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Abstract 

 

We present experimental evidence on the evolution of cooperation in infinitely repeated 

games as subjects gain experience. We find that cooperation decreases with experience 

when it cannot be supported as an equilibrium outcome. More interestingly, the converse 

is not necessarily true: cooperation does not always increase with experience when it can 

be supported as an equilibrium outcome. Nor is a more stringent condition, risk 

dominance, sufficient for cooperation to arise. However, subjects do learn to cooperate 

when the payoff to cooperation and the importance of the future is high enough. These 

results have important implications for the theory of infinitely repeated games. While we 

show that cooperation may prevail in infinitely repeated games, the conditions under 

which it happens are more stringent than the sub-game perfect conditions usually 

considered. 
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Introduction 

 

A usual criticism of the theory of infinitely repeated games is that it does not 

provide sharp predictions since there may be a multiplicity of equilibria.1 For example, in 

infinitely repeated prisoner’s dilemma games with patient agents both cooperate and 

defect may be played in equilibrium. 

Even though the theory of infinitely repeated games has been used to explain 

cooperation in a variety of environments, no definitive solution has been provided to the 

problem of equilibrium selection: when both cooperation and defection are possible 

equilibrium outcomes, which one should we expect to prevail? Previous experimental 

evidence has shown that subjects often fail to coordinate in a specific equilibrium when 

they play a small number of infinitely repeated games: some subjects attempt to establish 

cooperative agreements while others defect. But how would behavior evolve as subjects 

learn from previous repeated games? Would cooperation prevail when it can be supported 

in equilibrium? Or are subjects condemned to learn that defection is the best individual 

action? 

We present evidence on the evolution of cooperation in infinitely repeated games 

based on a series of experiments. For a given continuation probability and cooperation 

payoff, each subject participated in between 23 and 77 infinitely repeated games. This 

allows us to study how cooperation evolves as subject gain experience. First, we find that 

in treatments in which cooperation cannot be supported in equilibrium, the level of 

cooperation decreases with experience and converges to levels comparable to those 

observed in one-shot prisoner’s dilemma games. This supports the idea that being a 

possible equilibrium action is a necessary condition for cooperation to arise with 

experience. 

Second, we find that in treatments in which cooperation can be supported in 

equilibrium, the level of cooperation does not necessarily increase and may remain at low 

levels. When cooperation can be supported in a subgame perfect equilibrium, subjects 

may fail to make the most of it: being a possible equilibrium outcome is not enough for 

                                                 
1 Fudenberg and Maskin (1993), for example, state that “The theory of repeated games has been 
somewhat disappointing. …the theory does not make sharp predictions.” 
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cooperation to rise with experience. Together, this evidence suggests that while being an 

equilibrium action may be a necessary condition for cooperation to arise with experience, 

it is not sufficient. 

Third, we find that cooperation being both an equilibrium action and a risk 

dominant action (as defined later) is not sufficient either for cooperation to rise with 

experience. Risk dominance has been used as a selection criterion in the study of 

coordination games. While the experimental evidence on one-shot coordination games 

suggest actions that are both Pareto efficient and risk-dominant are usually selected, our 

evidence suggests that those conditions are not sufficient in infinitely repeated games. 

However, we do observe that it is possible for subjects to learn to cooperate and reach 

high level of cooperation if the payoff from cooperation and the probability of future 

interactions are high enough. In infinitely repeated games, for cooperation to arise in high 

levels more is needed than just being an equilibrium and risk dominant action. 

These results show how difficult it is for cooperation to arise even for experienced 

subjects. These results cast doubt on the common assumption that subjects will make the 

most of the opportunity to cooperate whenever it is possible to do so in equilibrium.  

 While there is a previous experimental literature in infinitely repeated games, this 

literature has not focused on the evolution of cooperation. Previous experimental 

evidence on infinitely repeated games has shown that cooperation is greater when it can 

be supported in equilibrium but that subjects fail to make the most of the opportunity to 

cooperate (see Roth and Murnighan, 1978, Murnighan and Roth, 1983, Palfrey and 

Rosenthal, 1994, Aoyagi and Fréchette, 2003, and Dal Bó, 2005). In addition, Dal Bó 

(2005) compares infinitely repeated and finitely repeated prisoner’s dilemma games of 

the same expected length and finds that cooperation is larger in the former as theory 

predicts. Aoyagi and Fréchette (2003) show that in infinitely repeated prisoner’s dilemma 

games with imperfect public monitoring the level of cooperation increases with the 

quality of the public signal. Duffy and Ochs (2003) compare the levels of cooperation in 

random matching and fixed matching infinitely repeated games with high continuation 

probability. They find that cooperation increases as subjects gain more experience under 

fixed matching but not under random matching. Our experimental design differs from the 

previous literature in that, for several combinations of continuation probabilities and 
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payoffs to cooperation, we allow subjects to participate in a large number of repeated 

games. In this way we can study how cooperation evolves under different treatments as 

subjects gain experience.  

 There have been theoretical attempts to solve the problem of multiplicity of 

equilibria in infinitely repeated games. Axelrod and Hamilton (1981), Boyd and 

Lorberbaum (1987), Boyd (1989), Kim (1994), and Bendor and Swistak (1997) apply the 

concept of evolutionary stable strategies (ESS) by Maynard Smith’s (1982) -- or 

modifications -- to infinitely repeated games with varied implications regarding the 

selection of equilibria. There is also a literature that appeals to bounded rationality, in the 

form of finite automata. Rubinstein (1986) and Abreu and Rubinstein (1988) look at the 

set of equilibrium payoffs in repeated games played by infinitely patient finite automata 

with lexicographic costs of complexity and find that whether efficiency can be achieved 

depends on the particular equilibrium concept. Binmore and Samuelson (1992), Cooper 

(1996) and Volij (2002) apply evolutionary refinements to infinitely repeated games 

played by finite automata and find that the set of possible payoffs depends radically on 

the definition of ESS and the way costs of complexity are modeled (also see Fudenberg 

and Maskin, 1990 and 1993). Blonski and Spagnolo (2001) appeal to the concept of risk 

dominance as an equilibrium selection criteria in infinitely repeated games. In contrast, 

Volij (2002) shows that always defect is the unique stochastically stable strategy 

(Kandori et al., 1993, and Young, 1993) in games with finite automata.  

This variety of theoretical results underscores the need for empirical data to solve 

the issue of multiplicity of equilibria in infinitely repeated games. We hope the 

experimental results we present will guide future theories. Theories claiming that subjects 

will coordinate on defection even when they are infinitely patient and theories claiming 

that they will always coordinate on cooperation are not supported by the data. 

 

2. Experimental design 

 

 This experiment consists of 18 sessions. In each session, a set of subjects 

participated anonymously through computers in a sequence of infinitely repeated 

prisoner’s dilemma games. We induce an infinitely repeated game in the lab by having a 



 5

random continuation rule: after each round the computer decided whether to finish the 

repeated game or have an additional round depending on a random number. We consider 

two probabilities of continuation: δ=1/2 and δ=3/4. The stage game is the simple 

prisoner’s dilemma game in Table 1 where the payoffs are denoted in cents and where the 

payoff to cooperation takes one of three possible values: R=32, 40 and 48. 

 

Table 1: Stage Game Payoffs (in cents) 
 C D 

C R, R 12, 50 

D 50, 12 25, 25 
 
 

 Therefore we have two main treatment variables, the probability of continuation 

and the payoff from cooperation, resulting in a total of six treatments. Each session 

consisted of a sequence of infinitely repeated games for one treatment only (between 

subjects design) and we run three sessions per treatment. In each session subjects 

participate in as many repeated games as was possible in one hour of play (the first 

repeated game to end after one hour of play marks the end of the session). Subjects were 

randomly re-matched with another subject after the end of a repeated game. Different 

groups of subjects participated in each session. The instructions for one of the sessions 

are in the online appendix.2 

 

3. Theoretical Backgroud 

 If we assume that the payoffs in Table 1 are the actual total payoffs the subjects 

obtain form the stage game and that this is common knowledge, the set of subgame 

perfect equilibria can be calculated using the results from Stahl (1991). Table 2 indicates 

those treatments under which cooperation can be supported as a sub-game perfect 

equilibrium action. 

                                                 
2 Available at http://homepages.nyu.edu/~gf35/print/df_online_appendix.pdf. 
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Table 2: Cooperation in Equilibrium 
 R=32 R=40 R=48 

δ=1/2 NO YES YES 

δ=3/4 YES YES YES 
 

 

 Under δ=1/2 & R=32, only defection is a possible equilibrium action and we 

expect that as subjects gain experience the levels of cooperation decrease to one-shot 

levels. However past experimental evidence indicates that there are many games in which 

observed behavior does not converge to the unique equilibrium leading to the following 

question. 

 QUESTION 1: Do subjects learn to defect when it is the only equilibrium action? 

  

 Under all treatments except δ=1/2 & R=32 cooperation can be supported in 

equilibrium3 and we may expect that cooperation increases with experience and reaches 

levels close to 100%. However, there is a multiplicity of equilibria under the treatments 

for which cooperation can be supported. While we may assume that subject will learn to 

coordinate on the Pareto efficient equilibrium, this may not be the case. As shown by an 

extensive literature on coordination games, subjects may fail to coordinate on the Pareto 

efficient equilibrium if the costs from not coordinating are too high for the subject 

playing the Pareto efficient action (see Cooper et al., 1990, and Van Huyck et al., 1990).4 

These alternative hypotheses lead us to the following question. 

 QUESTION 2: Do subjects learn to cooperate when it is an equilibrium action? 

  

                                                 
3 In fact, it can be shown following Stahl (1991) that for all the treatments, but δ=1/2 and R=32, the whole 
set of feasible and individually rational payoff can be supported in equilibrium. In addition, mutual 
cooperation can be supported in these five treatments with continuation payoffs in the efficient frontier of 
the set of feasible and individually rational payoffs. Therefore, mutual cooperation is renegotiation proof 
under most renegotiation proofness concepts in the five treatment in which it can be supported in 
equilibrium (see Bernheim and Ray, 1989, and Farrell and Maskin, 1989; also see Pearce, 1992, and 
references therein, for a review of the different renegotiation proofness concepts) 
4 This is not to say that subjects never coordinate on the efficient outcome, but rather that they sometimes 
do not. Charness, Fréchette and Qin (2006) provide an example where subjects often do coordinate on the 
efficient outcome in a game where the possibility of contingent rewards transform (in equilibrium) the 
second stage game to a coordination game. 
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Previous literature has studied the concept of risk-dominance as an alternative 

equilibrium selection criterion. Risk-dominance was introduced by Harsanyi and Selten 

(1988) and concerns the pairwise comparison between Nash equilibria. In 2x2 

coordination games an equilibrium is risk-dominant if its equilibrium strategy is a best 

response to a mixture that assigns probability of one-half to each strategy by the other 

player. While risk-dominance is easy to define and use in 2x2 games, it presents 

complications in general simultaneous-moves games. Its application to infinitely repeated 

games also faces the problem that two or more strategies can be identical to each other on 

the path of the game making it impossible to rank them (for example consider different 

trigger strategies). Given the difficulties in applying the concept of risk-dominance to the 

whole set of possible strategies in infinitely repeated games we will focus only on a 

pairwise comparison of all strategies that support cooperation against the ultimate 

defection strategy: “always defect” (AD). Blonksi and Spagnolo (2001) show that the 

strategy “grim” (G) risk dominates AD if there is any cooperative strategy that dominates 

AD.5 In other words, G is the “less risky” of the cooperative strategies when they are 

matched with AD, and we only need to focus on the comparison between G and AD.  

Table 3 shows the treatments under which G is risk-dominant against AD. 

 

Table 3: Risk-Dominant Cooperation 
 R=32 R=40 R=48 

δ=1/2 NO NO YES 

δ=3/4 NO YES YES 
 

 

If subjects learn to cooperate when cooperation is risk-dominant (as defined 

above and argued by Blonksi and Spagnolo, 2001) in addition to being an efficient 

equilibrium action, we should observe that cooperation increases with experience and 

reaches levels close to 100% under δ=1/2 & R=48, δ=3/4 & R=40, and δ=3/4 & R=48. 

This reasoning lead us to the following question. 

 QUESTION 3: Do subjects learn to cooperate when it is risk-dominant? 

 
                                                 
5 The grim strategy is the strategy that starts by cooperating and continues to do so as long as the other 
player cooperates, but defects forever following a defection by the other player. 
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4. Experimental Results 

 

We conducted 18 experimental sessions between July 2005 and March 2006. A 

total of 266 subjects participated in the experiment, with an average of 14.78 subjects per 

session, a maximum of 20 and a minimum of 12. The subjects were NYU undergraduates 

recruited through email solicitation at the beginning of the semester. The subjects earned 

an average of $25.95, with a maximum of $42.93 and a minimum of $16.29. In the 

treatments with δ=1/2 and δ=3/4 the average number of rounds per match was 1.96 and 

4.42, respectively. Some descriptive statistics of the sessions are presented in Table 4. 

 

Table 4: Session characteristics 

Delta 0.5 Delta 0.75 

Session 
Payoff from 
cooperation 32 40 48 

Payoff from 
cooperation 32 40 48 

1 Number of subjects 16 14 14 Number of subjects 14 12 16 
 Number of Games 69 72 72 Number of Games 29 34 35 
 Number of rounds 2.01 2.08 2.01 Number of rounds 5.55 3.94 4.31 
 Average Payoff 24.22 29.17 30.44 Average Payoff 28.39 31.35 42.93 
 Maximum Payoff 22.29 24.90 28.05 Maximum Payoff 26.26 29.78 39.99 
 Minimum Payoff 18.79 22.10 25.20 Minimum Payoff 24.60 27.65 35.23 

2 Number of subjects 12 16 14 Number of subjects 16 14 12 
 Number of Games 71 71 68 Number of Games 33 47 29 
 Number of rounds 1.89 2.03 2.00 Number of rounds 4.58 3.15 5.14 
 Average Payoff 21.45 26.26 26.62 Average Payoff 26.47 29.29 39.56 
 Maximum Payoff 20.53 23.71 23.82 Maximum Payoff 24.14 27.41 36.63 
  Minimum Payoff 17.75 21.61 21.43 Minimum Payoff 21.02 25.55 33.32 
3 Number of subjects 16 20 18 Number of subjects 14 12 16 
 Number of Games 59 72 77 Number of Games 27 23 32 
 Number of rounds 2.05 1.74 1.84 Number of rounds 4.70 5.43 4.06 
 Average Payoff 19.50 22.05 29.36 Average Payoff 21.59 27.58 34.71 
 Maximum Payoff 18.35 20.15 27.39 Maximum Payoff 20.51 24.97 30.98 
 Minimum Payoff 16.29 18.16 25.01 Minimum Payoff 19.57 23.91 25.76 

 

4.1 General description of behavior. 

Before addressing the questions from the previous sections we start by providing 

a general description of the observed behavior. The first panel in Table 5 shows 

cooperation rates by treatment for the first repeated game, on the left for the first round 

and on the right for all rounds. Looking separately at first rounds is of importance since 

different repeated games may result in a different number of rounds and the percentage of 
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cooperation may vary across rounds. Cooperation is significantly larger under δ=3/4 & 

R=48 than under δ=1/2 & R=32 in the first repeated game (p-value of 0.032 and 0.002 for 

first round and all rounds respectively).6 In addition, in treatments under which 

cooperation can be supported as an equilibrium action, cooperation tends to be larger than 

when it cannot be supported, but this difference is only significant (at the 10% level) for 

first round only (p-values of 0.087 and 0.167 for first rounds and all rounds respectively). 

However, it is not the case that an increase in the probability of continuation always 

results in an increase in cooperation (compare the two treatments with R=40) and 

increases in the payoff from cooperation has no significant effects on cooperation. 

 

Table 5: Percentage of Cooperation by Treatment 

First Repeated Game 
First Round All Rounds 

δ \ R 32  40  48 δ \ R 32  40  48 
0.5 34.09 <* 54.00 < 56.52 0.5 28.33 < 39.80 < 41.38 

 =  v  ^   v  v*  ^ 
0.75 34.09 < 36.84 <* 56.82 0.75 21.76 < 26.36 <*** 56.10 

              
All Repeated Games 

First Round All Rounds 
δ \ R 32  40  48 δ \ R 32  40  48 
0.5 9.81 <*** 18.72 <*** 38.97 0.5 9.82 <*** 17.98 <*** 35.29 

 ^***  ^***  ^***   ^***  ^***  ^*** 
0.75 25.61 <*** 61.10 <*** 85.07 0.75 20.25 <*** 58.71 <*** 76.42 

            
Note: * significance at 10%, ** at 5% and * at 1%. 

 

 The second panel of Table 5 shows cooperation rates for all repeated games. 

Here, increases in the probability of continuation or the payoff of cooperation result in a 

significant increase in cooperation (p-value of less than 0.001 and 0.001 for first round 

and all rounds respectively). In addition, in treatments under which cooperation can be 

supported as an equilibrium action, cooperation is significantly greater than when it 

                                                 
6 The statistical tests are t-tests with the variance-covariance modified by clustering at the subject level. 
This is true of every test reported unless noted otherwise. The qualitative results are largely robust to 
clustering at the session level or using the nonparametric Wilcoxon test with session averages as 
observations. Results from using these alternative statistical tests are provided in the online appendix at 
http://homepages.nyu.edu/~gf35/print/df_online_appendix.pdf. 



 10

cannot be supported (p-values of less than 0.001 and 0.001 for first rounds and all rounds 

respectively). 

 These differences between behavior in the first match and all matches suggest that 

experience affects how subjects play in repeated games in an important way. The next 

sections focus on how subjects modify their behavior as they gain experience. 

 

4.2 Do subjects learn to defect when it is the only equilibrium action? 

 To answer this question we study the evolution of cooperation under δ=1/2 & 

R=32, the treatment in which cooperation cannot be supported in equilibrium. The first 

column of Table 6 shows the percentage of subjects that choose to cooperate in the first 

round of each repeated game with δ=1/2 & R=32 with the repeated games aggregated 

according to what interaction they started in divided in groups of 10 interactions.7 To 

compare inexperienced versus experienced play we compare behavior in the first 10 

interactions with those in interactions 111 to 120.8 

 

Table 6: Percentage of Cooperation by Equilibrium Conditions (First Rounds) 

 First Round All Rounds 
Repeated Game Begins Cooperation is Cooperation is 

in Interaction Not SGPE SGPE Not SGPE SGPE 
1-10 28.57 39.11 21.00 34.42 
11-20 13.04 28.54 12.91 27.19 
21-30 12.23 31.01 11.97 33.61 
31-40 10.61 36.04 10.51 38.64 
41-50 10.20 34.88 7.85 34.98 
51-60 9.75 41.47 6.54 39.85 
61-70 7.14 37.89 8.09 40.02 
71-80 5.65 36.86 4.48 39.73 
81-90 4.72 38.60 6.20 44.39 
91-100 6.11 40.91 7.91 47.11 

101-110 6.64 45.38 11.99 46.12 
111-120 5.50 49.77 6.45 55.88 
121-130 5.77 45.95 11.11 43.31 
131-140 8.33 47.43 9.17 42.99 

141-  46.32  47.83 

                                                 
7 We use the word interaction to number each decision stage regardless of the repeated game (for example, 
if the first repeated game lasted for 5 rounds, the first round of the second repeated game is the sixth 
interaction). Instead we use the word round to number decision stages inside a repeated game. 
8 We do have data on repeated games that started even later, but because there are slight variations in total 
number of interactions and length of particular repeated games across sessions, the sample size is stable 
only up to that point. 
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 Cooperation was 29% in the first round of the repeated games that begin within 

the first 10 interactions there was 29% of cooperation, dropping to 5.5% in the repeated 

games that started in interactions 111 to 120 (this difference is significant with p-value 

below 0.01). For any repeated game that starts after a total of 50 interactions cooperation 

is always below 10%. These levels are similar to the levels observed in one-shot 

prisoner’s dilemmas (for example see Cooper et al, 1996, Dal Bó, 2005 and Bereby-

Meyer and Roth, 2006). The evolution of cooperation is similar if we aggregate the data 

from all rounds (see column 3 in Table 6). We also reach similar conclusions if we 

present the data in groups of 10 repeated games instead of interactions. 

 From the aggregated data in this treatment it is clear that subjects learn to defect 

and cooperation reaches negligible levels when cooperation cannot be supported in 

equilibrium. We reach a similar conclusion when we study the evolution of cooperation 

in each session with δ=1/2 & R=32. Figure 1 displays the proportion of cooperation in the 

first round of each repeated game by session and treatment. The first graph in Figure 1 

displays the evolution of cooperation for the three sessions with δ=1/2 & R=32: session 1 

as a solid line, 2 as dashed line and 3 as a dash-dotted line. It is clear from this graph that 

cooperation decreases with experience in all three sessions. 
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Figure 1: Evolution of Cooperation by Treatment and Session (first rounds) 
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4.3 Do subjects learn to cooperate when it is an equilibrium action? 

 The second column in Table 6 shows the percentage of subjects that choose to 

cooperate in the first round of the repeated games under which cooperation can be 

supported in sub-game perfect equilibrium. Initially, cooperation was 39%, but in 

repeated games after 111 to 120 rounds of experience cooperation increased to 50% (p-

value of the difference less than 0.01). We observe a similar evolution of cooperation 

from all the rounds in the repeated games (see the fourth column in Table 6). These 

results support the idea that subjects improve their ability to make the most of the 

opportunity to cooperate as they gain experience, but only very slightly. They are still 

very far from all coordinating on the efficient outcome. 

 The study of each session separately, shows that cooperation being a possible 

equilibrium outcome does not necessarily lead to high levels of cooperation as subjects 

gain experience. The last five graphs in Figure 1 displays the evolution of cooperation by 

session and treatment for the treatments in which cooperation can be supported.  
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Note that in 8 of these sessions, cooperation is lower in the last repeated game 

than in the first repeated game and it is higher in 7. While there is large variation in the 

evolution of cooperation across these treatments, it is clear that cooperation being a 

possible equilibrium outcome does not necessarily lead to increasing levels of 

cooperation as subjects gain experience. 

However, there are important differences with respect to the treatment in which 

cooperation is not a possible equilibrium outcome. The difference in cooperation rates 

across the equilibrium and non equilibrium situation is statistically significant for the first 

10 interactions (p-value < 0.05) and even more so for the repeated games that start after 

111-120 interactions (p-value < 0.01) for both first round and all rounds. 

 

4.4 Do subjects learn to cooperate when it is risk-dominant to do so? 

 While subgame perfection on its own may not be sufficient for subjects to learn to 

make the most of the opportunities for cooperation, with risk dominance as well, it may 

be. To address this issue, Table 7 shows the percentage of subjects that choose to 

cooperate in the first round and all rounds of the repeated games for treatments under 

which cooperation is an equilibrium separating treatments where cooperation is risk 

dominant (δ=1/2 & R=48, δ=3/4 & R=40, and δ=3/4 & R=48)  from those in which it is 

not (δ=1/2 & R=40, and δ=3/4 & R=32).  

Table 7 shows that while cooperation decreases with experience when it is not 

risk-dominant, it increases with experience when it is risk dominant. While in the first 

rounds of the early repeated games in the risk-dominant treatments cooperation was 

46.5%, in later repeated games (after 110 interactions) it reached 70.6% (p-value less 

than 0.01). We observe a similar evolution for all rounds. These aggregated data suggests 

that being a possible equilibrium outcome and risk-dominant does lead to increasing 

levels of cooperation as subjects gain experience. The difference in cooperation rates 

across the risk-dominant and non-risk-dominant case is statistically significant both at the 

beginning and for the repeated games that start after 111-120 interactions for both first 

and all rounds (p-values < 0.01). Nonetheless, the cooperation rate when cooperation is 

risk-dominant and after subjects have gained much experience is still far away from full 

cooperation. 
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Table 7: Percentage of Cooperation by Risk Dominance (First Rounds)* 

 First Round All Rounds 
Repeated Game Begins Cooperation is Cooperation is 

in Interaction Not RD RD Not RD RD 
1-10 31.43 46.53 23.56 42.11 
11-20 20.60 36.26 18.10 35.09 
21-30 14.86 44.34 13.48 45.36 
31-40 14.01 51.83 14.63 52.72 
41-50 14.21 53.99 13.81 53.09 
51-60 18.51 57.47 16.32 61.30 
61-70 17.54 48.98 19.21 54.44 
71-80 20.32 50.00 19.10 55.99 
81-90 20.57 58.42 20.75 60.89 
91-100 22.01 54.88 19.28 66.45 

101-110 17.93 67.62 19.50 66.92 
111-120 22.46 70.61 22.60 73.86 
121-130 21.03 62.05 21.99 59.60 
131-140 30.70 59.49 26.23 61.40 

141- 23.86 65.69 16.57 76.82 
*Only considers treatments in which cooperation is a SGPE action. 

  

 We reach an even more nuanced conclusion if we study these treatments by 

session. The graphs in Figure 1 for δ=1/2 & R=48, δ=3/4 & R=40, and δ=3/4 & R=48 

display the evolution of cooperation for the sessions under the treatments in which 

cooperation can be supported and is risk-dominant. Cooperation is lower in the last 

repeated game than in the first repeated game in 3 sessions and higher in 6. While there is 

large variation in the evolution of cooperation, it is clear that cooperation being risk-

dominant does not necessarily lead to increasing levels of cooperation as subjects gain 

experience. However, all session in the treatment with δ=3/4 & R=48 reach high levels of 

cooperation. This suggests that if both the probability of continuation and the payoff of 

cooperation are high enough it is possible for subjects to make the most of the 

opportunity to cooperate. 

 

4.5 Strategies 

 It is of interest to study the strategies used by subjects. Unfortunately, looking at 

the individual data does not allow one to identify the strategies. For example, observing a 

pair of subjects that cooperate in every round is consistent with a number of cooperative 
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strategies like always cooperate (AC) and any kind of trigger strategy including grim (G). 

However, it is still possible and interesting to study what proportion of the observed 

behavior is consistent with some theoretically important strategies and how their 

prevalence changes with the treatment variables. 

 Table 8 indicates the fraction of behavior consistent with the strategies always 

defect (AD), always cooperate (AC), grim trigger strategy (G), and tit-for-tat (TFT). Note 

that AD and AC are mutually exclusive but AC, G and TFT are all three consistent with 

seeing a subject that cooperates in every round if the other player always cooperates as 

well. For example, if two subjects (1 pair) played one repeated game and one subject 

always cooperated while the other always defected, the fraction of behavior consistent 

with AD would be 0.5, the fraction consistent with AC would also be 0.5 and the fraction 

consistent with G and TFT would be 0. If on the other hand both subjects always 

cooperated, then the fraction of AD would be 0, and for all others (AC, G, TFT) it would 

be 1. 

 The percentage of observed behavior that can be explained by AD is decreasing in 

the probability of future interaction and the payoff to cooperation (from 86% of the 

observations under δ=1/2 & R=32 to 9% under δ=3/4 & R=48). In contrast, the 

percentage that can be explained by the cooperative strategies is increasing in the 

probability of future interaction and the payoff to cooperation. For example, the 

percentage of observations that can be explained by G goes from 8% under δ=1/2 & 

R=32 to 75% under δ=3/4 & R=48. These differences increase with experience as the 

comparison of the second two panels of Table 8 show. For example, in the repeated 

games staring in interactions 110 to 120 AD and G explain respectively 90% and 5% of 

the observations under δ=1/2 & R=32 and 0% and 93% under δ=3/4 & R=48. 

 Finally, note that simply focusing on AD and G allows to organize an important 

part of the data (88% of the data overall) and this percentage increases with experience.  
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Table 8: Categorization of Observed Behavior 
All Repeated Games 

       
 

Treatment 
Always 

D 
Always 

C Grim 
Tit-for-

tat 
AD + 
Grim 

 R = 32 86.37 6.31 7.91 7.98 94.28 
δ = 0.5 R = 40 74.30 12.50 15.37 15.46 89.68 

 R = 48 56.28 31.47 33.74 33.65 90.02 
 R = 32 61.20 11.74 15.24 16.01 76.45 

δ = 0.75 R = 40 26.90 47.69 49.85 50.89 76.75 
 R = 48 8.59 68.80 74.51 75.00 83.10 
 Average 59.93 24.87 27.61 27.85 87.54 

 
Repeated Games that Start In the First 10 Interactions 

 
 R = 32 62.95 14.73 21.43 21.43 84.38 

δ = 0.5 R = 40 60.82 19.88 27.19 27.19 88.01 
 R = 48 49.16 35.29 35.29 34.03 84.45 
 R = 32 65.91 13.64 18.94 18.94 84.85 

δ = 0.75 R = 40 42.24 20.69 21.55 20.69 63.79 
 R = 48 24.26 30.88 38.24 41.18 62.50 
 Average 53.45 22.64 27.53 27.53 80.98 

 
Repeated Games that Start In Interactions 110-120 

 
 R = 32 90.50 1.50 4.50 5.00 95.00 

δ = 0.5 R = 40 72.38 16.67 19.52 18.57 91.90 
 R = 48 49.51 36.89 37.86 38.84 87.38 
 R = 32 64.63 14.02 17.07 17.68 81.71 

δ = 0.75 R = 40 23.08 54.81 58.65 59.62 81.73 
 R = 48 0.00 92.22 93.33 95.00 93.33 
 Average 53.1 33.83 36.18 36.75 89.28 

 

5. Cooperation in the long run 

 

 The analysis of the evolution of cooperation as subjects gain experience thus far is 

limited by the number of repeated games that a subject may play in a given session (in 

this case the subjects played between 23 and 77 repeated games). In this section we study 

how behavior would evolve under an even greater number of repeated games by 

estimating a model of learning based on our experimental data and carrying out 

simulations that allow us to study the evolution of cooperation over a longer period than 

observed in the laboratory. 
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 To motivate our learning model we start by focusing on AD and G strategies and 

calculating the basins of attraction of each strategy. Imagine that someone is considering 

whether to play AD or G. This subject needs to determine which of these two strategies is 

the most profitable in expectation base on his beliefs about the probability that his partner 

with will play AD or G. In Figure 1 we present the beliefs that would leave him 

indifferent between the two strategies (the horizontal dotted line).9 If beliefs fall below 

the dotted line the subject will maximize his expected payoffs by playing AD and if 

beliefs are above the line, choosing G will maximize expected payoffs. These lines 

denote the limits of the basin of attraction of the two strategies. As can be seen in Figure 

1, when cooperation starts below the limit of the basins of attraction it is more likely that 

cooperation will diminish with experience while the opposite happens when cooperation 

starts above the limit. 

 The fact that basins of attractions seem to explain how behavior separates across 

treatments is very suggestive of an adaptive model of behavior. It may be that after 

learning the rules of the game, subjects form beliefs about the fraction of subjects that 

will play G and the fraction that will play AD. Given these beliefs they choose the 

strategy that would maximize their expected payoffs, and play according to that strategy. 

Upon observing the behavior of their partners, subjects update their beliefs and this 

determines the strategy used in the next repeated games. If this explanation is correct, we 

should observe a positive correlation between a subject’s first round choice and the first 

round choice of his partner in the previous repeated game. Table 9 shows the results from 

a random effects Probit estimation of first round decision as a function of the first round 

choice of the previous repeated game partner. We control for the individual choices in 

round 1 of the first repeated game to allow the mean of the random effects to be different 

for subjects who cooperated and those who did not in the first decision of the entire 

experiment. The coefficient ρ gives the fraction of the variance attributable to the subject 

specific component. 

 

                                                 
9 There is no indifference line for δ=1/2 and R=32 since G is never a best response in this treatment.  For 
the other treatments it is 0.72, and 0.38 for δ equal to 0.5 in increasing order of R and 0.81, 0.27, and 0.16 
for δ equal to 0.75 again in the order of increasing R. 
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Table 9: Effect of Past Observations on Round 1 Cooperation 

(Correlated Random Effects Probit) 

 δ = 0.5 δ = 0.75 
 R = 32 R = 40 R = 48 R = 32 R = 40 R = 48 
Opponent Cooperated in 
Round 0.426*** 0.349*** 0.590*** 0.391*** 0.920*** 0.857*** 
1 of Last Repeated Game (0.117) (0.070) (0.064) (0.105) (0.117) (0.130) 
Cooperated in Round 1 1.149*** 0.721*** 1.564*** 0.497 1.725*** 0.495 
Of First Repeated Game (0.218) (0.245) (0.347) (0.375) (0.498) (0.346) 
Constant -2.167*** -1.687*** -1.719*** -1.277*** -0.653** 0.568** 
 (0.144) (0.186) (0.184) (0.232) (0.306) (0.261) 
Ρ 0.271§ 0.398§ 0.688§ 0.553§ 0.657§ 0.502§ 
 (0.063) (0.057) (0.053) (0.069) (0.066) (0.079) 
Observations 2840 3534 3300 1268 1304 1376 
Number of Subjects 44 50 46 44 38 44 
Standard errors in parentheses 
* significant at 10%; ** significant at 5%; *** significant at 1% 
§ significant at the 1% level using a likelihood ratio test 

 

 The variable of interest, partner’s choice in round 1 of the last repeated game, is 

statistically significant and positive in every treatment. This suggests that, when a subject 

observes his partner cooperating, he is more likely to start by cooperating himself in the 

following repeated game.  

 

5.1 A Learning Model 

 Given the evidence that subjects modify their behavior as a function of the 

observed behavior of their partners from previous repeated games we study in this section 

a model in which subjects learn from the behavior of their partners about the distributions 

of strategies in the population. 

 We model the way subjects update their beliefs about the probability of facing 

different strategies using a belief based learning model (see Fudenberg and Levine, 

1998). Estimating a learning model from repetitions of randomly terminated repeated 

games can be difficult as the set of possible strategies within a repeated game can be 

extremely large. However, since more than three quarters of the data can be explained by 

two very simple strategies (AD and G), as seen in section 4.5, we will abstract from the 

complexities of the repeated game by reducing it to the choice in round 1: defect 

corresponds to AD and cooperate corresponds to G. The expected return from each 
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choice is given by the theoretical values. Using the theoretical values has the advantage 

that it is not affected by the small sample variations in the sample, but implies that 

subjects think everyone else is using either AD or G perfectly. 

 We will estimate a model which allows for behavior ranging from Cournot to 

fictitious play, as in Crawford (1995) and Cheung and Friedman (1997). The learning 

model is as follows. Subjects in the first repeated game have beliefs about the probability 

their partner uses either AD or G. These beliefs are tracked by two variables: AD
itβ  and 

G
itβ  such that the belief by subject j at time t that his partner will play AD is 

( )G
it

AD
it

AD
it βββ + . In the first repeated game each subject has a given AD

i1β  and G
i1β . After 

the first repeated game is played they update their beliefs as follows )(11
k
j

k
iti

k
it a+=+ βθβ  

where iθ discounts past beliefs ( 0=iθ  gives Cournot dynamics and 1=iθ  is fictitious 

play), k is the action and )(1 k
ja  is an indicator function that takes value 1 if subject j (with 

whom i is paired) took the action k (G or AD). Given those beliefs, subject i is modeled as 

a random utility maximizer where each choice yields 

( ) ( ) a
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G
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=  where ( )k

j
a au  is the average payoff 

from taking action a when the subject i is paired with, j, takes action k. The parameter itλ  

is a scaling parameter that measures how well the subject best-responds to his beliefs 

where i
Vt

ii
F

it λφλλ 1−+=  with [ ]1,0∈iφ . That is, we allow for the noise in decision 

making to decrease with experience. Finally, a
itε  is an idiosyncratic error term assumed to 

have a type I extreme value function. Given the distributional assumption on the error 

terms, this gives rise to the usual logistic form for the probabilities: 
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iθ , i
Fλ , i

Vλ and iφ . 
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 The estimates are obtained via maximum likelihood estimation for each subject 

separately.10 We have between 23 and 77 round 1 observations per subject. Subjects 

whose round 1 action is always the same are dropped from the estimation sample –this 

represents 19.55% of the data. Summary statistics of the estimates are presented in Table 

A1 in the appendix. 

 Note that we are not interested in the specific estimates of the learning model but 

that our focus is on the out of sample predictions we present in section 5.3.11 However, 

there are several characteristics of the estimated model that are of interest. First, many 

subjects initially believe one strategy or the other is likely, but not both. Second, there is 

a lot of variability in the discounting of past evidence. In some treatments many subjects 

look like they exhibit the Cournot dynamics while in others more subjects look like 

fictitious players. As δ and R increase subjects tend to pay more attention to the distant 

past, while for low δ and low R subjects tend to look only at the immediate past. Finally, 

note that the effect of experience in reducing noise tends to increase the larger δ and R 

are. 

 Correlations among the parameters also yield some additional insights. The fact 

that iθ  is negatively correlated with the strength of beliefs in the first repeated game 

( G
i

AD
i 11 ββ + ) suggests that subjects who pay less attention to the far past have stronger 

initial beliefs. The positive correlation between iθ  and iφ  suggest that subjects who pay 

more attention to the far past have flatter scaling parameters across time. The negative 

correlation between iφ and the two terms of the scaling parameter ( i
Fλ and i

Vλ ) suggests 

that subjects with a greater initial scaling parameter have also a stepper scaling parameter 

across time. 

 Using these estimates we perform simulations to asses how well the learning 

model fits the data obtained in the experimental sessions. These simulations consist of 

                                                 
10 An alternative would be to pool the data. However, for the purpose of this paper and given the number of 
observations per subjects, obtaining subject specific estimates seem reasonable. Fréchette (2005) discusses 
issues and solutions related to pooling data across subjects in estimating learning models and more 
specifically with respect to hypothesis testing. 
11 We have estimated simpler versions of the learning model and while the fit with the experimental data 
was decreased, the out of sample predictions were similar. This suggests that our prediction on the long run 
evolution of cooperation is robust to changes in the learning model and we expect that alternative models 
will generate similar qualitative results (see for instance Roth and Erev,1995, and Camerer and Ho, 1999). 
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1000 sessions by treatment using the learning model previously estimated and adding the 

subjects that always played the same action and assuming that they would do so 

irrespective of the choices of the subjects they are paired with. The session size is taken 

to be 14 (which is the closest to the mean session size).12 The composition of each 

session is obtained by randomly drawing (with replacement) 14 subjects (and their 

estimated parameters) from the pool of subjects that participated in the corresponding 

treatment. Figure 2 displays the average simulated evolution of cooperation across 

repeated games by treatment (dashed line), in addition to the observed evolution (solid 

line). The vertical lines denote the end of each experimental session conducted in the lab. 

The doted lines denote the upper and lower bounds to the interval that includes 90% of 

the 1000 simulated sessions.  

 

Figure 2: Simulated Evolution of Cooperation Implied by the Learning Estimates 
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12 The results from the simulations are robust to the number of subjects per simulated session. 
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 The simulations based on the estimated learning model track well the evolution of 

cooperation observed in the data. First, note that for every treatment in which cooperation 

is lower (greater) in the last repeated game than in the first repeated game the same is true 

for the simulations. Second, the experimental data is largely inside the 90% interval 

generated by the simulations. Finally, for the range of repeated games for which we have 

experimental data from all three sessions, the average level of cooperation in the 

simulations while obviously less noisy is generally similar to the observed levels with 

differences of 5% on average, but that never exceed 19%. 

 

5.3 Simulation of the evolution of cooperation in the long run 

 Given that the learning model fits the data well, we now extend the simulations to 

a longer range (1000 repeated games) to study how cooperation evolves in the long run. 

Figure 3 shows the evolution of the average level of cooperation across the simulations 

and the 90% interval. 

Figure 3: Simulated Evolution of Cooperation Implied by the Learning Estimates 
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 The results are consistent with those of the experimental sessions (most of the 

convergence in behavior happens in the first 100 repeated games) In the treatment in 

which cooperation cannot be supported in equilibrium the simulated levels of cooperation 

converge to one shot levels (less than 5%). In addition, the 90% interval includes full 

defection from very early repeated games and never includes full cooperation. In 

treatments in which cooperation can be supported in equilibrium but G is not risk 

dominant, we observe that cooperation decreases with experience, converging to levels of 

cooperation close to those observed in one shot games. In this case as well, the 90% 

interval includes full defection from very early repeated games. While cooperation can be 

supported in equilibrium in these treatments, full cooperation is not included in the 90% 

interval and in fact no simulated session achieved full cooperation in any repeated game. 

 The results are different for the treatments in which cooperation can be supported 

in equilibrium and G is risk dominant. In one of those treatments, δ=1/2 & R=48, 

cooperation remains between 40% and 50% and the 90% interval sometimes includes full 

defection but it never includes full cooperation. Thus, in treatments in which G is risk 

dominant and with a large number of repeated games for subjects to gain experience, full 

cooperation may fail to arise. For the other two treatments in this group, δ=3/4 & R=40 

and δ=3/4 & R=48, cooperation does reach high levels after subjects have gained 

experience. In both treatments the 90% interval includes full cooperation after 30 

repeated games and in the case of δ=3/4 & R=48 the mean level of cooperation is 

practically 100%. 

 Figure 4 shows the simulated distribution of cooperation by treatment. The figure 

shows for each treatment and repeated games 1 and 1000 the proportion of all the 

simulated sessions that have a given number of subjects (out of 14) choosing to cooperate 

in the first round. Figure 4 also shows the limit of the basins of attraction of G and AD 

for each treatment: for example under δ=3/4 & R=48 if the subject expects that 3 or more 

of the subjects in the session play G then G is the best response and AD is the best 

response otherwise. 

 The distributions of the number of cooperative actions are unimodal for every 

treatment in repeated game 1 and this mode is always located in the interior (from 4 

cooperative actions in δ=1/2 & R=32 and δ=3/4 & R=32 to 8 in δ=3/4 & R=48). The 
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distribution of cooperative actions is quite different in repeated game 1000. In the 

treatment in which cooperation cannot be supported in equilibrium (δ=1/2 & R=32) the 

mode and median is full defection. In the treatments under which cooperation can be 

supported in equilibrium but is not risk dominant, the mode decreases with experience 

and converges to 1 cooperative action over 14 in a session. In the treatments in which 

cooperation is both an equilibrium action and risk dominant, the results are diverse. In the 

case of δ=1/2 & R=48 the distribution in repeated game 1000 is bimodal, with modes in 1 

and 11 cooperative actions over 14. This bifurcation in the evolution of cooperation 

resembles the continental divide results from the coordination games literature (see Van 

Huyck et al. 1997). For the other two treatments in this group the distribution moves to 

higher levels of cooperation with experience with an extreme result for δ=3/4 & R=48 

where the mode and median converge to full cooperation. 

Figure 4: Distribution of Outcomes in Simulated Sessions: Repeated Game 1 

(dashed) vs. Repeated Game 1000 (solid). (Vertical line denotes limit of basins of 

attraction) 
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5. Conclusions 

 The series of experiments presented in this paper shed light on how cooperation 

evolves as subjects gain experience. We vary both the probability of continuation and the 

payoff from cooperation. We find that cooperation may not prevail even when it is a 

possible equilibrium action. This provides a word of cautions against the extended 

practice in applications of the theory of infinitely repeated games of assuming that 

subjects will cooperate whenever it is an equilibrium action. Moreover, cooperation may 

not prevail even under more stringent conditions (risk dominance) indicating how 

difficult it is for cooperation to prevail in repeated games. However, cooperation does 

prevail under some treatments. This evidence contradicts some equilibrium selection 

theories that select inefficient outcomes even when players are arbitrarily patient. We 

hope the evidence provided here will guide future theoretical attempts to study 

equilibrium selection in infinitely repeated games. 
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Appendix 1 

 

Table A1: Summary Statistics of Learning Model Estimates 

Mean 
Treatment P(G) All P(G)* θ Φ λF λV 
δ=1/2 R=32 0.79 0.61 0.21 0.23 4.49E+13 1.33E+299 
δ=1/2 R=40 0.53 0.48 0.58 0.15 3.37 2.93E+304 
δ=1/2 R=48 0.46 0.40 0.82 0.10 1.94 2.21E+301 
δ=3/4 R=32 0.39 0.31 0.32 0.31 6.14E+17 7.46E+287 
δ=3/4 R=40 0.32 0.34 0.55 0.28 1.16 5.86E+280 
δ=3/4 R=48 0.25 0.47 0.32 0.06 3.10 3.4E+297 

       
Median 

Treatment P(G) All P(G)* θ Φ λF λV 
δ=1/2 R=32 1.00 1.00 0.00 0.00 2.89 3.217E+36 
δ=1/2 R=40 0.71 0.53 0.64 0.00 1.85 2.973E+17 
δ=1/2 R=48 0.33 0.17 0.98 0.00 0.26 5.04E+102 
δ=3/4 R=32 0.00 0.00 0.00 0.00 3.33 2258.90 
δ=3/4 R=40 0.00 0.00 0.54 0.00 0.23 10.08 
δ=3/4 R=48 0.00 0.26 0.26 0.00 0.28 3.058E+71 

*Assigns P(G)=1 (0) to subject that always choose to cooperate (defect) in first 
round 
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