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Econometrica, Vol. 61, No. 1 (January, 1993), 57-84 

THE EVOLUTION OF CONVENTIONS 

BY H. PEYTON YOUNG1 

Consider an n-person game that is played repeatedly, but by different agents. In each 
period, n players are drawn at random from a large finite population. Each player 
chooses an optimal strategy based on a sample of information about what others players 
have done in the past. The sampling defines a stochastic process that, for a large class of 
games that includes coordination games and common interest games, converges almost 
surely to a pure strategy Nash equilibrium. Such an equilibrium can be interpreted as the 
"conventional" way of playing the game. If, in addition, the players sometimes experiment 
or make mistakes, then society occasionally switches from one convention to another. As 
the likelihood of mistakes goes to zero, only some conventions (equilibria) have positive 
probability in the limit. These are known as stochastically stable equilibria. They are 
essentially the same as the risk dominant equilibria in 2 x 2 games, but for general games 
the two concepts differ. The stochastically stable equilibria are computed by finding a 
path of least resistance from every equilibrium to every other, and then finding the 
equilibrium that has lowest overall resistance. This is a special case of a general theorem 
on perturbed Markov processes that characterizes their stochastically stable states graph- 
theoretically. 

KEYWORDS: Stochastic stability, equilibrium selection, Markov process, fictitious play. 

The individual is foolish but the species is wise. 
Edmund Burke 

1. INTRODUCTION 

A CONVENTION IS A PATTERN of behavior that is customary, expected, and 
self-enforcing. Everyone conforms, everyone expects others to conform, and 
everyone wants to conform given that everyone else conforms.2 Familiar exam- 
ples include driving on the right when others drive on the right, going to lunch 
at noon if others go at noon, accepting dollar bills in payment for goods if others 
accept them, and so forth. Conventions need not be symmetric. Men conven- 
tionally propose to women. Sailboats on the port tack yield the right-of-way to 
sailboats on the starboard tack. In some regions, tenant farmers customarily get 
one-third of the harvest and landlords get two-thirds, whereas in other regions 
the reverse convention holds.3 For each role in such asymmetric interactions 
there is a customary and expected behavior, and everyone prefers to follow the 
behavior expected of him provided that others follow the behavior expected of 
them. Under these circumstances we say that people follow a convention. A 
convention is an equilibrium that everyone expects. But how do expectations 
become established when there is more than one equilibrium? 

'This work was supported in part by the Santa Fe Institute. I am indebted to Dean Foster, David 
Canning, Michael Cohen, Michihiro Kandori, David Lane, George Mailath, and Rafael Rob for 
stimulating conversations on this topic, and to the referees for several constructive suggestions. The 
usual caveat applies. 

2 See Lewis (1967). 
3See Bardhan (1984) for an account of sharecropping patterns in India. 
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One explanation is that some equilibria are a priori more reasonable than 
others. A deductive theory of this type has been proposed by Harsanyi and 
Selten (1988). A second explanation, proposed by Schelling (1960), is that agents 
focus their attention on one equilibrium because it is more prominent or 
conspicuous than the others. Yet a third explanation is that, over time, expecta- 
tions converge on one equilibrium through positive feedback effects. Suppose 
that a game is played repeatedly, either by the same or different agents. Past 
plays have a feedback effect on the expectations and behaviors of those playing 
the game now because people pay attention to precedent. Eventually, one 
equilibrium becomes entrenched as the conventional one, not because it is 
inherently prominent or focal, but because the dynamics of the process happen 
to select it. 

This evolutionary explanation for the origin of conventions has been sug- 
gested in a variety of papers, but the precise dynamics of the process by which 
expectations and behaviors evolve has not been clearly spelled out.4 In particu- 
lar it is not clear whether it works. Does the process converge to an equilibrium, 
and if so, are all equilibria equally likely to be selected? We shall show that the 
process converges in an asymptotic sense provided that the underlying game has 
an acyclic best reply structure, and provided there is sufficient stochastic 
variability in the players' responses. In this case, society is at or close to a Nash 
equilibrium most of the time. Not all Nash equilibria are equally likely to be 
selected, however. In fact, typically only one Nash equilibrium will be observed 
with high probability in the long run. Such an equilibrium is said to be 
stochastically stable (Foster and Young (1990)). Building on work of Freidlin and 
Wentzell (1984) and Kandori, Mailath, and Rob (1993), we shall show how to 
compute the stochastically stable equilibria by solving a series of shortest path 
problems in a graph. This is an application of a more general result (proved in 
the Appendix) that characterizes graph-theoretically the stochastically stable 
communication classes of a perturbed finite-state Markov process. 

2. OUTLINE OF THE MODEL 

We consider a fixed n-person game that is played once each period. The 
players are drawn at random from a large, finite population of individuals. Each 
player chooses an optimal strategy based on his beliefs about his environment, 
which he takes to be stationary. He forms his beliefs by looking at what other 
agents have done in the recent past. Since gathering information is costly, 
however, each player knows only a small portion of the history, that is, he bases 
his current actions on a sample of plays from recent time periods. We shall also 
assume that the players occasionally experiment with different strategies, or 
simply make mistakes. 

4 See, for example, Lewis (1967), Axelrod (1986), Sugden (1986), Bicchieri (1990), and Warneryd 
(1990). 
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The strategies that the agents choose in the current period are recorded and 
the game is played again in the next period by another random draw of n agents 
from the fixed population. Each of these agents takes a random sample of 
previous plays and reacts accordingly. Actions in earlier periods therefore have 
a feedback effect on actions by agents in later periods. To emphasize that 
convergence in this model has nothing to do with learning at the individual 
level, we can assume that after an agent plays the game once he dies and is 
replaced by a naive agent of the same type (same sample size and same utility 
function) but no prior information. Thus each time an agent plays he starts 
afresh and must ask around to find out what is going on. This assumption is not 
necessary from a mathematical point of view, but it underscores the fact that we 
are ignoring learning and reputation effects. 

The adaptive dynamics described above define a Markov chain whose states 
are the histories of play truncated to a finite number of periods. It is similar to 
fictitious play in that agents choose best replies to other agents' past actions. In 
fictitious play, however, agents base their decisions on the entire history of 
actions by other agents. Here we assume that agents base their decisions on 
limited information about actions of other agents in the recent past, and they do 
not always optimize. These assumptions seem less fictitious than fictitious play; 
hence we call this process adaptive play. 

For general n-person games, adaptive play need not converge to a Nash 
equilibrium, either pure or mixed, as we shall show below by example. Never- 
theless, there is an important class of games for which it does converge. These 
games have the property that, from any initial choice of strategies, there exists a 
sequence of best replies that leads to a strict, pure strategy Nash equilibrium. 
This class includes, but is substantially more general than, coordination games 
and common interest games. For these weakly acylic games, adaptive play 
converges with probability one to a pure strategy Nash equilibrium provided 
that the samples are sufficiently incomplete and the players never make mis- 
takes. Incompleteness creates enough stochastic variability to prevent the pro- 
cess from becoming stuck in suboptimal cycles. Finite memory allows past 
miscoordinations to be forgotten eventually. Once a given equilibrium has been 
played for as long as anyone can remember, then this equilibrium becomes 
entrenched as the "conventional" way of playing the game. It is an absorbing 
state of the process. One cannot say in advance, of course, which equilibrium 
will become the conventional one, since this depends on the vagaries of the 
process and on the initial state. What can be said is that some equilibrium will 
eventually be selected with probability one, and it will not be a mixed strategy 
equilibrium. 

If the players occasionally experiment or make mistakes, however, then more 
can be said. In this case the process has no absorbing states; rather, it has a 
stationary distribution that describes the relative frequency with which different 
states are observed in the long run. We shall show that, if the probability of 
mistakes is small, then this stationary distribution is concentrated around a 
particular subset of pure strategy Nash equilibria. In fact, typically it puts almost 
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all the weight on exactly one equilibrium. This stochastically stable equilibrium 
will be observed with probability close to one when the noise is very small. 

This concept differs in an important respect from other notions of equilibrium 
stability, such as evolutionarily stable strategies.5 An evolutionary stable strategy 
is a strategy (or frequency distribution of strategies) that is restored after a small 
one-time shock to the system. A stochastically stable distribution is a distribu- 
tion that is restored repeatedly when the evolutionary process is constantly 
buffeted by small random shocks. This concept was first defined for general 
evolutionary processes by Foster and Young (1990). Subsequently it was applied 
to a discrete model of equilibrium selection in a pioneering paper by Kandori, 
Mailath, and Rob (1993). They consider an evolutionary learning process 
defined on symmetric 2 x 2 games. In each period every player plays every 
other. Successful strategies are adopted with higher probability than unsuccess- 
ful ones, and there is a small probability that players make mistakes. Kandori, 
Mailath, and Rob show that this stochastic process selects the risk dominant 
Nash equilibrium when the mistake probability is small.6 The techniques of 
analysis in both papers are similar, and build on the theory of perturbed 
dynamical systems developed by Freidlin and Wentzell (1984). 

Using somewhat different methods, Canning (1992) studies a general class of 
learning models in which agents adapt their behavior to the current state and 
occasionally make mistakes. He shows that, under certain regularity conditions, 
the stationary distribution of the perturbed process converges to a stationary 
distribution of the unperturbed one. In this paper we shall show how to 
characterize the support of the limiting stationary distribution (the "stochasti- 
cally stable set") by solving a series of shortest path problems in a graph. Very 
often the support consists of a single absorbing state, in which case we obtain a 
complete characterization of the limiting distribution, and a unique stochasti- 
cally stable equilibrium. We then apply this result to compute the stochastically 
stable equilibria of adaptive play. For 2 x 2 coordination games we show that 
the risk dominant equilibrium is the unique stochastically stable equilibrium. In 
coordination games with more than two strategies, the stochastically stable 
equilibrium may be neither risk dominant nor Pareto optimal, as we show by 
example. Although there appears to be no simple formula that characterizes the 
stable equilibria in the general case, they may be computed by a general 
algorithm that is efficient to implement. 

3. ADAPTIVE PLAY 

Let F be an n-person game in strategic form, and let Si be the finite set of 
strategies available to player i. Let N be a finite population of individuals that 

5Models of equilibrium selection based on the concept of evolutionarily stable strategy (ESS) 
include Axelrod (1984), Fudenberg and Maskin (1990), Samuelson and Zhang (1992), Crawford 
(1991), and Samuelson (1991a). For other models of evolutionary dynamics in games, see Samuelson 
(1988), Nachbar (1990), and Friedman (1991). 

6 Models of equilibrium selection based on the concept of stochastic stability include Young and 
Foster (1991), Fudenberg and Harris (1992), Kandori and Rob (1992), and Samuelson (1991b). For 
other stochastic selection models see Evans and Honkapohja (1992a, 1992b), and Kirman (1992). 
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is partitioned into n nonempty classes C1, C2,..., Cn. Each member of Ci is a 
candidate to play role i in the game. For example, C1 is the class of men, C2 is 
the class of women, and the game is Battle of the Sexes. We shall assume that 
all individuals in class i have the same utility function ui(s) for strategy-tuples 
S = (511 S21 ... , Sn) E rI Si, which we shall identify with outcomes. 

Let t = 1,2, .. ., denote successive time periods. The game G is played once 
each period. In period t, one individual is drawn at random from each of the 
n classes and is assigned to play the appropriate role in the game. It will be 
convenient to refer to the individual playing role i as player "i" even though the 
identity of this individual may change from one period to the next. Player i 
chooses a pure strategy si(t) from his strategy space according to a rule that will 
be defined below. The strategy-tuple s(t) = (sl(t), s2(t),..., sn(t)) is recorded 
and will be referred to as the play at time t. The history of plays up to time t is 
the sequence h(t) = (s(1), s(2), .. ., s(t)). We assume that the histories are 
anonymous: it does not matter who played a given strategy in a given period, 
only that it was played by someone. 

The players decide how to choose their strategies as follows. Fix integers k 
and m such that 1 < k < m. In period t + 1 (t 2 m) each player inspects k plays 
drawn without replacement from the most recent m periods t, t - 1, t - 2,..., 
t - m + 1. The draws are independent for the various players. One way to think 
about the sampling procedure is that each player "asks around" to find out how 
the game was played in recent periods. He stops when he has learned about k 
different plays within the last m periods (say because he has reached his 
capacity to retain information). Another way of thinking about the sampling 
procedure is that each agent passively hears about certain precedents, and k is 
the number of precedents that come to the agent's attention. In either case, the 
fraction k/m measures the completeness of the agents' information relative to 
the surviving precedents. It is not necessary to assume that every subset of k 
precedents out of the last m is equally likely to constitute an agent's informa- 
tion. For example, an agent might be more likely to hear about recent prece- 
dents than more dated ones. It is enough to assume that every subset of k has a 
positive probability of being agent i's information for every i 

Assume for the sake of generality that the first m plays are randomly 
selected. Thus we can think of the sampling process as beginning in period 
t = m + 1 from some arbitrary initial sequence of m plays h(m) = 
(s(1), s(2), .. ., s(m)). We then obtain a finite Markov chain on the state space H 
consisting of all sequences of length m drawn from HlSi, beginning with some 
arbitrary "initial" state h(m). 

SUCCESSOR: A successor of a state h E H is any state h' E H obtained by 
deleting the left-most element of h and adjoining a new right-most element. 

The process moves from the current state h to a successor state h' in each 
period according to the following transition rule. For each s E Si, let pi(slh) be 

7The model can be modified by assuming that different agents have different sample sizes. An 
application of this type is described in Young (1993). 
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the probability that agent i chooses s. We assume that pi(-) is a best-reply 
distribution in the sense that pi(slh) > 0 if and only if there exists a sample of 
size k to which s is i's best reply, and that pi(slh) is independent of t. If s is 
the right-most element of h, the probability of moving from h to h' is 

(1) Phh' =11 pi(siIh). 
i=l,n 

Phh, = 0 if h' is not a successor of h. We call the process Po adaptive play with 
memory m and sample size k. 

4. CONVERGENCE OF ADAPTIVE PLAY WHEN THERE ARE NO MISTAKES 

Let us begin by observing that h is an absorbing state of this process if and 
only if it consists of a strict pure strategy Nash equilibrium played m times in 
succession. Suppose, indeed, that h = (s',... , Sm) is an absorbing state. For 
each agent i let si be i's best reply to some subset of k plays drawn from h, and 
let s = (s,,..., sn). By assumption, there is a positive probability of moving from 
h to h' = (S2, .. .M, S) in one period. Since h is absorbing, h = h' and hence 
S1=S 2. Continuing in this fashion we conclude that Si=S2= = Sm =S. 

Hence h = (s, S, .. ., s). By construction, si is a best reply to some sample of k 
elements from h. Hence si is a best reply to s-i for each i. It must also be a 
unique best reply to s-i, because otherwise the process could move to a 
successor that is different from h. So s is a strict, pure strategy Nash equilib- 
rium. Conversely, any state h consisting of m repetitions of a strict, pure 
strategy Nash equilibrium is clearly an absorbing state. Such a state will be 
called a convention. 

If adaptive play converges to an absorbing state, then clearly the game must 
have a strict Nash equilibrium in pure strategies. The existence of such an 
equilibrium is not a sufficient condition for convergence, however. Consider the 
following variation of an example due to Shapley: 

EXAMPLE 1: 

a b c d 
a 2,1 0,0 1,2 -1,-i 
b 1,2 2,1 0,0 -1,-i 
c 0,0 1,2 2,1 -1,-i 
d -1,-i -1,-i -1,-i 3,3 

Here d is a best response to itself, but it is not a best response to any mixture of 
a, b, and c. If the initial state does not involve d, then adaptive play (like 
fictitious play) cycles. Consider, for example, the case where m = 2 and k = 1. 
Let the first two plays be (a) and (a). In period 3, Column will sample one of 
Row's previous two choices (both a) and react by playing c. Row will sample one 
of Column's previous two choices (a or c) with equal probability and react by 
playing a or c. So the next play will be (a) or (C) with equal probability. The 
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a a ca of c c 

a a c o b 

a bi 

ba b b b cb 

a ~ ~a aba bb 

FIGURE 1.-A recurrent communication class of adaptive play with m =2, k = 1. 

process therefore moves from state [a' c] to state [' 'I with probability one-half, 
and to state [a c] with probability one-half. The subsequent transitions form a 
cycle of length six imbedded within a cycle of length twelve, as shown in Fig- 
ure 1. This cycle constitutes a recurrent communication class of the Markov 
process defined by (1). 

When cycling is built into the best reply structure of the game, as in the above 
example, we cannot expect adaptive play to converge. Nevertheless, there are 
many games that do not have a cyclic best-reply structure. Consider a two-per- 
son coordination game in which both agents have the same number of strate- 
gies, and each agent strictly prefers to play his jth strategy if and only if the 
other agent plays his jth strategy for every j. Clearly there is no cycling problem 
here: once one of them chooses a pure strategy and the other responds 
optimally, then they have achieved a coordination equilibrium. 

To take another example, suppose that the agents have common interests: for 
every two strategy tuples s and s', either everyone prefers s to s' or everyone 
prefers s' to s. Assume further that no two strategy-tuples are payoff equiva- 
lent. Given an arbitrary strategy-tuple s that is not a Nash equilibrium, there 
exists some agent i who can do better by playing s' instead of si. Let 
s= (si, s-). If s' is not Nash equilibrium, there is some agent j who can do 
better by playing s' instead of sj. Let s" = (sj', s' j), and so forth. At each step of 
this adjustment process everyone's utility increases, so the process cannot cycle 
and it must end at a pure strategy Nash equilibrium. Moreover, this equilibrium 
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must be strict because of the assumption that no two strategy-tuples are payoff 
equivalent and the players have common interests. 

This construction can be generalized as follows. Let F be an n-person game 
in normal form on a finite strategy space HSi. Define the best-reply graph of F 
as follows: each vertex is an n-tuple of strategies s E HISi, and for every two 
vertices s and s' there is a directed edge s -> s' if and only if s # s' and there 
exists exactly one agent i such that s' is a best reply to s and s'_i = s- . 

ACYCLIC GAME: A game F is acyclic if its best reply graph contains no 
directed cycles. It is weakly acyclic if, from any initial vertex s, there exists a 
directed path to some vertex s* from which there is no exiting edge (a sink). 

Every sink of the best reply graph is clearly a strict Nash equilibrium in pure 
strategies. So a game is weakly acyclic if, and only if, from every strategy-tuple 
there exists a finite sequence of best replies by one agent at a time that ends in 
a strict, pure strategy Nash equilibrium. We shall show that, for this class of 
games, adaptive play converges with probability one provided that sampling is 
sufficiently incomplete and the players do not make mistakes. 

Let F be a weakly acyclic n-person game. For each strategy-tuple s, let L(s) 
be the length of a shortest directed path in the best reply graph from s to a 
strict Nash equilibrium, and let L. = maxsL(s). 

THEOREM 1: Let F be a weakly acyclic n-person game. If k < m/(Lr + 2), 
then adaptive play converges almost surely to a convention. 

PROOF: Fix k and m, where k < m/(LF + 2). We shall show that there exists 
a positive integer M, and a positive probability p, such that from any state h, 
the probability is at least p that adaptive play converges within M periods to a 
convention. M and p are time-independent and state-independent. Hence the 
probability of not reaching a convention after at least rM periods is at most 
(1 -p)r, which goes to zero as r - oo. ). 

Let h = (s(t - m +.1.... , s(t)) be the state in period t > m. In period t + 1 
there is a positive probability that each of the n agents samples the last k plays 
in h, namely, (s(t - k + ...,s(t)) = -q. There is also a positive probability 
that, from periods t + 1 to t + k inclusive, every agent draws the sample 7- every 
time. Finally, there is a positive probability that, if an agent has a choice of 
several best replies to -q, then he will choose the same one k times in 
succession. Thus there is a positive probability of a run (s, s, . . . , s) from periods 
t + 1 to t + k inclusive. Note that this argument depends on the agents' memory 
being at least 2k - 1, since otherwise they could not choose the sample -q in 
period t + k. 

Suppose that s happens to be a strict Nash equilibrium. There is a positive 
probability that, from periods t + k + 1 through t + m, each agent will sample 
only the last k plays, in which case the unique best response of each agent i is 
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si. So they play s for m - k more periods. At this point an absorbing state has 
been reached, and they continue to play s forever. 

Suppose instead that s is not a strict Nash equilibrium. Since F is weakly 
acyclic, there exists a directed path s, s', . . . , sr in the best reply graph such that 
S' is a strict Nash equilibrium. The first edge on this path is s -> s'. Let i be the 
index such that s' =s_ and s' is a best reply to s _. Consider the event in 
which agent i samples from the run of s established in periods t + 1 to t + k 
and responds by playing s', while every agent j # i draws the sample Y7 = (s(t - 
k + 1) ... ., s(t)). By assumption, a best response of every agent j to this sample 
is si. These events occur together with positive probability, and there is a 
positive probability that they occur in every period from t + k + 1 to t + 2k, 
assuming that m ? 3k - 1. The result is a run of s' = (s, s-i) for k periods in 
succession. 

Continuing in this fashion, we see that there is a positive probability of 
obtaining a run of s, followed by a run of s'... followed eventually by a run of 
Sr. Each run is of length k, and the run of Sr occurs from period t + kr + 1 to 
t + kr + k. To reach this point may require that some agent look back kr + 
2k - 1 periods, namely, from period t + kr + k to period t - k + 1. This is 
possible because of the assumption that k < m/(LF + 2). 

After this, the process can converge to the absorbing state (sr, Sr'..., Sr) by 
period t + kr + m if each agent samples the previous k plays from periods 
t+kr+k+ 1 to t+kr+m inclusive. 

Since r < Lr, we have established that, given an initial state h, there is a 
probability Ph > 0 of converging to an absorbing state within M = kLr + m 
periods. Letting p = minh HPh > 0, it follows that from any initial state the 
process converges with probability at least p to an absorbing state within at 
most M periods. This completes the proof. 

We do not claim that the bound k < m/(L + 2) is best possible for all 
weakly acyclic games. Without incomplete sampling, however, the process may 
not converge to a pure Nash equilibrium. Consider the following version of 
"Battle of the Sexes": 

EXAMPLE 2: 

Yield Not Yield 
Yield 0,0 1, F 
Not Yield FI, 1 0,0 

Let k = m, so that both players sample the same m plays in each period. 
Consider any initial sequence of m plays in which the players have always 
miscoordinated, that is, they both yielded or they both failed to yield in each 
period. Let f be the frequency with which they yielded in this sequence. In the 
next period, Row yields if and only if 1 - f > fF2, and Column does the same. 
So they miscoordinate again. (Since f is rational, the inequality is always strict 
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so we never have to consider ties.) Thus, if they begin in a state of perfect 
miscoordination, then they miscoordinate forever. 

The same holds if memory is unbounded, as in fictitious play: if they 
miscoordinate on the first move, then they will continue to miscoordinate 
forever. In this case the frequency distributions converge to the mixed Nash 
equilibrium of the game in which both players yield with probability 1/(1 + 2). 
Note, however, that their behaviors do not converge to the behavior specified by 
the mixed Nash equilibrium, because in each period their moves are correlated: 
either both yield or both do not yield. So even in 2 x 2 games fictitious play 
need not converge in a behavioral sense. This problem does not arise in 
adaptive play, because when it converges to an absorbing state, this state must 
correspond to a Nash equilibrium in pure strategies. Hence the behaviors also 
converge. 

The feature of adaptive play that allows it to break out of suboptimal cycles is 
incomplete sampling, which introduces stochastic variation into the players' 
responses. There is a possibility that they will coordinate by chance, and if they 
do so often enough the process eventually locks in to a pure strategy Nash 
equilibrium. This equilibrium then becomes the conventional way of playing the 
game, because for as long as anyone can remember, the game has always been 
played in this way. Therefore sampling does not matter any more, because no 
matter what samples the agents take, their optimal responses will be to play the 
equilibrium that is already in place. 

5. ADAPTIVE PLAY WITH MISTAKES 

Theorem 1 relies on the assumption that, while agents base their decisions on 
limited information, they always choose a best response given their information. 
This assumption is clearly unrealistic. Agents sometimes make mistakes; they 
may also experiment with nonoptimal responses. In this case the stochastic 
process does not converge to an absorbing state, because it has no absorbing 
states. Mistakes constantly perturb the process away from equilibrium. If we 
assume, however, that all mistakes are possible and that the mistake probabili- 
ties are time-independent, then the process does have a unique stationary 
distribution. Hence we can study its asymptotic behavior. When the probability 
of mistakes is small, we shall show that this stationary distribution is concen- 
trated around a particular convention (or, in the event of ties, a subset of 
conventions). These are the stochastically stable conventions-the ones that will 
be observed with positive probability in the long run when the noise is small but 
nonvanishing. We therefore obtain a theory of equilibrium selection. As we 
shall see below, it yields (except in the 2 x 2 case) quite different answers than 
the theory of Harsanyi and Selten (1988). 

Our model of mistakes generalizes an approach pioneered by Canning (1992) 
and Kandori, Mailath, and Rob (1993). Fix the sample size k and memory m. 
Suppose that, in each time period, there is some small probability cAi > 0 that 
player i experiments by choosing a strategy randomly from Si instead of 
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optimizing based on a sample of size k. The ratio Ai/Ai is the relative 
probability with which a player of type i experiments as compared to a player of 
type j. The factor E determines the probability with which players in general 
experiment. The event that i experiments is assumed to be independent of the 
event that j experiments for every i oj. For every i, let qi(sIh) be the 
conditional probability that i chooses s e Si given that i experiments and 
the process is in state h, where EseSiqi(sIh) = 1 for every i and h. We shall 
assume that qi(s I h) is independent of t, and that qi(s I h) > 0 for all s E Si. The 
latter assumption is made for ease of exposition; similar results hold provided 
the qi( ) have enough support that every state is reachable from every other 
state in a finite number of periods by agents who experiment. 

A priori we do not know the distributions q = (q1( ), q2( ), , q,( )) or the 
relative probabilities of experimentation A = (A1, A2 ... ., A"). It turns out, how- 
ever, that this does not matter. If the overall probability of experimentation E is 
small, and if the agents experiment independently of one another, then the 
selected equilibria are independent of q and A. 

The perturbed process may be described as follows. Suppose that the process 
is in state h at time t. Let J be a subset of j players, 1 < ? < n. The probability 
is Ej(Hj E= jAj)(Hlj 0 j(1 - cA1)) that exactly the players in J experiment and the 
others do not. Conditional on this event, the transition probability of moving 
from h to h' is 

Qih' = Hq1(sjlh) Hpj(s.lh) if h' is a successor of h and s is the 
hh'= flqj( right-most element of h'; 

Qhh' = 0 if h' is not a successor of h. 

If no agent experiments, then the transition probability of moving from h to h' 
in one period is P2h' as defined in (1). This event has probability fl1 n(l - EA d. 
The perturbed Markov process therefore has the transition function: 

(2) hh' ( 1 r 1 EAJPhh, + hh E I(1A1) (1(1cA) i=(),n JcN, J#c ]EJ 0J )) 

The process Pe will be called adaptive play with memory m, sample size k, 
experimentation probabilities cAi and experimentation distributions qi. Note that 
Po is the process defined in (1), which we shall refer to as the unperturbed 
process. 

6. ASYMPTOTIC BEHAVIOR OF ADAPTIVE PLAY 

We shall now characterize the asymptotic behavior of process (2) when the 
overall probability of experimenting e is close to zero. Let h and h' be two 
distinct states. If Pe is in state h at time t, there is a positive probability that all 
players will experiment for m periods in succession. Thus there is a positive 
probability that the process arrives at state h' at time t + m, so Pe is irre- 
ducible. It is aperiodic because the process can move from h to h in exactly m 
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periods, and also in exactly m + 1 periods. Hence Pe has a unique stationary 
distribution p/6 satisfying the equation AuYP' = A'. The process is strongly er- 
godic, and (with probability one) A4 is the cumulative relative frequency with 
which state h will be observed when the process runs for a very long time. It is 
also the probability that h will be observed at any given time t, provided that t 
is sufficiently large. 

The following concept was introduced by Foster and Young (1990). 

STOCHASTIC STABILITY: A state h E H is stochastically stable relative to the 
process Pe if lim e OA > 0. 

Over the long run, states that are not stochastically stable will be observed 
infrequently compared to states that are, provided that the probability of 
mistakes E is small. If there is a unique stochastically stable state, then it will be 
observed almost all of the time when E is small. 

We shall now show how to compute the stochastically stable states of adaptive 
play for a general n-person game. In the process we shall show that these states 
are essentially independent of the particular mistake distributions qi and the 
mistake probabilities Ai. Then we shall specialize to the case of weakly acyclic 
games, and show that if k < m/(LF + 2), every stochastically stable state is a 
convention, and if k and m are sufficiently large, then typically it is unique. 

MISTAKE: Let h' be a successor of h and let s be the right-most element of 
h'. A mistake in the transition h -* h' is a component si of s that is not an 
optimal response by agent i to any sample of size k from h. 

A mistake can only arise if a player experiments, but an experimental choice 
need not be a mistake, since it could (by chance) be an optimal choice. 

RESISTANCE: For any two states h, h' the resistance r(h, h') is the total 
number of mistakes involved in the transition h -- h' if h' is a successor of h; 
otherwise r(h, h') = oo. 

Let us now view the state space H as the vertices of a directed graph. For 
every pair of states h, h' insert a directed edge h -* h' if r(h, h') is finite, and let 
r(h, h') be its "weight" or "resistance." The edges of zero resistance correspond 
to the transitions that occur with positive probability under Po. Let 
H1, H2,..., HJ be the recurrent communication classes of Pe. These classes are 
disjoint, and they are characterized by the following three properties: (i) from 
every state there is a path of zero resistance to at least one of the classes Hi; 
(ii) within each class Hi there is a path of zero resistance from every state to 
every other; (iii) every edge exiting from Hi has positive resistance. 

Given any two distinct classes Hi and Hj consider all directed paths that 
begin in Hi and end in Hj. There is at least one such path, because the 
perturbed process Pe is irreducible. Among all such paths, find one with least 
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total resistance, and let this resistance be denoted by rij. Clearly rij2 O. 
Computing ri1 amounts to solving a shortest path problem in a directed graph, 
for which there exist very efficient algorithms. Note that ri is independent of 
which vertex in Hi is the starting point and which vertex in Hj is the 
termination point, because every two states within the same class are accessible 
from each other by paths of zero resistance. 

Now define a new directed graph a as follows: there is one vertex i for each 
recurrent communication class Hi, and for every distinct 1 <i, j < J the 
directed edge (i, j) has "weight" or resistance rij. The following concept is due 
to Friedlin and Wentzell (1984). 

i-TREE: An i-tree in 9 is a spanning tree such that from every vertex j # i 
there is a unique path directed from j to i. 

For every vertex i let Y7 be the set of all i-trees on S. The resistance of an 
i-tree r E Y7 is the sum of the resistances of its edges, 

(3) r(r) = E rij. 
(i, j)Er 

STOCHASTIC POTENTIAL: The stochastic potential of the recurrent class Hi is 
the least resistance among all i-trees: 

(4) Yi = min r (r) . 

Computing yi for a given set of weights rij is a standard problem in 
combinatorial optimization known as the arborescence problem. There exist 
algorithms for solving it in the order of Ij12 steps (see Chu and Liu (1965), 
Edmonds (1967), and Tarjan (1977)). Since there are IJI vertices in G, and one 
arborescence problem must be solved for each, the potential function can be 
computed in O(IJI3) steps. 

Note that the numbers rij depend only on the number of mistakes in making 
various transitions, not on the relative probability with which specific mistakes 
are made. Hence the potential function is independent of the parameters Ai 
and qi. This is important, for in applications one would rarely know the relative 
probabilities of various mistakes, only that they are possible. What matters is 
that the probability of mistakes is small, that all mistakes are possible, and the 
agents make them independently of one another. 

THEOREM 2: Let F be an n-person game on a finite strategy space. The 
stochastically stable states of adaptive play PC are the states contained in the 
recurrent communication classes of Po with minimum stochastic potential. These 
states are independent of the experimentation probabilities Ai and the experimenta- 
tion distributions qi so long as they have full support. 
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COROLLARY: If F is weakly acyclic and k < m/(LF + 2), the stochastically 
stable states of adaptive play are the convention(s) of minimum stochastic 
potential. 

Theorem 2 follows from a general theorem on perturbed Markov processes 
that we prove in the Appendix. The corollary is a direct consequence of 
Theorems 1 and 2. 

The stochastically stable states are computed in three steps. First we identify 
the recurrent communication classes of the process Po without mistakes. For a 
general n-person game these classes can be quite complex. If the game is weakly 
acyclic and the sampling is sufficiently incomplete, however, then Theorem 1 
tells us that the recurrent classes correspond one-to-one with the strict pure 
strategy Nash equilibria, which are easy to identify. The second step is to 
compute the least resistance in moving from every recurrent class to every 
other. In theory this involves solving a series of shortest path problems, but in 
practice the computation can often be made directly from the payoff matrix of 
the game. The third and final step is to construct a complete directed graph 
with these resistances as weights, and to find the arborescence having least 
weight. This identifies the stochastically stable convention(s), which is unique 
except in the event of ties. In the remainder of the paper we shall illustrate the 
technique for 2 x 2 and 3 x 3 matrix games, and show how the stochastically 
stable equilibria relate to standard concepts of equilibrium selection such as risk 
dominance. 

7. THE2x2CASE 

Let F be a 2 x 2 matrix game with two strict Nash equilibria in pure 
strategies. It is clear that F is acyclic and L. = 1. Without loss of generality we 
may write F in the form 

1 2 
1 all, bl, a12, 

2 a21, b21 a22 b22 

where a1l >a21, b1l >b12, a22 >a12, and b22>b21. The strict, pure strategy 
Nash equilibria are (1, 1) and (2, 2). Theorem 1 implies that, if k < m/3, 
adaptive play without mistakes has two absorbing states: h1 = 
((1, 1), (1, 1), ... , (1, 1)) and h2 = ((2, 2), (2, 2), ... , (2, 2)). To determine which of 
these states is stochastically stable, we must compute the path of least resistance 
from h1 to h2, and the path of least resistance from h2 to h1. 

Let h1 be the state at time t = m. To go from h1 to h2 requires that at least 
one player choose strategy 2 by mistake. Moreover, he must choose strategy 2 so 
often that the other's optimal reply is also strategy 2 for at least one sample of 
size k, for otherwise the process cannot lock in to the absorbing state h2. 



EVOLUTION OF CONVENTIONS 71 

TABLE 1 
A SUCCESSION OF k' MISTAKES BY Row CAUSES THE PROCESS TO CONVERGE TO h2. 
2* DENOTES A MISTAKEN CHOICE OF 2, 1(2) AN OPTIMAL CHOICE OF EITHER 1 OR 2. 

Period 1 2 ... m m+1 m+2 m+k' m+k'+l ... m+k'+k m+k'+k+ 1... 

Row 1 1...1 2* 2* 2* 1 ... 1(2) 2 
Column 1 1...1 1 1 1 2 -2 2 

Suppose, for example, that Row chooses 2 by mistake from periods t = m + 1 
to t = m + k' inclusive, where k' < k. From then on Row makes no further 
mistakes. These choices are mnarked 2* in Table I. 

If Column draws a sample that includes these k' choices of 2, as well as 
k - k' choices of 1, then Column's best reply is 2 provided that 

(1 - kf/k)bl2 + (k'/k)b22 ? (1 - k'/k)bll + (k'/k)b2l; 

that is, 

(5) k'? > 1-1 k. k bl l- b 12-b2l + b22 

If equality holds in (5) then strategy 2 is among Column's best replies, so 
Column will play it with positive probability. 

Suppose that (5) holds and that Column's sample happens to include Row's 
mistakes in every period from m + k' + 1 to m + k' + k inclusive. This event has 
positive probability provided that m is sufficiently large relative to k. (It suffices 
that m ? 2k.) Then Column's best reply is to play 2 from periods m + k' + 1 to 
m + k' + k and none of these choices are mistakes. In period m + k' + k + 1 
Row may sample Column's choices of 2, while Column samples Row's choices 
of 2, in which case their best replies are to play 2. In the next period there is 
again a positive probability that both sample enough choices of 2 to want to play 
2 again, and so forth. So with positive probability the process converges to the 
absorbing state h2 with no further mistakes. In other words, k' mistakes are 
sufficient to move the process from h1 to h2 provided that k' satisfies (5) and 
m/k is large enough. 

Similarly, the process converges with positive probability to h2 if Column 
chooses 2 by mistake k" times, where 

k" > all - a2l k. 
all - a12 - a2l + a22 

Let 

R, min all - a2l bl - b12 

all - a12 - a2l + a22 bl' - b12 - b2l + b22 J 
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For every real number x, let [x] denote the least integer greater than or equal 
to x. We have just shown that the resistance in going from h1 to h2 is [R1k]. A 
similar argument shows that the resistance in going from h2 to h1 is [R2k] 
where 

R2=mi / a22-a12 b22-b2l 

Xa11 -a12-- a21 + a22 12- b21 + b22 

If R1 > R2, then (1, 1) risk dominates (2,2) in the terminology of Harsanyi and 
Selten (1988). The pair (1, 1) weakly risk dominates (2,2) if R1 ? R2. If R1 > R2, 
then the unique stochastically stable convention is h1 for all sufficiently large 
values of k and m/k. If R1 = R2, then both h1 and h2 are stochastically stable 
conventions for all sufficiently large values of k and m/k. 

Note that the discrimination of the process grows with the sample size, 
because the players can only respond to frequency distributions that involve 
integers between 0 and k. For all sufficiently large k, the process can discrimi- 
nate any difference in resistance between the two equilibria. This leads to the 
following definition. 

GENERIC STABILITY: A strict pure strategy Nash equilibrium is generically 
stable if the associated convention is stochastically stable for all sufficiently large 
k and m such that k < m/(LF + 2). 

THEOREM 3: Let F be a 2 x 2 matrix game with two strict Nash equilibria in 
pure strategies. The generically stable equilibria are the weakly risk dominant Nash 
equilibria. 

Kandori, Mailath, and Rob (1991) obtain a similar result for symmetric games 
using a somewhat different dynamic adjustment process. In their model, there is 
a single homogeneous population of N individuals who play a symmetric 2 x 2 
game. At each time period t, zt is the current number of players who have 
"adopted" strategy 1, and N - zt is the number who have adopted strategy 2. 
For i = 1,2 let r7i(zt) be the total payoff to strategy i in state zt when every 
player is matched once against every other. The dynamical assumption is that 
players adopt successful strategies more often than unsuccessful strategies. That 
is, there is a deterministic dynamic zt+1 = f(zt) such that 

for allO<z <N zt Zt if and only if -1(Zt) 2 72(zt)v 

In addition, there is a small probability E that each player will switch from 
-playing strategy 1 to strategy 2 or vice versa, where the switches are indepen- 
dent across players. Using similar techniques to those developed here, Kandori, 
Mailath, and Rob show that the resulting irreducible, aperiodic process P(N, E) 
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has a stationary distribution that, for all sufficiently large N, puts all of the 
probability on the risk dominant equilibria as E goes to zero. 

8. THE 3 x 3 CASE 

When the agents have three or more strategies, there is no simple formula 
analogous to risk dominance that identifies the stochastically stable equilbria. 
First, the path of least resistance must be computed from every equilibrium to 
every other. Then a minimum arborescence problem must be solved for each 
equilibrium. We shall illustrate by solving an example. 

EXAMPLE 3: 

1 2 3 
1 6,6 0,5 0,0 
2 5,0 7,7 5,5 
3 0,0 5,5 8,8 

The pairs (i, i) are the strict, pure strategy Nash equilibria, i = 1, 2,3. Let hi 
denote the convention in which (i, i) is played m times in succession. Theorem 1 
says that these are the absorbing states of the unperturbed process provided 
that k < m/3. Let us compute the path of least resistance from every conven- 
tion to every other. 

Suppose that the perturbed process is in state h1. To exit to h2 or h3, one 
agent must choose a sufficient number of 2's or 3's (or both) to cause the other 
agent to choose 2 or 3. Since the game is symmetric, it does not matter which 
player makes the mistakes and which player reacts. Assume that the Column 
player chooses 2 at least k" = [(1/8)k] times in succession. If Row samples 
these choices (plus k - k" choices of strategy 1), then Row's best reply is also 
strategy 2. At this point there is a positive probability that the process will 
converge to h2 with no further mistakes. (This relies on the assumption that 
k < m/3.) It may be checked that this is the least number of mistakes to go from 
h1 to h2 by any route. Thus the least resistant path is direct in the sense that it 
only involves strategies 1 and 2. 

Not all paths of least resistance are direct, however. For example, suppose 
that the process is in state h3 and we want to exit to state h2. The direct route is 
for one player to choose strategy 2 by mistake at least [(3/5)k] times, which 
causes the other player to reply with strategy 2. But if one player chooses 
strategy 1 by mistake at least [(3/8)k] times (and at most (5/6)k times), then 
the best reply of the other player is strategy 2. Thus the indirect route has lower 
resistance when k is large enough. 

Another example of an indirect route involves the transition from h1 to h3. 
The direct route requires some player to make [(5/8)k] mistaken choices of 
strategy 3, since otherwise strategy 1 or 2 is a better reply. But there is a path of 
less resistance, namely, go first to h2 and then to h3. The total resistance of this 
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hI 

(1/8)k (7/8)k (21/40) (5/6)k 

(3/8)k 

h2 
(2/5)k h3 

FIGURE 2.-Pairwise resistances (unrounded) for the pure strategy equilibria of Example 3. 

path is [(1/8)k] + [(2/5)k], which is approximately (21/40)k when k is large. 
The resistances between every pair of equilibria are shown in Figure 2. 

For each vertex hi there are three hi-trees, and the hi-tree of least resistance 
determines the stochastic potential of hi, as shown in Figure 3. 

It is readily seen that the least resistant tree is rooted at h2 and has total 
resistance [(1/8)k] + [(3/8)k]. For all sufficiently large k this is the unique tree 
of least resistance, so h2 is the unique generically stable convention. The risk 
dominant equilibrium, however, is strategy 3. It is also the Pareto optimal 
equilibrium. To verify risk dominance, one checks that strategy 3 risk dominates 
strategy 2 in the subgame restricted to strategies 2 and 3, and that strategy 3 risk 
dominates strategy 1 in the subgame restricted to strategies 1 and 3. (See 
Harsanyi and Selten (1988).) 

There are essentially two respects in which risk dominance and stochastic 
stability differ. First, they employ different notions of resistance. Strategy i risk 
dominates j if it requires fewer mistakes to go from j to i than from i to j 
within the subgame consisting of just these two strategies (i.e., by a direct 
route). Stochastic stability requires us to look at all transitions from i to j, 
including those that involve other strategies. The second distinction is that risk 
dominance is only defined when there is one strategy that risk dominates every 
other in pairwise comparisons. Such a strategy may not exist because of cycles in 
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h ~~~~~~h h 

(3/8)k (2/5)k 

h2 (3/8)k h2 (3/8)k h 

h.3 (2/5)k h3 (2/5)k h3 

FIGURE 3.-The nine hi-trees (i = 1, 2,3). Resistances are not rounded. 

the pairwise comparisons. Stochastic stability, by contrast, relies on a global 
criterion (the resistance of spanning trees) to compare the stability of different 
strategies. The difference between the two concepts may therefore be summa- 
rized as follows: risk dominance selects the equilibrium that is easiest to flow 
into from every other equilibrium considered in isolation (assuming such an 
equilibrium exists). Stochastic stability selects the equilibrium that is easiest to 
flow into from all other states combined, including both equilibrium and 
nonequilibrium states. 

9. CONCLUSION 

In this paper we have shown how an equilibrium can evolve in a game that is 
played repeatedly by different agents-. The model is similar to fictitious play in 
that agents' expectations are shaped by precedent. It differs in that agents base 
their choices on an incomplete knowledge of recent precedents and they 
occasionally make mistakes. These assumptions seem more natural than the 
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deterministic dynamics of fictitious play, so we can justify them on the grounds 
of realism. They also play an important technical role: by introducing noise into 
the dynamic adjustment process, they select among pure strategy Nash equilib- 
ria for weakly acyclic games, and among more complex regimes for general 
n-person games. Unlike other evolutionary models, these perturbations are not 
one-shot affairs but form an integral part of the dynamics. By incorporating 
noise directly into the dynamics, one is led to a different criterion of equilibrium 
selection than classical notions like evolutionary stability and risk dominance. 

Several questions remain to be explored. One is the sensitivity of the equilib- 
rium selected to the way in which the model is specified. We have shown that 
the stochastically stable equilibria are invariant with respect to the distribution 
of the perturbations so long as they are independent across players, have 
positive support, and are stationary. In addition, we showed that for 2 x 2 
games the stochastically stable equilibria are independent of m and k so long as 
m/k and k are sufficiently large. It is not clear whether this result holds for 
weakly acyclic games in general, although we know of no examples in which it 
fails to hold. 

A second question is whether the stochastically stable equilibria can be 
characterized more succinctly. The algorithm described in the Appendix shows 
how to compute the stochastically stable equilibria in a wide class of dynamical 
models with perturbations, but it does not describe these equilibria in terms of a 
simple formula. There is no reason to think that such a formula exists in the 
general case. In specific classes of games, however, one can sometimes exploit 
the payoff structure to obtain more specific answers. Kandori and Rob (1992) 
explore this issue for pure coordination games and differentiated-product 
oligopoly games. 

Another class of games where one can obtain an explicit formula for the 
stochastically stable equilibria is the bargaining problem. Consider the two-per- 
son Nash demand game in which each player demands a share of a fixed pie. 
They get their shares if the shares sum to 1 or less; otherwise they get nothing. 
The strategy spaces can be made discrete by assuming that the shares are 
rounded to a large, fixed number of decimal places. Let two disjoint populations 
of agents play this game adaptively, where all members of one population have 
utility function u and the others have utility function v. Then the stochastically 
stable equilibria are close to the Nash solution. (See Young (1993).) 

A third issue is whether and how the stochastically stable equilibria change 
when the agents are allowed more decision-making scope. For example, what 
happens when the agents learn as they play the game over time, or make 
inferences about the others' decision rules, or choose optimal sample sizes 
based on their costs of gathering information? These additions complicate both 
the state space and the stochastic process. They may also require more common 
knowledge on the part of the agents. In any event, if the agents make mistakes 
infrequently and independently of each other, then the stochastically stable 
states can still be analyzed using the general techniques developed here. We 
have deliberately chosen to focus on the case where agents do not learn in 
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order to show that convergence to equilibrium can occur with no common 
knowledge and with only a minimum degree of rationality on the part of the 
agents. Society can "learn" even when its members do not. 

School of Public Affairs and Dept. of Economics, University of Maryland, 
College Park, MD 20742, U.S.A. 

Manuscript received November, 1989; final revision received March, 1992. 

APPENDIX 

Here we shall prove a general result on finite Markov chains of which Theorem 2 is a special 
case. This result amounts to' a finite version of results obtained by Freidlin and Wentzell for 
continuous diffusion processes (see Freidlin and Wentzell (1984, pp. 186-187)). Let Po be a 
stationary Markov chain defined on a finite state space X. Suppose that this process is subjected to 
a small perturbation or noise. By this we mean that with high probability the process follows the 
transition function Po, but with small probability certain transitions occur that could not have 
occurred via Po. We shall assume that the perturbed process can be modelled as a stationary 
Markov chain on X with transition function P?, where E is a scalar parameter that measures the 
overall level of noise, E takes on all values in some interval (0, a], and the following conditions hold 
for all x, y E X: 

(6) P? is aperiodic and irreducible for all E E (0, a], 

(7) lim PXY = PO 
xy xy, 

(8) Px'y > 0 for some E implies 3r ? 0 s.t. 0 < lim E-rPxey < o. 

Condition (6) implies that the perturbed process has a unique stationary distribution A' for every 
E E (0, a]. Condition (7) says that the perturbed process converges to the unperturbed one. 
Condition (8) says that the transition x -- y is either impossible in the perturbed process P? for all 
E E (0, a], or P., is of order Er for some unique real number r 2 0 as E becomes small. In the latter 
case we set r(x, y) = r and call r(x, y) the resistance of the transition x -- y. By virtue of (7), 
r(x, y) = 0 if and only if Po% > 0. Thus the transitions of zero resistance are the same as the feasible 
transitions under P0. Any family of Markov processes P? satisfying (6)-(8) will be called a regular 
perturbation of Po. 

The family P? defined by (2) in the text is a regular perturbation of the process P? defined in (1), 
and the resistance of a one-period transition is the minimum number of mistakes required to 
make it. 

By hypothesis, the perturbed process P? is aperiodic and irreducible, so it has a unique 
stationary distribution A' for every E > 0. The unperturbed process, by contrast, may have many 
stationary distributions. We are going to show that lim6 = ,u?, where AO is one of the stationary 
distributions of Po. Thus the perturbations effectively select among the stationary distributions of 
Po. The support of the stationary distribution AO is a subset of the recurrent communication classes 
of P0. Thus the perturbations effectively select among the recurrent communication classes. In fact, 
the perturbations typically select exactly one communication class of P0. The selected class (or 
classes) are computed by finding a path of least resistance from every recurrent communication class 
to every other. Hence the selected classes depend only on the resistances r(x, y), that is, only on the 
order of magnitude of the various perturbations. This is important in applications, where the general 
form of the perturbations may be known, but not their precise values. 

To characterize the limiting distribution A,u we shall define two directed graphs. The first graph 
G has vertex set X (the set of all states) and there is a directed edge from state x to state y if and 
only if the one-period transition x -- y has positive probability under P6 for all sufficiently small 
E > 0. In this event, let r(x, y), as defined by (8), be the weight or resistance of the directed edge 
(x, y). 

Let the recurrent communication classes of P0 be denoted by X,,..., XJ. These classes can be 
characterized within the graph G as follows: (i) from every vertex there exists a path of zero 
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resistance to at least one of the classes Xi; (ii) for every two vertices x and y within the same class 
Xi there is a path of zero resistance from x to y and vice versa; (iii) every edge from a vertex in Xi 
to a vertex not in Xi has positive resistance. 

For every i =kj let rij be the least resistance among all directed paths that begin in Xi and end in 
Xj. (For this purpose it is sufficient to fix any two states x E Xi and y E X. and find a least-resistant 
path from x to y.) This is well-defined because there is at least one path from every class to every 
other, by virtue of the assumption that P? is irreducible when E > 0. 

Now define a second graph 9 as follows: the vertices are the indices (1, 2,. .., J}, and for each 
pair (i, j) there is a directed edge from i to j with weight rij. 9 is normally much smaller than G; in 
fact it may have only a few vertices. In the case of a 2 X 2 coordination game, for example, adaptive 
play has only two recurrent classes (assuming k < m/3), so 9 has exactly two vertices. 

Define a j-tree in 9 to be a spanning subtree of 9 such that for every vertex i = j there exists 
exactly one directed path from i to j. Let 57j be the set of all I-trees in i9. For each j find a j-tree 
of least total resistance, and let this resistance be denoted by yj. yj is the stochastic potential of the 
class Xj. 

We shall now prove the following result, of which Theorem 2 is a special case. 

THEOREM 4: Let Po be a stationary Markov process on the finite state space X with recurrent 
communication classes X1,..., XJ. Let P? be a regular perturbation of Po, and let A' be its unique 
stationary distribution for every small positive 6. Then: 

(i) as E -o 0, A' converges to a stationary distribution AO of Po. 
(ii) x is stochastically stable (AOLx > 0) if and only if x is contained in a recurrent class Xj that 

minimizes yj. 

Freidlin and Wentzell (1984, pp. 186-187) prove an analogous result when the unperturbed 
process is a deterministic dynamical system described by a differential equation on a manifold, and 
the perturbed process is a family of diffusion processes whose drift converges to that of the 
unperturbed process as the diffusion goes to zero. The minimum resistance between two states is 
found by integrating a certain "action functional" along all continuous paths from one state to the 
other and taking the infimum over all such paths. (See Freidlin and Wentzell (1984, p. 161).) 
However, their result requires numerous regularity conditions not needed here (Freidlin and 
Wentzell (pp. 155 and 169)), and in any event the characterization given in Theorem 4 is much 
simpler analytically. 

The proof will be divided into two lemmas. In the first, we establish statement (i) and show how 
to characterize the stochastically stable states by solving a series of arborescence problems in the 
graph G. In the second lemma we show that this characterization can be reduced to the simpler 
problem of solving arborescence problems in the (typically) much smaller graph 9. 

We begin by characterizing the stochastically stable states in terms of the graph G, whose vertex 
set is the whole state space X. For any vertex z of G a z-tree T is a spanning tree in G such that, 
for every vertex x * z, there exists a unique directed path from x to z. Let 1T be the set of all 
z-trees in G and define 

(9) y(z) = min E r(x, y). 
TE z [x,y]ET 

The following result generalizes Theorem 1 in Kandori, Mailath, and Rob (1993), and utilizes a 
lemma on Markov chains due to Freidlin and Wentzell.8 

LEMMA 1: Let P6 be a regular perturbation of P0 and let A' be its stationary distribution. Then 
lim6 Ej = 

0 exists and juto is a stationary distribution of Po. Moreover, /uo > 0 if and only if 
y(x) < y(y) for all y in X. 

8 Using different methods, Canning (1992) proves that A converges to a stationary distribution 
Au of P0 under more general conditions, but he does not characterize the support of the limiting 
distribution. 
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PROOF: Let P' be the transition function of any aperiodic, irreducible, stationary Markov 
process defined on the finite space X. For each z E X, define the number 

PZ'= E H PI,y 
Te - (x, y)e T 

where p' is positive because P' is irreducible. Let 

,utz = pz/ Px ) > ? 
xeX 

It may then be verified that siP'=,p', from which it follows that ,u' is the unique stationary 
distribution of P'. (See Freidlin and Wentzell (1984, Chapter 6, Lemma 3.1).) 

Now let us apply this result to the process P? hypothesized in Lemma 1. Let 

(10) p?= E H XJy 
Te - (x,y)eT 

By the above result, the stationary distribution of PE is given by the formula 

E1) y = 
"I 

/ E X- 

XEX 

Define y(z) as in (9) and let yy* = minzy(z). We are going to show that g? > 0 if and only if 
y(z) = y'*. Choose a z-tree T with resistance y(z) and consider the identity 

(12) E6y rL p? =r(T) - I Er(xy)pe 

(x,y)GT (x,y)eT 

By (8), 

(13) limE -r(xY)PxEy >0 for every (x,y)E T. 

If r(T) = y(z) > y*, it follows from (12) and (13) that 

limE-Y* H PXy =0' 

E*0 (x, y)e T 

so 

lim E-Y*p -=0. 
e-O 

Similarly, if r(T) = y(z) = y* we obtain 

(14) limE -* > O. 

From (13), (14), and the identity 

A = EpZ?/ E E-6 p ? 
XEX 

it follows that 

lim,u?z=0 if y(z)> y* 
e-O 

and 

lim ,u4 > 0 if y(z) = y*. 
e-O 
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Thus we have shown that urn6 . 0IL exists, and its support is the set of states z that minimize y(z). 
Since AE satisfies the equation AEPE = AE for every E > 0, it follows from assumption (7) that 
,?p? = ,o. Hence ,u? is a stationary distribution of Po. This completes the proof of Lemma 1. 

Since ,u? is a stationary distribution of Po, AO? = 0 for every state z that is not recurrent under Po. 
To find the stochastically stable states, it therefore suffices to compute the potential function only 
on the recurrent states. 

It is easy to see that all states in the same recurrent communication class have the same 
potential. Suppose, in fact, that x is in Xi and T is an x-tree in G with potential y(x). Let y be 
some other vertex in X.. Choose a path of zero resistance from x to y. The union of this path and T 
contains a y-tree T' that has the same resistance as T. From this it follows that the potential of y is 
no larger than the potential of x, and a symmetric argument shows that it is no smaller. Hence they 
have the same potential. 

We shall now show that the potential on each recurrent class Xj is precisely yj, namely, the least 
resistance among all j-trees in the graph 9. Thus the potential may be computed simply by solving 
an arborescence problem on the reduced graph cO. 

LEMMA 2: y(x) = yj is the stochastic potential of all states x E Xj. 

PROOF: Fix one state xi in each recurrent class Xj. We shall show first that y(xj) < yj; then we 
shall show the reverse inequality. 

Fix a class Xj and a j-tree r in 9 whose resistance r(r) equals yj. For every i Aj, there exists 
exactly one outgoing edge (i, i') E r. In the graph G (whose vertices are the states) choose a directed 
path Dii, from xi to xi, having resistance rii,. Now choose a directed subtree Ti that spans the 
vertex set Xi such that from every vertex in Xi there is a unique directed path to xi. Since Xi is a 
communication class of Po, Ti can be chosen so that it has zero resistance. 

Let E be the union of all of the edges in the trees Ti and all of the edges in the directed paths 
Dii, where (i, i') E r. By construction, E contains at least one directed path from every vertex in X 
to the fixed vertex xi. Therefore it contains a subset of edges that form an x1-tree T in G. The 
resistance of T is clearly less than or equal to the sum of the resistances of the paths Dii,, so it is 
less than or equal to r(r). Thus y(xj) < yj = r(r) as claimed. 

To show that y(xj) ? yj, fix a class j and a least-resistant xj-tree T among all xj-trees on the 
vertex set X. Label each of the specially chosen vertices xi by the class "i" to which it belongs. 
These will be called special vertices. A junction in T is any vertex y with at least two incoming 
T-edges. If the junction y is not a special vertex, label it "i" if there exists a path of zero resistance 
from y to Xi. (There exists at least one such class because they are the recurrent classes of PO; if 
there are several such classes choose any one of them as label.) Every labelled vertex is either a 
special vertex or a junction (or both), and the label identifies a class to which there is a path of zero 
resistance. 

Define the special predecessors of a state x E X to be the special vertices xi that strictly precede 
x in the fixed tree T (i.e., such that there is a path from xi to x in T) and such that there is no 
other special vertex xj on the path from xi to x. 

(15) If xi is a special predecessor of a labelled vertex x, then the unique path in the tree from xi 
to x has resistance at least rik, where k is the label of x. 

Property (15) clearly holds for the tree T because any path from the special vertex xi to a vertex 
labelled "k" can be extended by a zero resistance path to the class Xk, and the total path must have 
resistance at least rik. We shall now perform certain operations on the tree T that preserve property 
(15), and that bring it into a form that is more or less congruent to a j-tree in 9. We shall do this by 
successively eliminating all junctions that are not special vertices. 

Suppose that T contains a junction y that is not a special vertex, and let its label be "k". We 
distinguish two cases, depending on whether the special vertex Xk is or is not a predecessor of y in 
the tree. 

Case 1: If Xk is not a predecessor of y in the tree (see Figure 4), cut off the subtree consisting of 
all edges and vertices that precede y and glue them onto the tree at the vertex Xk. 

Case 2: If Xk, is a predecessor of y (see Figure 5), cut off the subtree consisting of all edges and 
vertices that precede y (except for the path from Xk to y and all of its predecessors) and glue them 
onto Xk. 
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cut 

FIGURE 4a.-Case 1 surgery: before. 

ji H L K ~~~~~~~~~~~~paste 

FIGURE 4b.-Case 2 surgery: after. 

Both of these operations preserve property (15) because Xk and y have the same label. Each 
operation reduces by one the number of junctions that are not special vertices. Thus we eventually 
obtain an xi-tree T* in which every junction is a special vertex, property (15) is satisfied, and T* 
has the same resistance as the original tree T. 

Now construct a j-tree r on the vertex set J as follows. For every two classes i and i' put the 
directed edge (i, i') in r if and only if xi is a special predecessor of xi, in T*. By construction, r 
forms a j-tree. Let D* be the unique path in T* from xi to xi,. By property (15) its resistance is at 
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ik 
cut 

"k~~~~~~~~~~~~~~~k 

0le)"I 
FIGURE 5a.-Case 2 surgery: before. 

paste 

FIGURE 5b.-Case 2 surgery: after. 
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least rig. The paths W are edge-disjoint because every junction is one of the special vertices. Since 
T* contains their union, the resistance of T* is at least E(i, i') e Trii But E(ii') ETrrii' is the 
resistance of T. Hence y(xj) = r(T*) 2 = r(r) 2 yj as claimed. 

This completes the proof of Lemma 2, which, together with Lemma 1, establishes Theorem 4. 
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