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Many systems in nature exhibit sophisticated collective information-processing abilities that

emerge from the individual actions of simple components interacting via restricted communica-

tion pathways. Some often-cited examples include efficient foraging and intricate nest-building

in insect societies (1), the spontaneous aggregation of a reproductive multicellular organism

from individual amoeba in the life cycle of the Dictyostelium slime mold (2), the parallel and

distributed processing of sensory information by assemblies of neurons in the brain (3), and the

optimal pricing of goods in an economy arising from agents obeying local rules of commerce (4).

Allowing global coordination to emerge from a decentralized collection of simple components

has important advantages over explicit central control in both natural and human-constructed

information-processing systems. There are substantial costs incurred in having centralized coor-

dination, not the least being (i) speed (a central coordinator can be a bottleneck to fast information

processing); (ii) robustness (if the central coordinator is injured or lost, the entire system col-

lapses); and (iii) equitable resource allocation (a central controller must be allocated a lion’s

share of system resources that otherwise could go to other agents in the system); e.g. see (5).

However, it is difficult to design a collection of individual components and their local interactions

in a way that will give rise to useful global information processing. It is not well understood

how such apparent complex global coordination emerges from simple individual actions in nat-

ural systems, nor how such systems are produced by biological evolution. This paper reports

the application of new methods for detecting computation in nonlinear processes to a simple

evolutionary model that allows us to directly address these questions. The main result is the

evolutionary discovery of methods for emergent global computation in a spatially distributed

system consisting of locally interacting processors.

We use the general term “emergent computation” to describe the appearance of global

information-processing in such systems (cf. (6,7)). Our goal is to understand the mechanisms by

which evolution can discover methods of emergent computation. We are studying this question

in a theoretical framework that, while simplified, still captures the essence of the phenomena

of interest. This framework requires (i) an idealized class of decentralized system in which

global information-processing can arise from the actions of simple, locally-connected units;

(ii) a computational task that necessitates global information processing; and (iii) an idealized
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computational model of evolution.

One of the simplest systems in which emergent computation can be studied is a one-

dimensional binary-state cellular automaton (CA) (8) — a one-dimensional spatial lattice of

N identical two-state machines (“cells”), each of which changes its state as a function only

of the current states in a local neighborhood of radius r. The lattice starts out with an initial

configuration (IC) of N cell states (0s and 1s). This configuration changes in discrete time steps

according to the CA “rule” — a look-up table mapping neighborhood state configurations to

update states. At each time step all cells examine their local neighborhoods (subject to specified

boundary conditions), consult the look-up table, and update their states simultaneously. The CA’s

radius places an upper bound on the speed of information transmission through the lattice. It

also limits the sophistication of the local dynamics: the number of look-up table entries is 22r+1.

Thus fixing r � N constrains the sophistication of a CA’s explicit information processing.

A simple-to-define computational task for CAs that requires global information-processing is

deciding whether or not the IC contains more than half 1s. We call this the �
c
= 1=2 task, with

�
c

denoting a threshold density of 1s in the input. If �0 denotes the density of 1s in the IC, the

desired behavior is for all cells to quickly change to state 1 if �0 > �c and to quickly change to

state 0 if �0 < �
c
. The �

c
= 1=2 task requires global communication, since �0 is a global property

of the entire lattice; no linear combination of local computations — such as the cells computing

the majority of 1s in their neighborhood — can solve this problem. Designing an algorithm to

perform the �
c
= 1=2 task is trivial for systems with a central controller of some kind, such as a

standard computer with a counter register or a neural network with global connectivity. But it is

difficult to design a decentralized, spatially-extended system such as a CA to perform this task,

since there is no central counter or global communication built in. It can be shown that no finite

radius CA can perform this task perfectly across all lattice sizes (9,10), but even to perform this

task well for a fixed lattice size requires more powerful computation than can be performed by a

single cell or any linear combination of cells. Since the 1s can be distributed throughout the CA

lattice, the CA must transfer information over large space-time distances (� N ), and information

from distant parts of the lattice must interact so as to perform the computation. With r � N ,

such information transmission and interaction can be accomplished only through the coordination
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of emergent high-level signals. Thus this task is well suited for investigating the ability of an

evolutionary process to design CAs with sophisticated emergent computational abilities.

One class of computational models of evolution are genetic algorithms (GAs) (11), which

evolve a population of candidate solutions to an optimization problem by propagating the most

“fit” candidates to the next generation via genetic modifications. We carried out a set of

experiments in which a GA was used to evolve one-dimensional, binary-state r = 3 CAs

(with spatially-periodic boundary conditions) to perform the �c = 1=2 task. This GA, while

highly idealized, contained the rudiments of selection and variation: crossover and mutation

worked on the genotype (the 128–bit string encoding the CA look-up table) whereas selection

was according to the fitness of the phenotype (the CA’s spatiotemporal behavior on an N = 149

cell lattice). The GA started out with an initial population of 100 strings (“rules”) randomly

generated with a uniform distribution over fraction of 1s in the string. The “fitness” of each

rule was computed by iterating the corresponding CA on 100 randomly chosen ICs uniformly

distributed over �0 2 [0; 1], half with �0 < �c (correct classification: all 0s) and half with �0 > �c

(correct classification: all 1s), and recording the fraction of correct classifications performed in

a maximum of slightly more than 2N time steps. The fittest strings in the population were

selected to survive, and were randomly paired to produce offspring by crossover, with each bit

in the offspring subject to a small probability of mutation. This process was iterated for 100

“generations” — a “run” — with fitnesses estimated from a new set of ICs at each generation.

300 runs were performed starting with different random-number seeds. Details and justification

of the experimental procedure are given in (9).

As reported previously (9,12), the GA evolution proceeded through a succession of compu-

tationally distinct epochs. On most runs the end result was one of two computational strategies:

Settle to a fixed point of all 0s (1s) unless there is a sufficiently large block of adjacent, or almost

adjacent, 1s (0s) in the IC; if so, expand that block. These strategies rely on the presence or

absence of blocks as predictors of �0. They do not count as sophisticated examples of emergent

computation in CAs: all the computation is done locally in identifying and then expanding a

sufficiently large (� 2r+1) block. After each run we computed a measure of the quality of the

best rules in the final generation: the “unbiased performance” P149;104(�), which is the fraction
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CA

(r = 3)

Rule Table

Hexadecimal Code

Symbol P149;104 P599;104 P999;104

Majority
00010117 01171777

01171777 177f7fff
�maj 0.000 0.000 0.000

GA-Discovered

Expand 1-Blocks

05054083 05c90101

200b0efb 94c7cff7
�exp 0.652 0.515 0.503

GA-Discovered

Particle-Based

10000224 41170231

155f57dd 734bffff
�11102 0.742 0.718 0.701

GA-Discovered

Particle-Based

03100100 1fa00013

331f9fff 5975ffff
�17083 0.755 0.696 0.670

GA-Discovered

Particle-Based

05040587 05000f77

03775583 7bffb77f
�100 0.769 0.725 0.714

GKL
005f005f 005f005f

005fff5f 005fff5f
�GKL 0.816 0.766 0.757

Table 1 Measured values of PN;104(�) at various N for six different r = 3 rules; the middle four discovered during different

runs of the GA. For N = 149, the standard deviation is 0.004; it is higher for larger N . �exp expands blocks of 1s; �maj

computes the majority of 1s in the neighborhood; all the other rules implement more sophisticated strategies involving particle

interactions. To recover the 128–bit string giving the CA look-up table outputs, expand each hexadecimal digit to binary. The

neighborhood outputs then are given in lexicographic order starting from neighborhood 0000000 at the first bit in the 128-bit

binary string.

of correct classifications performed by rule � within approximately 2N time steps with N = 149

over 104 ICs randomly chosen from an unbiased distribution over �. The unbiased distribution

meant that most ICs had �0 � 1=2. These are the most difficult cases, and thus PN;104(�) gives

a lower bound on other measures of a rule’s performance. The highest measured P149;104(�)

for block-expanding rules was 0:685� 0:004. Performance decreased dramatically for larger N

since the size of the block to expand and the velocity of expansion was tuned by the GA for

N = 149 (see (9)). In general, any rule that relies on spatially local properties will not scale well

with lattice size on the �c = 1=2 task. This is shown in Table 1 for a typical block-expanding

rule �exp discovered by the GA.

A major impediment for the GA was an early breaking of symmetries in the �c = 1=2 task

for short-term gain in fitness by specialization for high or low density (9,12). This and other

impediments seemed to indicate that this evolutionary system was incapable of discovering
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Figure 1 Space-time diagrams showing the behavior of two CAs, discovered by the genetic algorithm on different runs, that

employ embedded particles for the nonlocal computation required in density classification. Each space-time diagram plots lattice

configuration iterates over a range of time steps, with 1s given as black cells, 0s as white cells; time increases down the page.

Both start with the same initial configuration (�0 � 0:483). (a) �17083 correctly classifies this low-� configuration by going to

a fixed all-0s configuration by time 250 (not shown) after the gray regions dies out. (b) In contrast, CA �100 misclassifies it

by going to all 1s, despite its better average performance.

higher performance CA. However, we subsequently discovered that in seven out of 300 runs

the GA evolved significantly more sophisticated methods of emergent computation. Again, the

evolution proceeded via a series of epochs connected by distinct computational innovations. (A

detailed analysis of the evolutionary history will be presented elsewhere.) PN;104(�) values

for three values of N are shown in Table 1 for the best rules (�11102;�17083;�100) in three of

these runs. The higher PN;104(�) values and the improved scaling with increasing N indicates

a new level of computational sophistication above that of the block-expanding rules. Also given

for comparison are two human-designed CAs: �maj computes the local majority of 1s in the

neighborhood and, since it maps almost all configurations to small stationary blocks of 1s and

0s, has PN;104(�) = 0:000 for all N ; �GKL, one of the best performing rules known, has

the highest performance listed, though it was constructed not for the �c = 1=2 task but for a

study of ergodicity and reliable computation in CAs (13). Space-time diagrams illustrating the

behavior of �17083 and �100 are given in Figures 1(a) and 1(b). �100’s space-time behavior is

remarkably similar to that of �GKL (cf. (12)). Its lower performance arises from factors such

as asymmetries in the rule table.
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How are we to understand the emergent computation these more successful CAs are

performing? In previous work (14–16), we developed automated methods for discovering

computational structures embedded in space-time behavior. Like many spatially-extended natural

processes, cellular automata configurations often organize over time into spatial regions that

are dynamically homogeneous. Typically, the discovery of the underlying regularities requires

automated inference methods. Sometimes, though (e.g., Figure 1), these regions are obvious

to the eye as “domains”: regions in which the same recurring “pattern” appears. In order

to understand this phenomenon and to automate its discovery, the notion of “domain” was

formalized in (15) by adapting computation theory to CA dynamics. There, a domain’s “pattern”

is described using the minimal deterministic finite automaton (DFA) (17) that accepts all and

only those configurations that appear in the domain. Such domains are called “regular” since

their configurations are members of the regular language recognized by the DFA. More precisely,

a regular domain � is a set of configurations that on an infinite lattice is temporally-invariant,

� = �(�), and whose DFA has a single recurrent set of states that is strongly connected.

Regular domains play a key role in organizing both the dynamical behavior and the

information processing properties of CAs. Once a CA’s regular domains have been detected (i.e.,

that level of structure has been understood), nonlinear transducers (filters) can be constructed to

remove them, leaving just the deviations from those regularities. The resulting filtered space-

time diagram reveals the propagation of domain “walls”. If these walls remain spatially-localized

over time, then they are called “particles” (16). (We emphasize that such embedded particles are

qualitatively different from those exhibited by CAs that have been hand-designed to perform

computations; e.g. see (18).) Embedded particles are a primary mechanism for carrying

information (or “signals”) over long space-time distances. This information might indicate,

for example, the result of some local processing that has occurred at an early time. Logical

operations on the signals are performed when the particles interact. The collection of domains,

domain walls, particles, and particle interactions for a CA represents the basic information

processing elements embedded in the CA’s behavior — the CA’s “intrinsic” computation.

CA �17083 of Figure 1(a) has three domains
�
�0;�1;�2

	
, which are given in Table 2. There

are five stable particles f�; ; �; �; �g and one unstable “particle” f�g defined (Table 2) as walls

6



Domains

�0 = 0� �1 = 1� �2 = (10001)�

Particles (velocities) Graphics

� � �1�0 (1) � � �0�1 (0)  � �2�0 (�2)

� � �0�2
�
1
2

�
� � �2�1

�
4
3

� � � �1�2 (3)

Interactions (by type)

annihilate � +  ! ; � + �! ;

decay � ! � + � �+  ! �

react �+ � ! � � + �! 

Table 2 The domains, particles, and particle interactions that support the emergent logic in the CA (�17083) shown in Figure 1(a).

(!)� means any number of repetitions of string !. The table includes only those structures that dominate the CA’s spatiotemporal

behavior. Very infrequently occurring structures, such as the checkerboard domain �3 = (10)� and the four dislocations within

�2 are not listed since they do not contribute measurably to the CA’s classification performance. Under “Particles”, the graphic

associated with each particle provides a key to Figure 2; each particle’s velocity is given in parentheses. Note that the structure

of each particle’s graphic is determined by the nonlinear transducer. ; denotes spatial configurations without particles.

between two domains. Note that, given the CA rule code (Table 1), it can be proved that the

domains are time-invariant sets and the stable particles are spatially-localized time-invariant sets

for the corresponding CA (16). Using this knowledge, the space-time diagram of Figure 1(a)

can be filtered to remove the domains. The result, shown in Figure 2, reveals the particles

and their interactions. Table 2 lists the six particle interactions that have been identified. The

filtering analysis reveals a particle-based logic that emerges over time and supports the required

computational processing — information storage and propagation over large space-time distances,

logical operations, and so on — necessary for high fitness in approximating density classification.

Roughly, �17083 successively classifies “local” densities with a locality range that increases with

time. In regions where there is some ambiguity, signals (in the form of particles) are propagated,

indicating that the classification is to be made at a larger scale via particle interactions. Two

examples of such interactions are shown on the left portion of Figure 2 and explained in the

caption.

There are a number of constraints imposed by the “cellular” nature of CAs that the GA

balances in its evolutionary search for high fitness. First, classification of local configurations
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Figure 2 Analysis of the emergent logic for density classification in CA �17083 (Figure 1(a)). This CA has three domains, six

particles, and six particle interactions, as noted in Table 2. This figure gives the same space-time diagram as in Figure 1(a),

except that the domains have been filtered out using an 18-state nonlinear transducer constructed according to (16). The resulting

diagram reveals the particle interactions that support the long-range spatiotemporal correlation for density classification at the

associated performance level (Table 1). The particle interaction �+ � ! �, shown on the upper right, implements the “logic”

of mapping a spatial configuration representing high, low, and then ambiguous densities to a high-density signal �. Similar

detail is shown for the particle interaction � +  ! � that maps a configuration representing high, ambiguous, and then low

density to an ambiguous-density signal �.

with ambiguous density must be deferred to later times and larger spatial scales in order to

provide a context in which information is available to disambiguate the local classification.

Second, signals are required in the form of propagating particles since local operations at later

times have to be spatially local: decisions are made when particles come within an interaction

range set by the CA radius. Third, the particle interactions must be built into the look-up

table, which adds constraints that are nonlocal in the genomic representation and that must

be compatible with domain stability and particle propagation. Fourth, the particles must be

stable in order to preserve information over space-time. The result is a delicate balance that

must be maintained by the GA in a CA look-up table that supports sophisticated particle-based

information processing. Given these constraints, which are nonlocal and require specific output

bit settings in the rule table string, it is striking that the GA evolved particle-based computation

that performed nearly as well as the best-performing human-designed CA.
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The particle-based computation analysis also indicates why the CAs discovered by the GA, as

well as the human-designed CA, fail to achieve higher PN;104(�). One reason, of course, is that

the emergent logic can be incorrect. Even small errors in the particle velocities or interactions,

for example, are compounded over time and lead to misclassifications. More importantly, at

the very earliest iterations, before the CA behavior has condensed into configurations consisting

only of domains and particles, local configurations larger than the neighborhood size lead to

incorrect positioning and selection of domains. The ensuing emergent logic operates on these

errors and, even if it is correct, produces a misclassification. In this way, the analysis methods

of (15) and (16) allow us to explain how particular mechanisms in CAs lead to increased fitness

and so survivability.

From the perspective of engineering applications, the particular GA used here was not

an efficient automated designer of particle-based computation, since the rate of production of

these CAs is low, though reliable. A primary impediment is the GA’s breaking of symmetries

in early generations for short-term fitness gain. This resulted in the populations’ move to

asymmetric, low-performance block-expanding CAs. Repairing the broken symmetries required

an unlikely coordinated change in a large number of look-up table bits. In (9) we proposed

a number of improvements to the GA, including the design of GA fitness functions and

genomic representations that respect known task symmetries, but we also noted that symmetry-

breaking may be a necessary part of some evolutionary pathways. On the subset of runs on

which particle-based CAs were evolved, the GA was able to respect the symmetries necessary

for higher performance and better scaling; this result and the success of our analysis of

embedded computation are encouraging for the prospect of evolving more powerful particle-

based computational systems for real-world tasks. Moreover, in work that will be reported

elsewhere, the GA discovered perfectly performing CAs, on a high fraction of runs, that used

particle-based computation on a different task: to rapidly achieve stable global synchronization

between local processors.

The main result reported here is a simplified evolutionary process’s discovery of methods

for emergent global computation in a spatially distributed system consisting of locally interacting

processors. Despite numerous phenomena that indicate nature has been confronted by analogous
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design tasks and solved them, to date only human-designed CAs have been used for performing

such computations (cf. (19,20)). In contrast to the engineering approach of building particles

and their interactions into CAs, a key tool in our analysis was the ability to detect structures

embedded in CA spatiotemporal behavior that support emergent computation.

A simple, but general lesson was learned: when confronted with constraints, evolutionary

processes need to innovate qualitatively new mechanisms that transcend those constraints. The

locality of communication in CAs imposes a constraint on communication speed. The GA’s

innovation was to discover CAs that performed information processing over large space-time

distances using particles and their interactions — a wholly new level of behavior that is distinct

from the lower level of spatial configurations. In this way, our analysis of particle-based

computation demonstrated how complex global coordination can emerge within a collection of

simple individual actions. In a complementary fashion, our GA simulations demonstrated how

an evolutionary process, by taking advantage of certain nonlinear pattern-forming propensities

of CAs, can produce this new level of behavior through a succession of innovations that build

up the delicate balance necessary for effective emergent computation.
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