewski
et al. documented 12 cognitive biases that are prominent
in ADM [149]. [150] also covers the aspect of cognitive
biases in ADM and introduces RDM, NDM, and bounded
rationality. [151] maps cognitive biases to the different phases
of ADM and presents a bias catalog to document related
biases, examples, and debiasing strategies. The following
points were made by Tang and Van Vliet [150]: (a) “people
are irrational in general”, (b) “individuals’ rationality is by
what they already know, cognitive limitations, and the finite
amount of time”, and (c) “people minimize cognitive load
and use intuition in ADM”. [152] proposes research directions
towards the use of intuition along with rationality in ADM.
Tang suggested that (a) cognitive bias, (b) illogical reasoning,
and (c) low-quality premises are the cause of design reasoning
failures [153]. Documentation frameworks address some of
those problems. [154] illustrates the benefits of the decision
forces viewpoint [155] in an industrial setting.

Furthermore, [156] indicates that decision makers’ experi-
ence affects projects’ return of investment. That study also
reveals that factors such as decision makers’ role or if they
code are irrelevant. With the focus on the source code, [157]
argues that developers (a) make many decisions, (b) “rarely
conceptualize their work as decisions between more than two
options”, and (c) have trouble remembering multiple options.

[158] provides an overview of Analytic Hierarchy Process
(AHP), simple multi-attribute rating technique, utility theory,
and weighted score method. However, [159] argues that com-
panies do not use well-known ADM processes but rather use
their own customized approaches. [160] also confirms that
architects do not follow any systematic ADM approach but
instead follow informal approaches. The authors of [161] also
argue that there is no one-size-fits-all ADM process and hence,
to help architects, they provide hints for selecting an ADM
technique that fits the usage context.

An ADM framework comprising of macro and micro levels
is presented in [162]. The macro-level is used to analyze
the design strategy using problem and solution orientations.
Whereas, the micro-level uses the decision mode and the
decision strategy for analysis. The authors of [162] argued that
ADM is a creative process which includes problem recognition
and hypotheses testing. Frameworks like GRADE [163], [164]
and ORION [165] support the selection of sourcing options.

To support ADM, [166] combines risk-based reasoning with
the quality attribute model. First, risks drive the selection of
an architectural style to meet the quality goals, and then, the



TABLE I
TOOLS FOR MANAGING ADDS

ADD Tool Short description Pub.
year

ADDSS [93]–[100] Over four years, Capilla et al. proposed a web-based ADD management system that addressed use cases of
recording, navigating, visualizing ADDs as well as supporting groups for managing ADDs. The tool was validated
in through experiments in restricted environments.

2006 -
2009

ADD Visualization Tool
[101], [102] In this tool, the authors showed how ADDs can be visualized by investigating four aspects of ADDs visualizations

and how they can influence ADDs exploration and analysis. These visualizations were validated by practitioners
in a laboratory setting.

2008

DecisionStickies [103] This tool supports three approaches of capturing ADDs: formal elicitation, top-down (from the existing SA
documentation), and bottom-up (annotations in the source code). Given these options, users were able to choose
the best suitable approach for their organizational context. Validation of this tool was performed during joint
meetings with practitioners, where the feasibility of the approaches was demonstrated; however, the authors
indicated that further work is required to enhance the tool.

2008

Decision Management
Tool [104] The integration of managing ADDs in the UML modeling environment with the intent to enforce a change in the

model after new decisions are made is emphasized in this tool. The validation of the tool was not performed.
2009

ODV [105] Uses table and matrix representations of ADDs and quality attributes to support architects in the early phase of
a project (in particular, to perform trade-offs, impact, and if-then scenarios analysis). The tool was validated in a
restricted environment.

2009

ADDDMS [106], [107] Authors argue the importance of the customizability of tools for managing ADDs. In the proposed solution,
architects in order to manage ADDs can utilize customizable templates, storage, and search functionalities. The
validation of this tool was performed in laboratory settings.

2010

Rationale visualization
[49], [108], [109] The authors demonstrated an approach to visualize ADDs using the Compendium tool - “a visual environment

for people to structure and record outcomes of collaborative work on wicked problems”.
2010 -
2011

LISA Toolkit [110] LISA automatically traces and visualizes ADDs made during the architectural and implementation phases within
an environment (specifically, in Eclipse IDE). This tool was validated through action research by using it in three
software engineering projects.

2011

RGT tool [111], [112] The web-based tool that employees a repertory grid technique (borrowed from the knowledge engineering domain
and originally coming from the personal construct psychological theory) to support architects in eliciting and
analyzing ADDs and their alternatives. The approach itself was evaluated in an exploratory study [111], however,
in [112], the authors do not share any details on how the tool itself was validated.

2011 -
2014

ADUAK [113] ADUAK allows architects to capture and explore the selection of design patterns that can be applied in a project.
The validation was performed by the authors themselves through the implementation of a flight reservation system.

2012

ArchiTech [114] Repository-based tool intended to be used during the system design phase. ArchiTech supports architects in
capturing ADDs and linking them to NFRs. Based on the links, the tool can generate a prioritized list of decisions
that satisfy as much of architectural constraints as possible. In case the decision has been marked as “made”, the
system shows a list of concerns that should be taken into account by the architect. No validation was performed.

2012

DPS [115] Authors demonstrated how a specific tool for video recording of design sessions can support architects in capturing
ADDs.

2012

ADvISE [116] ADvISE is an approach, as well as, an Eclipse-based tool that supports architects to reason about ADDs within
their project (also, supports uncertainty using fuzzy logic). It uses the Questions, Options, and Criteria method.
The applicability of the approach was demonstrated in the context of an industrial case study on service-based
platform integration in the area of industry automation.

2013

Decision Architect [117] A plugin for Sparx Enterprise Architect modeling tool to manage ADDs and its associated concepts. The plugin
was validated through the application in pilot studies within the industry, which was followed by user interviews.

2014

DecDoc [118] An Eclipse plugin to capture ADDs and link them to artifacts such as requirements, AEs, and code. The tool was
tested on the data from an exemplary project.

2016

Ontology-based
recommender [119] Uses the DBpedia ontology to automatically identify AEs and to generate decision alternatives. The tool was

validated using architecture documents from industrial projects.
2017

Quiver [120] A web-based solution that maintains a KB of reference architectures and styles. No validation has been performed
so far.

2017

EVA [121] Supports the visualization of architecture evolution and helps architects to understand the impact of ADDs on
architectural stability. The validation was performed using data from an open-source project. No empirical study
has been conducted so far.

2018

ADeX [122], [123] A bottom-up approach to automatically detect ADDs and provide ADM support. Automatically identifies experts
who should be involved in ADM. The quantitative evaluation of the system components has been discussed in
[30], [119], [122]. The qualitative validation of the tool was performed following the action research methodology
in collaboration with an industry partner during the last four years [123].

2017 -
2019



goals help to choose architectural tactics. A framework called
COMPonents using ArChitectural Tactics uses architectural
tactics to search and select software components that meet
NFRs [167]. In [168], the authors found that quality attributes
strongly influence ADM and ADDs (in specific projects) had
been made in small teams or by individuals. [169] proposes
to automatically extract quality attributes from user stories so
that those attributes can be used as a basis for ADM.

In the context of agile development, [170] presents a
responsibility-driven architecture to understand when, how,
and who should make ADDs. [171] explains how the role
of an architect is changing as team player making ADDs only
when necessary in agile projects.

A decision-centric design approach is discussed in [172];
wherein, an issue leads to multiple candidate solutions, select-
ing a solution reflects an ADD, and arguments for that solution
become the rationale. Lytra et al. proposed a frequent-items set
method to investigate which decision points may (not) coexist
in the decision space [173].

[174] models ADM using BPMN activities. The activities
include motivating an ADD, specifying alternatives, selecting
an alternative collaboratively. Another process-based approach
uses a tag-based traceability system to support collaboration
among architects, notify them about changes, and include
feedback loops to improve ADM [175].

Intuitive games using cards (representing constrain, assump-
tion, risk, and tradeoff) are used to teach ADM [176], [177].
Since architects forget to reason about their ADDs [178],
such card games could help to spark architects’ reasoning
process. Furthermore, tools like DVIA [179]–[181] and video
wall [182] which support collaborative ADM and help to
record and analyze architectural meeting discussions can aid
architects to reflect on the past discussions.

An important aspect that should be considered by any
ADM support system is that they should explicitly include
reflective questions. The authors of [183] distinguish between
two minds. Mind 1 reflects the design reasoning mind with the
problem-solving mindset, whereas, Mind 2 is the reflective
mind with a feedback mindset. ADM tools should include
mechanisms to trigger and reflect on Mind 1’s activities.
Alternative to Mind 1 and Mind 2, Pretorius [184] proposes to
evaluate the applicability of Kahneman’s System 1 and System
2 modes in the context of ADM.

Tofan et al. [185] suggested the following research direc-
tions; there is a need for addressing uncertainty in ADM, better
approaches for GDM, and improved understanding of depen-
dencies between ADDs and effort estimation. [3] emphasizes
on the human aspects in ADM and argues that even after
gaining insights on the behavioral facets influencing ADM,
there has not been a significant shift towards new practices. For
a more detailed discussion on the factors influencing ADM,
readers are directed to the work by Tang at al. [2].

B.1. Optimization-based approaches
AHP is one of the popularly used methods to choose an

“optimal” design alternative [186], [187]. For example, AHP
is used to select those components that meet quality crite-

ria [188], [189]. First, all the goals are captured hierarchically,
the criteria satisfying those objectives are specified, and the
alternatives are listed. Second, at each level of the hierarchy, a
decision table is created. Finally, a constraint solver prioritizes
and selects an optimal alternative that meets the constraints or
a search-based optimizer performs heuristic sampling to select
an optimal option. [190] uses the hierarchical criterion struc-
ture based on the criteria importance theory. Since architects
do not define all the necessary constraints, constraint solvers
can be used to reduce infeasible options that are inconsistent
with previous choices [191].

The design task is represented as a search problem in [192].
The relationships between ADDs are captured using superior
and inferior relation types, and when a superior decision
is under consideration, all its inferior decisions are treated
jointly to identify inconsistencies. [193]–[196] consider ADM
to be a Multiple-Criteria Decision-Making (MCDM) problem.
By using occurrence probabilities for each combination of
alternatives, the consequence of each alternative can be evalu-
ated. A tool named RADAR uses a multicriteria optimization
approach [197] to select an optimal alternative. A web-based
tool called Decision buddy allows users to capture issues and
alternatives, prioritize alternatives using a constraint solver,
and finally approve the alternative that meets the criteria [198].

Fuzzy inference can also be used to select an optimal alter-
native that meets stakeholders’ [quantified] goals [199], [200].
The Multicriteria decision aid method can be used to select
an alternative while considering fuzziness in stakeholders’
needs [201]. Esfahani et al. use a fuzzification approach to
represent uncertainty as a triangular fuzzy value to support
the exploration of the solution space under uncertainty [202].

A weighted-score approach is used to compare choices
against decision criteria as well as to compare the options
against ideal solutions [203]. Imran et al. also proposed a
weighted-score approach for ranking and selecting the best
architectural pattern [204]. A tool called DesignBots takes as
input the system design and a weighted quality constraints list
to generate alternatives for improving the design [205].

[206] presents a model-driven approach for the evaluation
of ADDs while considering quality attributes. They claim that
their system can be used to select an optimal decision when its
impact on the quality is unclear. Another interesting approach
uses MCMD to explicitly consider ethics in ADM [207].
Lastly, Shahbazian et al. present a search and simulation-based
approach for understanding the impact of ADDs [208].

C. Group Decision Making

Alali and Sillito [209] described that the motivation for
collaboration include improving ADDs and sharing ADM
effort. [210] shows that the majority of software teams make
ADDs collaboratively and prefer consultative ADM style as it
helps to consider the inputs from all team members.

An “ONTOlogy-based Group Decision Support System”
allows architects to participate in the GDM process [211].
The system relies on a group argumentation model to support
conflict resolution. Software Architecture Warehouse (SAW)



also uses an argumentation viewpoint [212]. In [213], the au-
thors propose GADGET to help architects increase consensus
during GDM. In GADGET, for a decision topic, alternatives
and concerns are discussed, those alternatives are prioritized,
and based on that, architects in a group aim to reach consensus.

The authors of [214] suggested to combine ADM with
Scrum. They proposed GDM steps to be included in a sprint:
(a) problem identification, (b) development of alternatives, (c)
preference prioritization, and (d) reaching consensus.

To reach consensus in GDM, Smrithi and Muccini argued
that instead of structured approaches, brainstorming is used
in 70% of the companies [215]. They found that conflicting
decisions and misunderstanding of goals were the challenges
in GDM. They also discussed that the current methods do
not suit GDM [216]. Methods should include stakeholders’
preferences, rules indicating how those preferences should
be considered, and mechanisms for conflict resolution. They
suggested including GDM strategies into an architecting phase
to not only capture ADDs but also to document the GDM
factors that result in those ADDs [217]. Based on these
observations, they extended the ADD model with concepts
from GDM and organizational structures [218]. In their recent
work, Smrithi and Muccini [219] showed that a standard way
of ADM is less common and tools for ADM are rarely used
(since the quality is below satisfactory). Interestingly, they also
indicated that “despite the involvement of team members in
discussions, the final decision is made by an individual”.

Shumaiev et al. [220] showed that uncertainty expressions
are used in the GDM process. However, they highlighted that
those expressions are not only used to express uncertainty but
also to trigger feedback, to indicate preference, for reassur-
ance, and as a figure of speech. This finding raises concerns
on the applicability of rule- or ML-based approaches to detect
uncertainties in ADM.

IV. CONCLUSION

In this work, we have briefly touched upon 218 publications
that discuss topics related to ADM. Specifically, we looked at
those publications that emphasize the need to capture ADDs,
ADD models for AK representation, and tool support for
managing ADDs. Next, we discussed ADM along with a few
optimization-based approaches and followed it with GDM.

We observe that from 2004 to 2010, researchers focused on
modeling ADDs, proposed tools to manage ADDs (mostly,
top-down approaches). In the second wave, from 2010 to
2015, we saw the emergence of lightweight and bottom-
up approaches that emphasized minimal documentation using
ADD templates and automatic extraction of ADDs from differ-
ent information sources. Researchers discussed the challenges
with the “first-generation” tools and criticized their lack of
adoption. In the recent years, while addressing the challenges
of the existing ADD tools, researchers have shifted their focus
towards addressing the social and psychological aspects of
ADM. This covers various topics including NDM, bounded
rationality, biases, uncertainties, AAs, and sustainability.

Given the detailed literature review protocol, as well as, a
link to the replication package, researchers can extend this
study beyond the time-frame (1980-2019) selected for the
review presented in this paper. With the getting-started guide,
our objective mainly focused on summarizing the selected
publications, rather than to synthesis and make generalizability
claims in the conclusion. We encourage the readers to treat
the presented historical catalog of publications on ADDs and
ADM as a study made from the perspective of the authors.
Even though we have followed a systematic approach and at
least two authors were involved at each phase of the study, due
to a large number of publications under consideration, there
is a possibility of human error in counting the publications or
missing out on including the key contribution of some of the
publications while ensuring the readability of this paper.

The fact that the publications summarized in our work in-
clude most of the publications discussed in previous literature
study conducted by Tofan et al. [1] strengthens our study’s
construction validity. On the other hand, not considering a
quasi-gold standard of publications (similar to the one used
by Tofan et al. in [1]) poses a threat to validity and we
cannot quantitatively analyze the relevant publications that
we might have missed to consider. Hence, manually creating
a quasi-gold standard of publications by methodologically
executing a survey of researchers and practitioners working
in the field might be beneficial. Furthermore, the utilization
of such a new quasi-gold standard might consequently lead to
the readjustment of the search strategy and the review process
thereof, for instance, this might increase the number of the
required search terms for reaching the final consolidated list
of publications.

To the readers: use this work only as a getting-started guide
to know about the existing work. Since this paper only presets
a very short description for the publications, they should pick
the publications of their interest and investigate it further.

REFERENCES

[1] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema, “Past and
future of software architectural decisions–a systematic mapping study,”
Information and Software Technology, vol. 56, no. 8, pp. 850–872,
2014.

[2] A. Tang, M. Razavian, B. Paech, and T.-M. Hesse, “Human aspects
in software architecture decision making: a literature review,” in ICSA.
IEEE, 2017, pp. 107–116.

[3] M. Razavian, B. Paech, and A. Tang, “Empirical research for software
architecture decision making: An analysis,” Journal of Systems and
Software, vol. 149, pp. 360–381, 2019.

[4] B. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[5] M. Mahabaleshwar, “Tool support for architectural decision making in
large software intensive projects,” TUM, Germany, submitted-2019.

[6] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years
of software architecture knowledge management: Practice and future,”
Journal of Systems and Software, vol. 116, pp. 191–205, 2016.

[7] M. Sintzoff, “Suggestions for composing and specifying program
design decisions,” in International Symposium on Programming.
Springer, 1980, pp. 311–326.

[8] S. Rugaber, S. B. Ornburn, and R. J. LeBlanc, “Recognizing design
decisions in programs,” IEEE Software, vol. 7, no. 1, pp. 46–54, 1990.

[9] A. Cimitile, F. Lanubile, and G. Visaggio, “Traceability based on design
decisions,” in ICSM. IEEE, 1992, pp. 309–317.



[10] P. Chung and R. Goodwin, “Representing design history,” in Artificial
Intelligence in Design’94. Springer, 1994, pp. 735–752.

[11] P. B. Kruchten, “The 4+1 view model of architecture,” IEEE software,
vol. 12, no. 6, pp. 42–50, 1995.

[12] A. Ran and J. Kuusela, “Design decision trees,” in IWSSD. IEEE
Computer Society, 1996, p. 172.

[13] P. Kruchten, “The software architect,” in Software architecture.
Springer, 1999, pp. 565–583.

[14] J. Tyree, “Architectural design decisions session report,” in WICSA.
IEEE, 2005, pp. 285–286.

[15] P. Kruchten, P. Lago, H. Van Vliet, and T. Wolf, “Building up and
exploiting architectural knowledge,” in WICSA. IEEE, 2005, pp. 291–
292.

[16] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional
requirements in architectural decision making,” IEEE software, vol. 30,
no. 2, pp. 61–67, 2013.

[17] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and
benefits of architectural decisions,” in ICSE. IEEE, 2001, pp. 297–306.

[18] M. Moore, R. Kazman, M. Klein, and J. Asundi, “Quantifying the value
of architecture design decisions: lessons from the field,” in ICSE. IEEE
Computer Society, 2003, pp. 557–562.

[19] P. C. Clements, “An economic model for software architecture deci-
sions,” in ESC. IEEE Computer Society, 2007, p. 1.

[20] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework for
making architectural decisions in a business context,” in ICSE, vol. 2.
IEEE, 2010, pp. 149–157.

[21] A. Ran, “Fundamental concepts for practical software architecture,”
ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5, pp. 328–
329, 2001.

[22] J. Bosch, “Software architecture: The next step,” in EWSA. Springer,
2004, pp. 194–199.

[23] A. Jansen and J. Bosch, “Evaluation of tool support for architectural
evolution,” in ASE. IEEE Computer Society, 2004, pp. 375–378.

[24] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting after the fact:
Recovering architectural design decisions,” Journal of Systems and
Software, vol. 81, no. 4, pp. 536–557, 2008.

[25] C. Miesbauer and R. Weinreich, “Classification of design decisions–an
expert survey in practice,” in ECSA. Springer, 2013, pp. 130–145.

[26] J. S. van der Ven and J. Bosch, “Making the right decision - supporting
architects with design decision data,” in ECSA. Springer, 2013, pp.
176–183.

[27] A. Calvagna and E. Tramontana, “Delivering dependable reusable
components by expressing and enforcing design decisions,” in COMP-
SACW. IEEE, 2013, pp. 493–498.

[28] V. Bandara and I. Perera, “Identifying software architecture erosion
through code comments,” in ICTer. IEEE, 2018, pp. 62–69.

[29] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open
bug reports,” in iConference. ACM, 2011, pp. 106–113.

[30] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes,
“Automatic extraction of design decisions from issue management
systems: a machine learning based approach,” in ECSA. Springer,
2017, pp. 138–154.

[31] A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, and N. Medvidovic,
“Recovering architectural design decisions,” in ICSA. IEEE, 2018,
pp. 95–9509.

[32] H. Astudillo, G. Valdés, and C. Becerra, “Empirical measurement of
automated recovery of design decisions and structure,” in ANDESCON.
IEEE Computer Society, 2012, pp. 105–108.

[33] M. Soliman, A. R. Salama, M. Galster, O. Zimmermann, and
M. Riebisch, “Improving the search for architecture knowledge in
online developer communities,” in ICSA. IEEE, 2018, pp. 186–18 609.

[34] J. C. Dueñas and R. Capilla, “The decision view of software architec-
ture,” in EWSA. Springer, 2005, pp. 222–230.

[35] A. H. Eden, “Strategic versus tactical design,” in HICSS. IEEE, 2005,
pp. 313a–313a.

[36] J. Tyree and A. Akerman, “Architecture decisions: Demystifying archi-
tecture,” IEEE software, vol. 22, no. 2, pp. 19–27, 2005.

[37] A. Zalewski and M. Ludzia, “Diagrammatic modeling of architectural
decisions,” in ECSA. Springer, 2008, pp. 350–353.

[38] Q. Gu, P. Lago, and H. Van Vliet, “A template for soa design decision
making in an educational setting,” in SEAA. IEEE, 2010, pp. 175–182.

[39] D. Dermeval, J. Pimentel, C. Silva, J. Castro, E. Santos, G. Guedes,
A. Finkelstein et al., “Stream-add-supporting the documentation of

architectural design decisions in an architecture derivation process,”
in COMPSAC. IEEE, 2012, pp. 602–611.

[40] V. Clerc, P. Lago, and H. Van Vliet, “The architect’s mindset,” in QoSA.
Springer, 2007, pp. 231–249.

[41] N. Medvidovic and R. N. Taylor, “Software architecture: foundations,
theory, and practice,” in ICSE. ACM, 2010, pp. 471–472.

[42] L. Lee and P. Kruchten, “Capturing software architectural design
decisions,” in CCECE. IEEE, 2007, pp. 686–689.

[43] N. B. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to capture
architectural decisions,” IEEE software, vol. 24, no. 4, 2007.

[44] U. van Heesch, P. Avgeriou, U. Zdun, and N. Harrison, “The sup-
portive effect of patterns in architecture decision recovery-a controlled
experiment,” Science of Computer Programming, vol. 77, no. 5, 2012.

[45] M. T. T. That, S. Sadou, and F. Oquendo, “Using architectural patterns
to define architectural decisions,” in WICSA-ECSA. IEEE, 2012, pp.
196–200.

[46] T. Aslam, T. Rana, M. Batool, A. Naheed, and A. Andaleeb, “Quality
based software architectural decision making,” in ComTech. IEEE,
2019, pp. 114–119.

[47] T. Dürschmid, E. Kang, and D. Garlan, “Trade-off-oriented develop-
ment: making quality attribute trade-offs first-class,” in ICSE: NIER.
IEEE Press, 2019, pp. 109–112.

[48] W. Heijstek, T. Kuhne, and M. R. Chaudron, “Experimental analysis of
textual and graphical representations for software architecture design,”
in ESEM. IEEE, 2011, pp. 167–176.

[49] M. Shahin, P. Liang, and Z. Li, “Architectural design decision visu-
alization for architecture design: preliminary results of a controlled
experiment,” in ECSA-C. ACM, 2011, p. 2.

[50] M. Shahin and P. Liang and Z. Li, “Do architectural design decisions
improve the understanding of software architecture? two controlled
experiments,” in ICPC. ACM, 2014, pp. 3–13.

[51] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in WICSA. IEEE, 2005, pp. 109–120.

[52] A. Akerman and J. Tyree, “Position on ontology-based architecture,”
in WICSA. IEEE, 2005, pp. 289–290.

[53] P. Kruchten, P. Lago, and H. Van Vliet, “Building up and reasoning
about architectural knowledge,” in QoSA. Springer, 2006, pp. 43–58.

[54] M. Szvetits and U. Zdun, “Architectural design decisions for systems
supporting model-based analysis of runtime events: A qualitative multi-
method study,” in ICSA. IEEE, 2018, pp. 115–11 509.

[55] Y. C. Segura, N. S. Martı́nez, A. P. Fernández, and O. G. Baryolo, “De-
scription and analysis of design decisions: An ontological approach,”
in CITI. Springer, 2018, pp. 174–185.

[56] M. L. Roldán, S. Gonnet, and H. Leone, “A model for capturing
and tracing architectural designs,” in Advanced Software Engineering:
Expanding the Frontiers of Software Technology. Springer, 2006, pp.
16–31.

[57] R. C. De Boer, R. Farenhorst, P. Lago, H. Van Vliet, V. Clerc, and
A. Jansen, “Architectural knowledge: Getting to the core,” in QoSA.
Springer, 2007, pp. 197–214.

[58] F. Gilson and V. Englebert, “Rationale, decisions and alternatives
traceability for architecture design,” in ECSA-C. ACM, 2011, p. 4.

[59] B. Orlic, R. Mak, I. David, and J. Lukkien, “Concepts and diagram
elements for architectural knowledge management,” in ECSA-C. ACM,
2011, p. 3.

[60] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, M. Hassel, and
F. Matthes, “Meta-model based framework for architectural knowledge
management,” in ECSAW. ACM, 2016, p. 12.

[61] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster,
“Reusable architectural decision models for enterprise application
development,” in QoSA. Springer, 2007, pp. 15–32.

[62] R. Farenhorst, P. Lago, and H. Van Vliet, “Prerequisites for successful
architectural knowledge sharing,” in ASWEC. IEEE, 2007, pp. 27–38.

[63] S. Gerdes, S. Lehnert, and M. Riebisch, “Combining architectural
design decisions and legacy system evolution,” in ECSA. Springer,
2014, pp. 50–57.

[64] Z. Durdik, A. Koziolek, and R. H. Reussner, “How the understanding
of the effects of design decisions informs requirements engineering,”
in TwinPeaks. IEEE, 2013, pp. 14–18.

[65] M. Konersmann, Z. Durdik, M. Goedicke, and R. H. Reussner, “To-
wards architecture-centric evolution of long-living systems (the advert
approach),” in QoSA. ACM, 2013, pp. 163–168.



[66] L. Zhu and I. Gorton, “Uml profiles for design decisions and non-
functional requirements,” in SHARK-ADI. IEEE Computer Society,
2007, p. 8.

[67] S. De Wang, J. H. Liu, and C. Fu, “Sysml extension method supporting
design rationale knowledge model,” in CDVE. Springer, 2018, pp.
225–228.

[68] M. Küster, “Architecture-centric modeling of design decisions for
validation and traceability,” in ECSA. Springer, 2013, pp. 184–191.

[69] Y. Choi, H. Choi, and M. Oh, “An architectural design decision-centric
approach to architectural evolution,” in ICACT, vol. 1. IEEE, 2009,
pp. 417–422.

[70] E. Navarro, C. E. Cuesta, and D. E. Perry, “Weaving a network of
architectural knowledge,” in WICSA-ECSA. IEEE, 2009, pp. 241–
244.

[71] I. Lytra, H. Tran, and U. Zdun, “Constraint-based consistency check-
ing between design decisions and component models for supporting
software architecture evolution,” in CSMR. IEEE, 2012, pp. 287–296.

[72] M. Soliman and M. Riebisch, “Modeling the interactions between
decisions within software architecture knowledge,” in ECSA. Springer,
2014, pp. 33–40.

[73] M. Szlenk, A. Zalewski, and S. Kijas, “Modelling architectural deci-
sions under changing requirements,” in WICSA-ECSA. IEEE, 2012,
pp. 211–214.

[74] J. P. Ros and R. S. Sangwan, “A method for evidence-based architecture
discovery,” in WICSA. IEEE, 2011, pp. 342–345.

[75] A. Sawada, M. Noro, H.-M. Chang, Y. Hachisu, and A. Yoshida, “A
design map for recording precise architecture decisions,” in APSEC.
IEEE, 2011, pp. 298–305.

[76] D. Dermeval, J. Castro, C. Silva, J. Pimentel, I. I. Bittencourt, P. Brito,
E. Elias, T. Tenório, and A. Pedro, “On the use of metamodeling
for relating requirements and architectural design decisions,” in SAC.
ACM, 2013, pp. 1278–1283.

[77] M. Mirakhorli and J. Cleland-Huang, “Transforming trace information
in architectural documents into re-usable and effective traceability
links,” in SHARK. ACM, 2011, pp. 45–52.

[78] M. Mirakhorli, “Tracing architecturally significant requirements: a
decision-centric approach,” in ICSA. ACM, 2011, pp. 1126–1127.

[79] C. Carrillo and R. Capilla, “Ripple effect to evaluate the impact of
changes in architectural design decisions.” in ECSA-C, 2018, p. 41.

[80] R. Capilla and M. A. Babar, “On the role of architectural design
decisions in software product line engineering,” in ECSA. Springer,
2008, pp. 241–255.

[81] P. G. Avery and R. Hawkins, “Software design decision vulnerability
analysis,” 2014.

[82] A. Tang and H. Van Vliet, “Modeling constraints improves software
architecture design reasoning,” in WICSA-ECSA. IEEE, 2009, pp.
253–256.

[83] A. Tang and H. Van Vliet, “Software architecture design reasoning,” in
Software Architecture Knowledge Management. Springer, 2009, pp.
155–174.

[84] M. Che and D. E. Perry, “Scenario-based architectural design decisions
documentation and evolution,” in ECBS. IEEE, 2011, pp. 216–225.

[85] M. Che, “An approach to documenting and evolving architectural
design decisions,” in ICSE. IEEE Press, 2013, pp. 1373–1376.

[86] O. Zimmermann, “Architectural decisions as reusable design assets,”
IEEE software, vol. 28, no. 1, pp. 64–69, 2011.

[87] C. Carrillo, R. Capilla, O. Zimmermann, and U. Zdun, “Guidelines
and metrics for configurable and sustainable architectural knowledge
modelling,” in ECSAW. ACM, 2015, p. 63.

[88] U. Zdun, M. Stocker, O. Zimmermann, C. Pautasso, and D. Lübke,
“Guiding architectural decision making on quality aspects in microser-
vice apis,” in ICSOC. Springer, 2018, pp. 73–89.

[89] J. Carlson, E. Papatheocharous, and K. Petersen, “A context model for
architectural decision support,” in MARCH. IEEE, 2016, pp. 9–15.

[90] I. Lytra, P. Gaubatz, and U. Zdun, “Two controlled experiments on
model-based architectural decision making,” Information and Software
Technology, vol. 63, pp. 58–75, 2015.

[91] S. Stevanetic, K. Plakidas, T. B. Ionescu, F. Li, D. Schall, and U. Zdun,
“Tool support for the architectural design decisions in software ecosys-
tems,” in ECSAW. ACM, 2015, p. 45.

[92] I. Lytra, G. Engelbrecht, D. Schall, and U. Zdun, “Reusable architec-
tural decision models for quality-driven decision support: A case study
from a smart cities software ecosystem,” in SESoS. IEEE Press, 2015,
pp. 37–43.

[93] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A web-based tool
for managing architectural design decisions,” ACM SIGSOFT software
engineering notes, vol. 31, no. 5, p. 4, 2006.

[94] R. Capilla, F. Nava, J. Montes, and C. Carrillo, “Addss: architecture
design decision support system tool,” in ASE. IEEE Computer Society,
2008, pp. 487–488.

[95] R. Capilla and F. Nava, “Extending software architecting processes
with decision-making activities,” in Balancing Agility and Formalism
in Software Engineering. Springer, 2008, pp. 182–195.

[96] R. Capilla, F. Nava, and J. C. Duenas, “Modeling and documenting the
evolution of architectural design decisions,” in SHARK-ADI. IEEE
Computer Society, 2007, p. 9.

[97] R. Capilla, F. Nava, and A. Tang, “Attributes for characterizing the
evolution of architectural design decisions,” in IWSE. IEEE, 2007,
pp. 15–22.

[98] F. Nava, R. Capilla, and J. C. Dueñas, “Processes for creating and
exploiting architectural design decisions with tool support,” in ECSA.
Springer, 2007, pp. 321–324.

[99] R. Capilla, F. Nava, and C. Carrillo, “Effort estimation in capturing
architectural knowledge,” in ASE. IEEE Computer Society, 2008, pp.
208–217.

[100] R. Capilla, “Embedded design rationale in software architecture,” in
WICSA-ECSA. IEEE, 2009, pp. 305–308.

[101] L. Lee and P. Kruchten, “A tool to visualize architectural design
decisions,” in QoSA. Springer, 2008, pp. 43–54.

[102] L. Lee and P. Kruchten, “Visualizing software architectural design
decisions,” in ECSA. Springer, 2008, pp. 359–362.

[103] L. Lee and P. Kruchten, “Customizing the capture of software architec-
tural design decisions,” in CCECE. IEEE, 2008, pp. 000 693–000 698.

[104] P. Konemann, “Integrating decision management with uml modeling
concepts and tools,” in WICSA-ECSA. IEEE, 2009, pp. 297–300.

[105] R. C. De Boer, P. Lago, A. Telea, and H. Van Vliet, “Ontology-
driven visualization of architectural design decisions,” in WICSA-
ECSA. IEEE, 2009, pp. 51–60.

[106] L. Chen and M. A. Babar, “Supporting customizable architectural
design decision management,” in ECBS. IEEE, 2010, pp. 232–240.

[107] L. Chen, M. A. Babar, and H. Liang, “Model-centered customizable
architectural design decisions management,” in ASEC. IEEE, 2010,
pp. 23–32.

[108] M. Shahin, P. Liang, and M. R. Khayyambashi, “Rationale visualization
of software architectural design decision using compendium,” in SAC.
ACM, 2010, pp. 2367–2368.

[109] M. Shahin and P. Liang and M. R. Khayyambashi, “Improving under-
standability of architecture design through visualization of architectural
design decision,” in SHARK. ACM, 2010, pp. 88–95.

[110] G. Buchgeher and R. Weinreich, “Automatic tracing of decisions to
architecture and implementation,” in WICSA. IEEE, 2011, pp. 46–55.

[111] D. Tofan, M. Galster, and P. Avgeriou, “Capturing tacit architectural
knowledge using the repertory grid technique (nier track),” in ICSE.
ACM, 2011, pp. 916–919.

[112] D. Tofan and M. Galster, “Capturing and making architectural deci-
sions: an open source online tool,” in ECSAW. ACM, 2014, p. 33.

[113] C. Dhaya and G. Zayaraz, “Development of multiple architectural
designs using aduak,” in ICCSPA. IEEE, 2012, pp. 93–97.

[114] D. Ameller, O. Collell, and X. Franch, “Architech: Tool support for
nfr-guided architectural decision-making,” in RE. IEEE, 2012, pp.
315–316.

[115] K. Nakakoji, Y. Yamamoto, N. Matsubara, and Y. Shirai, “Toward
unweaving streams of thought for reflection in professional software
design,” IEEE software, vol. 29, no. 1, pp. 34–38, 2012.

[116] I. Lytra, H. Tran, and U. Zdun, “Supporting consistency between
architectural design decisions and component models through reusable
architectural knowledge transformations,” in ECSA. Springer, 2013,
pp. 224–239.

[117] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou,
“Industrial implementation of a documentation framework for architec-
tural decisions,” in WICSA. IEEE, 2014, pp. 225–234.

[118] T.-M. Hesse, A. Kuehlwein, and T. Roehm, “Decdoc: A tool for
documenting design decisions collaboratively and incrementally,” in
MARCH. IEEE, 2016, pp. 30–37.

[119] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, M. Hassel,
and F. Matthes, “An ontology-based approach for software
architecture recommendations,” in AMCIS, 2017. [Online]. Available:
http://aisel.aisnet.org/amcis2017/SemanticsIS/Presentations/7



[120] A. Gopalakrishnan and A. C. Biswal, “Quiver an intelligent decision
support system for software architecture and design,” in SmartTechCon.
IEEE, 2017, pp. 1286–1291.

[121] D. Nam, Y. K. Lee, and N. Medvidovic, “Eva: A tool for visualizing
software architectural evolution,” in ICSE-C. IEEE, 2018, pp. 53–56.

[122] M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf, and
F. Matthes, “An expert recommendation system for design decision
making: Who should be involved in making a design decision?” in
ICSA. IEEE, 2018, pp. 85–8509.

[123] M. Bhat, C. Tinnes, K. Shumaiev, , A. Biesdorf, U. Hohenstein, and
F. Matthes, “Adex: A tool for automatic curation of design decision
knowledge for architectural decision recommendations,” in ICSA-C.
IEEE, 2019.

[124] T. D. LaToza, E. Shabani, and A. Van Der Hoek, “A study of
architectural decision practices,” in CHASE. IEEE, 2013, pp. 77–80.

[125] M. Soliman, M. Riebisch, and U. Zdun, “Enriching architecture knowl-
edge with technology design decisions,” in WICSA. IEEE, 2015, pp.
135–144.

[126] C. C. Venters, R. Capilla, S. Betz, B. Penzenstadler, T. Crick,
S. Crouch, E. Y. Nakagawa, C. Becker, and C. Carrillo, “Software
sustainability: Research and practice from a software architecture
viewpoint,” Journal of Systems and Software, 2017.

[127] U. Zdun, R. Capilla, H. Tran, and O. Zimmermann, “Sustainable
architectural design decisions,” IEEE software, vol. 30, no. 6, pp. 46–
53, 2013.

[128] P. Lago, “Architecture design decision maps for software sustainabil-
ity,” in ICSE: SEIS. IEEE Press, 2019, pp. 61–64.

[129] M. Nowak and C. Pautasso, “Goals, questions and metrics for archi-
tectural decision models,” in SHARK. ACM, 2011, pp. 21–28.

[130] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design
decision: Existing models and tools,” in WICSA-ECSA. IEEE, 2009,
pp. 293–296.

[131] Z. Alexeeva, D. Perez-Palacin, and R. Mirandola, “Design decision
documentation: A literature overview,” in ECSA. Springer, 2016, pp.
84–101.

[132] R. Rauscher, “A design assistant for scheduling of design decisions,”
in euromicro. IEEE, 1996, p. 0088.

[133] L. Borrmann and F. N. Paulisch, “Software architecture at siemens:
The challenges, our approaches, and some open issues,” in Software
Architecture. Springer, 1999, pp. 529–543.

[134] C. Zannier and F. Maurer, “A qualitative empirical evaluation of design
decisions,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 4. ACM, 2005, pp. 1–7.

[135] C. Zannier and F. Maurer, “Foundations of agile decision making from
agile mentors and developers,” in XP. Springer, 2006, pp. 11–20.

[136] C. Zannier and F. Maurer, “Comparing decision making in agile and
non-agile software organizations,” in XP. Springer, 2007, pp. 1–8.

[137] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software design-
ers,” Information and Software Technology, vol. 49, no. 6, pp. 637–653,
2007.

[138] C. Zannier and F. Maurer, “Social factors relevant to capturing design
decisions,” in SHARK-ADI. IEEE Computer Society, 2007, p. 1.

[139] S. T. Hassard, A. Blandford, and A. L. Cox, “Analogies in design
decision-making,” in BCS-HCI. British Computer Society, 2009, pp.
140–148.

[140] A. Tang and H. van Vliet, “Software designers satisfice,” in ECSA.
Springer, 2015, pp. 105–120.

[141] A. Tang, M. H. Tran, J. Han, and H. Van Vliet, “Design reasoning
improves software design quality,” in QoSA. Springer, 2008, pp. 28–
42.

[142] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What makes software
design effective?” Design Studies, vol. 31, no. 6, pp. 614–640, 2010.

[143] C. Yang, P. Liang, P. Avgeriou, U. Eliasson, R. Heldal, and P. Pellic-
cione, “Architectural assumptions and their management in industry–an
exploratory study,” in ECSA. Springer, 2017, pp. 191–207.

[144] Z. Xiong, P. Liang, C. Yang, and T. Liu, “Assumptions in oss devel-
opment: An exploratory study through the hibernate developer mailing
list,” in APSEC. IEEE, 2018, pp. 455–464.

[145] I. Groher and R. Weinreich, “A study on architectural decision-making
in context,” in WICSA. IEEE, 2015, pp. 11–20.

[146] R. Weinreich, I. Groher, and C. Miesbauer, “An expert survey on kinds,
influence factors and documentation of design decisions in practice,”
Future Generation Computer Systems, vol. 47, pp. 145–160, 2015.

[147] R. J. Wirfs-Brock, “Giving design advice,” IEEE Software, vol. 24,
no. 4, 2007.

[148] K. Power and R. Wirfs-Brock, “Understanding architecture decisions
in context,” in ECSA. Springer, 2018, pp. 284–299.

[149] A. Zalewski, K. Borowa, and A. Ratkowski, “On cognitive biases in
architecture decision making,” in ECSA. Springer, 2017, pp. 123–137.

[150] H. van Vliet and A. Tang, “Decision making in software architecture,”
Journal of Systems and Software, vol. 117, pp. 638–644, 2016.

[151] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, and F. Matthes,
“Decision making and cognitive biases in designing software architec-
tures,” in ICSA-C. IEEE, 2018, pp. 52–55.

[152] C. Pretorius, M. Razavian, K. Eling, and F. Langerak, “Towards a dual
processing perspective of software architecture decision making,” in
ICSA-C. IEEE, 2018, pp. 48–51.

[153] A. Tang, “Software designers, are you biased?” in SHARK, 2011, pp.
1–8.

[154] J. Rueckert, A. Burger, H. Koziolek, T. Sivanthi, A. Moga, and
C. Franke, “Architectural decision forces at work: experiences in an
industrial consultancy setting,” in ESEC-FSE. ACM, 2019, pp. 996–
1005.

[155] U. Van Heesch, P. Avgeriou, and R. Hilliard, “Forces on architecture
decisions-a viewpoint,” in WISCA. IEEE, 2012, pp. 101–110.

[156] J. S. van der Ven and J. Bosch, “Busting software architecture beliefs:
A survey on success factors in architecture decision making,” in SEAA.
IEEE, 2016, pp. 42–49.

[157] P. Ralph and E. Tempero, “Characteristics of decision-making during
coding,” in EASE. ACM, 2016, p. 34.

[158] J. Hutchinson and G. Kotonya, “A review of negotiation techniques in
component based software engineering,” in SEAA. IEEE, 2006, pp.
152–159.

[159] M. Anvaari, R. Conradi, and L. Jaccheri, “Architectural decision-
making in enterprises: preliminary findings from an exploratory study
in norwegian electricity industry,” in ECSA. Springer, 2013, pp. 162–
175.

[160] S. Dasanayake, J. Markkula, S. Aaramaa, and M. Oivo, “Software
architecture decision-making practices and challenges: an industrial
case study,” in ASEC. IEEE, 2015, pp. 88–97.

[161] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making
techniques for software architecture design: A comparative survey,”
CSUR, vol. 43, no. 4, pp. 1–28, 2011.

[162] H. Christiaans and R. A. Almendra, “Accessing decision-making in
software design,” Design Studies, vol. 31, no. 6, pp. 641–662, 2010.

[163] E. Papatheocharous, K. Petersen, A. Cicchetti, S. Sentilles, S. M. A.
Shah, and T. Gorschek, “Decision support for choosing architectural
assets in the development of software-intensive systems: The grade
taxonomy,” in ECSAW. ACM, 2015, p. 48.

[164] C. Wohlin, K. Wnuk, D. Smite, U. Franke, D. Badampudi, and
A. Cicchetti, “Supporting strategic decision-making for selection of
software assets,” in ICSOB. Springer, 2016, pp. 1–15.

[165] A. Cicchetti, M. Borg, S. Sentilles, K. Wnuk, J. Carlson, and E. Pap-
atheocharous, “Towards software assets origin selection supported by
a knowledge repository,” in MARCH. IEEE, 2016, pp. 22–29.

[166] B. Xu, Z. Huang, and O. Wei, “Making architectural decisions based
on requirements: Analysis and combination of risk-based and quality
attribute-based methods,” in UIC-ATC. IEEE, 2010, pp. 392–397.

[167] G. Márquez and H. Astudillo, “Selecting components assemblies from
non-functional requirements through tactics and scenarios,” in SCCC.
IEEE, 2016, pp. 1–11.

[168] N. B. Harrison, E. Gubler, and D. Skinner, “Architectural decision-
making in open-source systems–preliminary observations,” in MARCH.
IEEE, 2016, pp. 16–21.

[169] F. Gilson, M. Galster, and F. Georis, “Extracting quality attributes from
user stories for early architecture decision making,” in ICSA-C. IEEE,
2019, pp. 129–136.

[170] S. Blair, R. Watt, and T. Cull, “Responsibility-driven architecture,”
IEEE software, vol. 27, no. 2, 2010.

[171] F. Heijenk, M. van den Berg, H. Leopold, H. van Vliet, and R. Slot,
“Empirical insights into the evolving role of architects in decision-
making in an agile context,” in ECSA. Springer, 2018, pp. 247–264.

[172] X. Cui, Y. Sun, S. Xiao, and H. Mei, “Architecture design for the large-
scale software-intensive systems: A decision-oriented approach and the
experience,” in ICECCS. IEEE, 2009, pp. 30–39.



[173] I. Lytra, S. Sobernig, and U. Zdun, “Architectural decision making for
service-based platform integration: A qualitative multi-method study,”
in WICSA-ECSA. IEEE, 2012, pp. 111–120.

[174] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “Modeling software
architecture process with a decision-making approach,” in SCCC.
IEEE, 2014, pp. 1–6.

[175] A. Dragomir, H. Lichter, and T. Budau, “Systematic architectural
decision management, a process-based approach,” in WICSA. IEEE,
2014, pp. 255–258.

[176] C. Schriek, J. M. E. van der Werf, A. Tang, and F. Bex, “Software
architecture design reasoning: A card game to help novice designers,”
in ECSA. Springer, 2016, pp. 22–38.

[177] R. C. De Boer, P. Lago, R. Verdecchia, and P. Kruchten, “Decidarch
v2: An improved game to teach architecture design decision making,”
in ICSA-C. IEEE, 2019, pp. 153–157.

[178] M. Razavian, A. Tang, R. Capilla, and P. Lago, “In two minds: how
reflections influence software design thinking,” Journal of Software:
Evolution and Process, vol. 28, no. 6, pp. 394–426, 2016.

[179] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “Analysis of design
meetings for understanding software architecture decisions,” in CLEI.
IEEE, 2014, pp. 1–10.

[180] G. Pedraza-Garcı́a, H. Astudillo, and D. Correal, “Dvia: Understanding
how software architects make decisions in design meetings,” in ECSAW.
ACM, 2015, p. 51.

[181] G. Pedraza-Garcia, H. Astudillo, and D. Correal, “An approach for
software knowledge sharing based on architectural decisions,” in CLEI.
IEEE, 2016, pp. 1–10.

[182] J. M. E. van der Werf, R. de Feijter, F. Bex, and S. Brinkkemper, “Fa-
cilitating collaborative decision making with the software architecture
video wall,” in ICSAW. IEEE, 2017, pp. 137–140.

[183] M. Razavian, A. Tang, R. Capilla, and P. Lago, “Reflective approach
for software design decision making,” in QRASA. IEEE, 2016, p. 19.

[184] C. Pretorius, “Beyond reason: Uniting intuition and rationality in
software architecture decision making,” in ICSA-C. IEEE, 2019, pp.
275–282.

[185] D. Tofan, M. Galster, and P. Avgeriou, “Difficulty of architectural
decisions–a survey with professional architects,” in ECSA. Springer,
2013, pp. 192–199.

[186] A. Harchenko, I. Bodnarchuk, I. Halay, and V. Yatcyshyn, “The tool
for design of software systems architecture,” in CADSM. IEEE, 2013,
pp. 138–139.

[187] A. Harchenko, I. Bodnarchuk, and I. Halay, “Decision support system
of software architect,” in IDAACS, vol. 1. IEEE, 2013, pp. 265–269.

[188] J. W. Cangussu, K. C. Cooper, and E. W. Wong, “Multi criteria
selection of components using the analytic hierarchy process,” in CBSE.
Springer, 2006, pp. 67–81.

[189] N. Ernst, J. Klein, G. Mathew, and T. Menzies, “Using stakeholder
preferences to make better architecture decisions,” in ICSAW. IEEE,
2017, pp. 133–136.

[190] S. Orlov and A. Vishnyakov, “Decision making for the software
architecture structure based on the criteria importance theory,” Procedia
computer science, vol. 104, pp. 27–34, 2017.

[191] A. Egyed and D. S. Wile, “Support for managing design-time deci-
sions,” TSE, no. 5, pp. 299–314, 2006.

[192] T. Al-Naeem, F. T. Dabous, F. A. Rabhi, and B. Benatallah, “Formu-
lating the architectural design of enterprise applications as a search
problem,” in ASWEC. IEEE, 2005, pp. 282–291.

[193] M. Makki, E. Bagheri, and A. A. Ghorbani, “Automating architecture
trade-off decision making through a complex multi-attribute decision
process,” in ECSA. Springer, 2008, pp. 264–272.

[194] F. H. Jabali, S. M. Sharafi, and K. Zamanifar, “A quantitative algorithm
to select software architecture by tradeoff between quality attributes,”
Procedia computer science, vol. 3, pp. 1480–1484, 2011.

[195] M. Riebisch and S. Wohlfarth, “Introducing impact analysis for archi-
tectural decisions,” in ECBS. IEEE, 2007, pp. 381–392.

[196] L. Grunske, “Identifying good architectural design alternatives with
multi-objective optimization strategies,” in ICSE. ACM, 2006, pp.
849–852.

[197] S. A. Busari, “Towards search-based modelling and analysis of require-
ments and architecture decisions,” in ASE. IEEE, 2017, p. 1026.

[198] S. Gerdes, M. Soliman, and M. Riebisch, “Decision buddy: tool support
for constraint-based design decisions during system evolution,” in
FoSADA. ACM, 2015, pp. 13–18.

[199] S. Moaven, J. Habibi, H. Ahmadi, and A. Kamandi, “A fuzzy model for
solving architecture styles selection multi-criteria problem,” in EMS.
IEEE, 2008, pp. 388–393.

[200] S. Moaven and J. Habibi and H. Ahmadi and A. Kamandi, “A decision
support system for software architecture-style selection,” in SERA.
IEEE, 2008, pp. 213–220.

[201] G. Zayaraz, S. Vijayalakshmi, and V. Vijayalakshmi, “Evaluation
of software architectures using multicriteria fuzzy decision making
technique,” in IAMA. IEEE, 2009, pp. 1–5.

[202] N. Esfahani, S. Malek, and K. Razavi, “Guidearch: guiding the ex-
ploration of architectural solution space under uncertainty,” in ICSE.
IEEE Press, 2013, pp. 43–52.

[203] N. Upadhyay, “Sdmf: Systematic decision-making framework for eval-
uation of software architecture,” Procedia computer science, vol. 91,
pp. 599–608, 2016.

[204] M. A. Al Imran, S. P. Lee, and M. M. Ahsan, “Quality driven
architectural solutions selection approach through measuring impact
factors,” in ICECOS. IEEE, 2017, pp. 131–136.

[205] J. A. Dı́az-Pace and M. R. Campo, “Exploring alternative software
architecture designs: a planning perspective,” IEEE Intelligent Systems,
vol. 23, no. 5, 2008.

[206] M. Scheerer, A. Busch, and A. Koziolek, “Automatic evaluation of
complex design decisions in component-based software architectures,”
in MEMOCODE. ACM, 2017, pp. 67–76.

[207] G. Sapienza, G. Dodig-Crnkovic, and I. Crnkovic, “Inclusion of ethical
aspects in multi-criteria decision analysis,” in MARCH. IEEE, 2016,
pp. 1–8.

[208] A. Shahbazian, Y. K. Lee, Y. Brun, and N. Medvidovic, “Making well-
informed software design decisions,” in ICSE-C. ACM, 2018, pp.
262–263.

[209] A. Alali and J. Sillito, “Motivations for collaboration in software design
decision making,” in CHASE. IEEE, 2013, pp. 129–132.

[210] S. Dasanayake, J. Markkula, S. Aaramaa, and M. Oivo, “An empirical
study on collaborative architecture decision making in software teams,”
in ECSA. Springer, 2016, pp. 238–246.

[211] J. Chai and J. N. Liu, “An ontology-driven framework for supporting
complex decision process,” in WAC. IEEE, 2010, pp. 1–6.

[212] M. Nowak and C. Pautasso, “Team situational awareness and archi-
tectural decision making with the software architecture warehouse,” in
ECSA. Springer, 2013, pp. 146–161.

[213] D. Tofan, M. Galster, I. Lytra, P. Avgeriou, U. Zdun, M.-A. Fouche,
R. De Boer, and F. Solms, “Empirical evaluation of a process to in-
crease consensus in group architectural decision making,” IST, vol. 72,
pp. 31–47, 2016.

[214] S. V. F. Lopes and P. T. A. Junior, “Architectural design group decision-
making in agile projects,” in ICSAW. IEEE, 2017, pp. 210–215.

[215] V. S. Rekhav and H. Muccini, “A study on group decision-making in
software architecture,” in WICSA. IEEE, 2014, pp. 185–194.

[216] S. Rekha and H. Muccini, “Suitability of software architecture decision
making methods for group decisions,” in ECSA. Springer, 2014, p. 17.

[217] I. Malavolta, H. Muccini, and S. Rekha, “Enhancing architecture
design decisions evolution with group decision making principles,” in
SERENE. Springer, 2014, pp. 9–23.

[218] H. Muccini, D. A. Tamburri, and V. S. Rekha, “On the social dimen-
sions of architectural decisions,” in ECSA. Springer, 2015, p. 137.

[219] S. Rekha and H. Muccini, “Group decision-making in software archi-
tecture: A study on industrial practices,” IST, 2018.

[220] K. Shumaiev, M. Bhat, O. Klymenko, A. Biesdorf, U. Hohenstein, and
F. Matthes, “Uncertainty expressions in software architecture group
decision making: Explorative study,” in ECSA-C. ACM, 2018, pp.
42:1–42:8.


