
Geneticists have long appreciated the dual nature of
duplicated sequences as sources of evolutionary innova-
tion and regions of genomic instability. Muller et al.
(1936), Bridges (1936), and Sturtevant (1925) were
among the first to recognize the role duplicated sequences
have in both phenotype and genetic instability by their
association of unequal crossing-over of the Bar locus in
Drosophila and the eye-reduction phenotype. The fre-
quency and phenotypic consequences of new mutations
among tandem duplicates were noted by Bridges in 1936
when he commented, “The production of Bar-double and
of Bar-reverted is seen to be the insertion of this extra
section twice, or conversely, its total loss—both presum-
ably by a process of unequal crossing-over. A remarkable
peculiarity of the mutant is that occasionally the homozy-
gous stock gives rise to a fly indistinguishable in appear-
ance and genetic behavior from wild-type.” Ohno
high lighted the importance of duplication in the “birth” of
new genes during evolution. To Ohno, the process of
duplication liberated genes from the constraint of ances-
tral function, allowing new mutations to give rise to mod-
ified or novel function. This was an extension of Muller’s
dictum “all life from pre-existing life…and every gene
from a pre-existing gene” (Muller et al. 1936). Ohno
posited that the origin of vertebrate complexity lies in the
large whole-genome duplications providing a burst of
functional redundancy and subsequent specialization
(Ohno et al. 1968). 
It follows that if one is interested in areas of rapid evo-

lutionary change and the discovery of genes important in
the specification of the human condition, then the

recently duplicated regions of our genome represent fer-
tile areas of investigation (Eichler 2001). The study of
these regions has revealed unexpected complexities in the
evolution of our genome, led to the identification of novel
human/great ape genes, and provided a road map for the
discovery of new mutations associated with a wide range
of pediatric and adult-onset disease. Although the
sequencing of entire genomes has accelerated at a break-
neck pace, sequencing of recently duplicated regions of
the genome has proved more challenging and proceeded
much more slowly. By dint of their high sequence identity
and their large size (frequently >100 kbp in length) (She
et al. 2004), sequence assemblies based strictly on short
whole-genome shotgun sequences (<600 bp) have often
failed to resolve these aspects of genome organization.
Among mammals, only two genomes—mouse and
human—have been sequenced to the level of rigor
required to accurately infer the structure and organization
from the assembled genome sequence.

HUMAN VERSUS MOUSE SEGMENTAL
DUPLICATION PROPERTIES

The most recent comparisons of the mouse and human
finished genomes (Collins et al. 2004; Church et al.
2009) show that the two species are comparable in terms
of the number of base pairs mapping to high-identity
(>90%) duplications. However, there are three notable
differences. Almost all large segmental duplications
(SDs) in the mouse lineage are tandemly organized,
whereas >59% of the duplications in humans are inter-
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spersed—being separated from their nearest paralog by
more than 1 Mbp or mapping to a nonhomologous chro-
mosome (She et al. 2008). Experimental and computa-
tional analyses of other genomes, such as the dog, rat,
and cow, suggest that the tandem configuration likely
represents the mammalian archetype (Tuzun et al. 2004;
Elsik et al. 2009; Nicholas et al. 2009). Second, human
duplications tend to be significantly enriched in spliced
transcripts when compared to mouse, which appear to be
more deficient in transcripts and, possibly, genes (She et
al. 2008). Third, within the human genome, there is a
skew toward higher sequence identity duplications,
which suggests a potential excess of evolutionarily
young SDs (Fig. 1). The presence of large, high-identity
duplications at more locations has sensitized more of the
human genome to the dosage and potential position
effects as a result of unequal crossing-over.

PRIMATE COMPARISONS

Despite the working draft nature of other nonhuman
primate genome assemblies, the random nature of the
underlying whole-genome shotgun (WGS) sequence data
provides a means to detect duplications in the absence of
an assembly. By mapping regions of excess WGS read-
depth against the finished human reference sequence, we
can predict the content of duplication in closely related
primates such as chimpanzee, orangutan, and macaque.
We can, then, parsimoniously infer the age of human
duplications based on their shared or lineage-specific
nature within the context of the generally accepted pri-
mate phylogeny. The analysis shows that the proportion of
lineage-specific duplications in the chimpanzee and
human lineages is approximately equal (Cheng et al.
2005; Marques-Bonet et al. 2009). We, however, predict a
two to fourfold excess of new SDs in the common ances-
tor of humans and African great apes when compared to
Asian apes (orangutan) and Old World monkey lineages
(represented by macaque) (Fig. 2). The effect is most pro-
nounced for intrachromosomal SDs. These findings are

Figure 1. Percentage of identity distribution of mouse versus human SDs. Note the increase of interchromosomal duplications and the
higher proportion of recent SDs in humans and the excess of intrachromosomal (tandem) duplications in mouse.

consistent with the excess of high-identity (>97%) pair-
wise alignments noted within the human genome assem-
bly for intrachromosomal duplications (Fig. 1) and
studies of gene duplication (Fortna et al. 2004; Dumas et
al. 2007; Hahn et al. 2007) that suggest a burst of dupli-
cation activity during primate evolution. Notably, this
duplication acceleration occurs at a period of time when
most other mutational processes, including point muta-
tion and retrotransposon activity, were slowing down (Wu
and Li 1985; Li and Tanimura 1987; Waterston et al.
2002; Consortium 2005).

DUPLICATION ORGANIZATION 
AND CORE DUPLICONS

Within the human genome, ancestral duplications
(termed duplicons) of diverse interspersed origin juxta-
pose one another, forming complex mosaic duplication
blocks that are hundreds of kilobase pairs in length
(Rouquier et al. 1998; Johnson et al. 2006). This is in con-
trast to the organization in the mouse where most dupli-
cation blocks consist of tandemly organized SDs. Using a
modified de Brujin graph theory approach along with
comparative sequence data, we identified the ancestral
origin of 4692 human duplication loci and deconvoluted
the architecture of 437 duplication blocks in the human
genome (Jiang et al. 2007). A complex pattern of duplica-
tion within duplications emerges, confirming the step-
wise accretion of SDs on a genome-wide scale during
hominid evolution (Eichler et al. 1997; Horvath et al.
2000; Courseaux et al. 2003; Stankiewicz et al. 2004;
Johnson et al. 2006). Hierarchical clustering of these
duplication blocks based on shared duplicon content
organizes duplication blocks into 24 distinct groups (Fig.
3). Two distinct types of duplication blocks are distin-
guished: those in which the evolutionary flow of genetic
information has occurred between nonhomologous chro-
mosomes (n = 10) and those where the mosaic architec-
tures have largely formed within a specific chromosome
(n = 14). The former consists mainly of subtelomeric and
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pericentromeric duplications, and the latter corresponds
almost exclusively to the intrachromosomal burst of SDs
discussed above.
The hierarchical clustering suggests that the duplica-

tion blocks have been formed around a core or seed dupli-
con (defined as an ancestral duplicon that populates
>67% of all duplication blocks within a group). These
core sequences are among the most abundant and most

ancient; they are particularly enriched for RefSeq genes
and spliced expressed sequence tags (ESTs) when com-
pared to flanking duplicons, and a few have been sub-
jected to independent and recurrent duplications in
different primate lineages (Johnson et al. 2006). Several
of the corresponding genes and gene families encoded by
these core duplicons lack orthologs in other mammalian
species and have been highlighted as human–great ape
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Figure 2. (A) Venn diagram showing shared and lineage-specific duplications among four primate genomes. Estimates were based on
identifying regions of excess read-depth to the human assembly genome. Numbers underlined are copy-number corrected to avoid the
bias of nonhuman-specific SDs. (B) Assignment of duplications and rate estimation of Mbp/Myr for each branch. Note the excess of
duplication rate in the branch leading to the common ancestor of human and chimpanzee (Marques-Bonet et al. 2009). 
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Figure 3. Hierarchical clustering of human duplication blocks based on ancestral duplicon content. The termini of each branch repre-
sent one of 437 duplication blocks, which cluster into 24 distinct groups, 14 of which are restricted to a specific chromosome and 10
of which are mixed (M) among chromosomes mapping largely to subtelomeric (S) or pericentromeric (P) regions of the genome. An
expanded view of chromosome 16 is shown (Fig. 5) (Jiang et al. 2007).

2
7

1

2
7

2

2
7

3

2
7

4

2
7

6

2
7

5

2
7

7
2

7
9

2
8

0

2
7

8

2
8

1

2
6

9

2
7

0

2
6

7

2
6

8

2
6

4

2
6

5

2
6

6

2
6

2

2
6

3

2
5

6

2
5

7

2
5

8

2
5

9

2
6

0

2
6

1

2
8

7
2

8
6

2
8

5

2
8

4

2
8

2
2

8
3

5
1

2
9

4
2

9
2

2
9

3

2
8

8

2
8

9

2
9

0

2
9

1

1
9

7

1
9

1

1
9

2

1
9

3

1
9

6

1
9

4

1
9

5

3
0

7

3
0

8

3
0

9 3
1

0

3
1

1
3

0
6

3
0

4

3
0

5

3
0

1

3
0

3
3

0
0

3
0

2
5

6
3

1
6

3
1

7

3
1

5
3

1
4

3
1

2
3

1
3

2
8

2
4

2
5

2
6

2
7

1
5

1
6

1
4

1
9

2
3

2
2

2
0

2
1

1
8

2

3
1

4

1
7

8

1
3

7 9
1

2
1

0
1

1

2
0

9

2
1

0

2
1

1

2
1

2

2
1

6

2
1

5
2

1
3

2
1

4

2
2

1
2

2
2

2
5

4

2
5

5
1

8
6

1
8

7

1
8

8

1
8

9

1
9

0

2
2

3
2

2
4

2
0

5

2
0

6

2
0

7

2
0

8

2
2

0

2
1

7
2

1
8

2
1

9

3
5

4

3
5

5

3
5

6

3
5

9

3
5

7

3
5

8

3
4

9

3
5

0
3

5
3

3
5

1

3
5

2

4
4

4
5

1
2

7

3
7

0

3
6

9

3
6

8

3 6 0

3 6 1

3 6 2

3 6 3

3 6 7

3 6 6

3 6 4
3 6 5

1 2 8

2 9

3 0
3 1

3 2

3 3

3 4

3 8

3 7

3 5

3 6

3 9

4 0

4 1

4 2

4 3

7 5

7 6

7 4

7 7

7 8 7 2 7 3

7 0

7 1

6 9

7 9

8 0

6 8
6 6 6 7

1 7 4

1 7 5
1 7 7

1 7 8

1 7 6

1 7 9
1 8 0

1 8 3

1 8 1

1 8 2

1 8 4

1 7 3
1 7 1

1 7 2

1 8 5

5 0

4 9

4 6
4 8

2 5 0

2 5 1

2 5 2

2 5 3

2 4 4

2 4 5

2 4 6

2 4 7

2 4 3

2 4 1

2 4 2

2 4 9

2 4 8

2 3 8

2 3 9

2 4 0

2 3 52 3 62 3 7

2 3 4

2 3 3
2 3 1

2 3 2

2
9

9

1 2 2

1 2 3

1 2 4 

1 2 5

1 2 6

6 3
6

46
56

2
6

1

5
2

5
3

5
9

6
0

5
8

5
7

5
6

5
4

5
5

8
4

8
5

8
6

8
7

8
8

8
9

8
3

8
1

8
2

3
7

1
3

7
2

3
7

3

3
7

4
3

7
5

4
3

2

4
3

3

4
3

4

4
3

5

4
3

0
4

3
1

4
2

9

4
2

8
4

2
6

4
2

7

9
0

9
1

9
2

9
3

9
4

2
9

7

2
9

6

2
9

8

3
4

0
3

4
1

3
4

2

3
4

3

3
4

4

3
4

5

3
4

6

3
4

7

3
4

8

1
4

5
1

4
7

1
4

6
3

8
5

3
8

6
1

5
6

1
5

7

1
5

81
5

3

1
5

5
1

5
2

1
5

4
1

5
1

1
5

0

1
4

8
1

4
9

1
1

8
1

1
9

1
2

0

1
2

1

1
4

1

1
4

0

1
4

2
1

3
9

1
3

7

1
3

8
1

4
3

1
1

6

1
1

7

1
1

5

1
1

4
1

1
3

1
1

1

1
1

2
1

4
4

1
3

5

1
3

6

1
3

4

1
3

3

1
2

9

1
3

0

1
3

1

1
3

2

2
2

8

2
2

7

2
2

5

2
2

6

3
3

4
3

3
5

3
3

6
3

3
7

3
3

3

3
3

1

3
3

2

3
3

8

3
3

9

3
3

0

3
2

6

3
2

8

3
2

9

3
2

7

3
2

5

3
2

3

3
2

4

3
1

8

3
1

9

3
2

0

3
2

1

3
2

2

9
9

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

9
8

9
7

9
5

9
6

1
0

5

1
0

6

1
0

7

3
9

9

4
0

0

4
0

3

4
0

14
0

2

4
0

43
9

7
3

9
8

3
9

6

3
8

73
8

8

3
9

53
9

4

3
9

3

3
8

9
3

9
03 9 1

3 9 2

1 0 8

1 0 9

S2

4 2 5

4 2 0

4 2 1
4 2 2

4 2 3

4 2 44 1 6

4 1 9

4 1 4
4 1 54 1 7

4 1 8

4 1 34 1 1

4 1 2

4 1 0

4 0 8

4 0 94 0 7

4 0 5

4 0 6

1 9 8

1 9 9
2 0 0
2 0 3

2 0 12 0 2

2 0 4
1 6 8

1 6 9

1 7 0
1 5 9

1 6 0

1 6 11 6 2

1 6 7

1 6 6
1 6 5

1 6 3

1 6 4

2 9 5
2 2 9

2 3 0

4 3 6

3 8 2

3 8 3

3 8 4
3 7 6

3 7 7

3 7 8
3 7 9

3 8 0

3 8 1

4 5 6

4 5 5

4 3 7

4 3 8

4 3 9

4 4 0
4 4 1

4 5 1

4 5 2 4 5 3

4 5 4

4 4 8

4 4 9
4 5 0

4 4 2

4 4 3

4 4 4

4 4 7

4 4 5

4 4 6

chr16(E)

chr10(E)

chr17_1(P/E)

M7(P)
chrX(E)

chr17_2(E)

chr4(E)

chrY(E)

chr19(E)

chr1(P)

chr2(E)

chr15(E)

M12(P)

M6(P)

M11(P) M5(E)

M4(P)

M2(E)

M3(E)

M8(P)M1M9(P)

M10(S)

S3

S5

S4

S1

chr7(E)

chr9(P)

Prader-Willi syndrome

Williams-Beuren syndrome
Spinal muscular atrophy

DiGeorge/Velocardiofacial syndrome 

Inv dup(15)
Smith-Magenis syndrome/dup17p11.2

Neurofibromatosis
Familial juvenile nephronophthisis

1rhc
2rhc
4rhc
7rhc
9rhc
01rhc
51rhc
61rhc
71rhc
91rhc
Xrhc
Yrhc

M
S

(P)  Pericentromeric region
(S)  Subtelomeric region
(E)  Euchromatic region

A B



gene family innovations (Johnson et al. 2001; Paulding et
al. 2003; Ciccarelli et al. 2005). The TRE2 oncogene, for
example, is a fusion of a USP32 protease and a TBC1D3
core duplicon. The resulting fusion gene is expressed
solely in humans and African great apes (Paulding et al.
2003). The RANBP2, morpheus (NPIP), and NBPF11
(also known by its protein domain DUF1220) gene fami-
lies show evidence of positive selection. Data from
numerous copy-number variation studies (Sharp et al.
2005; Redon et al. 2006) suggest that these gene families
are copy-number polymorphic in the human population.
The functional significance of most of these genes is
unknown. Functional characterization of the TBC1D3
core suggests that it may be important in modulating sig-
naling of growth factors during development (Hodzic et
al. 2006; Wainszelbaum et al. 2008). It is interesting that
the copy-number polymorphism of one of these genes
(NPBF23) has recently been implicated in pediatric neu-
roblastoma, with certain gene family members showing
preferential expression in fetal brain and fetal sympa-
thetic nervous tissue (Diskin et al. 2009). 

PRIMATE SEQUENCE CHARACTERIZATION
OF LCR16A

Detailed comparative primate sequencing of one of the
core duplicons (LCR16a—seat of the NPIP/morpheus
gene family expansion) is illustrative of the evolutionary
dynamism that occurred during the human–great ape evo-
lution. In the human genome reference sequence, there
are 23 copies of the LCR16a sequence distributed among

17 complex duplication blocks ranging in size from ~40
to 609 kbp (Figs. 4 and 5). In addition to LCR16, 11 addi-
tional SDs of distinct evolutionary origin populate the
duplication blocks on chromosome 16. Although the 20-
kbp LCR16a occasionally occurs as a solitary duplicon
(i.e., without flanking duplicons), almost all other
LCR16 elements occur in association with the LCR16a
core duplicon. Phylogenetic reconstruction indicates
that the flanking duplicons duplicated more recently
have accumulated at the periphery of LCR16a duplica-
tions, leading to the formation of the complicated dupli-
cation blocks now ob served in the human genome.
Comparative sequence analysis in macaque and baboon
(Old World outgroup species) reveals that each of the SDs
originated as a single-copy sequence on chromosome 16
(Fig. 4). Remarkably, bacterial artificial chromosome
(BAC)-based sequencing of LCR16a elements in the
orangutan shows that the LCR16a core duplicon has
duplicated independently and to nonorthologous loca-
tions when compared to human and African great apes.
Moreover, the LCR16a has colonized chromosome 13 in
the orangutan and has accumulated its own set of orang-
utan-specific flanking SDs on the periphery. Most of
these flanking duplicons are single copy in humans and
African great ape genomes. These data suggest that the
LCR16a core duplicon has an inherent proclivity to dupli-
cate and has served to prime lineage-specific duplications
contributing to the emergence of large duplication blocks
in both lineages. Thus, two independent bursts of the
LCR16a have occurred in the last 12 million years in two
different ape lineages.
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DISEASE CONSEQUENCES AND 
COPY-NUMBER VARIATION

Similar to Bridges and Muller’s Bar locus, the presence
of these large, high-identity duplications predisposes to
recurrent deletions and duplications as a result of unequal
crossing-over events during meiosis and/or mitosis. Not
surprisingly, SDs are significantly enriched for copy-
number polymorphisms (Iafrate et al. 2004; Sharp et al.
2005; Redon et al. 2006) with most of the genic copy-
number polymorphisms mapping to these regions of the
genome (Cooper et al. 2007; Bailey et al. 2008). The fact
that so many of these duplications are interspersed, how-
ever, is double jeopardy for humans and its most closely
related ape species. An unequal crossover event between
two directly oriented duplications separated by a unique
gene-rich region of the genome means that both the dupli-
cated sequence and the unique sequence are subjected to
copy-number variation (Lupski 1998). Nearly 10% of
human euchromatin maps to ~110 such hot-spot regions
of the genome, which is now sensitized to recurrent copy-
number changes due to the evolution of this genomic
architecture. More than 30 of these regions have been
associated with both syndromic and complex diseases
(Stankiewicz et al. 2004; Lupski 2007; Mefford and
Eichler 2009). Interestingly, the majority of the patho-
genic rearrangements involve neurocognitive and neu-
robehavioral diseases including intellectual disability,
developmental delay, autism, schizophrenia, and epilepsy.
Ironically, the breakpoints of many of these disease-caus-
ing rearrangements map to the same duplication blocks
carrying core duplicons that emerged specifically within
the human–great ape lineage (Tables 1 and 2). Although

Table 1. Core Duplicons and Disease-causing Rearrangements

Core Locus Phenotypea

NPIP 16p11.2 autism (1%), ID (0.6%)
NPIP 16p13.1 nonsyndromic ID (1%)
GLP/GOLGA 15q11.2 PW/AS, autism (1%)
-like protein

GLP/GOLGA 15q13.3 epilepsy (1%), autism/ID 
-like protein (0.3%), schizophrenia (0.2%)

GLP/GOLGA 15q24 rare autism spectrum disorder
-like protein

LRRC37 17q21.31 0.5% European ID syndrome
TBC1D3 17q12 renal cyst and diabetes (RCAD)
TBC1D3 17p11.2 Smith Magenis syndrome
NPBF 1q21.1 ID (0.5%), schizophrenia (0.3%),

congenital heart defects

aID indicates intellectual disability and developmental delay.
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16p13.11 (del & dup)
Mental retardation and 
multiple congenital anomalies
1 Mbp between core #3 and #4.
Ullmann R et al. 2007 & 
Hannes FD et al. 2009 

16p11.2 (del & dup)
Autism spectrum disorder
500 Kbp between core #12 
and #13.
Kumar RA et al. 2008 & 
Weiss LA et al. 2008

16p11.2–p12.2 (del)
Syndromic MR
3-8 Mbp between core #9 and 
#10 or #11.
Ballif BC et al. 2007
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18775 18849chr166

285092873011 chr16
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Figure 5. SDs and disease. Detailed duplicon composition of duplication blocks are shown along an ideogram of human chromosome
16. Duplications mediating recurrent deletions and duplications associated with disease are indicated (Ballif et al. 2007; Jiang et al.
2007; Ullmann et al. 2007; Kumar et al. 2008; Weiss et al. 2008; Hannes et al. 2009).

A B

most of these large-scale copy-number changes appear to
be under strong negative selection (Itsara et al. 2009),
there is also evidence that SD-mediated rearrangements,
such as the inversion on 17q21.31, may be positively
selected, resulting in increased fecundity in specific
human populations (Stefansson et al. 2005).

CONCLUSIONS

Both experimental and computational data support an
acceleration of SDs in the common ancestor of humans
and African great apes. This apparent burst in mutational
process occurred at a time when most other mutational
processes such as single base pair substitutions experi-
enced a slowdown. At a base per base level, SDs contribute



to more genetic variation than single base pair changes.
SDs have restructured great ape and human chromosomes,
creating complex lineage-specific duplication blocks dis-
tributed throughout specific chromosomes where novel
gene structures have been formed by shuffling and juxta-
position of different exon cassettes. Much of the intrachro-
mosomal duplication acceleration is centered around core
duplicons that are also the seats of rapidly evolving genes
that have expanded in the human and African great ape
lineage. The concomitant large blocks of SDs are now
predisposing to recurrent rearrangements that are associ-
ated with intellectual disability, autism, and schizophre-
nia. We hypothesize that the negative selection of
dis ease-causing microdeletions and microduplications is
balanced by positive selection of newly minted gene fam-
ilies embedded in cores and distributed to new locations.
Elucidating the function of the genes embedded within the
core duplicons remains an unmet challenge of human
genetics and evolutionary biology.
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