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Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease
of the central nervous system characterized by demyelination and axonal damage.
Diagnosis and prognosis are mainly assessed through clinical examination and
neuroimaging. However, more sensitive biomarkers are needed to measure disease
activity and guide treatment decisions in MS. Prompt and individualized management
can reduce inflammatory activity and delay disease progression. Neurofilament Light
chain (NfL), a neuron-specific cytoskeletal protein that is released into the extracellular
fluid following axonal injury, has been identified as a biomarker of disease activity in MS.
Measurement of NfL levels can capture the extent of neuroaxonal damage, especially
in early stages of the disease. A growing body of evidence has shown that NfL in
cerebrospinal fluid (CSF) and serum can be used as reliable indicators of prognosis
and treatment response. More recently, NfL has been shown to facilitate individualized
treatment decisions for individuals with MS. In this review, we discuss the characteristics
that make NfL a highly informative biomarker and depict the available technologies used
for its measurement. We further discuss the growing role of serum and CSF NfL in MS
research and clinical settings. Finally, we address some of the current topics of debate
regarding the use of NfL in clinical practice and examine the possible directions that this
biomarker may take in the future.
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INTRODUCTION

The clinical use of biomarkers in the diagnostic work-up of neurodegenerative diseases has
significantly increased in the last decades (Beart et al., 2017). Screening, drug development, early
diagnosis, individualized therapy, and accurate prognosis are some of the key factors driving the
need of identifying objective and quantifiable markers and developing sensible biomedical tools for
their measurement.

Multiple sclerosis (MS) is an autoimmune, inflammatory neurodegenerative disease
characterized by demyelination and neurodegeneration of the central nervous system (CNS; Reich
et al., 2018). The pathomechanisms vary greatly from person to person, resulting in different
pathological phenotypes, clinical presentations, progression trajectories, and treatment responses
(Lassmann et al., 2001; Gnanapavan and Giovannoni, 2015; Gafson et al., 2017; Reich et al., 2018;
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Dobson and Giovannoni, 2019; Ziemssen et al., 2019). Current
diagnostic criteria and clinical management depend on
radiological markers (i.e., MRI), clinical status (i.e., disease
activity and disability), and immunological parameters suggestive
of inflammation (i.e., oligoclonal IgG bands; Thompson et al.,
2018). However, these markers often fail to predict individual
relapse rates, disability progression and therapy response
(Håkansson et al., 2017). A meta-analysis showed that the
number and volume of T2 lesions on MRI correlated poorly
with clinical presentation and disease progression (Li et al.,
2006). Similarly, the MAGNIMS study group concluded that
clinical and MRI activity in isolation was not enough to
evaluate treatment response (Gasperini et al., 2019). There
is, therefore, an increased need to identify and validate
biomarkers that could be used as surrogate measures for clinical
endpoints in a more individualized manner (Giovannoni, 2006;
Gnanapavan et al., 2013; Pachner et al., 2019; Gaetani et al.,
2019a; Ehrenberg et al., 2020).

One of the hallmark features of MS, and which correlates
highly with disability, is axonal damage, and loss (Trapp et al.,
1998; de Stefano et al., 2002; Filippi et al., 2003; Pascual et al.,
2007). Recent reports have demonstrated that people with MS
(pwMS) have up to 60% reduction in axons at all spinal levels
involving all fibers regardless of their diameter (Tallantyre et al.,
2009; Petrova et al., 2018). This axonal loss has been associated
with brain and cervical atrophy (Bjartmar and Trapp, 2001;
Lee et al., 2014; Petzold, 2015; Barro et al., 2018), cortical
thinning (Popescu et al., 2015), disability (Siffrin et al., 2010;
Domingues et al., 2019), fatigue (Tartaglia et al., 2004), cognitive
dysfunction (Gadea et al., 2004), and suboptimal response to
therapy. Quantifying and monitoring axonal loss could be a
reliable marker of MS progression, disability and treatment
response (Novakova et al., 2017a, 2018).

NEUROFILAMENTS AS BIOMARKERS
IN MS

Neurofilaments (Nf) are structural scaffolding proteins of
the axonal cytoskeleton. Nf are essential for stability, radial
growth and maintenance of axonal caliber and electrical-impulse
transmission (Yuan et al., 2012; Gnanapavan and Giovannoni,
2015; Ziemssen et al., 2019). Given that Nf are involved in axonal
radial growth, larger myelinated axons express significantly
more Nf (Yin et al., 1998). Nf are composed of four subunits:
neurofilament heavy, median and light polypeptides [NfH, NfM,
and Neurofilament Light chain (NfL), respectively], as well as
α-internexin (Int). Each subunit possesses a particular molecular
mass (68 kDa for NfL, 150 kDa for NfM, and 190 to 210 kDA
for NfH) and their relative concentration is uneven, however,
NfL is the most abundant and soluble of the subunits. Under
normal conditions and in a non-linear, sex-, and age-dependent
manner (Gisslén et al., 2016), Nf are constantly released from
axons (Disanto et al., 2017; Bridel et al., 2019), reflecting normal
aging (Khalil et al., 2020). However, during axonal damage, Nf
are released in larger quantities into the extracellular space, the
cerebrospinal fluid (CSF), and eventually into the blood, where

concentrations are 40-fold lower than in the CSF (Gaetani et al.,
2019a). Overall, measurement of Nf levels indicate the extent of
axonal damage, and therefore, is a bulk marker of disease activity
(Lycke et al., 1998; Bergman et al., 2016; Disanto et al., 2017;
Novakova et al., 2017a; Håkansson et al., 2018; Khalil et al., 2018;
Cantó et al., 2019; Domingues et al., 2019; Varhaug et al., 2019;
Gaetani et al., 2019b).

Several characteristics make Nf, and particularly NfL, a
good biomarker of neurodegeneration. Firstly, NfL can be
objectively measured and quantified, it is highly sensitive
to neurodegenerative processes and its concentration changes
as the disease worsens or improves (Disanto et al., 2017).
Numerous studies have shown that NfL levels increase during
MS relapses and correlate with MRI lesion development (Disanto
et al., 2016, 2017; Novakova et al., 2017b; Barro et al., 2018),
disease activity, disability and disease progression (Thebault
et al., 2020). Secondly, NfL measurement is safe for the
patient and NfL levels are relatively easy to detect. Emerging
technologies allow for rapid, simple and minimally invasive
quantification methods. This allows periodic measurements, and
easier sampling acquisition and storage. Last but not least, several
clinical trials have included NfL as an outcome measure and have
shown that disease modifying therapies (DMTs) significantly
reduce NfL levels compared with placebo (Gunnarsson et al.,
2011; Axelsson et al., 2014; Christensen et al., 2014; Kuhle et al.,
2015; Romme Christensen et al., 2019). This finding makes NfL a
valuable outcome measure in clinical trials (Axelsson et al., 2014).

Yet, there are some important caveats that should be
considered when quantifying and using NfL measurements
in clinical practice. Importantly, NfL is not specific for MS.
Neurodegenerative diseases such as prion diseases, amyotrophic
lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease,
Hungtington’s disease, and traumatic brain injury have all
demonstrated increased levels of NfL (Bridel et al., 2019; Gaetani
et al., 2019a). Other studies have shown that different subunits
might reflect different neurodegenerative processes (Zucchi
et al., 2020). For example, NfH, which undergoes extensive
phosphorylation and influences the transportation dynamics
along axons, is particularly specific for ALS (Xu et al., 2016).
Additionally, NfL levels do not provide information on the
specific location of axonal damage (Disanto et al., 2017), and a
growing body of evidence has shown that NfL is also elevated in
individuals with peripheral nerve disease (Sandelius et al., 2018;
Hyun et al., 2020), which further limits its use as a diagnostic
biomarker. Moreover, standardized normal cut-off values are still
lacking, and despite longitudinal measurements being preferred
for clinical decision-making, optimal sampling frequency and
thresholds are yet to be defined (Domingues et al., 2019; Bittner
et al., 2020). It has been documented that NfL levels depend on
age, sex and, presumably, body mass index and blood volume
(Manouchehrinia et al., 2020a). But as yet, no normative values
accounting for confounders have been established.

In the case of individuals with established MS, some authors
have reported elevated NfL as the sole indicator of disease activity
in people with progressive MS (PMS) vs relapsing remitting MS
(RRMS) (Reyes et al., 2020), while others have found greater
levels of NfL in RRMS vs PMS (Martin et al., 2019), and
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that NfL levels at time of diagnosis correlated with long- term
progression from RRMS to PMS (Bhan et al., 2018). A recent
systematic review concluded that associations with current or
future disability are inconsistent, and that there is no evidence
of NfL being a responsive marker of purportedly neuroprotective
treatments (Williams et al., 2020). More and longer studies are
needed examining the evolution and significance of NfL as the
disease progresses.

CORRELATION OF NfL LEVELS WITH
RADIOLOGICAL AND CLINICAL
FINDINGS

The correlation between NfL levels and clinical and radiological
findings has been widely reported in the literature. Clinically, it
has been shown that NfL levels peak at 3–4 weeks after a clinical
relapse and remain elevated for the next 6–12 months (Novakova
et al., 2017b; Damasceno et al., 2019). It has also been shown
that the cumulative number of relapses in the past 12 months
are the main predictor of high NfL levels (Bergman et al., 2016;
Kuhle et al., 2019a). In addition, high levels of NfL correlate with
brain atrophy and spinal cord volume loss, even in the absence
of MRI activity (Arrambide et al., 2015; Kuhle et al., 2016b,
2019a; Disanto et al., 2017; Novakova et al., 2017b; Barro et al.,
2018; Chitnis et al., 2018; Piehl et al., 2018; Siller et al., 2019;
Khalil et al., 2020).

The predictive value of NfL levels as an independent
predictor of conversion from clinical isolated syndrome (CIS)
or radiological isolated syndrome (RIS) to MS has been studied.
Hakason and colleagues compared the predictive role of NfL
and other molecules for MS conversion in individuals presenting
with CIS and found that CSF NfL (cNfL) at baseline was the
best predictive biomarker (Håkansson et al., 2017). Gaetani et al.
(2019b) concluded that a cNFL cut off value of 500 pg/mL was
able to predict conversion to MS in individuals presenting with
isolated clinical events. Importantly, cNfL levels have been found
to be an independent predictor of conversion from RIS to MS
(hazard ratio = 1.03, P = 0.003; Matute-Blanch et al., 2018),
as well as when combined with oligoclonal bands (OCBs; Fyfe,
2018). Moreover, a recent nested case-control examining NfL
levels in blood (bNfL) samples from asymptomatic United States
military personnel that later developed MS found an association
between baseline or presymptomatic levels and long-term risk
of developing MS (p = 0.008; Bjornevik et al., 2020). Even
though similar results have been found elsewhere (Martínez et al.,
2015; van der Vuurst de Vries et al., 2019; Dalla Costa et al.,
2019a), some studies have reported only a weak predictive value
(Arrambide et al., 2016; Disanto et al., 2016).

Axonal damage resulting in brain volume loss plays a key role
in long term disability (Furby et al., 2008; Domingues et al., 2019;
Marciniewicz et al., 2019). As expected, bNfL levels have been
used as potential predictors of long-term progression according
to the Expanded Disability Status Scale (EDSS; Häring et al.,
2020), however, findings are inconsistent. A study that included
607 individuals with MS followed up for 12 years, showed a
significant increase of 80% in bNfL levels per increase in EDSS

score (Cantó et al., 2019). Yet, they did not observe an association
with long term disability progression. Disanto and colleagues
reported increased worsening of EDSS and increased relapse
rates at 2 years in individuals with CIS and RMS with bNfL
levels above the 80th percentile compared to healthy controls
(Disanto et al., 2017). Later on, they reproduced their findings
adjusting for other predictors such as T2 lesion load and observed
a modest association (OR 2.79) for bNfL above the 90th percentile
(Barro et al., 2018). Likewise, Anderson et al. (2020) found a
non-significant association between bNfL and EDSS at 5 years
in a cohort of 164 pwMS. Moreover, Chitnis et al. (2018) did
not find any association between 10-year EDSS scores and bNfL
levels collected within 5 years of disease onset. Interestingly,
they reported that bNfL correlated with 10-year MRI markers
including T2-weighted lesion volume and atrophy. A composite
model including bNfL and T2 lesion load was, therefore, deemed
robust for predicting long term disability (Chitnis et al., 2018).
A similar conclusion was reached by Häring et al. (2020) and
Bittner et al. (2020), who measured bNfL and MRI lesion load
in 814 individuals with CIS or newly diagnosed MS from 22
centers across Germany.

The correlation between disability and cNfL has also been
studied. A randomized controlled trial extension study including
235 pwMS reported that cNfL levels measured at 2 years and bNfL
levels measured at 3 years were associated with EDSS scores at
8 years (Kuhle et al., 2019b). However, these levels were measured
after beginning of treatment with intramuscular interferon
β-1a. Similar results were found elsewhere (Manouchehrinia
et al., 2020b). Similar to findings on bNfL, a group reported
a correlation between cNfH levels and brain and spinal cord
atrophy after 15 years of follow up, but not with EDSS (Petzold
et al., 2016). A possible explanation for the modest association
between Nf and disability progression is the fact that most studies
have not controlled for these potential confounders, such as
treatment with DMTs (Anderson et al., 2020).

The association of NfL and non-motor symptoms of
MS (e.g., cognition, psychological disorders, and fatigue) has
been examined. While some studies reported a significant
inverse association between NFL levels and cognitive function
(Tortorella et al., 2015; Gaetani et al., 2019c) and long-term
fatigue (Chitnis et al., 2018), others did not find any association
(Håkansson et al., 2019; Aktas et al., 2020). Cognitive symptoms
and fatigue in MS are strongly associated with sleep quality,
depression, DMT, disease duration and severity, and lesion
localization (Rocca et al., 2014; Berard et al., 2019; Palotai
et al., 2019). Therefore, future studies examining the association
between NfL and non-motor symptoms should control for
these confounders.

NfL AND MS MIMICS

Neuromyelitis optica spectrum disorder (NMOSD) and myelin
oligodendrocyte glycoprotein antibodies (MOG-Ab) associated
disorders (MOGAD), have clinical features that overlap with
MS which makes misdiagnosis possible (Alkhasova et al.,
2020). Around one third of individuals with NMSDO and
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MOGAD are seronegative for the highly specific pathognomonic
antibodies: aquaporin-4 (AQP-4) and MOG-Ab, which further
increases the potential for misdiagnosis and wrong treatments
(Fujihara, 2019). Recent studies have analyzed NfL levels
in these individuals to see whether threshold values could
help differentiate MS from other idiopathic inflammatory
demyelinating disorders. A study from China found no
significant differences between bNfL levels in pwMS vs CIS
vs NMOSD (Peng et al., 2019). In addition, and in line with
the underlying pathophysiology of NMOSD vs MS (astrocytic
vs axonal involvement, respectively), they found no correlation
between bNFL levels and serum AQP-4 (Peng et al., 2019).
Importantly, some have reported that high bNfL levels in
seropositive NMOSD and MOGAD are associated with a
more malignant course of the disease (p < 0.05), presumably
reflecting concomitant axonal damage (Mariotto et al., 2017).
This association between bNfL levels and disability in NMOSD
(Watanabe et al., 2019; Kim et al., 2020) and MOGAD (Mariotto
et al., 2019) has been found elsewhere. Recently, Watanabe et al.
(2019) reported that higher sGFAP/bNfL ratio at relapse was
sensitive (73%) and specific (75.8%) to differentiated NMOSD
from MS. However, more studies are needed for this to be
translated to the clinical setting. Moreover, Lee and colleagues
found that NFL levels in NMOSD vs MS vary more significantly
according to age (Lee et al., 2020), which emphasizes the need for
age-controlled normative values.

BIOMARKER TECHNOLOGY

The first assay to measure NfL was developed by Rosengren
et al. (1996). This was an ELISA assay based on polyclonal
antisera, which was later upgraded to a highly specific
assay based on monoclonal antibodies (47:3 and 2:1) against
NfL epitopes (Norgren et al., 2002). More recently, Gaetani
et al. (2018) generated two novel monoclonal antibodies
(NfL21 and NfL23) and a new ELISA assay, which has
expanded the currently available methods to measure NfL.
NfL ELISA, which is commercially available as NF-light R©

ELISA kit; UmanDiagnostics AB, Umeå, Sweden, allows for
a fast quantification of cNfL with a low sample volume
(50 µL). Additionally, it shows good stability after handling
and storage (Norgren et al., 2002). The main disadvantage
is its low sensitivity for quantifying bNFL. In comparison to
CSF sampling, blood sampling is less invasive. Methods such
as electrochemiluminescence (ECL)-based immunoassays, which
use the luminescence produced during electrochemical reactions
of specific antibody combinations, are more sensitive ways of
measuring NfL in blood (Li and Mielke, 2019). They are also
affordable and require smaller sample volumes (Limberg et al.,
2015; Kuhle et al., 2016a). Nevertheless, it has been shown that
ECL-based methods are not sufficiently sensitive to detect the
lowest concentrations in MS (Hendricks et al., 2019; Li and
Mielke, 2019), which limits its utility.

Quantification of bNfL and cNfL has become optimized
with the development of the ultrasensitive Simoa R© (Quanterix;
Hendricks et al., 2019; Gaetani et al., 2019a). Simoa is 125- and

FIGURE 1 | Correlation between cNfL and bNfL across different technologies
as reported by Kuhle et al. (2016a). Correlation coefficients between cNfl and
bNfL levels measured with ELISA, ECL, and Simoa.

FIGURE 2 | Correlation of cNfL and bNfL across different technologies as
reported by Kuhle et al. (2016a). Correlation coefficients of cNfl and bNfL
levels across ELISA, ECL and Simoa.

25-fold more sensitive than conventional ELISA and ECL-based
assays, respectively. Notably, it can detect a concentration as low
as 0.1 pg/mL of protein (Kuhle et al., 2016a). Kuhle et al. (2016a)
quantified and compared bNfL levels across the mentioned
technologies and found that 55% of ELISA serum measurements
and 60% of ECL measurements were below sensitivity when
compared to Simoa. A number of studies have shown that
Simoa bNFL has good correlations with clinical and radiological
findings (Disanto et al., 2017; Novakova et al., 2017b; Piehl et al.,
2018), which supports its potential role as a surrogate biomarker
in MS. Additionally, Simoa can also detect tau and other proteins
associated with neurodegeneration to similar sensitivities, which
widens its utility (de Wolf et al., 2020).

Several studies have examined the correlation between cNfL
and bNfL levels between the different technologies. Kuhle
et al. (2016a) compared the three mentioned technologies using
matched CSF and blood samples from individuals with various
neurodegenerative conditions. When comparing paired cNfL and
bNfL, they found a strong correlation for Simoa and ECL, but
weaker for ELISA (Figure 1). They showed that cNfL were well
correlated between technologies, whereas bNfL levels were only
similar between ECL assay and Simoa, but not between ELISA
and ECL, or and ELISA-Simoa (Figure 2). Similar findings were
found by Gisslén et al. (2016). Generally, is it expected to find
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FIGURE 3 | Correlation of NfL between CSF, serum and plasma in different population as reported by Harp et al. (2019), Hendricks et al. (2019), and Sejbaek et al.
(2019). Correlation coefficients between NfL measured in CSF vs serum or vs plasma across different populations.

higher NfL levels when using Simoa, given its ultra-sensitivity.
All together, these findings highlight the need of calibration
and validation of cut-off levels across technologies (Kuhle et al.,
2016a; Varhaug et al., 2019). Overall, Simoa is the preferred bNfL
assay due to its low detection limit, simple and fast sampling,
storage and handling, and feasibility of longitudinal sampling.
Ongoing projects, led by Siemens Healthineers, are developing
bNfL immunoassays using the Quanterix NfL antibodies. After
reporting high correlation of bNfL levels between Simoa and the
assay, they plan to adapt the Simoa assay onto a routine analyzer
platform, which will accelerate the availability of NfL tests for
patients around the world (Didner, 2019).

NfL IN CSF AND BLOOD

High variability between CSF and serum NfL (sNfL) levels
have been found in pwMS (Figure 3). Harp and colleagues
used the Simoa platform to compare levels of NfL in plasma,
serum, and CSF samples obtained from the same individual,
with and without brain pathology. Their results showed a
strong correlation between serum and plasma NfL levels within
the same person, but a weaker correlation between CSF and
serum or plasma levels (Harp et al., 2019). Hendricks et al.
(2019) analyzed NfL levels in 112 MS individuals and found a
good correlation between CSF, serum, and plasma levels. Other
group analyzed NfL levels in the CSF, plasma and serum of
52 untreated RRMS individuals, 23 healthy controls, and 52
MS individuals treated with placebo, matched by age, sex, and
NfL (Sejbaek et al., 2019). They found that NfL levels were
approximately 200 times higher in the CSF compared to plasma
or serum. Additionally, even though the plasma and serum
levels were highly correlated, plasma levels were 23% lower than
in serum. Similar findings have been found in murine models
of neurodegeneration (Gaiottino et al., 2013; Bacioglu et al.,
2016; Disanto et al., 2017; Bianchi et al., 2019). Other authors
examining treatment effects showed that both CSF and sNfL
levels decrease with DMTs (Piehl et al., 2018; Sejbaek et al., 2019)
suggested that serum levels might be more useful than plasma
levels when evaluating treatment effects, given that sNfL levels
show a relatively greater reduction compared to plasma levels.

It has been hypothesized that the differences between
CSF, plasma/serum are probably due to the fact that the

CSF compartment is closer to the damaged site, and to the
integrity of the blood brain barrier, whilst concurrent peripheral
inflammatory or infectious processes might affect the increase
of blood NfL levels (Bacioglu et al., 2016; Sejbaek et al., 2019;
Dalla Costa et al., 2019b). Despite the high variability found
between compartments, most evidence seems to suggest there is a
good correlation, which will likely shift the balance toward blood
sampling given its practical advantages.

DETERMINING WHAT IS ABNORMAL

A key point to validate NfL levels as surrogates of disease activity
is establishing optimal and sensitive cut-off values. Currently,
there is large heterogeneity on optimal values to establish what is
pathological, to estimate the risk of conversion from RIS/CIS to
clinically definite MS, to accurately predict disease progression,
and to determine adequate treatment response (i.e., what would
be considered a significant drop in NfL to reflect treatment
response). Furthermore, gender and age stratification are lacking.
Generally, cNfL cut-off levels range between 400–1,000 ng/l
(Arrambide et al., 2016; Novakova et al., 2017b; Gaetani et al.,
2019a), and corresponding sNfL cut-off levels between 3–30 ng/L
(Norgren et al., 2004; Håkansson et al., 2018; Dalla Costa et al.,
2019a; Thebault et al., 2020). Others have instead used percentiles
across different ages (Disanto et al., 2017). More recently, authors
have been calling for longitudinal measurements of sNfL rather
than absolute cut-off values (Bittner et al., 2020; Ferraro et al.,
2020; Häring et al., 2020).

This variability reflects the lack of consensus on measuring
techniques between centres, no fixed criteria for setting abnormal
values, and in determining the rate or percent change that would
be clinically meaningful over time.

UTILITY OF NfL MEASUREMENT IN
CLINICAL PRACTICE

Monitoring and predicting disease activity and treatment
response is crucial for the individualized management of pwMS
(Kalincik et al., 2017). MRI is a reliable tool to assess therapeutic
monitoring, however, it is costly and is not always available
owing to geographic reasons or lack of local resources. Recent
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TABLE 1 | Reported reduction in NfL levels after treatment with DMTs.

DMTs Reduction at last follow up

Natalizumab 37%, p = 0.03 (Christensen et al., 2014)

20%, p < 0.001 (Kapoor et al., 2018)

30%, p < 0.001 (Gunnarsson et al., 2011)

Fingolimod vs IFNβ1a 38%, p < 0.001 (Kuhle et al., 2019a)

Alemtuzumab and disease activity DMT associated with no disease activity
p < 0.001 (Hyun et al., 2020)

IFN or glatiramer acetate to rituximab 21%, p = 0.01 (de Flon et al., 2016)

Injectable therapies to fingolimod 33%, p < 0.001 (Piehl et al., 2018)

Ocrelizumab vs placebo 43%, p < 0.001 (Bar -Or et al., 2019)

Ibudilast vs placebo no difference (Fox et al., 2021)

studies have examined the effects of DMTs on NfL levels
and evaluated the potential role as a therapy monitoring tool
(Table 1). Kuhle et al. (2019a) measured sNfL in individuals
with RRMS that were part of two ongoing clinical trials.
Those receiving fingolimod had lower NfL levels throughout
the course of the disease compared to those receiving IFNβ1a,
which is congruent with clinical observations. Likewise, a
multicenter Swedish study showed that both cNfL and sNfL
levels correlated with DMT response, regardless of whether
they were receiving DMTs or not (Novakova et al., 2017b).
They observed that NfL levels were reduced in those initiating
DMT for the first time or after switching from first- to
second line DMTs. Similar results were found in studies
analyzing the effect of dimethyl fumarate in individuals without
previous therapy (Sejbaek et al., 2019), individuals treated with
natalizumab (Gunnarsson et al., 2011) or alemtuzumab (Hyun
et al., 2020), and individuals switching from IFN or glatiramer
acetate to rituximab (de Flon et al., 2016), or from injectable
therapies to fingolimod (Piehl et al., 2018). Interestingly, Dalla
Costa et al. (2019a) analyzed the role of NfL as markers of
progressive multifocal leukoencephalopathy (PML) secondary
to natalizumab therapy. They showed that sNfL had a tenfold
increase with PML onset, which was higher than those having
an MS relapse.

Individualized management is a key goal in MS management.
Current treatment strategies are based on clinical and radiological
findings; however, these often fail to capture the full extent
of the disease and have a limited correlation with disability
and prognosis. With the recent findings on the correlation
of NfL levels and disease activity, disability and therapy
monitoring, the next step is to examine whether including NfL
measurements into day-to-day clinical practice is beneficial.
A recent observational study examined the role of NfL
measurement in treatment decisions and as a surrogate marker
of clinical or radiological activity (Reyes et al., 2020). They
found that NfL levels were closely associated with clinical
and radiological activity, and in a significant proportion of
individuals with PMS, elevated NfL was the only evidence of
disease activity used in the treatment decision-making process.
In line with the available evidence, individuals with elevated
NfL levels were more likely to have treatment escalation as
a means to reduce axonal damage and neurodegeneration.

Importantly, they emphasized the need of age-related cut-
offs and predefined time intervals for measurements as
indispensable prior to introducing NfL measurements in clinical
decision making.

ROLE OF NfL IN RESEARCH

To date, more than 2000 MS clinical trials are active1. Of
these, more than 150 correspond to phase 2 trials, of which
one third are testing new drugs. A large percentage of these
trials use MRI measures to evaluate outcomes. Even though
there is substantial evidence on the association between MRI
findings, disease progression and treatment response, subclinical
activity and neuroaxonal damage markers cannot be fully
evaluated with available neuroimaging techniques (Gajofatto
et al., 2013). In addition, long-term (i.e., 24 months or more)
MRI-based endpoints do not correlate as well as short term
imaging endpoints, and therefore frequent scans are usually
needed. Repeated scans increase costs, are burdensome for many
individuals, and do not usually cover the spinal cord. Given
the advantages of NfL measurement and the good correlation it
has shown with MRI findings of disease activity and treatment
response, it has gained significant attention as a potential end
point marker for clinical trials (Sormani et al., 2019; Kuhle et al.,
2019a). In addition, the findings from the nested case-control
study of United States military personnel by Bjornevik et al.
(2020) suggest that NfL levels in asymptomatic individuals could
be used to select candidates that would benefit from disease
prevention trials.

THE KNOWN UNKNOWNS

How Much NfL From Peripheral Nerve
Disease Will Affect Serum/CSF NfL?
The effect of peripheral nerve disease on NfL levels has
not been widely studied but will be highly relevant when
incorporating NfL measurements in the clinical management of
pwMS. Mariotto et al. (2018) studied a cohort of 25 individuals
with acquired peripheral neurological disease and observed
a significant increase between cNfL and sNfL and disease
activity, severity and outcome, although only sNFL remain
significant. Interestingly, they noticed a correlation between NfL
only in individuals with possible brain-nerve barrier damage,
suggesting that disrupted brain-nerve barrier could contribute
to the increase in cNfL seen in patients with peripheral nerve
disorders. Similar results were found in a study that included
individuals with Charcot Marie Tooth disease (Sandelius et al.,
2018), vascular neuropathy (Bischof et al., 2018), progressive
axonal sensorimotor polyneuropathy (Louwsma et al., 2020),
and prediabetic neuropathy (Celikbilek et al., 2014). More
studies will be needed to characterize the impact of peripheral
nerve disease in NfL levels in individuals with concomitant
CNS disease.

1clinicaltrials.gov
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Can Anti-NfL Antibodies Reduce the
Circulating NfL Levels?
The generation of antibodies against neuronal antigens, such as
neurofilament light, has been reported (Bartoš et al., 2007). There
is some evidence on the relationship between anti-NfL antibodies
and circulating NfL levels. Fialová et al. (2013) demonstrated
increased NfL levels and intrathecal synthesis of anti-NfL and
anti-NfH autoantibodies in early MS, but not in those with long
standing disease. They suggested that this observation was in
line with the clinical observation that autoimmune mechanisms
predominate at initial phases of the disease. Interestingly, they
also observed an association between anti-NfL levels and early
conversion to clinically definite MS in individuals with CIS. They
concluded that CSF anti-NfL antibodies and CSF anti-NfL/serum
anti-NfL antibody ratio could help differentiate individuals with
CIS with a higher risk of conversion. Moreover, Silber et al.
(2002) observed that anti-Nfl and anti-NfH correlated with
disease duration and EDSS, and Amor et al. (2014) observed a
reduction in anti-NfL levels after natalizumab therapy. Despite
these findings, the clinical usefulness of anti-Nf measurement is
not straightforward. Other groups have reported presence of anti-
NfM antibodies in individuals with non-immune neurological
disorders, such as migraine and chronic fatigue syndrome (Bartoš
et al., 2007). Also, discrepancy between CSF and serum levels
for these antibodies have been documented (Ehling et al., 2004;
Bartoš et al., 2007), which limits its utility as an isolated
measurement (Dubuisson et al., 2017). Further studies are
required to draw solid conclusions about the impact of anti-Nf
antibodies on circulating NfL and their clinical utility.

Other Biomarkers, Where do They
Stand?
Even though there is a higher volume of evidence and increased
clinical and research interest in NfL as a biomarker in MS, there
are other biomarkers that have been examined independently and
in relation to NfL.

Oligoclonal bands are detected in the CSF of about 95% of
pwMS and are considered the best diagnostic element supportive
of MS diagnosis (Deisenhammer et al., 2019). CSF OCBs are
produced by B cells and plasma cells and can be found in other
neuroinflammatory diseases. OCBs positivity, independent of
MRI lesion load, strongly predicts conversion from clinically
isolated syndromes (CIS) to CDMS (Dobson and Giovannoni,
2019). The predicate risk increases significantly (adjusted hazard
ratio 11.3 (6.7–19.3) when OCBs are found together with 10
or more lesions on MRI (Ignacio et al., 2010; Tintore et al.,
2015). Similarly, studies examining the predictive role of OCBs
and cNfL have shown that individuals with RIS presenting
with positive OCBs and/or high levels of cNfL have a shorter
time to conversion to CIS and MS compared to those with
negative OCB and/or low cNfL levels (Matute-Blanch et al.,
2018). Interestingly, the association between cNfL and time to
conversion was restricted to individuals older than 37 years,
whereas the one with OCBs was present regardless of age. Among
pwMS, a low number of OCBs at diagnosis may be associated
with a better prognosis and treatment response (Avasarala et al.,

2001; Joseph et al., 2009), however, no clear prognostic value has
been established (Becker et al., 2015).

Osteopontin (OPN) is an extracellular matrix protein
widely expressed in immune cells and involved in T-mediated
inflammatory response (Brown, 2012). OPN expression has
been found in MS lesions (Chabas et al., 2001) and specific
OPN genotypes have been associated with an increased risk of
developing MS (Chiocchetti et al., 2005). Previous studies have
shown that OPN levels are increased in secondary progressive MS
(SPMS; Comabella et al., 2005; Romme Christensen et al., 2013;
Shimizu et al., 2013), PPMS and RRMS (Vogt et al., 2003; Romme
Christensen et al., 2013). They have also been associated with
cognitive impairment and treatment response (Iaffaldano et al.,
2014). A recent meta-analysis concluded that elevated levels of
OPN in CSF and in the peripheral blood of pwMS are suggestive
of active inflammation (Agah et al., 2018). A study by Tortorella
and colleagues found that OPN was inversely correlated with the
volume of the corpus callosum, whereas NfL was associated with
gray matter volume in a cohort of individuals with CIS (Direnzo
et al., 2015). They suggested that cNfL and OPN levels during
CIS might reflect different patterns of early neurodegeneration.
A study examining the stepwise predictive value of 18 biomarkers
including cNfL and cOPN and MRI lesion load concluded that
baseline cNfL combined with OPN and CLL2 correctly predicted
the clinical activity status of 91% of the individuals with CIS or
MS. In contrast, cOPN+ cNfL, cNfl alone, T2 lesion load+ cNfL
or alone, showed lower percentages of correct prediction (86, 83,
81, and 71%, respectively; Håkansson et al., 2017).

C-X-C motif chemokine-13 (CXCL13) is a B cell
chemoattractant that has been shown to be involved in the
recruitment of B cells into the CNS during neuroinflammatory
conditions (Cui et al., 2020). Unlike NFL, CXCL13 is not
commonly produced in the absence of neuroinflammatory
conditions. Recent evidence indicates that CXCL13 is associated
with prognosis and disease activity, and is reduced with
corticosteroids, fingolimod, natalizumab and B-cell depletion
therapies (Lycke and Zetterberg, 2017; Matute-Blanch et al.,
2017). CXCL13 levels alone or in combination with NFL might
also predict CIS conversion to MS (Brettschneider et al., 2010).
Interestingly, a recent study examining the clinical utility of
combined cNfL and CXCL13 measurements concluded that
these biomarkers continue to be evaluated in individuals with
no clinical or radiological activity, which could complement
the assessment of disease activity in pwMS (Novakova et al.,
2020). Remarkably, DiSano and collegues recently showed
that CXCL13 combined with NfL had excellent sensitivity
(100%), specificity (72%), positive predictive value (71%), and
negative predictive value (100%) compared to either CXCL13
or NfL alone to predictive future disease activity (DiSano et al.,
2020). Additionally, they showed that CXCL13 + NfL had better
predictive value compared to NfL+OCBs, CXCL13+OCBs, and
CXCL13+ OCBs+ NfL to predictive disease activity in pwMS.

Chitinase-3-like protein 1 (CHI3L1) is a glycosidase secreted
by monocytes, astrocytes and microglia and it is thought to
modulate CNS inflammation. There is evidence that CHI3L1
levels are associated with CIS conversion to MS, disability
progression (Cantó et al., 2011; Hinsinger et al., 2015;
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Håkansson et al., 2018; Huss et al., 2020), and presumably
treatment response (Matute-Blanch et al., 2018). Similar to other
biomarkers of neuroinflammation and tissue damage, CHI3L1 is
not specific for MS and has been found to be elevated in cancer
and rheumatoid arthritis (Tsuruha et al., 2002). A recent study
examining the value of cNfL and CHI3L1 concluded that CHI3L1
levels were associated with spinal cord volume loss but not with
brain gray matter atrophy. In contrast, cNfL was associated with
brain but not with spinal cord volumes (Schneider et al., 2021).
The combined measurement of CHI3L1 + cNfL could therefore
provide complementary information on the location of atrophy
in pwMS. Gil-Perotin et al. also provided evidence of the utility of
CHI3L1 levels over NfL to discriminate different MS phenotypes
(Gil-Perotin et al., 2019).

FUTURE DIRECTIONS

Standardization and Guidelines
There is now a large pool of data supporting the use of NfL
in MS, directing it toward the adoption of NfL in clinical
trial protocols (Kapoor et al., 2020). Evidence for use of
NfL in routine clinical practice is also mounting suggesting
that cNfL can complement established markers of disease
activity to guide treatment strategies in MS (Reyes et al.,
2020), adding further weight to the argument that NfL can be
included in clinical guidelines. However, important gaps remain,
particularly concerning validity, which stems from the lack (and
need) of standardized values across the world. These include.
standardization of NfL measurement techniques (i.e., sample
collection and assay methods) and a well-defined diagnostic and
prognostic cut-off levels, for both healthy individuals and MS.

Multicenter studies have reported a low variation of NfL
and NfH measurements across sites and between assays (Oeckl
et al., 2016; Kuhle et al., 2018), however, more is needed
to evaluate variation across batches (Sharma et al., 2018).
There is also a pressing need to establish ideal sampling time
windows (e.g., timing with a relapse) and assessing their impact
on the clinical predictive value of NfL levels in the long-
term. This will enable comparisons across individuals and the
optimization of resources, both in the clinical and research
setting. Multicenter collaborations are therefore needed to
address these gaps, with formulation of guidelines that address
use and limitations of this test.

Isobaric Tags and Dried Plasma Spots
Large scale biomarker studies and routine clinical measurement
of biomarkers come at a great cost (Collinson, 2015). Isobaric

tags and dried plasma spot (DPS) have emerged as potential
measurement substrates that could reduce costs, processing
times, and the need of specialized infrastructure. A recent study
analyzed NfL levels in 17 individuals using DPS and Simoa
(Lombardi et al., 2020). They observed a good discrimination
of ALS from healthy controls, which was comparable to
the discrimination obtained using sNfL measures. However,
biological interaction with other blood components may interfere
with quantitative and qualitative measurements. Leoni et al.
(2019) observed good sensitivity of isobaric tags to proteins
linked to ALS, including neurofilament light. To our knowledge,
no studies have evaluated the use of DPS to measure NfL in MS.

CONCLUSION

To date, diagnosis, management, and prognosis of MS relays
on neuroimaging and clinical findings. However, the discovery
of biomarkers such as NfL is turning the page toward a much
desired and needed individualized medicine. NfL, a biological
surrogate of CNS axonal damage, has consistently shown to
reflect both clinical and subclinical changes in the activity
and short-term burden of the disease. It has also proven to
be an excellent indicator of treatment response and even as
predictor of MS in presymptomatic individuals, which adds
value to its utility as a clinical trial endpoint. The technological
developments seen in the past years, and the ones yet to
come, are widening the access to minimally invasive, fast, and
low-cost measurements of bNfL levels. Additionally, this will
permit larger and more longitudinal studies to be carried out,
which in turn, will help determine and validate cut-off values
according to the individual’s characteristics, current treatment
status, and neurological comorbidities. In the upcoming years,
we may see NfL being included in best clinical practice guidelines
and it being routinely and longitudinally evaluates in MS. The
inclusion of NfL measures into the clinical decision making will
allow for more individualized and prompt management of MS,
with accurate prognosis and optimized follow-up of patients
presenting with MS and those with established MS.
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