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The Evolution of First Person Vision Methods:

A Survey
Alejandro Betancourt, Pietro Morerio, Carlo S. Regazzoni, and Matthias Rauterberg

Abstract— The emergence of new wearable technologies, such
as action cameras and smart glasses, has increased the interest
of computer vision scientists in the first person perspective.
Nowadays, this field is attracting attention and investments of
companies aiming to develop commercial devices with first person
vision (FPV) recording capabilities. Due to this interest, an
increasing demand of methods to process these videos, possibly
in real time, is expected. The current approaches present a par-
ticular combinations of different image features and quantitative
methods to accomplish specific objectives like object detection,
activity recognition, user–machine interaction, and so on.
This paper summarizes the evolution of the state of the art in
FPV video analysis between 1997 and 2014, highlighting, among
others, the most commonly used features, methods, challenges,
and opportunities within the field.

Index Terms— Computer vision, egocentric vision, first person
vision (FPV), human–machine interaction, smart glasses, video
analytics, wearable devices.

I. INTRODUCTION

P
ORTABLE head-mounted cameras, able to record

dynamic high quality first person videos, have become

a common item among sportsmen over the last five years.

These devices represent the first commercial attempts to record

experiences from a first person perspective. This technological

trend is a follow-up of the academic results obtained in the

late 1990s, combined with the growing interest of the people

to record their daily activities. Up to now, no consensus has

yet been reached in the literature with respect to naming this

video perspective. First person vision (FPV) is arguably the

most commonly used, but other names, like egocentric vision

or ego-vision has also recently grown in popularity. The idea
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Fig. 1. Number of articles per year directly related to FPV video analysis.
This plot contains the articles published until 2014, to the best of our
knowledge.

Fig. 2. Examples of the commercial smart patents. (a) Google patent of the
smart glasses. (b) Microsoft patent of an augmented reality wearable device.

of recording and analyzing videos from this perspective is not

new. In fact, several such devices have been developed for

research purposes over the last 15 years [1]–[5]. Fig. 1 shows

the growth in the number of articles related to FPV video

analysis between 1997 and 2014. Quite remarkable is the

seminal work carried out by the media lab (Massachusetts

Institute of Technology) in the late 1990s and early 2000s

[6]–[11], and the multiple devices proposed by Mann [12]

who described the field with these words:

Let’s imagine a new approach to computing in

which the apparatus is always ready for use because

it is worn like clothing. The computer screen, which

also serves as a viewfinder, is visible at all times and

performs multimodal computing (text and images).

Recently, in the awakening of this technological trend,

several companies have been showing interest in this kind

of devices (mainly smart glasses), and multiple patents have

been presented. Fig. 2 shows the devices patented in 2012 by

Google and Microsoft. Together with its patent, Google also
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Fig. 3. Some of the more important works and commercial announcements in FPV.

announced Project Glass, as a strategy to test its device among

a exploratory group of people. The project was introduced

by showing short previews of the glasses’ FPV recording

capabilities, and its ability to show relevant information to

the user through the head-up display.

Remarkably, the impact of the Glass Project (which the most

significant attempt to commercialize wearable technology up

to date) is to be ascribed not only to its hardware but

also to the appeal of its underlying operating system. The

latter continues to bring a large group of skilled developers,

thus in turn making a significant boost in the number of

prospective applications for smart glasses, a phenomenon that

has happened with smartphones several years ago. On the

one hand, the range of application fields that could benefit

from smart glasses is wide and applications are expected

in areas like military strategy, enterprise applications, tourist

services [13], massive surveillance [14], medicine [15], and

driving assistance [16], among others. On the other hand, what

was until now considered as a consolidated research field,

needs to be reevaluated and restated under the light of this

technological trend: wearable technology and the first person

perspective rise important issues, such as privacy and battery

life, in addition to new algorithmic challenges [17].

This paper summarizes the state of the art in FPV video

analysis and its temporal evolution between 1997 and 2014,

analyzing the challenges and opportunities of this video

perspective. It reviews the main characteristics of previous

studies using tables of references, and the main events and

relevant works using timelines. As an example, Fig. 3 presents

some of the most important papers and commercial announce-

ments in the general evolution of FPV. We direct interested

readers to the must read papers presented in this timeline.

In the following sections, more detailed timelines are presented

according to the objective addressed in the summarized papers.

The categories and conceptual groups presented in this paper

reflects our schematic perception of the field coming from

a detailed study of the existent literature. We are confident

that the proposed categories are wide enough to conceptualize

existent methods, however, due to the growing speed of the

field they could require future updates. As will be shown in the

coming sections, the strategies used during the last 20 years

are very heterogeneous. Therefore, rather than provide a

comparative structure between existing methods and features,

the objective of this paper is to highlight common points of

interest and relevant future lines of research. The bibliography

presented in this paper is mainly in FPV. However, some

particular works in classic video analysis are also mentioned

to support the analysis. The latter are cited using italic font as

a visual cue.

To the best of our knowledge, the only paper summariz-

ing the general ideas of the FPV is [18], which presents

a wearable device and several possible applications. Other

related reviews include the following: 1) Guan et al. [19]

reviews the activity recognition methods with multiple sensors;

2) Doherty et al. [20] analyzes the use of wearable cameras

for medical applications; and 3) Mayol et al. [3] presents some

challenges of an active wearable device.

In the remainder of this paper, we summarize existent

methods in FPV, according to a hierarchical structure we

propose, highlighting the more relevant works and the tem-

poral evolution of the field. Section II introduces general

characteristics of FPV and the hierarchical structure, which

is later used to summarize the current methods according to

their final objective, the subtasks performed and the features

used. In Section III, we briefly present the publicly available

FPV datasets. Finally, Section IV discusses some future

challenges and research opportunities in this field.

II. FIRST PERSON VISION VIDEO ANALYSIS

During the late 1990s and early 2000s, the advances in

FPV analysis were mainly performed using highly elabo-

rated devices, typically proprietarily developed by different

research groups. The list of devices proposed is wide, where

each device was usually presented in conjunction with their

potential applications and a large array of sensors which

only envy from modern devices in their design, size, and

commercial capabilities. The column hardware in Table II

summarizes these devices. The remaining columns of this table

are explained in Section II-A. Nowadays, current devices could

be considered as the embodiment of the futuristic perspective

of the already mentioned pioneering studies. Table I shows the

currently available commercial projects and their embedded

sensors. Such devices are grouped into three categories.

1) Smart Glasses: They have multiple sensors, processing

capabilities and a head-up display, making them ideal to

develop real-time methods and to improve the interaction

between the user and its device. In addition, smart
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TABLE I

COMMERCIAL APPROACHES TO WEARABLE DEVICES WITH FPV VIDEO RECORDING CAPABILITIES

glasses are nowadays seen as the starting point of an

augmented reality system. However, they cannot be

considered a mature product until major challenges, such

as battery life, price, and target market, are solved. The

future of these devices is promising, but it is still not

clear if they will be adopted by the users on a daily

basis like smartphones, or whether they will become

specialized task-oriented devices like industrial glasses,

smart helmets, sport devices, and so on.

2) Action Cameras: They are commonly used by sportsmen

and lifeloggers. However, the research community has

been using them as a tool to develop methods and algo-

rithms, while anticipating the commercial availability

of the smart glasses during the coming years. Action

cameras are becoming cheaper, and are starting

to exhibit (albeit still somewhat limited) processing

capabilities.

3) Eye Trackers: They have been successfully applied to

analyze consumer behaviors in commercial environ-

ments. Prototypes are available mainly for research

purposes, where multiple applications have been

proposed in conjunction with FPV. Despite the potential

of these devices, their popularity is highly affected by

the price of their components and the obtrusiveness of

the eye tracker sensors, which is commonly carried out

using an eye pointing camera.

FPV video analysis gives some methodological and practical

advantages, but also inherently brings a set of challenges that

need to be addressed [18]. On the one hand, FPV solves

some problems of the classical video analysis and offers extra

information.

1) Videos of the Main Part of the Scene: Wearable devices

allow the user to (even unknowingly) record the most

relevant parts of the scene for the analysis, thus reducing

the necessity for complex controlled multicamera

systems [23].

2) Variability of the Datasets: Due to the increasing

commercial interest of the technology companies, a large

number of FPV videos is expected in the future, making

it possible for the researchers to obtain large datasets

that differ among themselves significantly, as discussed

in Section III.

3) Illumination and Scene Configuration: Changes in the

illumination and global scene characteristics could be

used as an important feature to detect the scene in which

the user is involved, e.g., detecting changes in the place

where the activity is taking place, as in [24].

4) Internal State Inference: According to [25], eye and

head movements are directly influenced by the person’s

emotional state. As already done with smartphones [26],

this fact can be exploited to infer the user’s emotional

state, and provide services accordingly.

5) Object Positions: Because users tend to see the objects,

while interacting with them, it is possible to take

advantage of the prior knowledge of the hands’ and

objects’ positions, e.g., active objects tend to be closer to

the center, whereas hands tend to appear in the bottom

left and bottom right part of the frames [27], [28].
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On the other hand, FPV itself also presents multiple

challenges, which particularly affect the choice of the features

to be extracted by low-level processing modules (feature

selection is discussed in detail in Section II-C).

1) Nonstatic Cameras: One of the main characteristics of

FPV videos is that cameras are always in movement.

This fact makes it difficult to differentiate between the

background and the foreground [29]. Camera calibra-

tion is not possible and often scale, rotation and/or

translation-invariant features are required in higher level

modules.

2) Illumination Conditions: The locations of the videos

are highly variable and uncontrollable (e.g., visiting a

touristic place during a sunny day, driving a car at

night, and brewing coffee in the kitchen). This makes

it necessary to deploy robust methods for dealing with

the variability in illumination. Here, shape descriptors

may be preferred to color-based features [28].

3) Real-Time Requirements: One of the motivations for

FPV video analysis is its potential of being used

for real-time activities. This implies the need for the

real-time processing capabilities [30].

4) Video Processing: Due to the embedded processing

capabilities (for smart glasses), it is important to define

efficient computational strategies to optimize battery life,

processing power, and communication limits among the

processing units. At this point, cloud computing could

be seen as the most promising candidate tool to turn

the FPV video analysis into an applicable framework

for daily use. However, a real-time cloud processing

strategy requires further development in video compress-

ing methods and communication protocols between the

device and the cloud processing units.

The rest of this section summarizes FPV video analysis

methods according to a hierarchical structure, as shown

in Fig. 4, starting from the raw video sequence (bottom) to the

desired objectives (top). Section II-A summarizes the existent

approaches according to six general objectives (Level 1).

Section II-B divides these objectives in 15 weakly dependent

subtasks (Level 2). Section II-C briefly introduces the most

commonly used image features, presenting their advantages

and disadvantages, and relating them with objectives. Finally,

Section II-D summarizes the quantitative and computational

tools used to process data, moving from one level to the other.

In our literature review, we found that existing methods are

commonly presented as combinations of the aforementioned

levels. However, no standard structure is presented, making

it difficult for other researchers to replicate existing methods

or improve the state of the art. We propose this hierarchical

structure as an attempt to cope with this issue.

A. Objectives

Table II summarizes a total of 117 articles. The articles are

divided in six objectives according to the main goal addressed

in each of them. The left side of the table contains the

six objectives described in this section, and on the right side,

extra groups related to hardware, software, related surveys, and

conceptual articles, are given. The category named particular

Fig. 4. Hierarchical structure to explain the state of the art in FPV video
analysis.

subtasks is used for articles focused on one of the subtasks

presented in Section II-B. The last column shows the positive

trend in the number of articles per year, and is plotted in Fig. 1.

Note from the table that the most commonly explored

objective is object recognition and tracking. We iden-

tify it as the base of more advanced objectives, such as

activity recognition, video summarization and retrieval, and

environment mapping. Another often studied objective is

user–machine interaction because of its potential in augmented

reality. Finally, a recent research line denoted as interaction

detection allows the devices to infer situations in which the

user is involved. Along with this section, we present some

details of how existent methods have addressed each of these

six objectives. One important aspect is that some methods use

multiple sensors within a data-fusion framework. For each

objective, several examples of data-fusion and multisensor

approaches are mentioned.

1) Object Recognition and Tracking: Object recognition

and tracking is the most explored objective in FPV, and

its results are commonly used as a starting point for more

advanced tasks, such as activity recognition. Fig. 5 summarizes

some of the most important papers that focused on this

objective.

In addition to the general opportunities and challenges of the

FPV perspective, this objective introduces important aspects to

be considered.

1) Because of the uncontrolled characteristics of the videos,

the number of objects, as well as their type, scale and

point of view, are unknown [27], [77].

2) Active objects, as well as user’s hands, are frequently

occluded.
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TABLE II

SUMMARY OF THE ARTICLES REVIEWED IN FPV VIDEO ANALYSIS ACCORDING TO THE MAIN OBJECTIVE

Fig. 5. Some of the more important works in object recognition and tracking.

3) Because of the mobile nature of the wearable cam-

eras, it is not easy to create background–foreground

models.

4) The camera location makes it possible to build a priori

information about the objects’ position [27], [28].

Hands are among the most common objects in the

user’s field of view, and a proper detection, localization,

and tracking could be a main input for other objectives.

Betancourt et al. [28] highlight the difference between hand-

detection and hand-segmentation, particularly in the frame-

work of wearable devices where the number of deployed

computational resources, directly influences the battery life

of the devices. In general, due to the hardware avail-

ability and price, hand-detection and tracking is usually

carried out using Red Green Blue (RGB) videos. How-

ever, Rogez et al. [111], [112] use a chest-mounted

RGB-D camera to improve the hand-detection and track-

ing performance in realistic scenarios. According to [49],

hand detection could be divided into model-driven and

data-driven methods.

Model-driven methods search for the best matching

configuration of a computational hand model (2-D or 3-D)

to recreate the image that is being shown in the

video [50], [111], [112], [122]–[124]. These methods are

able to infer detailed information of the hands, such as the

posture, but in exchange large computational resources, highly

controlled environments or extra sensors (e.g. Depth Cameras)

could be required.

Data-driven methods use image features to detect and

segment users’ hands. The most commonly used features for

this purpose are the color histograms looking to exploit the

particular chromaticism of human skin, especially in suitable
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Fig. 6. Some of the more important works in activity recognition.

color spaces like Hue-Saturation-Lightness and YCbCr [13],

[30], [85], [86]. Color-based methods can be considered as

the evolution of the pixel-by-pixel skin classifiers proposed in

[121], in which color histograms are used to decide whether

a pixel represents human skin. Despite their advantages, the

color-based methods are far from being an optimal solution.

Two of their more important restrictions are as follows.

1) The computational cost, because in each frame they

have to solve the O(n2) problem implied by the

pixel-by-pixel classification.

2) Their results highly influenced by significant changes

in illumination, for example, indoor and outdoor

videos [28].

To reduce the computational cost, Serra et al. [13],

Morerio et al. [30], and Li and Kitani [86] suggest the use

of superpixels, however, an exhaustive comparison of the

computational times of both approaches is still pending, and

computationally efficient superpixel methods applied to video

(especially FPV video) are still at an early stage [125]. Regard-

ing the noisy results, Serra et al. [13] and Li and Kitani [85]

train a pool of models and automatically select the most appro-

priate depending on the current environmental conditions.

In addition to hands, there is an uncountable number of

objects that could appear in front of the user, whose proper

identification could lead to development of some of the most

promising applications of FPV. An example is the virtual

augmented memory (VAM) proposed in [33], where the device

is able to identify objects, and to subsequently relate them

to previous information, experiences or common knowledge

available online. An interesting extension of the VAM is

presented in [126], where the user is spatially located using

his video, and is shown relevant information about the place

or a particular event. In the same line of research, recent

approaches have been trying to fuse information from multiple

wearable cameras to recognize when the users are being

recorded by a third person without permission. This is

accomplished in [110] and [127] using the motion of the

wearable camera as the identity signature, which is subse-

quently matched in the third person videos without disclosing

private information, such as the face or the identity of the user.

The augmented memory is not the only application of

object recognition. Pirsiavash and Ramanan [77] develop an

activity recognition method that based only a list of the used

objects in the recorded video. Despite the importance of these

applications, the problem of recognition is far from being

solved due to the large amount of objects to be identified as

well as the multiple positions and scales from which they could

be observed. It is here that machine learning starts playing

a key role in the field, offering tools to reduce the required

knowledge about the objects [69] or exploiting web services

(such as Amazon Turk) and automatic mining for training

purposes [29], [58], [128], [129].

Once the objects are detected, it is possible to track their

movements. In the case of the hands, Morerio et al. [30] use

the coordinates of center as the reference point, while others

go a step further and use dynamic models [46], [55]. Dynamic

models are widely studied and are successfully used to track

hands, external objects [56], [57], [59], [60], or faces of other

people [31].

2) Activity Recognition: An intuitive step in the hierarchy of

objectives is activity recognition, aimed at identifying what the

user is doing in a particular video sequence. Fig. 6 presents

some of the most relevant papers on this topic. A common

approach in activity recognition is to consider an activity as a

sequence of events that can be modeled as Markov chains or

as dynamic Bayesian networks (DBNs) [5], [6], [8], [34], [63].

Despite the promising results of this approach, the main

challenge to be solved is the scalability to multiple user and

multiple strategies to solve a similar task.

Recently, two major methodological approaches for activity

recognition are becoming popular: object-based and

motion-based recognition. Object-based methods aim to

infer the activity using the objects appearing in video

sequence [63], [71], [77], assuming of course that the

activities can be described by the required group of objects

(e.g., prepare a cup of coffee requires coffee, water, and

a spoon). This approach opens the door to highly scalable

strategies based on Web mining to know the objects usually

required for different activities. However, after all, this

approach depends on a proper object recognition step and on

its own challenges (Section II-A1). Following an alternative

path, during the last three years, Kitani and Okabe [73],

Ogaki et al. [80], and Poleg et al. [99] have been using the

fact that different kind of activities create different body

motions and as consequence different motion patterns in

the video, for example, walking, running, jumping, skiing,

reading, and watching movies, among others. It is remarkable

the discriminative power of motion features for this kind of

activities and the robustness to deal with the illumination and

the color skin challenges.
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Fig. 7. Some of the more important works and commercial announcements in FPV.

Activity recognition is one of the fields that has drawn

most benefits from the use of multiple sensors. This strategy

started growing in popularity with the seminal work of

Clarkson et al. [32], [34], where basic activities are identified

using FPV video jointly with audio signals. An intuitive

realization of the multisensor strategy allows to reduce the

dependency between activity recognition and object recogni-

tion, using radio-frequency identification (RFID) tags in the

objects [58], [131]–[133]. However, the use of RFIDs reduces

the applicability to environments previously tagged. The list

of multiple sensors does not end with audio and RFIDs,

it also contains inertial measurement units [62], multiple

sensors of the SenseCam1 [67], [70], GPS [29], and eye

trackers [61], [74], [78], [83], [89].

3) User–Machine Interaction: As already mentioned, smart

glasses open the door to new ways for interaction between the

user and his device. The device, being able to give feedback

to the user, allows to close the interaction loop originated by

the visual information captured and interpreted by the camera.

Due to the scope of this paper, only approaches related to

FPV video analysis are presented (we omit other sensors, such

as audio and touch panels), categorizing them based on two

approaches: 1) the user sends information to the device and

2) the device uses the information of the video to show the

feedback to the user. Fig. 7 shows some of the most important

works concerning user–machine interaction.

In general, the interaction between the user and his

device starts with intentional or unintentional command.

An intentional command is a signal sent by the user using

his hands through his camera. This kind of interaction is not

a recent idea and several approaches have been proposed,

particularly using static cameras [135], [136], which,

as mentioned in Section II-A1, cannot be straightforwardly

applied to FPV due to the mobile nature of wearable cameras.

A traditional approach is to emulate the mouse of computers

with the hands [35], [37], [124], allowing the user to point and

click at virtual objects created in the head-up display. Other

approaches look for more intuitive and technology focused

ways of interaction. For example, Serra et al. [13] develop

a gesture recognition algorithm to be used in an interactive

museum using five different gestures: point out, like, dislike,

1Wearable device developed by Microsoft Research in Cambridge with
accelerometers, thermometer, infrared, and light sensor.

OK, and victory. In [92], the head movements of the user are

used to assist a robot in the task of finding a hidden object

in a controlled environment. Under this perspective, Starner et

al. [7] and Kolsch et al. [136] combine static and wearable

cameras. Quite remarkable are the results of [7], being able

to recognize American signal language with an efficiency of

98% with a static camera and head mounted camera. As is

evident, hand-tracking methods can give important cues in

this objective [46], [137]–[139], and make it possible to use

features, such as position, speed, or acceleration of the users’

hands.

Unintentional commands are triggers activated by the

device using information about the user without his conscious

intervention, for example: 1) the user is cooking by following

a particular recipe (activity recognition), and the device could

monitor the time of different steps without the user previously

asking for it and 2) the user is looking at a particular item

(object recognition) in a store (GPS or scene recognition) then

the device could show price comparisons and reviews.

Unintentional commands could be detected using the results

of other FPV objectives, the measurements of its sensors, or

behavioral routines learned from the user while previously

using his device, among others. From our point of view, these

kinds of commands could be the next step of user–machine

interaction for smart glasses, and a main enabler to reduce the

required time to interact with the device [95].

Regarding the second part of the interaction loop, it is

important to properly design the feedback system to know

when, where, how, and which information should be shown to

the user. To accomplish this, several issues must be considered

to avoid misbehavior of the system that could work against

the user’s performance in addressing relevant tasks [42].

In this line, multiple studies develop methods to optimally

locate virtual labels in the user’s visual field, without occluding

the important parts of the scene [51], [64], [81].

4) Video Summarization and Retrieval: The main task of

video summarization and retrieval is to create tools to explore

and visualize the most important parts of large FPV video

sequences [24]. The objective and main issue is perfectly

summarized in [39] with the following sentence: we want to

record our entire life by video. However, the problem is how

to handle such a huge data. In general, existing methods define

importance functions to select the more relevant subsequences

or frames of the video, and later cut or accelerate the less
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important ones [119]. Recent studies define the importance

function using the objects appearing in the video [29], their

temporal relationships and causalities [24], or as a similarity

function, in terms of its composition, between them and

intentional pictures taken with a traditional cameras [115].

A remarkable result is achieved in [73] and [99] using motion

features to segment videos according to the activity performed

by the user. This paper is a good example of how to take

advantage of the camera movements in FPV, usually consid-

ered as a challenge, to achieve good classification rates.

The use of multiple sensors is common within this

objective, and remarkable fusions have been made using

brain measurements in [39] and [40], gyroscopes, accelerom-

eters, GPS, weather information, and skin temperature

in [43], [44], and [52], and online available pictures in [115].

An alternative approach to video summarization is presented

in [82] and [120], where multiple FPV videos of the same

scene are unified using the collective attention of the wearable

cameras as an importance function. To define whether the

two videos recorded from different cameras are pointing at

the same scene, Ben-Artzi et al. [140] use superpixels and

motion features to propose a similarity measurement. Finally,

it is significant to mention that video summarization and

retrieval has led to important improvements in the design of

the databases and visualization methods to store and explore

the recorded videos [41], [47]. In particular, this kind of

developments can be considered an important tool for reducing

computational requirements in the devices, as well as alleviate

privacy issues related with the place where videos are stored.

5) Environment Mapping: Environment mapping aims at

the construction of a 2-D or 3-D virtual representation of the

environment surrounding the user. In general, the of variables

to be mapped can be divided in two categories: physical

variables, such as walls and object locations, and intangible

variables, such as attention points. Physical mapping is the

more explored of the two groups. It started to grow in pop-

ularity with [59], which showed how, using multiple sensors,

Kalman filters, and monoSLAM, it is possible to elaborate

a virtual map of the environment. Subsequently, this method

was improved by adding object identification and location as

a preliminary stage [56], [57]. Physical mapping is one of

the more complex tasks in FPV, particularly when 3-D maps

are required due to the calibration restrictions. This problem

can be partially alleviated using a multicamera approach to

infer the depth [18], [60]. Research on intangible variables, can

be considered an emerging field in FPV. Existent approaches

define attention points and attraction fields, mapping them in

rooms with multiple people interacting [120].

6) Interaction Detection: The objectives described above

are mainly focused on the user of the device as the only

person that matters in the scene. However, they hardly take

into account the general situation in which the user is involved.

We label the group of methods aiming to recognize the

types of interaction that the user is having with other people

as interaction detection. One of the main purposes in this

objective is social interaction detection, as proposed in [23],

where Fathi et al. inferred the gaze of the other people

and used it to recognize human interactions as monologues,

discussions, or dialogues. Another approach in this field was

proposed in [93], which detected different behaviors of the

people surrounding the user (e.g., hugging, punching, and

throwing objects, among others). Despite not being widely

explored yet, this objective can be considered one of the most

promising and innovative ones in FPV due to the mobility and

personalization capabilities of the coming devices.

B. Subtasks

As explained before, the proposed structure is based on

objectives which are highly codependent. Moreover, it is com-

mon to find that the output of one objective is subsequently

used as the input for the other (e.g., activity recognition usually

depends on object recognition). For this reason, a common

practice is to first address small subtasks, and later merge them

to accomplish main objectives. Based on the literature review,

we propose a total of 15 subtasks. Table III shows the number

of articles analyzed in this survey that use a subtask (columns)

to address a particular objective (rows). It is important to

highlight the many-to-many relationship among objectives and

subtasks, which means that a subtask could be used to address

different objectives, and one objective could require multiple

subtasks. Two examples of this are the following.

1) Hand detection, as a subtask, could be the objective itself

in object recognition [30], but could also give important

cues in activity recognition [78]; moreover, it could be

the main input in the user–machine interaction [13].

2) Pirsiavash and Ramanan [77] performed object recogni-

tion to subsequently infer the performed activity.

As we reckon that their names are self-explanatory, we omit

separate explanation of each of the subtasks, with the possible

exceptions of the following.

1) Activity as a sequence analyzes an activity as a set of

ordered steps.

2) 2-D-3-D scene mapping builds a 2-D or 3-D virtual

representation of the scene recorded.

3) User personal interests identifies the parts in the video

sequence potentially interesting for the user using

physiological signals such as brainwaves [40].

4) Feedback location identifies the optimal place in the

head-up display to locate the virtual feedback without

interfering with the user’s visual field.

As can be deduced from Table III, hand detection plays an

important role as the base for advanced objectives, such as

object recognition and user–machine interaction. Global scene

identification, as well as object identification, stand out as two

important subtasks for activity recognition. More in detail, the

tight bound between the activity recognition and the object

recognition supports the idea of [77], which states that activity

recognition is all about objects. Moreover, the use of gaze

estimation in multiple objectives confirms the advantages of

the recent trend of using eye trackers in conjunction with

FPV videos. Finally, it can be noted that background

subtraction has lost some of its reputation if compared with

fixed camera scenarios, due to the highly unstable nature

of the backgrounds when observed from the first person

perspective.
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TABLE III

NUMBER OF TIMES THAT A SUBTASK IS PERFORMED TO ACCOMPLISH A SPECIFIC OBJECTIVE

C. Video and Image Features

As mentioned before, FPV implies highly dynamic changes

in the attributes and characteristics of the scene. Due to these

changes, an appropriate selection of the features becomes

critical to alleviate the challenges and exploit the advantages

presented in Section II. As is well known, feature selection is

not a trivial task, and usually implies an exhaustive search in

the literature and extensive testing to identify which method

leads to optimal results.

The process of feature extraction is carried out at different

levels, starting from the pixel level, with color channels of the

image, and subsequently extracting more elaborated indicators

at the frame level, such as saliency, texture, superpixels,

gradients, and so on. As expected, these features can be used

to address some of the subtasks, such as object recognition

or scene identification. However, they do not include any

kind of dynamic information. To add dynamic information

in the analysis, different approaches can be followed, for

example, analyzing the geometrical transformation between

two frames to obtain image motion features, such as optical

flow, or aggregating frame-level features in temporal win-

dows. Usually, dynamic features tend to be computationally

expensive, and are therefore usually applied to objectives in

which the video is processed once the activities have finished.

In particular, interesting is the method presented in [125],

which uses the information of the superpixels of the previous

frame to initialize and compute the current frame superpixels,

thus reducing the computational complexity of the algorithm

by 60%.

Table IV shows the most commonly used features in FPV

to address a particular subtask. The features are listed in

the rows and the subtasks in the columns. Note that color

histograms are by far the most commonly used feature for

almost all the subtasks, despite being highly criticized due

to their dependence on illumination changes. Another group

of features frequently used for several subtasks is image

motion. Some of its most remarkable results are for activity

recognition in [73] and [99], for video summarization in [119],

and recently as the input of a convolutional neural network

to create a biometric sensor that is able to identify the

user recording the video in [127]. The use of feature point

descriptors (FPDs) is also worth noting. As expected, they

are popular for object identification, but it is also remarkable

their application to identify relevant places, such as touristic

hotspots [15], [66], [72]. Note from the table that the dynamic

objectives like activity recognition and video summarization

are the ones which take the most advantage of the motion

features, while object recognition is mainly based on frame

features, such as FPD and color histograms.

From our previous studies in hand detection and hand

segmentation using multiple features and superpixels, we want

to point out that color features are a good approach, partic-

ularly if a suitable color space is exploited [30]. We found

that low-level features, such as color histograms, could help

to reduce the computational complexity of the methods and

get close to real-time applications. On the other side, under

large illumination changes, in [28], we highlight how color-

based hand segmentators could introduce and disseminate in

the system noise created by hands misdetections. To alleviate

this problem, we used shape features, such as Histogram of

Oriented Gradients (HOG), to prefilter wrong measurements

and improve the classification rate of the overall system.

The two empty columns in Table IV can be explained as

follows: activity as a sequence is usually chained with the

output of a short activity identification [11], [61], [72], whereas

identification of the user posture is accomplished in [5] without

employing visual features, but using GPS and accelerometers.

D. Methods and Algorithms

Once that features are selected and estimated, the next step

is to use them as inputs to reach the objective (outputs).

At this point, quantitative methods start playing the main role,

and as expected, an appropriate selection directly influences
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TABLE IV

NUMBER OF TIMES THAT EACH FEATURE IS USED IN TO SOLVE AN OBJECTIVE OR SUBTASK

the quality of the results, ultimately showing whether the

advantages of the FPV perspective are being exploited,

or whether the FPV-related challenges are impacting the objec-

tives negatively. Table V shows the number of occurrences

of each method (rows) being used to accomplish a particular

objective or a subtask (columns).

The table highlights classifiers as the most popular tool

in FPV, which is commonly used to assign a category to

an array of characteristics (see [141] for a more detailed

survey on classifiers). The use of classifiers is wide and varies

from general applications, such as scene recognition [69],

to more specific, such as activity recognition given a set of

objects [78]. In particular, we found that the most used are

the support vector machines (SVMs) due to their capability

to deal with nonseparable nonlinear multilabel problems using

low computational resources. On the other hand, SVMs require

large labeled training sets which restricts the range of potential

applications.

In our previous works, we performed a comparison of the

performance of multiple features (HOG, GIST, and color)

and classifiers (SVM, random forest, random threes) to solve

the hand-detection problem [28]. Our conclusion was that

HOG–SVM was the best performing combination, achieving

a classification rate of 90% and 93% of true positives and true
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TABLE V

MATHEMATICAL AND COMPUTATIONAL METHODS USED IN OBJECTIVE OR EACH SUBTASK

negatives, respectively. Another group of methods commonly

used are clustering algorithms due to its simplicity, compu-

tational cost, and small requirements in the training datasets.

Despite their advantages, clustering algorithms could require

postprocessing analysis of the results to endow them with

human interpretation.

Another promising group of tools are the probabilistic

graphical models (PGMs), which can be interpreted as a

framework to combine multiple sensors and chain results

from different methods in a unique probabilistic hierarchical

structure (e.g., to recognize the object and subsequently use

it to infer the activity). DBNs are a particular type of PGMs,

which include time in their structure, in turn making them

suitable for application in video analysis [142]. As an example,

DBNs are frequently used to represent activities as sequences

of events [5], [6], [8], [34], [63]. It is common to find that

particular methods, such as Dirichlet process mixture models,

are presented in their PGM notation, however, given the

promising recent results achieved in activity recognition and

video segmentation, we decided to group them separately.

As stated in Section II-C, there is a large number of features

that can be extracted for FPV applications. A common practice

is to mix or chain multiple features before using them as

input of a particular algorithm (Table V). This practice usually

results in extremely large vectors of features that can lead to

computationally expensive algorithms. In this context, the role

of feature encoding methods, such as bag-of-words (BoWs),

is crucial to control the size of the inputs. We highlight the

importance that some authors are giving to this tool, which,

despite not being an automatic strategy like linear discriminant

analysis and principal components analysis, can nevertheless

help to include human intuition in the analysis. As an example,

Matsuo et al. [97] use BoW in activity recognition taking into

account the presence, level of attention, and the role of the

objects in the video.

The use of machine learning methods (e.g., classifiers,

clustering, and regressors) introduces an important question

to the analysis: how to train the algorithms on realistic data

without restricting their applicability? This question is widely

studied in the field of artificial intelligence, and two different

approaches are commonly followed, namely, unsupervised

and supervised learning [143]. Unsupervised learning requires

less human interaction in training steps, but requires human

interpretation of the results. In addition, unsupervised methods

have the advantage of being easily adaptable to changes in

the video (e.g., new objects in the scene or uncontrolled

environments [62]). The most commonly used unsupervised

method in FPV are the clustering algorithms, such as k-

means. The best performing superpixels are the result of an

unsupervised clustering procedure applied over a raw image

[144]. In [125], we proposed an optimization of the Simple

Linear Iterative Clustering superpixels, and later in [145], we
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TABLE VI

CURRENT DATASETS AND SENSORS AVAILABILITY

introduced a new superpixel method based on neural networks.

The proposed algorithm is a self-growing map that adapts

its topology to the frame structure taking advantage of the

dynamic information available in the previous frames.

Regarding the supervised methods, their results are easily

interpretable but commonly imply higher requirements in the

training stage. As an example, at the beginning of this section

we highlighted some of the applications of SVMs. Supervised

methods use a set of inputs, previously labeled, to parameterize

the models. Once the method is trained, it can be used

on new instances without any additional human supervision.

In general, supervised methods are more dependent on the

training data, fact which could work against their perfor-

mance when used on newly introduced cases [23], [24], [29],

[58], [62], [77], [146]. To reduce the training requirements,

and take advantage of the useful information available on

Internet, some authors create their datasets using services

like Amazon Mechanical Turk [29], [128], automatic Web

mining [58], [129], or image repositories [115]. We named

this practice in Table V as common sense.

Weakly supervised learning is another commonly used

strategy, considered as a middle point between supervised

and unsupervised learning. This strategy is used to improve

the supervised methods in two aspects: 1) extending the

capability of the method to deal with unexpected data and

2) reducing the necessity for large training datasets. Following

this trend, Karaman et al. [15] and Dovgalecs et al. [66]

used bag-of-features (BoFs) to monitor the activity of people

with dementia. Later, Fathi et al. [69], [71] used multiple

instance learning to recognize objects using general categories.

Afterward, Aghazadeh et al. [72] used BoF and vector of

locally aggregated descriptors to temporally align a sequence

of videos. Eventually, let us mention deep learning, a relatively

recent approach which combines supervised and unsuper-

vised learning techniques in a unified framework, where

low-level significant features are learned in an unsupervised

fashion [147].

III. PUBLIC DATASETS

To support their results and create benchmarks in

FPV video analysis, some authors have provided their datasets

for public use to the academic community. The first publicly

available FPV dataset is released in [49]. It consists of a

video containing 600 frames recorded in a controlled office

environment using a camera on the left shoulder, while the
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user interacts with five different objects. Later, Philipose [27]

proposed a larger dataset with two people interacting

with 42 object instances. The latter is commonly considered

as the first challenging FPV dataset because it guaranteed

the requirements identified by [9]: 1) scale and texture vari-

ations; 2) frame resolution; 3) motion blur; and 4) occlusion

by hand.

Implicitly, previous sections explain some of the main char-

acteristics of FPV videos. In [148], these characteristics are

compared for several FPV and third person vision datasets and

their classification capabilities are evaluated. The authors reach

a classification accuracy of 80.9% using blur, illumination

changes, and optical flow as input features. In their study, they

also found a considerable difference in the classification rate

explained by the camera position. The authors concluded that

the more stable the camera, the less blur, and the motion,

and then the less discriminative power of these features.

We highlight this difference as an important finding because

it opens the door to an interesting discussion concerning

which kind of videos, based on quantitative measurements,

should be considered as FPV. Extra evidence about the role

of the nonwearable cameras, such as hand-held devices when

they are used to record from a first person perspective, is

still pending. Our intuition points that, despite having some

of the challenging characteristics of wearable cameras like

mobile backgrounds and unstable motion patterns, hand-held

videos would drastically differ in terms of features compared

in [148].

Table VI presents a list of the publicly available datasets,

along with their characteristics. Of particular interest are

the changes in the camera location, which have evolved

from shoulder based to the head based. These changes are

clearly explained by the trend of the smart glasses and action

cameras (Table I). Also noticeable are the changes in the

objectives of the datasets, moving from low level, such as

object recognition, to more complex objectives, such as social

interaction and user–machine interaction. It should also be

noted that less controlled environments have recently been

proposed to improve the robustness of the methods in realistic

situations. To highlight the robustness of their methods, several

authors evaluated them on Youtube sequences recorded using

goPro cameras [73].

Another aspect to highlight from the table is the availability

of multiple sensors in some of the datasets. For instance,

the Kitchen dataset [62] includes four sensors, the Georgia

Tech Egocentric Activities approach [78] includes eye tracking

measurements, and the egocentric Intel/Creative [111] was

recorded with an RGB-D camera.

IV. CONCLUSION AND FUTURE RESEARCH

Wearable devices, such as smart glasses, will presumably

constitute a significant share of the technology market during

the coming years, bringing new challenges and opportunities

in video analytics. The interest in the academic world has

been growing to satisfy the methodological requirements of

this emerging technology. This survey provides a summary

of the state of the art from the academic and commercial

point of view, and summarizes the hierarchical structure of

the existent methods. This paper shows the large number of

developments in the field during the last 20 years, highlighting

main achievements and some of the upcoming lines of study.

From the commercial and regulatory point of view, impor-

tant issues must be faced before the proper commercializa-

tion of this new technology can take place. Nowadays, the

privacy of the recorded people is one of the most discussed

ones, as these kinds of devices are commonly perceived as

intruders [17]. Other important aspects are the legal regulations

depending on the country, and the intention of the user to

avoid recording private places or activities [113]. Another hot

topic is the real applicability of smart glasses as a massive

consumption device or as a task-oriented tool to be worn

only in particular scenarios. In this field, the technological

companies are designing their strategies to reach out to specific

markets. As an illustration, recent turn of events has seen

Google move out of the glass project (originally intended

to end with a massively commercialized product), to target

the enterprise market. Microsoft, on the other hand, recently

announced its task-oriented holographic device HoloLens

embodied with a larger array of sensors.

From the academic point of view, the research opportunities

in FPV are still wide. Under the light of this bibliographic

review and our personal experience, we identify four main

hot topics.

1) Existing methods are proposed and executed in previ-

ously recorded videos. However, none of them seems to

be able to work in a closed-loop fashion, by continuously

learning from users’ experiences and adapt to the highly

variable and uncontrollable surrounding environment.

From [149] and [150], we believe that a cognitive

perspective could give important cues to this aspect and

could aid the development of the self-adaptive devices.

2) The personalization capabilities of smart glasses open

the door to new learning strategies. Incoming methods

should be able to receive personalized training from the

owner of the device. We have found out, for instance,

that this kind of approach can help alleviate problems,

such as changes in the color skin models from different

users [30] in a hand detection application. Indeed, color

features, as stressed in Section IV, have proven to be

extremely suitable to be exploited in this field.

3) This survey focuses on methods for addressing tasks

accomplished mainly by one user coupled with a single

wearable device. However, cooperative devices would be

useful to increase the number of applications in areas,

such as environment mapping, military applications,

cooperative games, sports, and so on.

4) Finally, regarding the real-time requirements, impor-

tant developments should be made to optimally com-

pute FPV methods without draining the battery. This

must be accomplished both from the hardware and the

software side. On the one hand, progress still needs

to be made on the processing units of the devices.

On the other, lighter, faster, and better optimized meth-

ods are yet to be designed and tested. Our personal

experience lead us to explore fast machine learning
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methods [28] for hand detection, in the trend highlighted

by Table V, and to discard standard features such

as optic flow [30] because of computational restric-

tions. Promising methods in standard computer vision

research, such as superpixel methods, were built from

scratch in [145] to make them faster and better suited

for video analysis [125]. Eventually, important cues to

the problem of computational power optimization may

also be found in cloud computing and high-performance

computing.
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