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Abstract

We propose a numerical iterative method to account for the
evolutions of the gaugino masses (EGM). The effect of these evolutions on
the most exhaustive model of SUSY breaking is presented. From above
21 TeV, the one-6 lower bound for SUSY breaking is brought down by
more than two orders of magnitude. The model without EGM needed two-0
to reach the Z0-mass range. The same model with EGM needs only one-G to
reach the same level. The conclusion is that the SUSY threshold can be
anywhere, including within the mass range where LEP I, HERA, LEP 1l
and other colliders are working or planning to work.
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1. Introduction

We first review the status of SUSY in order to focus the main problem of
concern in this exciting field of particle physics. Then we choose what
appears at present to be the "best model" for the SUSY threshold
predictions. A numerical iterative method to account for the evolution of the
gaugino masses is discussed, together with its consequences on the "best
model" for SUSY threshold predictions. Finally, we present the conclusion
on the new lower bound for the light SUSY threshold: it can be anywhere,
including in the mass range where LEP I, HERA, LEP II and other colliders
are working or planning to work in the near future. Claims based on a
partial and restricted use of our present experimental and theoretical
knowledge are not very meaningful.

2. Status of SUSY: a supersynthesis

One of the central problems in particle physics is to establish if SUSY exists.
From the theoretical viewpoint, there are good basic motivations for its
existence. Historically, supersymmetry [1]-[4] has given rise to supergravity
[5]; this produced superstring theory, which has no-scale supergravity as
infrared solution [6]-[9]. Thus supersymmetry breaking can be produced
dynamically, via "radiative effects" [10] [11]. At this point, the link with
electroweak breaking appears natural [7], if we want to avoid that the
physics at energies near the Fermi scale is destabilized by the Planck energy
scale [12]-[16]. On the other hand, if SUSY exists, the crucial problem is to
understand if it is possible to predict where the threshold for SUSY particles
lies. There are good reasons why this threshold should not be very high in
energy. Already the 1 TeV level implies "fine tuning”. If supersymmetry is
the solution to "fine tuning”, the superpartners at 1 TeV are already at the
limit for "naturalness”. From the theoretical viewpoint, a nice feature of
SUSY is that it allows a better convergence [17] of oy, a2, 0.3 towards a
common point.

What about experimental data? They are of two distinct classes. The direct
search for SUSY particles and the measurements of those quantities which
are sensitive to the existence of SUSY. In the spring of last year, some
authors decided to choose the three couplings o1, 02, 03 as the parameters to
work out consequences on the existence of SUSY. They worked out the
evolution of o, o, a3 using one of the possible solutions of the coupled
equations for o, o2, 3. Moreover, for o3 they adopted the result of a
single experiment [18] instead of the world average; furthermore, the
minimum confidence level (i.e. one ¢) was taken to study the convergence



of a1, 0p, o3. These authors concluded that the SUSY threshold was
expected to be in the TeV range [19]. There was no reason to choose only
one experimental result for 3. Nor the one-G level. Moreover, the solution
of the coupled equations for the evolution of o, 02, 03 was not the only
possible one.

Using the world-average value for o3, taking into account all known
solutions of the coupled equations for o1, 02, &¢3, introducing a new
numerical solution (likely to be the best) and working out the two-G level
of confidence, we showed [20] that the goodness in the convergence of 0,
oz, 03 allowed the SUSY threshold to be in a very wide range: from GeV to
PeV.

Following our work, the same authors later [21] adopted a world average
value for o3, a numerical solution for the coupled equations, as previously
done by us [20], but unfortunately using one-c level of confidence to keep
claims on the SUSY threshold. These claims are still unjustified since they
are derived from "compatibility” considerations and are far from being
"predictions".

The first work where a model has been built in order to attempt a prediction
for the SUSY threshold was published soon after our work [20] by Ellis et
al. [22] [23]. The conclusion of this paper was that, taking into account all
known data with their errors and making all possible reasonable estimates of
the unknowns, the SUSY threshold is, at the one-o level of confidence,
predicted to be:

mip =21 TeV. (1)

Furthermore, in order to get this threshold in the Z%9-mass range, two
standard deviations are needed. This produced a lot of interest, because it
was the result of the most exhaustive model ever attempted for SUSY
threshold predictions: the best model. Discouragement affected a large
physics community engaged in the search for SUSY particles [24]-[39]. For
this reason, we decided to study this model [22] [23], trying to contribute to
its improvement.

In the present work, we show that improvements are possible. In fact, using
the same range of experimental and theoretical uncertainties, the above
limit (1) can go below the Z% mass, for example

mp = 45 GeV, (2)



thus giving a good motivation for further searches in the low-energy
domain of LEP I. And taking out of despair those physicists (including some
of us) who are planning not only to continue the search for SUSY particles
at LEP, but also to go on at HERA and LEP II.

Our conclusion is that, on the basis of the present experimental and
theoretical knowledge, there is no lower bound for the SUSY threshold,
even at the one-o level. Claims for the SUSY threshold based on a partial
and restricted use [21] of our experimental and theoretical knowledge are
not very meaningful.

3. The SUSY threshold: two problems

Predicting where the SUSY threshold could be corresponds to facing at least
two problems: the structure of the SUSY spectrum and the evolution of the
masses involved. Many examples exist where a unique SUSY-breaking
effective mass has been chosen, thus neglecting the effect of the mass
spectrum of the various sparticles. To assume that all sparticles have the
same mass is unphysical. Moreover, the evolution of these masses cannot be
neglected. In the next chapter we introduce a numerical method in order to
deal with these two problems: the spectrum and the evolution of the gaugino
(g and W) masses involved in the light threshold for SUSY breaking.

4. The evolution of the gaugino mass spectrum and
its effect on the lower bound for the SUSY threshold

We chose a model where the gauge couplings satisfy evolution equations
with the strong Grand Unification boundary conditions:

o3(mgut) = o2(mgur) = ou(mgur) = OGuT (3)
supplemented by the unification condition for the gaugino masses:
mg(mgur) = m(MguT) = Mip. (4)

The evolution of the gaugino masses, mg and mg, is given by the coupled
equations [40]:
o3(my)
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For the evolution of o3 and o we use the one-loop approximation [41]-[43]:
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The above formulae (5a)-(6¢) are based on an approximate treatment of the
threshold. This is justified, since we are computing corrections to genuine
threshold parameters, i.e. mg and mg.

Note that renormalization group calculations give approximately [23]:

mg = 2.7 myp (7a)
my = 0.79 myp. (7b)

But these proportionality factors cannot stay constant. When the gaugino
masses increase, 02 and o3 evolve and the net effect of this evolution is a
dumping on the expected increase. The mechanism of this self-dumping
works as follows. Consider for example eq. (5a). For a large value of myp,
there will be an increase of my which would scale with my if
o3(mg)/acut(mi) would stay constant. This is not the case. When mg
increases, 03(myg) will decrease, thus dumping the increase of mz. On the
other hand, mj, is proportional, as we will see later [eq. (8)], to a positive
power of a3(my), therefore an increase of my., inducing a decrease of
o3(my), will self-consistently dump the initial increase of myp,.



We have elaborated a program which, by iteration, calculates sequentially
the set of SUSY masses (mjy, mg, mg) until it reaches a set of convergent
solutions. We proceed as follows. The starting points are the values of
(0GUT)p, O3(Mz), §in20(mz), dem(mz), F(X), and (mgut)p, M7, My, myy2 [see
table 1 and formula (11)]. Using the one-loop approximation (6a), (6b) and
(6¢), we evaluate oi3(my), 0a(mg;) and ogut(myp). The next step is the use
of the coupled equations (5a), (5b) and (5c) to work out my and mg. The
last equation to be used is [23]:

log(12) = 1?:; ) [ 0.2029 +%°‘§—“%Z—;_ Sin20f7s(mz) + Ar(heavy) | +
Z cm Z 3 Z
~ 9 100(™r) — 3 10e (™) — 'y
+ fyw) - 7 Tog () — g toe(() - 3108 () +
_0507) \ g0 (_2MW)
T log(aGUT(ml/Z ) 8 log(aGUT(ml/Z) 8)

which allows us to work out the value of mys. These values for mz, my,
myy, are the new inputs for the next iteration. We find that after less than
100 iterations the values for my, mg, mip converge towards a stable
solution: this is the result of the evolutions of the gaugino masses (EGM).
The details of this work will be published elsewhere [44].

Here we will limit ourselves to the main steps which allow the derivation of
(8). This will illustrate the exhaustive nature of the model [23] chosen for
SUSY-breaking predictions.

Let us start with sin205f5(mz), which can be written as follows [23]:

7T0em(mz)
1504(mz)

+ Ar(heavy) + Ogch + Ar(light). 9)

sinZ0ys(mz) = 0.2 + + 0.0029 +

The first two terms in (9) are the well-known one-loop formula. The third
matches numerically the two loops [22] [23]. The sum of these two numbers,
0.2029, is the first term in (8). The term Ar(heavy) stands for the
contribution of the GUT superheavy mass fields [45]. Following Ellis et al.
[23], it will be neglected: in fact any contribution from Ar(heavy) can only
increase the lower bound for mj,. The effects of the conversion of the
renormalization schemes are contained in 8: this term depends on the way
the threshold matching is treated. At the foreseen level of precision for



sin20, this term can be neglected, even if it is straightforward to account for
it numerically. The term At(light) accounts for the threshold effects and has
a lot of physics in it. Different, contradictory formulations exist in the
literature. We have worked on a few of them [22] [23] [46], using the old-
fashioned method of determinants, and checking their 3-function structure.
We agree with only one of the various formulations for Ar, namely that
given in [23]. This reads:

: - Oem(mz) [ 28 a3(m§') (miyp2)y\ _
Ar(light) 20m 3 08 ( oGur(mip) )

32 (mg)  (mip)
- oa(gzie ) -w) -4

-3 log(ln—‘—) + S log(;n;—l;) -3 log(rrr;l—g) +2 log(@m%) -

———1 g(TL %—glog(ﬁm';—z)}. (10)

To extract useful information from (10), it is necessary to include a
spectrum for the gauginos [40] and the squarks—sleptons [47] which can be
expressed in terms of two universal SUSY-breaking parameters: mgand
mys. The part concerning the squarks and sleptons, i.e. the last five terms in
(10), is a complete representation of SUSY-SU(5) and therefore enjoys, at
one-loop, a scale-invariance property. Owing to this approximate scale
invariance, the contribution of the last five terms in (9) is small. It is
synthesized by f(y,w) in (8) and a plausible estimate has been worked out
[23]: (0.2 £ 0.2). Compared with other uncertainties in the accepted ranges
of unknown masses and parameters, this contribution is small. The first two
terms in (10) allow us to extract log(m;,;/mz) versus my and my, i.e. the
basic equation (8), which can be rewritten as follows:

log(22) = [ k00 £ 4+ 710g( %) - 810g(%TP) |

Notice that in formula (11) and from now on Oyt = Ogut(mi).

The function F(X), with its error A, synthesizes, in this field of physics, all
our knowledge (experimental data and theoretical estimates with their
limits), except the effects due to the EGM.

In order to proceed further, we need the numerical expression for (11).
Following Ellis et al. [23], this 1s:



log(T2) = [ 1096 +73+6.9+0.3 Loa+02+08] +
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The value 10.96 corresponds to the "central value" of F(X), from
experimental data and theoretical estimates of the unknown quantities
entering in (8). The first three errors are related to the experimental
measurements of sin20, o3 and Oem at the Z0 mass. The last three correspond
to theoretical uncertainties. The focal point of our work is to compute the
last two terms in (12). They represent the contribution to mj,; of the
evolutions of the gaugino masses, i.e. the EGM effect.

So far, only the evolution of the couplings (a1, 02, 03) has been accounted
for in dealing with SUSY threshold problems, not the evolution of the
masses. In order to see the effect of this evolution, we proceed to a
straightforward comparison with the "best model" [23], so far the most
exhaustive. To this end, we take exactly the same input values, errors,
treatment of errors, plausible ranges of unknown parameters such as the
mo/my; ratio, the off-diagonal elements in the stop mass matrix, the
treatment of the two Higgs doublets and the theoretical ranges of p and my
with their central values: all this in order to parallel the predictions of [23].
This is why we start with formula (8) above and use its numerical
expression (12).

In order to calculate the evolutions of the gaugino masses, the value of F(X)
is needed as an input to our iterative process (see table 1).

As the experimental and theoretical knowledge will improve, A in (11)
will become negligible. At present it is so large that it can shift the "central
value" quite a lot.

In order to estimate the range of variation for F(X) we follow Ellis et al.
[23], and proceed accordingly.

The theoretical uncertainties are added all together with their positive or
negative signs, respectively; thus we have:

o*t (theoretical) = +1.3
o~ (theoretical) = —4.3.



The experimental errors are added in quadrature. The result is:
16 (experimental) = + 10.05.

The one-c level is obtained, combining experimental errors and theoretical
uncertainties, as follows:

lot = o+ (theoretical) + ¢ (experimental) = +11.35
lo =

16— = 6~ (theoretical) — ¢ (experimental) = —14.35.

For the two-G level, the theoretical uncertainties are taken to be the same.
The results are summarized in table 2. Within 1o, the "central value" of
F(X) = +10.96 in (11) and (12), can be as high as +22.31 and as low
as —3.39.

The evolution of the gaugino masses depends on ¢i3(my) and ox(mg). The
variation of these couplings versus the input values for F(X) is reported in
fig. 1. For example, if we compute, with our iterative method, the values of
o3 and 0, using as fixed input the "central value" of F(X), the results are:

a3(mg) _

o = 1340 (13a)
o(my)

o = 0922. (13b)

As a consequence, the EGM effect, i.e. the contribution of the EGM to my,
18:

oz(my o (mg)
(EGM)F(X) central value — 7 log(ﬁ) - ( aGUvTV ) 2.70. (14)

This value (14) should be compared with the result [23]:

7 log(%2MD)) _ g log (%2 0) = g.84, (15)

It follows that the estimates for m;, with and without the corrections for the
evolutions of gaugino masses (EGM) are in the ratio:



(RO _ exp(g 84 — 2.70) = 4.64 X 102 (16)
wit

The result of Ellis et al. [23] for the one-c lower bound of SUSY threshold
was:

ith EGM
(1) iower bound. = 21 TeV. (17)

Using our correction, the new value is:

ith EGM
(m 1/2)1v(:,\l)\trer bound — 45 GeV. (1 8)

The EGM effect, as mentioned above, depends on the experimental and
theoretical knowledge, synthesized in the function F(X). The smaller £A, the
better we can estimate the EGM effect. At present, *A is quite large, as
shown in table 2. We report in fig. 2 the EGM effect versus the allowed
input values for F(X). The higher are the masses of the gauginos, the
smaller is the correction for the evolutions of these masses. If these masses
are very high, there is not much to evolve before reaching the unification
limit. This trend is present in fig. 2, where at high F(X) values the EGM
effect is minimum. In fact, high F(X) corresponds to high energy.

Apart from the EGM effect, the result (18) followed the method, adopted by
Ellis et al. [23], of using the "central value" for F(X) and then subtracting
one standard deviation. The introduction of the EGM effect allows different
possibilities to reach the —10— level for the m;p lower bound.

For example, if the input [F(X)-A] is taken to compute the gaugino
evolution and no subtraction of 16~ is applied to m;,, the m;,; lower bound
is found to be at 1.9 TeV. On the other hand, if the evolution is computed
taking as input [F(X)+A] and the subtraction of 26~ is applied to myp, the
m1,2 lower bound goes again below the Z0-mass range. So if the search is
for a lower bound, the result is that within 1o, this is below the Z0 mass.
Without the EGM effect [23], in order to go below 21 TeV and reach the
Z0-mass range, two standard deviations are needed.

Figure 3 shows the range where the new lower bound of the SUSY
threshold is predicted to be.



5. Conclusions

The evolution of the gaugino masses should be taken into account when
dealing with the problem of predicting where the lower bound for SUSY
breaking is expected to be. We have introduced a numerical method of
iteration to deal with the evolution of the involved masses. We have shown
that this correction is not negligible. When applied to the "best model” for
SUSY -breaking predictions, it produces a decrease of more than two orders
of magnitude in the lower bound of the SUSY breaking threshold. Already
at the one standard deviation level of confidence, the predicted lower bound
for SUSY breaking is below the Z° mass.

We emphasize that all experimental and theoretical knowledge in SUSY
physics is included in the model adopted. Models based on a partial and
restricted use of experimental and theoretical knowledge are not very
meaningful. Now a comment. The real problem is the discovery of the first
example of a SUSY particle or of a clear SUSY effect. Experimental
searches should be encouraged, incorrect claims for a high SUSY threshold
[19] stopped, and attention concentrated on the solution of the real problems,
which are very numerous: both in the technological and in the theoretical
areas.

10



TABLE 1

The inputs of the numerical iterative solution of the coupled
equations for the evolutions of the gaugino masses.
For details, see Ref. [20].

ARBITRARY INPUTS

my, My, 172

INPUTS FROM DATA (EXPERIMENT AND THEORY)

[os(mz)] " = 8.85
[Cem(mz)] ™ = 127.9

sinZ0 (mz) = 0.2331

1 3 12
=— +
20 [aem(mZ) oi3(mz)

(CEN ] =245

o= mz exp [ (o~ S| =

=155x%10'° GeVv

Allowed range for F(X)
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TABLE 2

Experimental errors combined with theoretical uncertainties and the values
of [F(X) £ A] and [F(X) = A"] corresponding to 16 and 20, respectively.

+11.3 +22.31
lo = FX)x A=
-14.3 - 3.39
+21.4 +32.36
20 = FX)xA'=
-24 .4 -13.44
[F(X)]central value ~ +10.96
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Figure captions

Fig. 1:

Fig. 2:

Fig. 3:

The values of as(mjp)/ogur and cx(mg)/acur versus F(X). The
function F(X) represents all our knowledge in SUSY physics, i.e.
experimental data and theoretical estimates of the unknowns. The
range where F(X) values lie depends on the experimental errors
and the theoretical uncertainties. At present, within one ¢, F(X)
can be in the range from +22.31 to —3.39. The two-G limits are
from +32.36 down to —13.44. However for very negative values
of F(X) the formula allowing predictions for the lower bound of

the SUSY threshold needs to be reconsidered.

Showing the contribution to log(mj;/mz) from the evolutions of
the gaugino masses, i.e. the so-called EGM effect, as computed
with our numerical iterative method. The EGM effect depends on
the input value for F(X), the function which represents all
knowledge on SUSY (experimental data and theoretical estimates)

as discussed in the text.

Predictions for SUSY-threshold lower bound, with and without
corrections for the evolutions of the gaugino masses (EGM). The
grey range indicates the physics troubles when the lower bound

for SUSY threshold is too low, as discussed in the text.
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