
COMPUTED TOMOGRAPHY

The evolution of image reconstruction for CT—from filtered back
projection to artificial intelligence

Martin J. Willemink1,2 & Peter B. Noël3,4

Received: 24 July 2018 /Revised: 12 September 2018 /Accepted: 27 September 2018 /Published online: 30 October 2018
# The Author(s) 2018

Abstract

The first CT scanners in the early 1970s already used iterative reconstruction algorithms; however, lack of computational power

prevented their clinical use. In fact, it took until 2009 for the first iterative reconstruction algorithms to come commercially

available and replace conventional filtered back projection. Since then, this technique has caused a true hype in the field of

radiology. Within a few years, all major CT vendors introduced iterative reconstruction algorithms for clinical routine, which

evolved rapidly into increasingly advanced reconstruction algorithms. The complexity of algorithms ranges from hybrid-, model-

based to fully iterative algorithms. As a result, the number of scientific publications on this topic has skyrocketed over the last

decade. But what exactly has this technology brought us so far? Andwhat can we expect from future hardware as well as software

developments, such as photon-counting CT and artificial intelligence? This paper will try answer those questions by taking a

concise look at the overall evolution of CT image reconstruction and its clinical implementations. Subsequently, we will give a

prospect towards future developments in this domain.

Key Points

• Advanced CT reconstruction methods are indispensable in the current clinical setting.

• IR is essential for photon-counting CT, phase-contrast CT, and dark-field CT.

• Artificial intelligence will potentially further increase the performance of reconstruction methods.
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Abbreviations

ADMIRE Advanced modeled iterative reconstruction

AI Artificial intelligence

AIDR3D Adaptive iterative dose reduction 3D

ART Algebraic reconstruction technique

ASIR Adaptive statistical iterative reconstruction

BMD Bone mineral density

CAD Computer-aided design

CT Computed tomography

DECT Dual energy CT

FIRST Forward projected model-based iterative

reconstruction solution

GPU Graphics processing unit

IMR Iterative model reconstruction

IR Iterative reconstruction

IRIS Iterative reconstruction in image space

PCCT Photon-counting CT

SAFIRE Sinogram-affirmed iterative reconstruction

VMI Virtual monoenergetic images

Since its introduction in 1972 [1, 2], computed tomography

(CT) has evolved into a highly successful and indispensable

diagnostic tool. The success story of CT is reflected by the

number of annual CT exams, which increased yearly with

6.5% over the last decade resulting in a total of 80 million

CT scans in 2015 in the USA [3]. After this first tomographic

imaging modality was introduced, its technological develop-

ments advanced rapidly. The first clinical CT scan took about

* Martin J. Willemink

m.j.willemink@gmail.com

1 Department of Radiology, Stanford University School of Medicine,

300 Pasteur Drive, Room M-039, Stanford, CA 94305-5105, USA

2 Department of Radiology, University Medical Center Utrecht,

Utrecht, The Netherlands

3 Department of Radiology, Perelman School of Medicine, University

of Pennsylvania, Philadelphia, PA, USA

4 Department of Diagnostic and Interventional Radiology, Technische

Universität München, Munich, Germany

European Radiology (2019) 29:2185–2195

https://doi.org/10.1007/s00330-018-5810-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-018-5810-7&domain=pdf
http://orcid.org/0000-0002-6991-6557
mailto:m.j.willemink@gmail.com


5 min, and image reconstruction took approximately the same

time [2]. Despite long reconstruction times, image resolution

was poor with only 80 × 80 pixels [2]. Nowadays, rotation

speeds are accelerated to approximately a quarter of a second

per rotation, and detector coverage, along the patient axis,

increased up to 16 cm in high-end systems, allowing for im-

aging the whole heart in a single heartbeat [4]. Resolution of

cross-sectional images increased to 512 × 512 pixels for most

clinical applications and to 1024 × 1024 pixels or more for

state-of-the-art CT scanners [5, 6].

The increasing number of CT exams, however, has a major

drawback. Radiation exposure to society has significantly in-

creased since the introduction of CT imaging, which is espe-

cially problematic for younger patients. The combination of

growing community awareness about exposure-associated

health risks [7] and CT communities’ efforts to tackle them

has already led to significant reduction in CT dose. The most

important way to reduce CT-radiation exposure is clearly to

use this technique only when benefits outweigh the risks as

well as costs [8]. However, dose-reduction techniques are nec-

essary in case a CT scan is clinically indicated. Multiple dose-

reduction methods were introduced, including tube current

modulation [9], organ-specific care [10], beam-shaping filters

[11], and most importantly optimization of CT parameters.

Essential parameters of every CT protocol include tube cur-

rent (mA), tube voltage (kV), pitch, voxel size, slice thickness,

reconstruction filters, and the number of rotations. It is essen-

tial to realize that a different combination of parameters en-

ables significantly different image qualities while delivering

the same radiation dose to the patient. For example, the com-

bination of large pixels with a smooth filter can provide diag-

nostic quality for specific indications, while the same acquisi-

tion reconstructed with smaller pixels and a sharper filter

would provide non-diagnostic quality through a higher level

of noise and artifacts. In the clinical routine, radiation expo-

sure is frequently controlled by adjusting the tube current.

When decreasing the tube current, one can observe a propor-

tional increase in image noise. Thus, another dose-reduction

technique concerns the proper treatment of image noise and

artifacts within the reconstruction of three-dimensional data

from raw projection data. Originally, CT images were recon-

structed with an iterative method called algebraic reconstruc-

tion technique (ART) [12]. Due to lack of computational pow-

er, this technique was quickly replaced by simple analytic

methods such as filtered back projection (FBP). FBP was the

method of choice for decades, until the first iterative recon-

struction (IR) technique was clinically introduced in 2009.

This caused a true hype in the CT-imaging domain. Within a

few years, all major CT vendors introduced IR algorithms for

clinical use, which evolved rapidly into increasingly advanced

reconstruction algorithms. In this paper, we will take a concise

look at the overall evolution of CT image reconstruction and

its clinical implementations. Subsequently, we will give a

prospect towards future developments in sparse-sampling

CT [13], photon-counting CT [14], phase-contrast/dark-field

CT [15, 16], and artificial intelligence [17].

From concept to clinical necessity

In December 1970, Gordon et al presented initial work on

ART [18], which is a method belonging to a class of IR algo-

rithms that was initially applied to reconstruct cross-sectional

images. However, due to a lack of computation power, ART

was not clinically applicable, and a simpler algorithm, namely

FBP was standard for decades. With FBP, CTslices are recon-

structed from projection data (sinograms) by applying a high-

pass filter followed by a backward projection step (Fig. 1A).

With the fast progress in CT technology, FBP-based algo-

rithms got improved and extended to keep up with hardware

progress, such as Feldkamp et al’s 1984 solution for recon-

struction of data from large area detectors [19]. In most cir-

cumstances, FBP works well and results in images with high

diagnostic quality. However, due to the increasing concerns of

exposing (younger) patients with ionizing radiation, more CT

scans were being acquired at a lower radiation dose.

Unfortunately, this resulted in significantly reduced image

quality, because there is a direct proportional relation between

image noise and radiation exposure. Also, with the growing

prevalence rates of obesity [20], image quality of CT scans

reconstructed with FBP deteriorated. With a larger body size,

the x-ray photon attenuation increases which leads to less

photons reaching the CT detector, finally resulting in signifi-

cantly reduced image quality. The benefit of FBP is the short

reconstruction time, but the major disadvantage is that it in-

puts raw data into a Bblack box^ where only very limited

model and prior information can be applied, for example to

properly model image noise when a small number of photons

reach the CT detector.

While clinical scanners operated with FBP, the CT research

community spent a significant effort into the development of

advanced IR algorithms, with the goal to enable low-dose CT

with high diagnostic quality. These developments fall loosely

into three basic approaches: (i) sinogram-based [21–23], (ii)

image domain-based [24–26], and (iii) fully iterative algo-

rithms [18, 27–30]. A parallel progress was an increasing

availability of cost-efficient computational tools, such as pro-

grammable graphics processing units (GPUs) for accelerated

CT reconstruction [31, 32]. This combination of developments

has triggered the medical device industry to develop advanced

reconstruction algorithms. In 2009, the first IR algorithm

called IRIS (iterative reconstruction in image space, Siemens

Healthineers) received FDA clearance [33]. This was a simple

method that—similar to FBP—only applied a single backward

projection step to create a cross-sectional image from raw data.

Image noise was iteratively reduced in image space [34].
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Within 2 years, four more advanced IR algorithms received

FDA clearance: ASIR (adaptive statistical iterative reconstruc-

tion, GE Healthcare), SAFIRE (sinogram-affirmed iterative

reconstruction, Siemens Healthineers), iDose4 (Philips

Healthcare), and Veo (GE Healthcare) [35–38]. The first three

methods are so-called hybrid IR algorithms. Similar to FBP

and IRIS, a single backward projection step is used. However,

hybrid IR methods are more advanced since they iteratively

filter the raw data to reduce artifacts, and after the backward

projection, the image data are iteratively filtered to reduce

image noise (Fig. 1B). Veo was the first clinical fully iterative

IR algorithm, which was one of the most advanced algorithms

so far [39]. In fully IR, raw data are backward projected into

the cross-sectional image space. Subsequently, image space

data are forward projected to calculate artificial raw data.

The forward projection step is a core module of IR algorithms,

since it enables the physically correct modulation of the data

acquisition process (including system geometry and noise

models). The artificial raw data are compared to the true raw

data to thereupon update the cross-sectional image. In parallel,

image noise is removed via a regularization step (Fig. 1, right

column). The process of backward and forward projection is

repeated until the difference between true and artificial raw

data is minimized. One can imagine that fully IR is computa-

tionally more demanding than hybrid IR resulting in longer

reconstruction times of fully IR. Due to these long reconstruc-

tion times, the vendor decided to develop a different advanced

algorithm called ASIR-V (GE Healthcare), which received

FDA clearance in 2014. In the meantime, other hybrid and

model-based IR algorithms were introduced by other vendors,

including AIDR3D (adaptive iterative dose reduction 3D,

Canon Healthcare), ADMIRE (advanced modeled iterative

reconstruction, Siemens Healthineers), and IMR (iterative

model reconstruction, Philips Healthcare) (Table 1). Most re-

cently, in 2016, themodel-based IR algorithm FIRST (forward

projected model-based iterative reconstruction solution,

Canon Healthcare) received FDA-clearance. The introduction

of IR for clinical CT imaging resulted in a substantial number

of studies evaluating the possibilities of thesemethods (Fig. 2).

Overall, these studies showed improved image quality and

diagnostic value with IR compared to FBP. Radiation dose

can be reduced with IR by 23 to 76% without compromising

on image quality [40]. Some studies compared the different

approaches of multiple vendors, and in general, these studies

Fig. 1 Filtered back projection (FBP), hybrid iterative reconstruction

(IR), and model-based IR. With FBP, images are reconstructed from

projection data (sinograms) by applying a high-pass filter followed by a

backward projection step (left column). In hybrid IR, the projection data

is iteratively filtered to reduce artifacts, and after the backward projection

step, the image data are iteratively filtered to reduce image noise (middle

column). In model-based IR, the projection data are backward projected

into the cross-sectional image space. Subsequently, image space data are

forward projected to calculate artificial projection data. The artificial

projection data are compared to the true projection data to thereupon

update the cross-sectional image. In parallel, image noise is removed

via a regularization step

Eur Radiol (2019) 29:2185–2195 2187



found that radiation dose can be reduced further with model-

based IR compared to hybrid IR and FBP [39, 41] (Fig. 3).

Multiple studies evaluated the effect of IR on image quality of

specific body parts. Relatively low hanging fruit is the CT

examination of high-contrast body regions such as the lungs.

Due to the low attenuation of x-rays passing through the air in

the lungs, and due to the high natural contrast between air and

the lung tissue, the radiation dose of chest CT examinations

was already relatively low to begin with. In a systematic re-

view of 24 studies, Den Harder et al [42] found that the aver-

age radiation dose of 2.6 (1.5–21.8) mSv for chest CT scans

reconstructed with FBP could be reduced to 1.4 (0.7–7.8) mSv

by applying IR. Similarly, the radiation dose in another high-

contrast body region, CT angiography of the heart, could be

reduced substantially. With FBP, the average radiation dose of

ten coronary CT angiography studies was 4.2 (3.5–5.0) mSv,

which could be reduced to 2.2 (1.3–3.1)mSv by using IR, with

preserved objective and subjective image quality [43].

Reducing the CT radiation dose of body regions with low

contrast such as the abdomen is, however, more problematic

[44]. Detectability of low-contrast lesions cannot always be

improved with IR at lower radiation doses [45]. However,

most studies found that IR does allow for radiation dose

reduction of abdominal CT exams without compromising on

image quality [46, 47].

Current and future developments

While the number of clinical IR-related publications and the

speed of introducing novel clinical algorithms have slowed

down, the challenge of reducing radiation exposure remains

a topic of high interest. So far, most dose-reduction strategies

remained in the domain of decreasing tube current or tube

voltage while IR algorithms insure an acceptable diagnostic

image quality. A fundamentally different way to reduce radi-

ation exposure is to acquire less projection images, e.g., ac-

quire only every second, fourth, or so projection. This

compressed-sensing [48, 49] inspired strategy is widely

known as sparse-sampling CT. This approach allows acquiring

a reduced number of projections, while the radiation exposure

remains high for each individual projection image. The clear

benefit of sparse-sampling acquisitions is an improved quality

for each individual projection (e.g., increased signal-to-noise

ratio) while circumventing the influence of electronic readout

noise. Those benefits allow for an additional dose reduction by

Table 1 Different iterative reconstruction algorithms from the major vendors

Vendor Algorithm name Type of

algorithm

Reconstruction

speed

Artifact

reduction

Noise

reduction

GE Healthcare ASIR (Adaptive Statistical Iterative Reconstruction) Hybrid + + ++

Veo (MBIR) Model-based – ++ +++

ASIR-V Hybrid + + ++

Philips Healthcare iDose4 Hybrid + + ++

IMR (iterative model reconstruction) Model-based – ++ +++

Siemens Healthineers IRIS (iterative reconstruction in image space) Image domain ++ – +

SAFIRE (sinogram-affirmed iterative reconstruction) Hybrid + + ++

ADMIRE (advanced modeled iterative reconstruction) Model-based – ++ +++

Canon Healthcare AIDR3D (adaptive iterative dose reduction 3D) Hybrid + + ++

FIRST (forward projected model-based iterative re-

construction solution)

Model-based – ++ +++

− minimal; + average; ++ fast/strong; +++ very strong

Fig. 2 Number of publications on

iterative reconstruction for

computed tomography. Results

based on Pubmed search

(Biterative reconstruction^ AND

(Bcomputed tomography^ OR

BCT^))
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a factor of two or more when comparing to dose levels

achieved with current technology. However, to reconstruct a

cross-sectional image from those highly under-sampled data, a

fully IR algorithm is imperative. Over the last decade, several

investigators have presented IR solutions [50–55], which have

the potential to be clinically introduced in the future.

Translation into the clinical routine is highly depending on

when sparse-sampling capable hardware, e.g., novel x-ray

tubes, will become available. However, first evaluations of

the clinical potential have been published [56]. One example

is the possibility to quantitatively determine bone mineral den-

sity (BMD) from the combination of ultra-low-dose sparse-

sampling acquisitions and a fully IR algorithm [57].

The integration of advanced prior knowledge into IR algo-

rithms has been a parallel development over the last years.

Compared to conventional FBP, IR allows integrating prior

knowledge into the reconstruction process. One idea is to uti-

lize previous examination as part of the image formation pro-

cess. For example, during an oncological follow-up, many

patients undergo sequential studies of the same anatomical

region. Through the fact that there is shared anatomical infor-

mation in between the scans, one can utilize this fact in an IR

algorithm to significantly improve diagnostic image quality

while reducing radiation exposure [58–61]. A different exam-

ple for prior knowledge is to integrate information concerning

orthopedic implants into the reconstruction process. Metal

Fig. 3 One ex vivo human heart, scanned at 4 mGy and 1 mGy (75%

dose-reduction) with high-end CT scanners from four vendors. Images

are reconstructed with filtered back projection (FBP), hybrid iterative

reconstruction, and model-based iterative reconstruction. Numbers

represent noise levels (standard deviations) in air. Images derived from

a study published before by Willemink et al [39]
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artifact, which can introduce extensive noise and streaks, is

caused by implants consisting of materials with high z values.

However, if the shape and material composition of the implant

is known a priori (e.g., from a computer-aided design (CAD)

model or a spectral analysis), it has been illustrated that inte-

grating this information into the image formation eliminates

artifacts and improves diagnostic image quality [62, 63].

Another technology that has found its way into the clinical

environment is dual energy CT (DECT). DECT enables ma-

terial decomposition, which is the quantification of an object

composition by exploiting measurements of the material- and

energy-dependent x-ray attenuation of various materials using

a low- and high-energy spectrum (Fig. 4) [64–66]. This tech-

nology has the potential to improve contrast and reduce arti-

facts as compared to conventional CT. While those advances

are becoming clinically available, the issue related to radiation

exposure remains, especially for this CT modality. The mate-

rial decomposition step can significantly intensify image noise

when data are acquired with a low radiation exposure. Further,

the direct implementation of model-based or fully IR requires

several modifications to account for the statistical dependen-

cies between the material-decomposed data. This dependency

includes anti-correlated noise, which plays a significant role in

the overall image quality in material images. IR-algorithms

allow to model anti-correlated noise with a result of signifi-

cantly improved diagnostic image quality [67–69]. Over the

last years, this class of IR specific for DECT has been

introduced into the clinical routine. The results can be ob-

served when considering the contrast-to-noise ratio in virtual

monoenergetic images (VMI). In theory, a strong increase in

noise should be observed towards lowVMI (keV) settings and

a moderate increase in high VMIs [66, 70]. In DECT scanners

with latest IR, one can observe almost no increase in noise for

low or highVMI settings [71, 72]. Different DECTacquisition

approaches are available including two x-ray tubes with dif-

ferent voltages, one x-ray tube switching between voltages,

one x-ray tube with a partly filtered beam, and detector-based

spectral separation. Dedicated IR algorithms, accounting for

differences in CT design, become necessary for each of these

DECT schemes. Further improvements for DECT-specific IR

can be expected, for example with the integration of learning

algorithms, such as dictionaries [73–75].

An upcoming spectral CT technology, which is gaining

clinical interest, is photon-counting CT (PCCT). This unique

technology is capable of counting individual x-ray photons

while rejecting noise, rather than simply integrating the elec-

trical signal in each pixel. Also, these detectors can perform

Bcolor^ x-ray detection; they can discriminate the energy of

individual photons and divide them into several pre-defined

but selectable energy bins, thereby providing a spectral anal-

ysis of the transmitted x-ray beam [76–79]. First clinical eval-

uations illustrated promising performance with respect to

quantitative imaging, material specific (K-edge) imaging,

high-resolution imaging, and a new level of diagnostic image

Fig. 4 Reconstructions in dual-energy and photon-counting computed

tomography. Differentiation of energy levels of x-ray photons allows

for the reconstruction of energy-selective images. Material-selective

images are reconstructed based on interaction of materials at varying

energy levels. Finally, a combined image with different colors per mate-

rial is reconstructed
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quality in combination with significant reduction in radiation

exposure [80–86]. While first results render the potential ben-

efits of this technology, challenges concerning hardware and

software remain. IR plays a central role to overcome those

challenges. However, IR algorithms that are used in conven-

tional CTare not optimal for PCCT, because of reasons similar

to the statistical dependencies in DECT. For example, PCCT

data are more complex than conventional CT data since addi-

tional multi-energetic information is present, and additional

detector elements can be employed to achieve high spatial

resolution images, depending on detector configuration and

hardware and software settings. These variations in image

acquisition as well as differences in the noise model of

PCCT data need to be integrated into the model of the forward

projector to fully utilize the power of IR algorithms. One of

the reconstruction challenges in PCCT is that the step of ma-

terial decomposition and image reconstruction are performed

separately. This separation implies a loss of information, for

which the second step cannot compensate. To adapt IR for this

higher level of complexity, image reconstruction and material

decomposition can be performed jointly [87]. This can be

accomplished by a forward model, which directly connects

the (expected) spectral projection measurements and the

material-selective images [88–92]. First results illustrated the

possibility to overcome challenges related to PCCT, but cur-

rent IR algorithms are still too computationally intensive, and

therefore reconstruction times are too long for clinical use.

Further development towards IR solutions with clinical feasi-

ble reconstruction times is imperative.

Besides spectral CT, other fundamental CT developments

are currently being investigated, namely phase-contrast and

dark-field CT. Image contrast in current CT imaging is based

on a particle model describing the physical interaction of pho-

toelectric absorption and Compton scattering. Phase-contrast

and dark-field CTare based on an electromagnetic wave mod-

el, and thus image contrast represents wave-optical interac-

tions such as phase-shift or small-angle scattering. These nov-

el imaging methods make use of these wave optical character-

istics of x-rays, by applying for example a grating interferom-

eter to x-ray imaging [93–98]. Compared to conventional CT,

additional and complementary information become available.

Phase-contrast CT offers significantly higher soft-tissue con-

trast [99–101], and dark-field CToffers structural information

below the spatial resolution of the imaging system [102–104].

When considering a translation, clinical standards, for exam-

ple with respect to radiation dose and acquisition time, need to

be maintained. To ensure those clinical standards, one path is

to reconstruct raw data with tailored IR algorithms. Initial

investigations have illustrated the high potential of IR algo-

rithms to enhance the image quality in phase-contrast as well

as dark-field CT [105–108]. One challenge was the fact that a

CT with continuous rotations seems to be not feasible; how-

ever, latest developments in fully IR algorithms have enabled

the possibility of a continuously rotating gantry [16, 109,

110]. This is a significant step towards clinical translation of

phase-contrast and dark-field CT.

Another emerging technique is artificial intelligence (AI).

Besides classification of images, detection of objects and

playing games [111, 112], AI has gained substantial interest

for its potential to improve reconstruction of CT images [17].

AI, and more specifically machine learning, is a group of

methods that is able to produce a mapping from raw inputs,

such as intensities of individual pixels, to specific outputs, such

as classification of a disease [113]. With machine learning, the

input is based on hand-engineered features, while unsupervised

deep learning is able to learn these features itself directly from

data. Multiple research groups are working on applying AI to

improve the reconstruction of CT images. One application is

image-space-based reconstructions in which convolutional

neural networks are trained with low-dose CT images to recon-

struct routine-dose CT images [17, 114, 115]. Another ap-

proach is to optimize IR algorithms [116]. Generally, IR algo-

rithms are based on manually designed prior functions

resulting in low-noise images without loss of structures [117].

Deep learning methods allow for implementing more complex

functions, which have the potential to enable lower-dose CT

[117–120] and sparse-sampling CT [121]. These AI techniques

have the potential to reduce CT radiation doses while speeding

up reconstruction times. Also, deep learning can be used to

optimize image quality without reducing the radiation dose,

e.g., by more advanced DECT monochromatic image recon-

struction [122] and metal artifact reduction [123, 124]. These

methods are not yet ready for clinical implementation; howev-

er, it is expected that AI will play, in the near future, a major

role in CT image reconstruction and restoration.We expect that

AI will fit in current clinical CT imaging workflow by enhanc-

ing current reconstruction methods, for example by significant-

ly accelerating the reconstruction process since application of a

trained network can be instantaneously.

In conclusion, IR is a powerful technique that has arrived in

clinical practice, and even more exciting advances can be

expected from IR in the near future.
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