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the evolution of knowledge 
within and across fields in modern 
physics
Ye Sun1 & Vito Latora 1,2,3,4*

The exchange of knowledge across different areas and disciplines plays a key role in the process of 
knowledge creation, and can stimulate innovation and the emergence of new fields. We develop 
here a quantitative framework to extract significant dependencies among scientific disciplines and 
turn them into a time-varying network whose nodes are the different fields, while the weighted links 
represent the flow of knowledge from one field to another at a given period of time. Drawing on a 
comprehensive data set on scientific production in modern physics and on the patterns of citations 
between articles published in the various fields in the last 30 years, we are then able to map, over 
time, how the ideas developed in a given field in a certain time period have influenced later discoveries 
in the same field or in other fields. The analysis of knowledge flows internal to each field displays 
a remarkable variety of temporal behaviours, with some fields of physics showing to be more self-
referential than others. The temporal networks of knowledge exchanges across fields reveal cases of 
one field continuously absorbing knowledge from another field in the entire observed period, pairs of 
fields mutually influencing each other, but also cases of evolution from absorbing to mutual or even to 
back-nurture behaviors.

Knowledge creation and knowledge sharing go hand in hand. Knowledge is in fact created through combination 
and integration of di�erent concepts, and can bene�ts from social interactions and interdisciplinary collabora-
tions. Recent works have explored from many angles how knowledge �ows across  scholars1–5,  institutions6–9 and 
 disciplines10–12. In particular, it has been shown that knowledge exchange across �elds can in�uence the evolution 
of culture and  language13,14, strengthen multi-faceted  cooperation3,15, and drive the innovation and development 
of  science16–19. Research publications are one of the primary channels of communication for the exchange and 
spreading of knowledge in  science20. By publishing their own articles and citing works by their peers, researchers 
continuously contribute to the processes of knowledge creation, knowledge sharing and knowledge  acquisition21, 
thereby promoting the advancement of science. �e presence of a citation between two research articles o�en 
denotes a certain transfer of knowledge from the cited article to the citing articles. It is therefore natural to 
use citations between articles published in di�erent scienti�c �elds to investigate the �ow of knowledge across 
di�erent domains of science. Despite some works in this direction have already started elucidating the main 
mechanisms of knowledge sharing and  di�usion22–24, a systematic study on how knowledge evolves in  time25 
and of the complex interactions and in�uences between di�erent  �elds26 is still lacking.

In this article, we propose a novel framework to detect and quantify relevant transfers of knowledge across 
disciplines and between di�erent time periods. One of the outcomes of the method is the construction of a time-
varying network mapping the structure of knowledge and the relations between disciplines. In particular, we 
present an application to study the evolution of scienti�c knowledge in modern physics, namely to investigate 
how in�uences from one �eld of physics to another have evolved over time in the last 30 years. Building on bib-
liographic information of over 430,000 articles published by the American Physical Society (APS) between 1985 
and 2015, and making use of the highest-level Physics and Astronomy Classi�cation Scheme (PACS) codes, which 
indicate the �elds of physics an article belongs to, we construct a temporal network where the nodes represent 
the �elds of modern physics and the directed links denote the presence of a signi�cant dependence of a �eld on 
another. Such a network is changing over time and, as we will show below, its analysis by the methods of network 
 science27,28 is able to reveal essential properties of how knowledge is exchanged among �elds and over di�erent 
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time periods. We have found that, overall, knowledge �ows have become increasingly homogeneous over the last 
years, indicating the important role of interdisciplinary  research10,11,29–31. In spite of this, some typical patterns of 
in�uence, such as cases of one �eld absorbing knowledge from another �eld, or two �elds mutually in�uencing 
each other, clearly emerge at the microscopic scale. Our �ndings provide insights into the basic mechanisms of 
knowledge exchange in science, and can turn very useful to understand the dynamics of scienti�c production 
and the growth of novelties in scienti�c  domains32–34.

Results
The fields of modern physics.  An overall insight into the main �elds of modern physics can be obtained 
by a basic analysis of the characteristics of the APS data sets. Considered at their highest level, PACS codes divide 
modern physics into ten major �elds (see Table 1). A measure of the relevance of each �eld can then be derived 
from the volume of papers published in each �eld. Since each paper can be listed with multiple PACS codes 
we assign it to multiple �elds. We therefore consider each paper as one unit of knowledge and de�ne the �eld 
composition of the paper as the relative frequency of its PACS codes. For instance, if a paper is listed with three 
PACS codes 89.75.-k , 81.05.-t and 05.45.-a , we assign two-thirds of this paper to Interdisciplinary Physics (PACS 
80), and the remaining one-third to General Physics (PACS 00). �e total number of papers Npaper associated to 
each �eld over the entire time period of 31 years is reported in Table 1. One can see that the three largest �elds 
are Condensed Matter (PACS 60 and 70) and General Physics (PACS 00), capturing 57% of the entire publications 
in APS journals. GPE is the smallest �eld, with only 8325 papers, which is roughly one-��eenth the size of the 
largest �eld CM2. To quantify and compare the growth rate of each �eld, the average yearly change in the num-
ber of papers �Npaper is also reported in Table 1. Consistently with the rankings based on �eld sizes, GEN and 
CM2 also exhibit the highest growth rate, larger than 100 papers per year, while GPE shows the slowest increase, 
with only 5 papers per year on average. On the contrary, CM2, the third-largest �eld by size, is ranked fourth 
from the bottom according to the average growth �Npaper . An opposite trend is observed for Interdisciplinary 
Physics and Astrophysics, which respectively take ��h and sixth place according to their growth rates, although 
their �eld sizes are ranked eighth and ninth among these �elds, re�ecting their rapid development during the 
observing period.

We found that 91% of the papers have more than one PACS code, with 36% of them reporting PACS codes 
which are at least from two di�erent �elds. To quantify the level of interdisciplinarity of a given �eld, we have 
collected all the papers with at least one PACS code from that �eld, and then calculated the proportion J of these 
papers which are also classi�ed by at least one PACS code from other �elds. �e results in Table 1 show that 
Interdisciplinary Physics is the �eld with the largest value of J: almost 90% of the Interdisciplinary Physics papers 
are also classi�ed by PACS codes from other �elds of physics. �is result is consistent with the expectation that 
interdisciplinary research combines knowledge from various disciplines. Instead, papers in the �elds of Nuclear, 
Particles and Condensed matter 2 physics are more likely to use PACS codes from their own �elds. Summing up, 
the above analyses indicate that the di�erences between �elds of physics are remarkable, either in terms of the 
size and growth of the �elds, and in terms of their interactions with other �elds.

The knowledge flow network.  Interactions among scienti�c �elds can be better characterized by making 
use of scienti�c citations. A published article in a scienti�c �eld citing articles of another �eld implies that the 
cited �eld re�ects a piece of previously existing knowledge that the citing �eld builds upon. And this, in turn, 
indicates a �ow of knowledge from the cited �eld to the citing �eld. Hence, we can construct a network of knowl-
edge �ow across �elds by analyzing the pattern of citations among papers of di�erent �elds. �e nodes of such 

Table 1.  �e ten �elds of modern physics. PACS codes and names of the main �elds of physics as de�ned at 
the highest level of the APS hierarchical classi�cation scheme. Npaper represents the total number of papers 
published in each �eld in the period between 1985 and 2015. �Npaper denotes the average yearly increase in 
the number of papers in each �eld, which is calculated as the slope coe�cient in a linear regression of Npaper 
versus time. Among all the papers in an observed �eld, J indicates the proportion of these papers that are also 
classi�ed with at least one PACS code from other �elds.

PACS Abbreviation Field information Npaper �Npaper J

00 GEN General physics 66,909 115 0.76

10 EPF �e physics of elementary particles and �elds 46,722 56 0.44

20 NUC Nuclear physics 29,120 17 0.42

30 ATM Atomic and molecular physics 28,929 10 0.64

40 EOA
Electromagnetism, optics, acoustics, heat transfer, classical mechanics, �uid 
dynamics

35,425 58 0.79

50 GPE Physics of gases, plasmas, electric discharges 8,325 5 0.62

60 CM1 Condensed matter: structural, mechanical and thermal properties 53,287 21 0.78

70 CM2 Condensed matter: electronic structure, electrical, magnetic, optical properties 127,319 106 0.46

80 IPR Interdisciplinary physics and related areas of science and technology 24,346 51 0.89

90 GAA Geophysics, astronomy, astrophysics 15,319 34 0.78
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a network represent the ten �elds of modern physics as indicated by the PACS codes, while the directed links 
between �elds denote the �ows of knowledge from one area of physics to another.

Speci�cally, for a given citation c there will be a transfer of knowledge from each PACS code in the cited 
reference to all the PACS codes in the citing article. We hence indicate as f cα→β the volume of knowledge �ow 
from �eld α to �eld β due to citation c. As shown in Fig. 1a, this is calculated as the product of the proportion of 
PACS codes from �eld β in the citing article times the proportion of PACS codes from �eld α in the cited article. 
�is ensures the normalization 

∑
α

∑
β f cα→β = 1 for each citation c, meaning that each citation contributes a 

unit of knowledge transfer that is then split to the di�erent �elds. For instance, in Fig. 1a, two of the three PACS 
codes of the cited article belong to �eld α , while one over two of the PACS codes in the citing article is from 
�eld β . Consequently, we assume that the volume of knowledge �owing from �eld α to �eld β , due to citation 
c, is f cα→β = 2/3 × 1/2 . Similarly, we can calculate the quantities f c

α→α
 , f cβ→α and f cβ→β . In order to character-

ize the �ow of knowledge across �elds and to study its evolution over the years, we construct yearly aggregated 
networks by selecting di�erent pairs of years for citing and cited articles respectively. �is is done by analyzing 
all the citations from papers published in a given year t to papers published in year t − n , and de�ning the total 
volume of knowledge �owing from �eld α to �eld β as:

where the sum runs over all citations c from papers published in �eld β in year t to papers published in �eld 
α in year t − n . Notice that n is a tunable parameter, denoting the relative age of cited papers with respect to 
the citing year t. Having the possibility to vary both t and n allows to take into account that the probability of 
a citation is in�uenced by: (1) the relative age of the two  papers35, and by (2) the number of papers published 
in the cited year t − n . �e quantities Ft−n→t

α→β  are, however, a�ected by �eld-speci�c characteristics and pub-
lishing conventions, such as typical �eld sizes and time-varying growth rates, which, as shown in Table 1, may 
vary a lot from �eld to �eld. Some other in�uencing factors that are not discussed here might exist, such as 
the di�erence of reference list length across �elds, which could be considered in more detailed study. Hence, 
an increase of Ft−n→t

α→β  over time does not automatically re�ect a closer relation between �elds α and β , as 
it can only be due to a rapid growth in the number of publications in these two �elds. In order to account 
for this, we de�ne the statistical signi�cance φ(αt−n,βt) , which quanti�es how the observed knowledge �ow 

(1)
Ft−n→t

α→β =

∑

cit

f cα→β

a

c

b

Figure 1.  �e knowledge �ow network and its time evolution. (a) Illustration of how a citation between 
two papers is translated into a contribution to the knowledge �ow between the two corresponding �elds. 
(b) Construction of a weighted network of knowledge �ow based on the signi�cance of each link. (c) �e 
knowledge �ow network among di�erent �elds in physics in years 1990, 2000 and 2010. Node sizes are 
proportional to the number of papers published in each �eld and given year, and the line widths correspond to 
the weights of knowledge �ows between two �elds. �e links with weights larger than 1 are selected with red 
color. �e arrow represents the direction of knowledge �ows.
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F
t−n→t

α→β  exceeds the �ow expected in a opportunely chosen null model (see the “Methods” section). Figure 1b 
illustrates an example of how to calculate the quantities φ(αt−n,βt) in Eq. (5). Suppose, for instance, �eld α 
in year t − n provides a total of 75 units of knowledge to all the �elds in year t, with �eld α itself receiving 50 
of these 75 units, and β getting 25, i.e. Ft−n→t

α→α
= 50 and Ft−n→t

α→β = 25 . Analogously we assume �eld β in year 
t − n provides a total of 25 units to year t, 15 to �eld β itself and 10 to α . Now, the marginal probability that 
the citing �eld is β can be obtained as Pr(X

citing
t = β) =

∑
α F

t−n→t
α→β /

∑
α,β Ft−n→t

α→β = (25 + 15)/(75 + 25) , 
w h i l e  Pr(Y cited

t−n = α|X
citing
t = β) = Ft−n→t

α→β /
∑

α F
t−n→t
α→β = 25/(25 + 15)  .  We  t h e r e f o r e  h a v e 

P(αt−n,βt) = 25/40 · 40/100 . Such a probability needs to be compared to that of a null model in which 
Prand(αt−n,βt) = Pr(Y cited

t−n = α) · Pr(X
citing
t = β) = 80/150 · 40/100 , since the probability Pr(Y cited

t−n = α) 
that the cited paper in year t − n is in �eld α is equal to 80/(80 + 70) . Finally, the ratio φ(αt−n,βt) in Eq. (5) is 
equal to 25/40 · 150/80.

Analogously, we can calculate the statistical signi�cance of all the other �ows reported in Fig. 1b. Such quanti-
ties allow to capture the intrinsic variation of knowledge �ows among �elds and also to compare di�erent pair 
of �elds. Finally, to obtain the weights of knowledge �ows in year t from a cited time window �t

′ , we de�ne the 
�ow weights w�t

′
→t

α→β  for each couple of cited �eld α and citing �eld β as:

where |�t
′| is the length of the time window. Let �t

′ = [1, 5] and |�t
′| = 5 , then one can construct the signi�cant 

knowledge �ow network in each year t from the previous 5 years. Furthermore, for each given source period �t
′ , 

one can also investigate the knowledge �ows within an observing period �t:

For example, let |�t| = 5 , we can divide the entire time period into �ve observing time windows, namely 
[1990, 1994], [1995, 1999], [2000, 2004], [2005, 2009] and [2010, 2014]. �e weight of each link in the network 
re�ects how signi�cant the knowledge �ows between two related �elds. �is quantitative framework enable us 
to investigate the evolution of knowledge �ows in two time dimensions: (1) for each given observing period �t , 
the weights of knowledge �ows from di�erent time interval �t

′ can be observed; and also (2) for each �xed �t
′ , 

the weights of knowledge �ows within di�erent observing period �t can be compared. Although in this paper 
we have studied knowledge �ows across the ten major �elds of physics, we believe that our framework can also 
give important information when applied to investigate knowledge transfer among sub�elds at any possible 
level of hierarchy.

Temporal analysis of knowledge flow networks.  We �rst investigate how the overall properties of 
the knowledge �ow networks have changed over time. Speci�cally we have evaluated, for each year, the �ows of 
knowledge from the previous 5 years, i.e we have �xed �t

′ = [1, 5] and |�t| = 1 in our framework. To better vis-
ualize the temporal changes, the whole knowledge �ow networks obtained for the 3  years 1990, 2000 and 2010 
are reported in Fig. 1c. Links representing a signi�cant �ow of knowledge ( w�t

′
→t

α→β > 1 ) are shown in red color.
�e �rst thing to notice is that the number of signi�cant links is roughly constant over the years, as also illus-

trated in Fig. 2a. In addition to this, we observe that more links are reciprocated in 2000 with respect to years 
1990 and 2010, which suggests that situation in which couples of �elds mutually in�uence each other are more 
common 2000. To further examine this, we have computed the network reciprocity (see “Methods” section) for 
each year. �e results reported in Fig. 2b indicate that the value of the reciprocity ρ has increased in the �rst few 
years, reached a peak around 1998, and then has begun to decrease in the following years. �is has lead us to 
conclude that the highest levels of mutuality in knowledge transfer among di�erent �elds of physics have been 
experienced between 1995 and 2000.

We have then extracted the typical patterns of knowledge transfer in the network. For this reason, we have 
focused on the statistically signi�cant three-node motifs in the knowledge �ow  networks36, i.e. the directed 
connected subgraphs of three nodes that appear in the network more o�en than they would occur by chance. 
Figure 2c illustrates the Z-scores (see the “Methods” section) of two relevant three-node motifs over the years. 
One can see that the subgraph represented by bi-directed paths (diamond symbol) is the most signi�cant motif 
throughout the whole time period, with a Z-score on average equal to about 6. Furthermore, complete subgraphs 
of three nodes, corresponding to three mutually connected �elds of physics, are only statistically signi�cant in 
the period from 1998 to 2000, where the complete subgraph GEN, EOA and IPR appears. Notice that this period 
also corresponds to the time period of high reciprocity in Fig. 2b.

In addition, Fig. 1c indicates that there are fewer links with large weights in year 2010 than in 1990 and 2000. 
To further investigate this trend, Fig. 2d reports mean w and standard deviation σw of the weights of signi�cant 
links between 1990 and 2016. We �nd that both the values of w and σw gradually decrease overtime and eventu-
ally stabilize to values slightly above 1 and 0 respectively. �is indicates that the exchange of knowledge across 
domains has increasingly become more homogeneous with respect to the beginning of 1980s, when each �eld 
only absorbed knowledge from a handful of close domains. From a di�erent perspective, this also re�ects a rise 
of the interdisciplinary character of research in physics.

Internal knowledge flows.  �e weights of the internal �ows w�t
′
→t

α→α
 from a �eld α to itself are an indica-

tion of the degree of self-dependence of the research �eld. To investigate the evolution of the internal knowledge 

(2)w
�t

′→t

α→β =
1

|�t ′|

∑

n∈�t′

φ(αt−n,βt)

(3)w
�t

′→�t

α→β =
1

|�t|

∑

t∈�t

w
�t

′→t

α→β
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�ows, we have computed, for each of the ten �elds of physics, the weights of the internal �ows in every observ-
ing year t (between 1990 and 2015) from each of the previous 5 years, namely adopting a cited time window 
�t

′ = [1, 5] . Figure 3a indicates that the internal knowledge �ows are signi�cant ( w�t
′
→t

α→α
> 1 ) for all ten �elds 

over the whole 21-year period of time, although the temporal trends can vary from �eld to �eld. �e two �elds 
with the largest variations are GAA  and GPE. Field GAA  exhibits a remarkable decrease in the degree of self-

a b

c d

Figure 2.  Temporal analysis of knowledge �ow networks. (a) �e number of signi�cant links in the knowledge 
�ow network is shown as a function of the year together with its time average, reported as a dashed gray line. 
(b) Network reciprocity measuring the proportion of bidirectional links, shows a pattern with a peak around 
year 1998. �e top 50% of bidirectional links with the largest sum of mutual weights were considered in the 
computation of the reciprocity. (c) �e Z-score of two types of three-node motifs is reported as a function 
of time. (d) Mean and standard deviation of the weights of signi�cant links gradually decrease over time, 
indicating that the knowledge �ows between �elds are tending more towards random expectations.

year

10: EPF 20: NUC

80: IPR 90: GAA

GEN

EPF

NUC

ATM

EOA

GPE

CM1

CM2

IPR

GAA

a b c

d e

Figure 3.  Evolution of knowledge �ows within a �eld. (a) For each �eld α and each year t, we plot the internal 
knowledge �ow w�t

′
→t

α→α
 from a window of the previous 5 years to t. In (b)–(e) we show the evolution of internal 

�ows for four speci�c �elds in two-dimensional plots �t , �t
′ . By comparing the change in each row, we �nd that 

�eld NUC shows an increasingly high degree of self-reference over time, while, conversely, IPR and GAA  tend 
to become less and less self-dependent. Focusing on the variation in each column, we can examine the e�ect of 
reference age on the signi�cance of internal knowledge transfer. �e lengths of each citing period �t and cited 
period �t

′ in (b)–(e) are both equal to 5 years.



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12097  | https://doi.org/10.1038/s41598-020-68774-w

www.nature.com/scientificreports/

reference a�er 1993, indicating that in this �eld the internal transfer of knowledge has become less and less 
signi�cant over time. Conversely, �eld GPE shows an increasing trend and becomes the most self-referential 
�eld a�er 1995. Other �elds exhibit decreasing (EOA and IPR) or increasing (NUC and ATM) patterns, while the 
contribution of internal �ows are relatively low and keeps nearly constant for �elds such as GEN, CM1 and CM2.

In Fig. 3b–e we focus on the evolution of internal �ows of the four �elds EPF, NUC, IPR and GAA . In par-
ticular, we perform a two-dimensional analysis in which we change the positions of both the observing time 
windows �t and the source time window �t

′ . We consider the case where the lengths of the two time windows 
is the same and is equal to 5 years. �e colours in Fig. 3b–e represent the values of internal knowledge �ows 
w

�t
′
→�t

α→α
 . By looking at the variations of colours in each row we �nd that �eld NUC shows an increasingly high 

degree of self-reference over time, while IPR and GAA  tend to lower their degree of internal �ows, which is 
consistent with the results in Fig. 3a.

By looking at the variation of colours over each column of Fig. 3b–e we can instead investigate the in�uence of 
reference’s age on the internal �ows of knowledge. One can see that �elds such as NUC and IPR show a decreas-
ing trend from most recent times to the past, in agreement with previous studies stating that the likelihood of a 
paper being discovered signi�cantly decreases with the papers’  age37. By contrast, we observe an unexpected and 
very clear pattern for EPF and GAA , since both �elds exhibit a maximum of the values along the anti-diagonal 
line. Notice that each square along the anti-diagonal line represents the same cited time window, namely a time 
window of 5 years before the period [1990, 1994]. �is may be due to important discoveries and the publication 
of pioneering research works in the �elds EPF and GAA  during the period [1985, 1990] which would clearly 
increase the probability for researchers in the �eld to cite, in the following years, papers published in that period. 
A possible explanation can be for instance the rapid development in the period [1985, 1989] of the new research 
area “astroparticle physics”, emerging at the intersection of particle physics, astronomy and  astrophysics38, and 
which mainly combines the knowledge from �elds EPF and GAA . As an evidence of this rapid development, 
notice that even a new journal named “Astroparticle Physics” was established in 1992. Moreover, the fact that the 
weights of the internal �ows in GAA  are nearly three times larger than those in EPF, can be due to the Hubble 
Space Telescope, one of the major scienti�c breakthroughs in �eld GAA . �e telescope is one of the largest and 
most productive scienti�c research tool for astronomy, and it was indeed launched in 1990 (within the period 
of interest in the anti-diagonal line), greatly promoting the development of astronomy in GAA . We have further 
examined the evolution of internal �ows for the remaining six �elds and found similar patterns (see Supple-
mentary Information (SI)).

The evolution of knowledge flows across fields.  Examining how the discoveries in a �eld have con-
tributed to a di�erent �eld of physics is even more important than studying the �ows of knowledge within a 
given �eld. In order to get an overall picture of the existing in�uences across di�erent �elds of modern physics, 
we report in Fig. 4a the average weights of knowledge �ows between each couple of �elds over the whole period 
under study. To highlight the mutual exchange of �ows, the results are shown in a ( wα→β)-(wβ→α ) plane. Each 
point refers to a pair of �elds, and the distance from the position of the point to the bisector (red line) measures 

a

b

d

c

e

Figure 4.  Evolution of knowledge across �elds. (a) For each pair of �elds, we plot the average �ows of 
knowledge in either direction, averaged over the entire observation period of 26 years. (b)–(e) report some of 
the typical patterns of temporal evolution we have observed over the years. Symbol color (from light to dark) 
indicates the years from 1990 to 2015, while the lines join consecutive years to help following the trajectories. 
�e bisector red line corresponds to the case of perfectly symmetric knowledge �ows between the two �elds. (b) 
“Absorbing mode”: �eld GPE has been absorbing knowledge from �elds ATM and EOA throughout the entire 
time period. (c) “From absorbing to mutual mode”: GEN and EPF have initially absorbed more knowledge from 
�eld GAA  and then tend to a balanced case in which they absorb from GAA  the same knowledge they provide to 
it. (d) “Back-nurture mode”: while during the �rst few years GEN has absorbed more knowledge from �eld EOA 
than it has contributed to, at a later stage the situation is inverted. (e) “Mutual mode”: �elds IPR and CM1 tend 
to share knowledge in a symmetric way over the whole period.
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the level of asymmetry in the exchange of knowledge between the two �elds. We notice that most of the points 
are concentrated around the bisector, especially those points in the lower-le� corner corresponding to pairs of 
�elds with small signi�cance weights. However, there are also points far from the line, such as the point cor-
responding to the pair GPE and ATM (red up-triangle in the lower right of the panel), indicating asymmetric 
transfers of knowledge between two �elds.

To investigate the temporal evolution in the exchange of knowledge between two �elds in Fig. 4b–e, we have 
considered the same types of plots over time. In such a case, each pair of �elds corresponds to a trajectory join-
ing the points corresponding to the di�erent years from 1990 to 2015. �e colors of symbols from light to dark 
indicates the years from past to the most recent. Although the signi�cance of the links in general decreases over 
time, the temporal patterns can vary from one pair of �elds to another. �e four panels illustrate the four major 
classes of behaviour (modes) we have found, namely: absorbing, absorbing to mutual, back-nurture and mutual 
mode. Absorbing mode can be seen in �eld GPE, which has absorbed more knowledge from �elds ATM and EOA 
throughout the whole period under study (Fig. 4b). Fields GEN and EPF show a similar behavior as GPE in the 
beginning, absorbing more knowledge from GAA , while in the last few years, GEN and EPF tend to mutually 
exchange knowledge with GAA , although the weights on the links in both directions become less signi�cant 
(Fig. 4c). More interestingly, we also �nd a back-nurture mode as shown in Fig. 4d. Field GEN at �rst absorbs 
more knowledge from EOA than what it provides to EOA, but later the situation is inverted. Finally, �elds IPR 
and CM1 shows another pattern, the mutual mode, indicating that they have exchanged knowledge in an almost 
symmetric way over the whole period. Similar evolution modes have also been seen in the remaining six �elds 
(see SI). �ese di�erent evolution patterns clearly demonstrate that the processes of knowledge creation and 
transfer across �elds can be highly heterogeneous.

Discussion
Knowledge sharing and transfer across scienti�c disciplines, and cross-fertilization are increasingly recognized as 
crucial factors to breakthrough innovation in  science12,39,40. �e temporal network approach we have proposed in 
this article can be useful to shed lights on the evolution of knowledge within a �eld and on the dynamic patterns 
of in�uences between di�erent �elds. Our study case application has shown that major developments in physics 
can in�uence a �eld for many decades and can even trigger knowledge production in other �elds. Indeed, the 
patterns of cross-fertilization vary greatly among the di�erent disciplines of physics and can also show marked 
transitions over time. For instance, the physics of gases and plasmas has consistently absorbed knowledge from 
atomic and molecular physics and from electromagnetism over the last 3 decades. Other �elds such as condensed 
matter and interdisciplinary physics have instead always shared and mutually exchanged knowledge. Finally, we 
have revealed interesting transitions from absorbing to mutual modes, for instance in the case of the physics of 
elementary particles, a �eld of physics that has initially been strongly in�uenced by astronomy and astrophysics, 
but in the new century has also contributed to the progress of these latter disciplines. Our �ndings not only shed 
new lights on the basic laws governing the development of scienti�c �elds, but can also have practical implica-
tions on the future development of economic policies and research strategies.

Methods
Data.  �e data set contains 435, 717 articles published by the American Physical Society (APS) from year 
1985 until the end of 2015. Publication date, Physics and Astronomy Classi�cation Scheme (PACS) codes, and 
bibliography have been extracted for each article. �e PACS codes are grouped into a �ve-level hierarchy and 
each of them indicates a very speci�c �eld of physics. As an example, the PACS code 64.60.aq , indicating the 
�eld ”Networks”, belongs to the broader �eld ”Equations of state, phase equilibria, and phase transitions” (PACS 
64) and further belongs to top-level �eld ”Condensed Matter: Structural, Mechanical and �ermal Properties” 
(PACS 60). Here, we consider the PACS codes at the highest level, which classify the physics into ten main �elds 
(Table 1). Each article is associated with up to four PACS codes. With regard to the bibliography, only the cita-
tions referring to articles published in the APS journals were considered.

Null  model  and  statistically  significant  networks.  To characterize the �ow of knowledge across 
�elds and at di�erent time periods, the statistical signi�cance of each contribution has been validated with 
respect to an appropriately chosen null model. For each couple of �elds all the citations from papers pub-
lished in citing year t to papers published in cited year t − n have been considered. Let X

citing
t  be the �eld of 

citing papers published in year t, and Ycited
t−n  the �eld of cited papers published in year t − n . We indicate as 

P(αt−n,βt) = Pr(Ycited
t−n = α, X

citing
t = β) the joint probability that papers published in year t in �eld β cite 

papers published in year t − n in �eld α . Such a probability can be written as:

where Pr(Ycited
t−n = α|X

citing
t = β) is the conditional probability of Ycited

t−n = α given that X
citing
t = β , and 

Pr(X
citing
t = β) is the marginal probability. We then consider a null model in which the papers published in 

year t in �eld X randomly select papers published in year t − n as their citations, regardless of which �elds they 
belong to. Hence, the joint probabilities in the null model can be written in terms of the marginal probabilities as:

By calculating the ratio φ(αt−n,βt) between the two probabilities in Eqs. (4) and (5):

(4)P(αt−n,βt) = Pr(Ycited
t−n = α|X

citing
t = β) × Pr(X

citing
t = β)

(5)P
rand(αt−n,βt) = Pr(Ycited

t−n = α) · Pr(X
citing
t = β)
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we were able to quantify how the observed �ows of knowledge deviate from the �ows expected to arise simply 
from random choices. A value φ(αt−n,βt) = 1 has been adopted as critical threshold to distinguish whether the 
knowledge �ow from �eld α to �eld β is statistically signi�cant, with φ(αt−n,βt) > 1 indicating that �eld β in 
year t is more likely to have extracted knowledge from �eld α in year t − n than would be expected at random.

Network analysis.  To characterize the networks of knowledge �ow we have evaluated the network reci-
procity and we have performed a motif analysis. 

(1) Reciprocity. For each year t we have computed the reciprocity  coe�cient41 of the knowledge �ow network 
as: 

 where the average value w�t′→t ≡
∑

α �=β w
�t

′→t
α→β /N(N − 1) indicates the mean of the link weights and 

�t
′ = [1, 5] . �e reciprocity coe�cient ρt ranges from −1 to 1, and allows us to distinguish between antire-

ciprocal ( ρt < 0 ) and reciprocal ( ρt > 0 ) networks. We have only considered in the calculation the top half 
pairs of mutual links with the largest weights.

(2) Motifs. In this study, we focus on three-node motif  analysis36. �ere are 13 di�erent possible connected 
subgraphs of three nodes. In order to measure the statistical signi�cance of each subgraph g, we have com-
puted the Z-score Zg de�ned as 

 where Ng is the number of times subgraph g appears in the network, and 〈N rand
g 〉 and σg are respectively 

average and standard deviation of the number of times subgraph g occurs in an ensemble of randomized 
graphs with the same degree distribution as the original network. For each year, we have generated an 
ensemble of 5000 di�erent randomized samples of the original network using the con�guration model.

Received: 17 February 2020; Accepted: 24 June 2020

References
 1. Sekara, V. et al. �e chaperone e�ect in scienti�c publishing. Proc. Natl. Acad. Sci. USA 115, 12603–12607 (2018).
 2. Li, W., Aste, T., Caccioli, F. & Livan, G. Early coauthorship with top scientists predicts success in academic careers. Nat. Commun. 

10, 1–9 (2019).
 3. Monechi, B., Pullano, G. & Loreto, V. E�cient team structures in an open-ended cooperative creativity experiment. Proc. Natl. 

Acad. Sci. USA 116, 22088–22093 (2019).
 4. Armano, G. & Javarone, M. A. �e bene�cial role of mobility for the emergence of innovation. Sci. Rep. 7, 1781 (2017).
 5. Milojević, S., Radicchi, F. & Walsh, J. P. Changing demographics of scienti�c careers: the rise of the temporary workforce. Proc. 

Natl. Acad. Sci. USA 115, 12616–12623 (2018).
 6. Clauset, A., Arbesman, S. & Larremore, D. B. Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv. 1, e1400005 

(2015).
 7. Gargiulo, F. & Carletti, T. Driving forces of researchers mobility. Sci. Rep. 4, 4860 (2014).
 8. Deville, P. et al. Career on the move: geography, strati�cation, and scienti�c impact. Sci. Rep. 4, 4770 (2014).
 9. Ma, A., Mondragón, R. J. & Latora, V. Anatomy of funded research in science. Proc. Natl. Acad. Sci. USA 112, 14760–14765 (2015).
 10. Van Noorden, R. Interdisciplinary research by the numbers. Nature 525, 306–307 (2015).
 11. Sinatra, R., Deville, P., Szell, M., Wang, D. & Barabási, A.-L. A century of physics. Nat. Phys. 11, 791 (2015).
 12. Battiston, F. et al. Taking census of physics. Nat. Rev. Phys. 1, 89–97 (2019).
 13. Bhagat, R. S., Kedia, B. L., Harveston, P. D. & Triandis, H. C. Cultural variations in the cross-border transfer of organizational 

knowledge: an integrative framework. Acad. Manag. Rev. 27, 204–221 (2002).
 14. Chen, J., Sun, P. Y. & McQueen, R. J. �e impact of national cultures on structured knowledge transfer. J. Knowl. Manag. 14, 228–242 

(2010).
 15. Bell, G. G. & Zaheer, A. Geography, networks, and knowledge �ow. Organ. Sci. 18, 955–972 (2007).
 16. Sorenson, O., Rivkin, J. W. & Fleming, L. Complexity, networks and knowledge �ow. Res. Policy 35, 994–1017 (2006).
 17. Agrawal, A., Kapur, D. & McHale, J. How do spatial and social proximity in�uence knowledge �ows? Evidence from patent data. 

J. Urban Econ. 64, 258–269 (2008).
 18. Meyer, M. Tracing knowledge �ows in innovation systems. Scientometrics 54, 193–212 (2002).
 19. Acemoglu, D., Akcigit, U. & Kerr, W. R. Innovation network. Proc. Natl. Acad. Sci. USA 113, 11483–11488 (2016).
 20. Zeng, A. et al. �e science of science: from the perspective of complex systems. Phys. Rep. 714, 1–73 (2017).
 21. Zhang, Q., Perra, N., Gonçalves, B., Ciulla, F. & Vespignani, A. Characterizing scienti�c production and consumption in physics. 

Sci. Rep. 3, 1640 (2013).
 22. Börner, K., Penumarthy, S., Meiss, M. & Ke, W. Mapping the di�usion of scholarly knowledge among major us research institutions. 

Scientometrics 68, 415–426 (2006).
 23. Zhuge, H. A knowledge �ow model for peer-to-peer team knowledge sharing and management. Expert Syst. Appl. 23, 23–30 (2002).

(6)φ(αt−n,βt) =
Pr(Ycited

t−n = α|X
citing
t = β)

Pr(Ycited
t−n = α)

(7)ρt =

∑

α �=β

(w�t
′→t

α→β − w�t′→t)(w
�t

′→t
β→α − w�t′→t)

∑

α �=β

(w�t′→t
α→β − w�t′→t)

2

(8)Zg = (Ng − �N rand
g �)/σg



9

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12097  | https://doi.org/10.1038/s41598-020-68774-w

www.nature.com/scientificreports/

 24. Yan, E. Disciplinary knowledge production and di�usion in science. J. Assoc. Inf. Sci. Technol. 67, 2223–2245 (2016).
 25. Perc, M. Self-organization of progress across the century of physics. Sci. Rep. 3, 1–5 (2013).
 26. Shen, Z. et al. Interrelations among scienti�c �elds and their relative in�uences revealed by an input–output analysis. J. Informetr. 

10, 82–97 (2016).
 27. Latora, V., Nicosia, V. & Russo, G. Complex Networks: Principles, Methods and Applications (Cambridge University Press, Cam-

bridge, 2017).
 28. Newman, M. Networks (Oxford University Press, Oxford, 2018).
 29. Pan, R. K., Sinha, S., Kaski, K. & Saramäki, J. �e evolution of interdisciplinarity in physics research. Sci. Rep. 2, 551 (2012).
 30. Bonaventura, M., Latora, V., Nicosia, V. & Panzarasa, P. �e advantages of interdisciplinarity in modern science. arXiv :1712.07910  

(2017).
 31. Pluchino, A. et al. Exploring the role of interdisciplinarity in physics: success, talent and luck. PLoS ONE 14, e0218793 (2019).
 32. Tria, F., Loreto, V., Servedio, V. D. P. & Strogatz, S. H. �e dynamics of correlated novelties. Sci. Rep. 4, 5890 (2014).
 33. Iacopini, I., Milojević, S. C. V. & Latora, V. Network dynamics of innovation processes. Phys. Rev. Lett. 120, 048301 (2018).
 34. Chinazzi, M., Gonçalves, B., Zhang, Q. & Vespignani, A. Mapping the physics research space: a machine learning approach. EPJ 

Data Sci. 8, 33 (2019).
 35. Zhu, H., Wang, X. & Zhu, J.-Y. E�ect of aging on network structure. Phys. Rev. E 68, 056121 (2003).
 36. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
 37. Tahamtan, I., Afshar, A. S. & Ahamdzadeh, K. Factors a�ecting number of citations: a comprehensive review of the literature. 

Scientometrics 107, 1195–1225 (2016).
 38. Cirkel-Bartelt, V. History of astroparticle physics and its components. Living Rev. Relativ. 11, 2 (2008).
 39. Rinia, E. J., Van Leeuwen, T. N., Bruins, E. E., Van Vuren, H. G. & Van Raan, A. F. Measuring knowledge transfer between �elds 

of science. Scientometrics 54, 347–362 (2002).
 40. Phene, A., Fladmoe-Lindquist, K. & Marsh, L. Breakthrough innovations in the us biotechnology industry: the e�ects of techno-

logical space and geographic origin. Strat. Manag. J. 27, 369–388 (2006).
 41. Garlaschelli, D. & Lo�redo, M. I. Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93, 268701 (2004).

Acknowledgements
�is work was funded by the Leverhulme Trust Research Fellowship “CREATE: the network components of 
creativity and success” and EPSRC grant EP/N013492/1.

Author contributions
Y.S. and V.L. designed research; Y.S. performed research; Y.S. and V.L. analyzed data; and Y.S. and V.L. wrote 
the paper.

Competing interests 
�e authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https ://doi.org/10.1038/s4159 8-020-68774 -w.

Correspondence and requests for materials should be addressed to V.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access  �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this license, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© �e Author(s) 2020

http://arxiv.org/abs/1712.07910
https://doi.org/10.1038/s41598-020-68774-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The evolution of knowledge within and across fields in modern physics
	Anchor 2
	Anchor 3
	Results
	The fields of modern physics. 
	The knowledge flow network. 
	Temporal analysis of knowledge flow networks. 
	Internal knowledge flows. 
	The evolution of knowledge flows across fields. 

	Discussion
	Methods
	Data. 
	Null model and statistically significant networks. 
	Network analysis. 

	References
	Acknowledgements


