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The “$1000 Genome” project has been drawing increasing attention since its launch

a decade ago. Nanopore sequencing, the third-generation, is believed to be one of

the most promising sequencing technologies to reach four gold standards set for the

“$1000 Genome” while the second-generation sequencing technologies are bringing

about a revolution in life sciences, particularly in genome sequencing-based personalized

medicine. Both of protein and solid-state nanopores have been extensively investigated for

a series of issues, from detection of ionic current blockage to field-effect-transistor (FET)

sensors. A newly released protein nanopore sequencer has shown encouraging potential

that nanopore sequencing will ultimately fulfill the gold standards. In this review, we

address advances, challenges, and possible solutions of nanopore sequencing according

to these standards.

Keywords: gold standards, third-generation sequencing, nanopore sequencing, ionic current blockage, DNA
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INTRODUCTION

DNA sequencing is the most powerful method to reveal genetic

variations at the molecular level, such as single nucleotide

polymorphism, copy number variation, gene fusion, and inser-

tion/deletion, etc., which are relevant to genetic diseases including

cancer (Topol, 2014). Hence, its importance in understanding of

disease mechanism, genetic diagnosis, and personalized medicine

(Hamburg and Collins, 2010) cannot be overestimated. In 2004,

the National Human Genome Research Institute (NHGRI) of

the National Institutes of Health (NIH) launched the “$1000

Genome” project (Spencer, 2010) to develop revolutionary

sequencing technologies that would enable a mammalian-sized

genome to be sequenced for $1000 or less. The gold standards

(NHGRI, 2004) are summarized as: (1) high accuracy (less than 1

error in 10,000 bases), (2) long read length (essentially no gaps),

(3) high throughput, and (4) low cost (= $1000/genome). With

the support from NHGRI and private sectors, massively paral-

lel sequencers based on various technicalities have been released

to the market. These instruments are widely called the next-

generation sequencers. More specifically, Schadt and coworkers

had categorized them into 3 generations (Schadt et al., 2010), i.e.,

Sanger sequencing—the first-generation, amplification-based

massively parallel sequencing—the second, and single-molecule

sequencing—the third. This is highly recommended for its

clarity.

The 2nd-generation (2nd-gen) sequencing exploits amplifi-

cation of target DNA and massively parallelized chips, includ-

ing arrays of microbeads (Roche and Life Technologies/Thermo

Fisher Scientific), DNA nanoballs (Complete Genomics/Beijing

Genomics Institute), and DNA clusters. Although the 2nd-

gen sequencing cost for consumables is approaching $1000 per

human genome (Heger, 2014b), it remains challenging to simul-

taneously attain the four gold standards. Even at a cost for $1000

per genome, it is still too expensive in term of routine test in a

hospital setting. High accuracy is currently acquired by replicative

sequencing. For read length, most of the 2nd-gen sequencers can

sequence only a few hundred bases because of gradual intermolec-

ular dephasing among DNA clones within sequencing reaction

sites (Erlich et al., 2008). FLX system is comparable to Sanger

sequencers in terms of read length, but it will be phased out

by mid-2016 (A Genomeweb Staff Reporter, 2013c). One of the

two major breakthroughs brought by the 2nd-gen sequencers is

high throughput. For instance, HiSeq X Ten, newly released by

Illumina, can daily produce data equivalent to about 7 human

genomes at 30 × coverage (Heger, 2014b). However, a sequencing

run takes 3 days. Turnaround time per run (TTR) is particu-

larly crucial in genetic test and treatment for newborns (Saunders

et al., 2012). Thus, TTR within minutes or even hours is still

our imagination. To overcome these problems, it is desperate to

develop new sequencing technologies.

Technologies to sequence DNA at the single-molecule level,

i.e., the 3rd-gen sequencing, have been anticipated to resolve

most, if not all, of the above problems. In these approaches, the

error-prone amplification step is eliminated during sample prepa-

ration. This category consists of a series of techniques, including

nanopore sequencing (Branton et al., 2008), stepwise single-

molecule sequencing by synthesis (SBS) (Harris et al., 2008),

single-molecule real-time SBS (Eid et al., 2009), single-molecule

motion sequencing (Greenleaf and Block, 2006; Ding et al., 2012),

electron microscopy (Bell et al., 2012), molecular force spectrom-

etry (Cheng et al., 2012), sequencing by tip-enhanced Raman

scattering (Bailo and Deckert, 2008; Treffer et al., 2011), etc.

Among those technologies, nanopore sequencing has been

expected to potentially accomplish the gold standards. In 1996,

Deamer, Branton and coworkers reported on DNA translocation

through α-hemolysin nanopore (Kasianowicz et al., 1996). This

seminal work has ushered in the new era of nanopore sequencing.

Here we discuss the advances, remaining obstacles, and potential
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of nanopore sequencing to achieve these gold standards. Finally,

we will try to refine the definition of the four gold standards.

SEQUENCING BY DETECTION OF IONIC CURRENT

BLOCKAGE

THE CONCEPTION OF NANOPORE SEQUENCING

The idea of nanopore sequencing was proposed by Deamer

and Branton and independently by Church (Pennisi, 2012). The

concept is that if bases could induce different ionic current

bursts during DNA traversing through a tiny channel, then it

would become a totally new sequencing technique. In 1993,

Deamer, Branton, and Kasiannowicz employed α-hemolysin (α-

HL), a toxic pore-forming protein secreted by Staphylococcus

aureus to attack a lipid bilayer, to detect DNA translocation

through α-HL nanopore (Song et al., 1996). In 1996, their results

of DNA translocation through α-HL nanopore was published

(Kasianowicz et al., 1996).

Bayley and colleagues reported that α-HL is a 232.4 kDa

membrane channel protein (Gouaux et al., 1994). Their crys-

tal structure analysis of α-HL revealed a ∼10 nm-high hol-

low mushroom-shaped homoheptamer complex containing

a ∼10 nm-wide extramembranal cap and a ∼5.2 nm-long trans-

membrane β-barrel stem (Song et al., 1996). The minimum diam-

eter at the constriction site of the channel is ∼1.4 nm, which is

connected to the β-barrel with the vestibule of 2.6 nm in diameter

at the trans side (Figure 1A).

An α-HL nanopore is inserted into a lipid bilayer which sep-

arates small-volumed chambers, each connected to a cathode

and an anode of a patch clamp amplifier (PCA). The ∼1.4 nm

constriction of α-HL pore allows only individual single-stranded

DNA (ssDNA) or RNA other than 2 nm-thick double-stranded

DNA (dsDNA) to traverse through. Different bases along the

negatively charged DNA strand will cause electric current fluctu-

ations in the course of translocating through the nanopore under

an applied electric field. If the fluctuations are base-specific, these

electric signals or signatures can be eventually converted into

DNA sequence information (Deamer and Branton, 2002; Bayley,

2006) (Figure 2).

MAIN CHALLENGES AND ADVANCES IN NANOPORE SEQUENCING

Single base resolution

Single base resolution by protein nanopores. A fundamental

requirement in nanopore sequencing relies on fine pore geom-

etry to acquire single base resolution (SBR). In addition to the

constriction site, the β-barrel of α-HL nanopore is ∼5 nm long

(Figure 1A), capable of accommodating ∼10 bases (Wilson et al.,

2009; Cherf et al., 2012). Some parts along the barrel are narrow

enough to induce additional signals or noise. Indeed, demon-

strated by Bayley’s group, such a channel has 3 recognition

sites (Stoddart et al., 2009) whose interactions would result in

more indirect signal interpretations (Purnell and Schmidt, 2009;

Stoddart et al., 2010b). MinION, a cellphone-sized nanopore

sequencer released to early-access users from Oxford Nanopore

Technologies (ONT), uses base calling algorithms to decode the

ionic current blockage, which is not a function of single base but

hexamer (Heger, 2014a), despite read length and rate up to 50

kilobases (Kb) and 100 bases/s, respectively, are groundbreaking

(A Genomeweb Staff Reporter, 2013b; Heger, 2014a; Karow,

2014d). Base calling algorithms need to be improved to reduce

error rates (Heger, 2014a). Another possible alternative, sug-

gested by Jaffe, is to perform multiple sequencing using differ-

ent types of engineered nanopores (Heger, 2014a). To eradicate

error rate problem, Bayley et al. proposed to eliminate one or

two recognition sites through genetic engineering, and demon-

strated its feasibility (Stoddart et al., 2010a). Recently, Ervin and

colleagues reported that these excess recognition sites were elim-

inated through site-directed mutagenesis, enabling base sensing

at single recognition site (Ervin et al., 2014). More accurate SBR

could be anticipated from these engineered nanopores.

In 2004, Schulz’s group reported that an octameric membrane

porin, secreted by Mycobacterium smegmatis, formed a funnel-

shaped MspA nanopore with an outlet of 1.2 nm in diameter

(Faller et al., 2004) (Figure 1B). Gundlach’s group demonstrated

FIGURE 1 | Nanopore structures of α-HL (A) and MspA (B) (Venkatesan and Bashir, 2011). Reproduced by copyright permission of Nature Publishing Group.
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FIGURE 2 | Schematic illustration of a nanopore sequencing device. (A)

A U-tube supports the lipid bilayer membrane bathed in electrolyte solution in

which a 120 mV bias is applied. During DNA translocation through the

nanopore, ionic current is recorded by a PCA connected to the cis (negative)

and trans (positive) chambers. (B) When an ssDNA molecule traverses

through α-HL from cis to trans chamber, the open pore current drops to four

different levels (Ib: current blockage), each for a certain time (τ: dwell time).

(C) Current signals could reveal sequence information (Deamer and Branton,

2002; Bayley, 2006). Reproduced by copyright permissions of American

Chemical Society and Elsevier.

that MspA pore had great potential to sequence DNA (Derrington

et al., 2010). The feature of single recognition site of MspA pore

seems to be more advantageous than α-HL (Manrao et al., 2011).

This group replaced negatively-charged amino acids with neutral

asparagine residues in pore’s constriction site, and with posi-

tively charged basic residues in pore’s entrance through genetic

engineering (Butler et al., 2008), which enabled easy DNA cap-

ture and deceleration of DNA translocation through the pore.

They later demonstrated that the engineered MspA pore exhibited

better base resolution than α-HL pore by generating larger sig-

nal difference between bases (Derrington et al., 2010). However,

development of new methods is needed to avoid signal overlap-

ping between different bases, particularly deoxynucleotides ade-

nine and guanine (Derrington et al., 2010; Manrao et al., 2011),

to increase accuracy. For precise SBR, the length of the recog-

nition region of a nanopore shouldn’t be larger than ∼0.5-nm,

equivalent to phosphorus-phosphorus distance of a nucleotide

(or base spacing) in an ssDNA strand (Wilson et al., 2009; Cherf

et al., 2012). The constriction region of MspA is about 0.6 nm

long (Manrao et al., 2012), which means signal interference from

adjacent bases (Manrao et al., 2011, 2012; Laszlo et al., 2013,

2014). Their previous work showed that about four bases together

around the constriction region contribute to the overall current

blockage (Manrao et al., 2011, 2012). Recently, they have resorted

to tetramer maps, which are the standard electric signal curves

collected by measuring current blockage signals when each of the

combination of 256 possible 4-mers is translocating through the

pore, and algorithms to circumvent this problem (Laszlo et al.,

2014).

Single base resolution by graphene and other solid-state

nanopores. Besides α-HL, researchers have long been investigat-

ing solid-state nanopores, with an initial hope to tackle problems

in the protein nanopores, such as instability and dimension-

tuning difficulties. In 2001, Golovchenko, Branton and colleagues

demonstrated that nanopores as small as 1.8 nm in diameter
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could be fabricated on Si3N4 membrane using focused ion beam
(FIB), and found that pores could be opened and closed below
4◦C and above 5◦C, respectively, a critical phenomenon for diam-
eter tuning (Li et al., 2001). Since then, solid-state materials have
attracted great attention because of their excellent mechanical
and thermal stability, selectable chemistry, nano-fabrication, and
electronic integration choices. In 2003, Dekker’s group showed
that fabrication of nanopores on SiO2 wafer could be con-
trolled at the single-nanometer precision using focused electron
beam (FEB) (Storm et al., 2003), which has been widely adapted
(Dekker, 2007). In the meantime, a variety of materials for fab-
rication of solid-state nanopores by different technologies have
been reported, including organic polymer (Siwy and Fuliñski,
2002), single-walled carbon nanotubes (SWCNT) (Liu et al.,
2010, 2013a; Wang and Huang, 2010), glass (Sha et al., 2013; Li
et al., 2013c), hafnium oxide (Larkin et al., 2013), boron nitride
(Liu et al., 2013b), etc.

Although the diameter of silicon-based nanopores (SBNs) can
be controlled at the nanometer or even single Angstrom precision
(Storm et al., 2003; Chen et al., 2004; Kwok et al., 2014; Yanagi
et al., 2014), plentiful experiments have revealed that solid-state
nanopores have several drawbacks (Dekker, 2007), for example,
structural irregularity, large pore length, and poor repeatability.
Irregular geometry would cause larger current noise. Control of
pore length is becoming one of the most serious issues. A ques-
tion arising from the results of over a dozen-year SBN studies
is whether or not SBNs’ length can be shortened to the sub-
nanometer scale in order to identify single bases along an ssDNA
strand. Early work of Li and colleagues showed that SBN length
normally ranged from 8 to 20 nm, depending on ion beam species
(Cai et al., 2006). Up to date, the shortest effective pore length has
reduced to 1.7 nm (Venta et al., 2013). Based on the fact of 0.5 nm
base spacing (Wilson et al., 2009; Cherf et al., 2012), a nanopore
with 1.7-nm effective length can accommodate ∼4 consecutive
bases which confuse SBR. Although decoding of signals generated
by the context of a base at the recognition site shared by its sur-
rounding partners is possible (Stoddart et al., 2010b; Laszlo et al.,
2014), unambiguous base identification is compromised. Because
the goal is to identify a single base at the recognition site, thin-
ner membranes are preferable. Recently, Hall’s group reported
that they fabricated nanopores on 1.4-nm thick membrane using
Helium ion beam (Suk and Aluru, 2014). According to Wanunu
et al. (2010b), the effective length of sandglass-shaped pores is
about one third of the membrane thickness, on which the pore
is drilled. A nanopore fabricated on membrane of 1.4 nm thick
has a 0.47-nm effective pore length, which is comparable to base
spacing. SBR using such pores needs further investigation. For
precise SBR, an ideal effective nanopore length should be less than
half the base spacing. Although it is still an open question for
such an effective pore length to completely nullify neighboring
bases’ contributions to overall current blockage in the nano-
scaled niche, this short effective pore length can at least minimize
the neighboring effects. In the meantime, molecular dynamic
(MD) simulation can also be helpful to address this issue. It is
therefore necessary to explore new materials/methodologies (Xu
et al., 2013a; Sawafta et al., 2014) while thinning membranes for
fabrication of SBNs (Marshall et al., 2012; Suk and Aluru, 2014).

Graphene, an ultrathin and impervious membrane, has
attracted growing interests because of its excellent conductiv-
ity, atomic thickness, and robust mechanical stability (Novoselov
et al., 2004; Meyer et al., 2007). In 2008, Drndić’s group reported
fabrication of nanopores in suspended graphene sheets using FEB
(Fischbein and Drndić, 2008). In 2010, three groups demon-
strated that graphene has a great potential in DNA sequenc-
ing (Garaj et al., 2010; Merchant et al., 2010; Schneider et al.,
2010). The thickness of a single-layer graphene is only 0.335 nm
(Novoselov et al., 2004). Garaj et al. reported that monolayer
graphene nanopore has exceptionally high diameter sensitivity
of over 0.65 nA/Å (Garaj et al., 2013), and its 0.6-nm insulating
thickness in solution leads to the calculated spatial resolution of
3.5Å (Garaj et al., 2010).

These results suggest that graphene nanopores might possi-
bly sequence DNA (Siwy and Davenport, 2010). MD simulation
performed by Aksimentiev’s group moderately supported its pos-
sibility with the prerequisite that the orientation of the bases in
the nanopore is precisely controlled (Wells et al., 2012). A recent
MD analysis by Wu’s group showed similar results (Lv et al.,
2014). Another simulation study by Chen’s group implied that
nanopore in monolayer graphene is less sensitive than that in few-
layer graphene (Li et al., 2013a). Experiments on SBR by graphene
nanopores are badly needed to answer these questions.

Furthermore, the structural geometry of these graphene
nanopores is usually irregular, which introduces noise if the ori-
entation of the bases cannot be precisely controlled. To improve
fabrication technology, it is essential to understand the mech-
anism of pore formation. In 2009, Zettl’s group investigated
the dynamics of carbon atoms at the edge of nanopores in
a suspended single-layer graphene with the transmission elec-
tron aberration-corrected microscope, and found the edge lattice
could be repaired at a slower rate than atom erosion (Girit
et al., 2009). Banhart’s team used FEB of 1-Å diameter to irradi-
ate singly atoms at predefined positions from carbon nanotubes
(Rodriguez-Manzo and Banhart, 2009), demonstrating a method
for nanopore fabrication at the Angstrom precision. In 2011,
Zandbergen’s group reported the discovery of an intrinsic self-
repair mechanism to keep the graphene in a single-crystalline
state during 300 kV FEB etching at 600◦C (Song et al., 2011).
The next year, Kim’s group reported (Lu et al., 2012) that, under
a 200 kV FEB, nanopores in multilayer graphene could be com-
pletely closed at 400◦C. Shrinking of nanopores to smaller diam-
eter (<2.5 nm) and opening of that to larger diameter (≥3 nm)
were observed at both 800 and 1200◦C. They explained that
shrinkage and expansion of the nanopores result from the inter-
play between two mechanisms, erosion of carbon atoms from
the edge of the pore and generation of carbon ad-atoms, where
the former facilitates pore expansion but shrinkage by the lat-
ter. Sun’s group discovered that shrinkage and expansion of
nanopores in multilayer graphene could be induced by heat-
ing at 400◦C without irradiation (Figure 3), and was linearly
dependent on the ratio of pore diameter to graphene thickness
(Xu et al., 2012). The transition point of the ratio is around
1, where the ratio above 1 result in pore opening, and that
below 1 leads to pore closing. They concluded that the knock-
out carbon atoms by FEB are necessary for pore shrinkage. The
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FIGURE 3 | Schematic illustration of the shrinkage and expansion of graphene nanopore (t represents height of graphene, 2r for nanopore diameter)

(Xu et al., 2012). Reproduced by copyright permission of John Wiley and Sons.

follow-up fabrication of nanopores on free-standing monolayer
graphene with 1-Å FEB by Zandbergen’s group has shown that
processing at 600◦C is suitable for pore etching at nearly atomic
precision, while temperature at 20◦C and 800◦C result in con-
tamination and faster self-repair than removal of carbon atoms.
Other significant achievements were microsecond-imaging (5–
30 µs) without further pore damage, fabrication of array of
patterned nanopores, and possibility of automation (Xu et al.,
2013b).

These findings will significantly enhance fine diameter-
tuning technologies for nanopore fabrication in graphene sheets.
However, several challenges still exist in FEB-based nanopore
manufacture even if extremely axisymmetric nanopores can be
fabricated through removal of carbon atoms one at a time. First,
sample capacity of scanning or transmission electron microscopes
is currently limited at the square millimeter scale despite produc-
tion of 30-inch area, predominantly monolayer graphene sheets,
has been demonstrated by Ahn, Hong, and coworkers (Bae et al.,
2010). Second, FEB procedure is time-consuming. Accordingly,
parallelization of graphene nanopores comparable to that of Ion
Torrent systems is presently a distant expectation which depends
on progress of methodology. Third, as pointed out by Bayley
(2010), carbon atoms at the pore’s edge may be modified by a
number of chemical function groups during their exposure to
air and water after FEB irradiation, which might confound base
discrimination. Simulation work by Král’s group showed that
modification of pore’s edge with positively charged hydrogens
by hydrogenation passivation could facilitate DNA translocation
through graphene pores (Sint et al., 2008). In 2013, Dekker’s
group reported (Schneider et al., 2013) that graphene coated
with pyrene ethylene glycol could inhibit graphene-nucleobase
interactions caused by π−π stacking. However, the pore length
was increased from 1.5 nm to about 5.5 nm by this coating

procedure. SBR in this sequencing system becomes a new issue.
Recently, Lee, Chisholm, and colleagues used Si to passivate car-
bon atoms at the edge of the graphene pores (Lee et al., 2014),
and demonstrated that these Si-passivated graphene nanopores
could be stored for many months under ambient conditions,
indicating the feasibility to develop vigorous graphene nanopore
sequencers.

In search of new approaches, Russo and Golovchenko demon-
strated fabrication of nanopores with diameters at the Angstrom
scale in monolayer graphene by inducing defects with energetic
ions followed by the edge-selective electron recoil sputtering
(Russo and Golovchenko, 2012). This method does not need
electron beam to be focused and allows scalable production of
patterned nanopore array.

In addition to graphene material, Yu’s group reported that fab-
rication of nanopores with 1.1 nm effective length in double-layer
boron nitride membrane by FEB, which provided more sensitive
detection of DNA translocation than SBNs (Liu et al., 2013b).
However, the frequency of DNA translocation events was not high
due to its low hydrophilicity. Recently, Shan, Lu, and colleagues
(Zhou et al., 2013) demonstrated that this hydrophilicity could
be improved by UV-ozone treatment. Radenovic’s group reported
(Liu et al., 2014) that they used 0.7 nm-thick monolayer molyb-
denum disulfide (MoS2) to fabricate nanopores, which showed
lower membrane-DNA interaction. These new materials provide
more options for SBR in the future research. However, it should
be beared in mind that some issues for graphene nanopores
remain similar to these new species of pores.

Speed control of DNA translocation through nanopores

Because of the intrinsic limitations of commercially available
PCAs, sampling rate of current measurement is commonly
lower than 250 kHz due to signal noise [M. Wanunu had a
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comprehensive review in this regard (Wanunu, 2012)], except

500 kHz used by Gundlach et al. (Laszlo et al., 2014). Under the

effective driving voltage, namely minimum voltage to impel DNA

to pass through the pore (Henrickson et al., 2000), DNA translo-

cation speed is too fast (300 bases/ms) (Akeson et al., 1999; Meller

et al., 2000) for PCA to identify individual bases. Hence, it is

crucial to reduce the speed to about 1 base/ms to allow incre-

ment of the number of ions between a purine and an adjacent

pyrimidine from ∼100 to 100–1000 folds (Deamer and Akeson,

2000) or to develop faster detection electronics without sacrificing

signal-to-noise ratio.

Several groups have endeavored to develop efficient

approaches to slow down DNA translocation speed. Over a

dozen of control methods have been published since the first

attempt by Li’s team (Fologea et al., 2005). Many of these

techniques showed substantial improvements in speed control.

Although each of the above has its own pros and cons, the most

significant progress has resided in ratcheting of DNA molecules

by various ways, in particular molecular motors (Figure 4).

In 1989, Church and colleagues conceived that DNA poly-

merase could be an ideal motor to precisely control DNA

translocation through nanopore (Church et al., 1998). Afterward,

Ghadiri’s group performed real-time observation of ratcheting

dynamics of a few DNA polymerases while they pulled ssDNA out

of α-HL nanopores base by base during primer extension, demon-

strating that DNA polymerases are hopeful candidate motors

(Cockroft et al., 2008; Chu et al., 2010). Most intensive work

in this aspect comes from Akeson and colleagues. They have

reported a series of investigations on dynamics of enzyme-DNA

FIGURE 4 | Base-by-base ratcheting of ssDNA out of α-HL nanopore by

�29 DNA polymerase (Schneider and Dekker, 2012). Reproduced by

copyright permission of Nature Publishing Group.

interactions since 2007 (Benner et al., 2007; Hornblower et al.,

2007). Stability of the motor-DNA complex under the nanopore

sequencing condition is one of the most important parameters

because it determines read length and accuracy. In this case, an

ideal motor would be an enzyme with extremely long processiv-

ity, in addition to its potent activity (as long as it is not faster than

a PCA’s temporal resolution), which is together translated into

sequencing rate. They found that, at 80 mV, T7 DNA polymerase

could synthesize DNA while E. coli Klenow fragment couldn’t,

and easily dissociated from DNA at the voltage bias between 165

and 180 mV (Benner et al., 2007; Gyarfas et al., 2009; Wilson et al.,

2009; Olasagasti et al., 2010). Later they reported that proces-

sive �29 DNA polymerase could catalyze DNA synthesis against a

180-mV bias (Lieberman et al., 2010). They further demonstrated

that this enzyme could synthesize DNA at an averaged rate of 2.5–

40 bases/s though its processivity of several tens of Kb (Blanco

et al., 1989) is still needed to be validated under such conditions.

This �29 motor has been also introduced into MspA nanopore

system (Manrao et al., 2012). This nanopore technique has been

exclusively licensed to Illumina (A Genomeweb Staff Reporter,

2013a). Recently, Gundlach’s team reported that the motor gen-

erates read length up to 4.5 Kb when it is used to sequence phi

X genome (Laszlo et al., 2014). However, the fact that read length

distribution is much shorter than the library sample indicates that

dissociation between the enzyme and DNA is substantial (Laszlo

et al., 2014). Early, ONT disclosed that MinION sequencer pro-

duces read length exceeding 50 Kb (Karow, 2014d), and an 8.5-Kb

read by MinION has been posted by Karow (2014a); Loman et al.

(2014). Although read length needs to be further elongated, both

cases are impressive compared with the 2nd-gen sequencers, sug-

gesting a breakthrough toward one of the 4 gold standards and

possibility for single-cell sequencing without in vitro genome

amplification that erases epigenomic information. But error rate

of both sequencing systems is still high. Gundlach et al. explained

that errors are induced by positional switches of DNA bases in

pore’s recognition site due to the stochastic motion of the motor,

DNA-pore interactions, and deviations from their tetramer maps

(Laszlo et al., 2014). Therefore, obtaining of high quality de novo

sequencing in these sequencers is still challenging.

Beside ratcheting DNA with enzymes, Li’s team reported a suc-

cessful control of DNA threading through nanopores at a speed

below 1 nm/ms using piezoelectrics-based method (Hyun et al.,

2013), which is slow enough for base identification. Recently,

Timp’s group has reported that DNA velocity can be controlled at

1.0 nm/s against a 0.45 V applied field using the tip of atomic force

microscope (AFM), and found that “stick-slip” motion coex-

ists with frictionless sliding (Nelson et al., 2014) (see Section

Improvements in Detection Electronics).

Stolovitzky and colleagues designed a “DNA transistor”

(Polonsky et al., 2007; Luan et al., 2010, 2011), a solid-state

nanochannel in which an anode ring flanked by two cathode rings

are embedded, to trap a DNA strand while pulling one end of it

out of the channel using a “harmonic spring” such as AFM or

optical tweezers. Their simulation results showed that this device

could ratchet DNA with a constant speed at the Angstrom scale

(Luan et al., 2010). Recently, they published a paper on their fab-

rication of DNA transistors using reactive ion etching (RIE) (Bai
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et al., 2014). The mean diameter of the resultant nanopores is
around 18 nm. Preliminary tests on a nanochannel of 20-nm in
length showed that the transistor is unable to decelerate DNA
speed. They believed that its diameter is too large. Nevertheless,
the advantage is that RIE enables them to fabricate nanopore
arrays at the wafer scale.

Another possible alternative is to stretch DNA strand by teth-
ering both ends on piezo-controlled tips, as demonstrated with
optical tweezers by Bustamante’s group (Moffitt et al., 2006).
However, single-molecule manipulation in such devices is very
difficult. Its unique advantage is that the base spacing can be
expanded from 0.5 to 0.75 nm (Smith et al., 1996), enabling
nanopores to distinguish single bases at an elevated precision.
The major challenges, however, are to increase a dynamic range
that piezoelectronics can be precisely controlled and operate DNA
molecules in arrayed nanopores.

Improvements in detection electronics

Fabrication of arrays of protein and solid-state nanopores has
already been demonstrated (Kim et al., 2006; Hall et al., 2010).
In the meantime, one should consider how to use compatible
PCAs for simultaneous signal recording. Features of an ideal
PCA include high signal-to-noise ratio, high bandwidth, and
multiplexing detection.

In 2006, based on a complementary metal oxide semicon-
ductor (CMOS) circuit, two groups reported their fabrications
of integrated PCAs with sensitivity in the picoampere range
and a bandwidth up to 10 MHz in sub-micron CMOS pro-
cesses (Laiwalla et al., 2006; Zhu et al., 2006). Later, Collins
and colleagues reported on the test of a 6 integrated amplifier,
demonstrating its capability for multiplexing detection (Gierhart
et al., 2008). Culurciello, Sigworth and colleagues also intro-
duced resistive compensation circuit and a parasitic capacitive
compensation circuit to compensate the capacitance and resis-
tance of the electrode, respectively (Weerakoon et al., 2009, 2010).
Furthermore, Dunbar and coworkers have reported that a highly-
sensitive amplifier is fabricated in a 0.35 µm CMOS process
(Kim et al., 2011, 2013a), and used this device to test DNA
translocation through α-HL nanopore, demonstrating its poten-
tial for accurate detection of abasic sites (Kim et al., 2013a,b).
They have also reported that the size of feedback resistor is suc-
cessfully reduced by a factor of 10 via introduction of a novel
pseudo-resistor technique, which is an important step toward
miniaturization (Kim et al., 2013c). Further improvement to
reduce noise is under investigation as well (Kim et al., 2013b).
Another group, Shepard and colleagues, has been developing
high-bandwidth electronic interfaces for fast temporal resolution
(Anderson, 2012). They reported that a new CMOS preamplifier
for an array of SBNs has a signal-to-noise ratio >5 at 1 MHz sam-
pling rate (Rosenstein et al., 2012). Calculation results showed
that sampling rate at 40 MHz is possible (Rosenstein and Shepard,
2013).

A commercial multichannel PCA for parallel detection has
been demonstrated by Behrends’ group (Baaken et al., 2011).
Other nanopore sequencing companies, including ONT (Davies,
2012), Illumina (A Genomeweb Staff Reporter, 2013a), and Genia
(Toner, 2012), which has been acquired by Roche (Karow, 2014e),

are all devoted to develop their own integrated circuit platforms
for multiplexing detection. ONT has achieved parallelization of
512 pores in MinION sequencer (Heger, 2014a), and is heading
to an array of 100,000 pores in PromethIon (a more powerful
version than MinION) (Karow, 2014c). Apparently, Electronic
Bio Sciences, which is developing a sequencing platform using
engineered α-HL nanopre with a single recognition site (Karow,
2009; Ervin et al., 2014), may be involved in the same endeavor
as well.

OTHER NANOPORE SEQUENCING

METHODS THAT CIRCUMVENT THE BASE SPACING LIMIT

The Å-scaled base spacing limit has long been challenging direct
base recognition by threading DNAs through a pore. A few groups
have proposed to develop new pore-related technologies to cir-
cumvent this problem. One of the answers is to artificially enlarge
base’s spacing, one way or another.

Exonuclease-assisted nanopore sequencing

To overcome signal interference between neighboring bases, we
and Bayley’s group have independently proposed a new tech-
nique, i.e., exonuclease-assisted nanopore sequencing, which
could also detect 5-methyl-2′-deoxycytosine (5-mdC) besides
the 4 regular bases. The detection setup is the same as the
above threading method. The conception is that different 2-
deoxyribonucleoside 5′-monophosphates (dNMPs) induce dis-
tinct electrical signatures while they are traversing through a
nanopore. When individual dNMPs are cut off from one end
of a DNA molecule by an exonuclease, and sequentially traverse
through a nanopore under an applied voltage, the sequence infor-
mation of the target DNA molecule can be acquired from the
electrical signals.

The regimen suggested by Bayley’s group is illustrated in
Figure 5. This group has proved a mean accuracy of 99.8% for
four dNMPs and the ability of 5-mdC identification by engineer-
ing α-HL nanopore to facilitate longer dwelling time for accu-
rate detection (Astier et al., 2006; Clarke et al., 2009). Recently,
this group also demonstrated the possibilities of sequencing
RNA and detecting RNA uridylation at their 3′ ends by α-
HL nanopore (Ayub and Bayley, 2012; Ayub et al., 2013;
Clamer et al., 2013; Cracknell et al., 2013). The RNA-sequencing
expands potential application of nanopore into direct sequenc-
ing of transcriptome and detecting of post-transcriptional RNA
modification at the single-molecule level. Additionally, selec-
tive detection of microRNAs has been demonstrated indepen-
dently by Wanunu et al. (2010b), and Gu’s group (Tian et al.,
2013).

Unlike the protein pore, Wang et al. proposed SWCNT pores
to detect dNMPs and improved accuracy through adjusting pore
diameter and length (Wang, 2010; Wang and Huang, 2010). A
handful of hurdles exist in this system, e.g., nanopore fabrica-
tion, fine-tuning of the pore dimensions, and among others.
SWCNT nanopores have been fabricated using nanotechnology
by Lindsay, Nuckolls and coworkers (Liu et al., 2010), and via
inserting ultrashort SWCNT into lipid bilayers by Wu’s group (Liu
et al., 2013a), which could be adapted to our sequencing system
to overcome the hurdles.
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FIGURE 5 | Schematic illustration of exonuclease sequencing. (A)

Illustration of exonuclease bound onto α-HL. (B) Individual nucleotides

translocation events. (C) Detection of 5-mdC or Me-dCMP and dNMPs

through α-HL nanopore (Clarke et al., 2009; Reiner et al., 2012). Reproduced

by copyright permissions of American Institute of Physics and Nature

Publishing Group.

NanoTag-SBS sequencing

Ju and colleagues, who developed a 2nd-gen SBS method (Seo

et al., 2005; Wu et al., 2007; Guo et al., 2008), reported a nanotag-

based real-time sequencing by synthesis (NanoTag-SBS) (Kumar

et al., 2012), which is different from zero-mode waveguide-

based PacBio RS platforms (Eid et al., 2009). In this system

(Figure 6), a polymerase is immobilized in the vicinity of pore’s

cis entrance. During DNA synthesis, four 2-deoxyribonucleoside

5’-triphosphates (dNTPs), each labeled with one of the 4 tags

carrying poly (ethylene glycol) repeats of different lengths, is

incorporated into the growing strand according to Watson-Crick

rule. The released diphosphate-carrying tags would sequentially

traverse through the pore under a voltage and induce dis-

tinct current blockage signals, which will be translated into

sequence information. This Nano-SBS has been licensed to Genia

Technologies (Karow, 2012), a company for development of α-

HL pore arrays on semiconductor chips. In this system, attach-

ment of one polymerase onto one pore’s entrance is extremely

challenging. Karow reported that Church’s group, which devel-

oped the 2nd-gen sequencing by ligation, is going to complete

this task through protein fusion technology (Shendure et al.,

2005).

Optipore

Except for the enhancement of signal-to-noise ratio by nanopore

structure during optical detection (Chansin et al., 2007; Hong

et al., 2008), the other advantage of combining nanopores with

optical methods lies on the simultaneous probing of DNA

translocation signals (Sawafta et al., 2014).

Meller’s group developed a novel optipore sequencing method

(Soni and Meller, 2007; McNally et al., 2010). In this system,

each nucleotide on a target ssDNA is converted into a binarily-

coded oligonucleotide sequence, i.e., the designed DNA polymers

(DDP) (Figure 7A left). In other word, each of the four converted

binarily-coded oligonucleotides contains two unique sequences,

designated “0” and “1.” For example, base A, G, T, and C are rep-

resented by “11,” “10,” “01,” and “00,” respectively. Four probes

complementary to the four converted bases are differentially

labeled with four different fluorescent dyes, or molecular bea-

cons, at their heads to encounter nanopore first and a universal

quencher at their tails (Figure 7A middle). In addition, these

probes are so designed that they are capable of forming hairpins

through intrastrand hybridization without competition with the

coded complementary oligonucleotides. Therefore, fluorescent

dyes can be quenched before they are hybridized with DDP. After

hybridization, all beacons of the probes except the leading one are

quenched by the neighboring quenchers. Hybridized DDPs with

a distinct single-stranded overhang are loaded in cis chamber.

The overhangs can lead DDPs to enter an array of 1.5-nm solid-

state nanopores. When the beacons at the leading probes reach

the pore entrances, they can be excited by a laser beam, and their

emission can be recorded by electron multiplying charge coupled

device (EMCCD) (Figures 7A,B right). Because these pores only

allow ssDNA to thread (Figure 7A right), probes at the pore’s

entrances can be unzipped off (Sauer-Budge et al., 2003; Mathé

et al., 2004; McNally et al., 2008) and self-hybridized, and the

beacons are subsequently quenched. Due to its inherently small

size, this system is amenable to parallelization (Torre et al., 2012).
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FIGURE 6 | Schematic illustration of Nano-SBS. (A) Tag-phosphate is

cleaved off when the nucleotide is incorporated into growing primer. (B)

During SBS, these tags are sequentially released and driven through the

nanopore (upper), where they induce unique current blockage signals (lower)

(Kumar et al., 2012). Reproduced by copyright permission of Nature

Publishing Group.

NobelGen predicted that a nanopore of the DDP could read over

100 bases/s (Karow, 2010). An array of 400 × 400 pores would

finish a human genome within 30 min. TTR, including sequenc-

ing with read length over 200 bases and assembly with a clinical

grade accuracy, would be within 24 h at a cost for much less than

$2000 (Karow, 2011).

Hybridization-based sequencing

Hybridization-assisted nanopore sequencing (HANS) was con-

ceived by Ling et al. (2006), who cofounded NABsys, Inc. in 2004.

In this scheme, copies of target ssDNA are hybridized with each

of a set of short oligomer (initially hexamer) library to generate

hybrid molecules containing hybridized sites (dsDNAs). When

the dsDNA sites pass through a nanopore, they induce stronger

ionic current blockage than their ssDNA counterparts. Therefore,

a stronger blockage signal is an indication of the local target

DNA sequence complementary to the known hexamer sequence.

When a hybrid molecule passes through a nanopore, it gener-

ates a distinct linear map of dsDNA-ssDNA distribution. Finally,

these maps are aligned up by software to generate sequence infor-

mation of the target ssDNA. This method is readily for massive

parallelization. The most impressive feature is that it circum-

vents the demand for SBR. In 2010, they demonstrated that

ssDNA and dsDNA in such a hybrid molecule could be identified

(Balagurusamy et al., 2010). The pivotal requirement for HANS

is that each hybrid molecule should pass through a nanopore at

least at its own constant speed so that accurate assembly could be

obtained.

Sequencing by ExpansionTM

Based on the same core idea of magnifying signals from indi-

vidual bases, Stratos Genomics is dedicated to the develop-

ment of “Sequencing by Expansion™” (SBX) method (Karow,

2014f), where individual bases along ssDNA chain are con-

verted into a 50-fold larger surrogates called Xpandomers,

which could generate detectable signals. The sequence is

then read out as the Xpandomers sequentially when passing

through a nanopore array. It was reported that read length

of the SBX method reached 210 bases in 2013. However,

technical details about the base conversion are not currently

available.

INNOVATIVE NANOPORE SEQUENCING METHODOLOGIES

The ionic current detection system is based on Coulter counter

(Wanunu, 2012). The current fluctuations are conventionally

monitored by PCA’s headstage. However, detection models have

diversified along with the fast development of nanopore-related

sequencing technologies during the last decade. In this category,

different detection methods are discussed.

Sequencing by electronic tunneling (SBET)

In 2003, Lee and Thundat disclosed a nanoelectrode-gated tun-

neling method for DNA sequencing (Lee and Thundat, 2003).

The hypothesis is based on the principle that each base has its

distinct structure, and has specific perturbation effect on tun-

neling signals when each base is translocating between a pair

of nanoelectrode tips (gate) perpendicular to DNA backbone.

Lee et al. theoretically showed that the four bases have signifi-

cant charge conductance which could possibly be detected when

they are passing through a 1.5-nm gap between the nanoelec-

trodes (Lee, 2007). Theoretical calculation by di Ventra’s group

also supported this concept (Zwolak and Di Ventra, 2005). Their

theoretical analysis showed that sequencing speed could reach

up to 106–107 bases/s (Lee and Thundat, 2003; Lagerqvist et al.,

2006). It has attracted increasing number of groups to develop

new technologies to fabricate such devices. One example is shown

in Figure 8.

However, the daunting challenges to fabricating such devices

are: (1) to control the gap distance between the electrodes within

4 nm for recognition tunneling (Lindsay et al., 2010), (2) to obtain

www.frontiersin.org January 2015 | Volume 5 | Article 449 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Genomic_Assay_Technology/archive


Wang et al. The evolution of nanopore sequencing

FIGURE 7 | Schematic illustration of the optipore sequencing. (A) Target

ssDNA fragments are converted to predesigned oligonucleotides (left),

hybridized to probes carrying molecular beacons (middle), and detected by

EMCCD while traversing through a nanopore (right). (B) The sequencing

scheme of the parallelized optipores (McNally et al., 2010). Reproduced by

copyright permission of American Chemical Society.

tip sharpness at the nanometer or even Angstrom scale for SBR,

and (3) to operate such a device.

Direct tunneling. In 2008, Collins and colleagues demonstrated

that, using FEB, they embedded nanopores with 10-nm thick

lateral chromium nanoelectrodes in a 2 to 50 nm spacing range

(Gierhart et al., 2008). In the meantime, Kawai, Taniguchi and

colleagues reported that gold electrode spacing could be con-

trolled in a range from 0.5 to about 10 nm using the mechanically

controllable break-junction method (MCBJ) (Tsutsui et al., 2008,

2009), initially developed by Reed, Tour and colleagues (Muller

et al., 1996; Reed et al., 1997). These findings support the fea-

sibility of SBET technology (Tanaka and Kawai, 2009). Later,

they showed successful fabrication of 1-nm gapped Au electrode,

which could statistically distinguish three bases except adeno-

sine (Tsutsui et al., 2010). Again, with 1-nm gapped electrodes

immersed in pure nucleotide solution, they also demonstrated

that 5-mdC and 8-oxo-deoxyguanosine (8-oxo-dG) could be

mathematically identified (Tsutsui et al., 2011a). To confine DNA

strands within nano-sized space, they further embedded nano-

electrodes into an in-plane 15-nm SBN (Tsutsui et al., 2011b)

(Figure 9), and sequenced short ssDNA and RNA fragments

(Ohshiro et al., 2012), demonstrating the feasibility of SBET.

Their sequence alignment using reference tunneling signatures of

a series of oligomers implies their future direction of direct SBR.

In 2013, Taniguchi cofounded Quantum Biosystems based on this

technology (Karow, 2014b).

Although Taniguchi et al. have integrated gold electrodes with

SBN, the nanopore size is too large to confine ssDNA molecules.

A preferable pore diameter should be less than 4 nm (Lindsay

et al., 2010). However, there are a number of challenges to embed

metal electrodes into nanopores at the nanometer scale (Healy
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FIGURE 8 | Schematic illustration of SBET. (A) Illustration of ssDNA

traveling between a pair of tunneling electrodes in a nanochannel. (B) The

upper left inset shows top view of the pore cross section embedded with

two pairs of electrodes (gold rectangles). The upper right inset illustrates

ssDNA and a pair of gold electrodes at atomic level. Lower shows the

simulation result of a tunneling diagram of the ssDNA (sequence:

AGCATCGCTC) (Lagerqvist et al., 2006). Reproduced by copyright permission

of American Chemical Society.

FIGURE 9 | Illustration of the SBET in a nanopore. (A) An ssDNA

molecule translocates through the electrode gap in-plane nanopore. (B)

Continuous tunneling discrimination of individual bases of an ssDNA strand

via the embedded electrodes (Tsutsui et al., 2011b). Reproduced by

copyright permission of Nature Publishing Group.

et al., 2012; Yokota et al., 2014). Some groups have therefore tried

nonmetal compound materials.

In 2010, Postma proposed to sequence DNA within graphene

nanogaps (Postma, 2010) using the nonlinear current-voltage

characteristic of graphene electrode for base identification.

Theoretical analysis suggested that sequencing accuracy could

reach up to 100% when the gap-width was 1.6 nm. In 2011, cal-

culation performed by Scheicher and colleagues also supported

that it is possible to sequence DNA by measurements of tunnel-

ing current between graphene nanogap or electrodes (Prasongkit

et al., 2011). They further proposed to modify graphene elec-

trode edges by hydrogenation. MD simulation showed that edge-

hydrogenated graphene electrodes would enhance conductance

by about 3 orders of magnitude through interaction of hydrogen

bonds with DNA bases (He et al., 2011) (see Section Single Base

Resolution by Graphene and Other Solid-State Nanopores).

In 2010, Collin’s group experimentally embedded carbon

nanowire, gold, and chromium electrodes in a nanopore (Spinney

et al., 2009; Sutanto et al., 2010). After assessing the device,

they concluded that this sensor could be arrayed for parallel

sequencing but fabrication of nanopores and electrodes at 1 nm

scale may be necessary. In 2012, their detection of ss- and dsDNA

translocation through the carbon electrode gap revealed that the

device is sensitive (Spinney et al., 2012), but signals for base iden-

tification are not acquired due to large 3 nm nanopore and elec-

trodes. Besides, Stein’s group demonstrated that SWCNTs could

be embedded in a nanopore (Jiang et al., 2010). Golovchenko,

Branton, and colleagues reported an in situ growth method to

embed SWCNTs across nanopores (Sadki et al., 2011). These pro-

vide new alternative approaches to minimize electrode size as

diameter of the thinnest SWCNT is only 0.3 nm (Zhao et al.,

2004).

Hydrogen bond-mediated tunneling. In 2005, Xu and col-

leagues reported their preliminary studies on DNA tunneling

between Au(111) surface and tip of scanning tunneling micro-

scope (STM), and presumed that these tunneling effect could be

mediated by base pairing (Xu et al., 2005). Later, they reported

(Xu et al., 2007) that the four DNA nucleosides and methylated

bases deposited on Au(111) surface have specific tunneling con-

ductance despite signal overlaps between bases are observed. This

work demonstrated that it was possible to sequence DNA using

electronic means. In 2006, Umezawa and colleagues reported that

tips of STM with thiol derivatives of the 4 bases enhance electron

tunneling signals when they are used to detect their complemen-

tary counterparts compared with their non-complementary ones

(Figure 10), indicating that hydrogen bonds facilitate tunneling

currents (Ohshiro and Umezawa, 2006).

Based on tunneling enhancement by base paring, Lindsay’s

group proposed a sequencing concept called “Sequencing by

Recognition (He et al., 2007)” (Figure 11), which relied on hydro-

gen bond-facilitated tunneling. According to Lindsay et al. 4

electrodes, each of which is coated with one of four molecule

types complementary to A, C, G, and T, respectively, are used
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FIGURE 10 | Nucleotide-pairing based electron tunneling detection (Ohshiro and Umezawa, 2006). Reproduced by copyright permission of National

Academy of Sciences.

FIGURE 11 | Recognition tunneling sequencing. Tunneling circuit is

realized through the hydrogen bonds between ICA-functionalized tips and

different DNA bases (Krishnakumar et al., 2013). Reproduced by copyright

permission of American Chemical Society.

to identify their complementary counterparts. Immobilization

of target DNA on surface and tunneling detection with tips of

STM are complicated and time-consuming. However, it remains

a promising platform for DNA sequencing if this tunneling detec-

tion could be combined with nanopores (Branton et al., 2008).

Lindsay’s group previously showed that enhanced tunneling

could be detected between complementary tip-base pairs, but not

between non-complementary ones (He et al., 2007, 2009; Huang

et al., 2010a). After their proof-of-principle work on tunneling

identification of individual nucleobases (Chang et al., 2010), they

tested base recognition tunneling, including methyl-cytosine, in

different pentamers on Au(111) surface (Huang et al., 2010b).

The results showed that functionalized tips are capable of iden-

tifying a base surrounded by other ones, although many factors,

e.g., base stacking and tip sharpness, should be taken into con-

sideration for more precise recognition. They further moved on

to detect base tunneling within controlled nanogaps between

electrode tips at the Angstrom precision by using piezoelectric

transducer (Chang et al., 2011), which is an important step

to combine tunneling detection with nanopore confinement of

DNA molecules. Most notably, switching of the number of base-

complementary molecules, which are used to functionalize elec-

trode tips, from 4 to 1 by using a universal recognition molecule,

4(5)-substituted imidazole-2-carboxamide (ICA), is considered

as a quantum leap (Liang et al., 2012). This could enable a

single instead of four pairs of electrodes to detect all the four

bases, and circumvent challenges in embedding electrodes into

nanopore and subsequent signal analysis. Recently, this group

has reported that palladium electrodes functionalized with an

ICA compound could detect not only tunneling signals of the 4

normal bases, but also 5-mdC (Chang et al., 2012), though acqui-

sition of unambiguously distinguishable tunneling signals across

bases needs further improvements. The double-functionalized

gold electrodes proposed by Scheicher and colleagues (Pathak

et al., 2012; Prasongkit et al., 2013) and titanium nitride elec-

trodes functionalized with a thiol-bearing compound proposed

by Chen (2013) could be useful for improving base recognition.

Moreover, ICA-coated electrodes could slow DNA translocation

speed through nanopore down to about 200 µs/base under the

applied voltage between 60 and 80 mV (Krishnakumar et al.,

2013). Strikingly, ICA-coated electrodes are potential to detect

peptides (Zhao et al., 2014), probably opening up the door to

single-molecule proteomics if the amplitude range of tunneling

is wide enough to distinguish at least 20 animo acids.

Measurement of transverse conductance of DNA bases

Based on density functional theory, Prezhdo’s, Xu’s, and Nikolić’s

groups (Nelson et al., 2010; Ouyang et al., 2011; Saha et al., 2012)

independently proposed nanopore-related sequencing methods.

Briefly, when a base is inserted into a nanopore in a metallic

monolayer graphene nanoribbon, it will modulate edge conduc-

tance currents. These conductance is base-specific and can be

enhanced in the micro- to milliampere range, compared with the

picoampere scale of ionic current. Therefore, an ssDNA chain

can be sequenced when it passes through the nanopore. Later,

Lambert and colleagues (Sadeghi et al., 2014) further introduced

Frontiers in Genetics | Genomic Assay Technology January 2015 | Volume 5 | Article 449 | 12

http://www.frontiersin.org/Genomic_Assay_Technology
http://www.frontiersin.org/Genomic_Assay_Technology
http://www.frontiersin.org/Genomic_Assay_Technology/archive


Wang et al. The evolution of nanopore sequencing

this sequencing method by using nanopores in bilayer graphene.

Theoretical calculation indicates that electrical current signals

have a high signal-to-noise ratio compared with conventional

ionic current measurement. The authors also predicted that it

could be integrated with CMOS technology. Balatsky and cowork-

ers (Ahmed et al., 2014) also proposed multilayered graphene-

based nanopore sequencing device combined with “multi-point

cross-correlation (MPCC)” method. In this design, transverse

current across each graphene layer is independently recorded

during DNA translocation through the pores. Then the sig-

nals between each nanopore are subject to MPCC, which could

theoretically enhance signal-to-noise ratio.

Concurrent detection of ionic current blockage and other signals

In 2011, Albrecht, Edel, and coworkers presented an idea to com-

bine sequencing by detection of ionic current blockage and tun-

neling current (Ivanov et al., 2011). They embedded Pt electrodes

in a SBN, and simultaneously measured tunneling and ionic cur-

rents. Proof-of-principle tests showed that events of DNA translo-

cation through nanopore could be concurrently detected, indi-

cating that this concept is possible. Then, this group developed

a method called “electron-beam-induced deposition (EBID),”

an effective way to precisely control electrodes spacing (Ivanov

et al., 2014). Furthermore, EBID is also suitable for fabrication of

nanopore arrays. In 2013, Radenovic’s group reported a device

by combining fabrication of nanopores in graphene nanorib-

bon with semiconductor technology, and demonstrated that it

could simultaneously detect ionic current blockage and electronic

conductance (see Section Field Effect Transistor) (Traversi et al.,

2013). Recently, Forró, Radenovic, and colleagues reported elec-

tron beam lithography (EBL) fabrication of sub-10 nm nanogap

electrodes and concurrent detection of ionic current blockage and

tunneling (Fanget et al., 2014).

In 2014, Lal’s group reported a designed nanopore device

that can simultaneously perform AFM imaging and ionic current

detection, suggesting that it could be used for DNA sequencing

(Connelly et al., 2014). Later, Timp’s group reported concur-

rent measurements of ionic current and force topography while

threading individual ssDNA strands through SBNs (Nelson et al.,

2014). An important phenomenon they found is coexistence of

frictionless sliding and “slip-stick” motions, which could become

error sources during sequencing. Minimizing the latter, through

surface passivation as an example, could enhance sequencing

precision. Signal analysis supports that SBR is possible using

nanopores with diameters no more than 1.5 nm. Early, Wang,

Liang, and colleagues proposed that individual bases, including

5-mdC, could be recognized through detection of force topogra-

phies by pulling DNA strands through ∼1.0-nm axisymmetric

graphene pores by AFM or optical tweezers (Zhang et al., 2014).

Field effect transistor

In 2005, Heng et al. proposed a design that used nanopore capac-

itor made in a metal-oxide-semiconductor (MOS) membrane

to sense bases when an ssDNA strand is translocating through

the pore (Heng et al., 2005). Their simulation results demon-

strated that such a device holds to sequence DNA (Heng et al.,

2005; Gracheva et al., 2006; Sigalov et al., 2008) (Figure 12). In

2010, Leroux presented a similar design that used a nanopore

in a semiconductor-oxide-semiconductor membrane to distin-

guish individual bases (Leroux et al., 2010). Their theoretical

analysis showed that this is possible. In 2012, Yan’s group pro-

posed a sequencing method by using single-electron transistor-

based nanopore (Guo et al., 2012). Based on simulation results,

they concluded that bases could be identified only in some

regions. Although supporting evidence from experiments are cur-

rently unavailable, these transistor-based approaches can poten-

tially be integrated with semiconductor technology for massive

parallelization.

In 2009, Kim, Rossnagel, and coworkers demonstrated fabri-

cation of array of ionic field effect transistor (IFET) nanopores

by combining EBL and atomic layer deposition (Nam et al.,

2009). Recently, Lieber’s group has reported fabrication of FET

nanopores via FEB drilling through both the edge of a silicon

nanowire and its silicon nitride support membrane (Xie et al.,

2012). Their experiments on DNA translocation through these

FET nanopores showed that the amplitude of FET signals is about

ten-fold larger than that of ionic current counterparts, and have

higher signal-to-noise ratio, implying higher bandwidth detec-

tion and accuracy, respectively. Data analysis supported that FET

signals in this transistor follow the mechanism of local potential

FIGURE 12 | Nanopore capacitor. (A) A TEM top-view of the nanopore capacitor device. (B) Schematic illustration of the nanopore capacitor. (C) A TEM

side-view of the nanopore capacitor (Gracheva et al., 2006). Reproduced by copyright permission of IOP Publishing Ltd.
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change-related sensing rather than that of charge-based sensing.

The authors predicted that the nanowire could be replaced by

monolayer graphene or integrated with biologically engineered

protein pores for SBR.

In 2013, Drndić’s group described fabrication of FET mono-

layer graphene nanopores with diameters between 2 and 10 nm

using EBL (Puster et al., 2013). Radenovic’s group reported fabri-

cation of graphene-based FET sensors and signal tests on DNA

translocation (Traversi et al., 2013) (Figure 13). Their results

also support local potential change-related sensing mechanism.

Leburton proposed a four-layer FET nanopore sequencing design

called graphene quantum point contact device (Girdhar et al.,

2013), where the top graphene layer controlls DNA transloca-

tion speed, the second confines lateral positioning of the bases,

the third detectes lateral conductance, and the bottom alteres the

carrier concentration. These compelling works suggest that fur-

ther innovation toward sequencing by FET sensors will be soon

emerging.

It should be noticed that dsDNA is used to illustrate sequenc-

ing principle in Figures 12, 13. The devices could use ssDNA for

real sequencing.

THE FUTURE OF NANOPORE SEQUENCING

Nanopore sequencing technologies have been progressing at an

unprecedentedly fast speed whereas the 2nd-gen sequencers have

been paving the way for sequencing-based personalized medicine.

It can be envisioned that novel sequencing concepts and tech-

nologies, including methods/materials for nanopore fabrication,

parallelization techniques for nanopore arrays and detection, and

speed control of DNA translocation, etc., will facilitate the devel-

opment of directly-reading nanopore sequencers that presently

rely on indirect reading. It can also be foreseen that the ultimate

goal of clinical sequencing will be achieved in the near future

along with the evolution in sequencing technology and sequence

annotation.

Besides the four gold standards, novel nanopore-based

sequencers are exhibiting their potential to detect cytosine methy-

lation (Clarke et al., 2009; Tsutsui et al., 2011a; Laszlo et al.,

2013; Schreiber et al., 2013). In addition, nanopore can iden-

tify 5-hydroxymethyl-2′-deoxycytosine (5-hmdC) (Wallace et al.,

2010; Laszlo et al., 2013; Li et al., 2013b), 8-oxo-dG (Schibel et al.,

FIGURE 13 | Schematic illustration of the fabrication of an FET

nanopore, in which a dsDNA is translocating through the pore (not to

scale) (Traversi et al., 2013). Reproduced by copyright permission of

Nature Publishing Group.

2010; Tsutsui et al., 2011a) and abasic sites (An et al., 2012a,b;

Kim et al., 2013b; Marshall et al., 2014). Based-on MD simula-

tions, Wanunu, Drndić and coworkers reported that SBN is able

to distinguish 5-mdC from 5-hmdC by sequencing a few hun-

dred molecules (Wanunu et al., 2010a). It is therefore necessary to

redefine sequencing accuracy to include not only 4 normal bases

but also their modified/damaged derivatives, many of which are

involved in diseases (Korlach and Turner, 2012; Vogelstein et al.,

2013). However, it remains a huge challenge of how to harness

nanopore-based sequencing methods to directly distinguish all of

alterations beyond mentioned above. Thus, the revised four gold

standards would be: (1) high accuracy (no more than one error

in every 10,000 bases including normal bases and their modi-

fied forms), (2) long read length (10 of Kb or longer), (3) high

throughput and short TTR (in the matter of hours or even min-

utes), and (4) low cost (much less than $1000/genome). These

standards are not only applicable to DNA sequencing, but also

to direct RNA sequencing (Ayub and Bayley, 2012; Ayub et al.,

2013).

The concept of “$1000 Genome” is by no means the clinical

cost. Data interpretation is costly and time-consuming. This is

currently becoming a bottle neck next to sequencing itself. On

the other hand, cancer patients may need multiple sequencing to

monitor genome stability during treatment. Even if cost for each

sequencing and interpretation is $1000, it is still expensive for

ordinary families. Therefore, how to popularize sequencing-based

personalized medicine will require joint efforts from multiple

fronts.
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