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THE EVOLUTION OF RANDOM GRAPHS
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BÉLA BOLLOBÁS1

ABSTRACT. According to a fundamental result of Erdös and Rényi, the struc-
ture of a random graph Gm changes suddenly when M ~ n/2: if M = [cnj
and c < k then a.e. random graph of order n and since M is such that its
largest component has O(logn) vertices, but for c > ^ a.e. G m has a giant
component: a component of order (1 — ac + o(l))n where ac < 1. The aim of
this paper is to examine in detail the structure of a random graph G m when
M is close to n/2. Among others it is proved that if M = n/2 + s, s = o(n)
and s > (log nj'^n2/3 then the giant component has (4 + o(l))s vertices.
Furthermore, rather precise estimates are given for the order of the rth largest
component for every fixed r.

1. Introduction. Let n be a natural number and set N = (£) and V =
{1,2,... ,n}. A graph process on V is a sequence {Gt)o such that (i) each Gt is a
graph on V with í edges, and (ii) G0 C Gi C • • • C Gyv- Let § be the set of all N\
graph processes. Turn Q into a probability space by giving all members of it the
same probability and write G for random elements of Q. Furthermore, call Gt the
state of the process G = {Gt)o at time t. Clearly a (random) graph process is a
Markov chain whose states are graphs on V. This Markov chain is a model of the
evolution of a random graph (r.g.) with vertex set V.

The evolution of random graphs was first studied by Erdös and Rényi [5-7].
They investigated the least values of t for which certain properties are likely to
appear, i.e. they studied the stage of the evolution of a r.g. at which a given prop-
erty first appears. Erdös and Rényi proved the surprising fact that most properties
studied in graph theory appear rather suddenly: there are functions ti(n) < Í2(n)
rather close to each other such that almost no Gt, has the property and almost
every Gtl has the property. (As customary in the theory of random graphs, the
term 'almost every' (a.e.) means 'with probability tending to 1 as n —> oo'.)

Perhaps the most interesting results of Erdös and Rényi concern the sudden
change in the structure of Gt around t = n/2.

They proved that if t ~ cn for some constant c, 0 < c < 1/2, then a.e. Gt is
such that its largest component has O(logn) vertices: if t ~ cn and c > 1/2 then
the largest component of a.e. Gt has (1 — qc + o(l))n vertices, where 0 < ac < 1;
and if t = [n/2\ then the maximal size of a component of a.e. Gt has order n2'3.
(In fact, Erdös and Rényi [6, 7] asserted the last statement for t ~ n/2 but, as we

Received by the editors December 3, 1982 and, in revised form, August 15, 1983.
1980 Mathematics Subject (Classification. Primary 05C99, 05C30; Secondary 60J99, 62P99.
1 Research supported by NSF Grant MCS-8104854.

©1984 American Mathematical Society
0002-9947/84 $1.00 + $ 25 per page

257

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



258 BELA BOLLOBAS

shall see, that is not true.) Furthermore,

1   ~  k-k-i

it=i

so ace2c —> 1 as c —► oo.
The aim of this note is to prove considerably more precise results about the

structure of Gt, especially when t is close to n/2. Among others, our results will
shed light on the curious double jump described above.

Loosely speaking, we shall show that a.e. G is such that for t > n/2 +
(logn)1/2n2/3 the graph Gt has a unique component of order at least n2/3 (the
giant component of Gt) and all other components have fewer than n2/3/2 vertices.
Furthermore, if n01 < s < n"2, where 2/3 < ßi < ß2 < 1, then Gn/2-s and Gn/2+s
have remarkably similar structures. A.e. Gn/2-s has all its vertices on components
of order at most n2 (log n)/s and so has Gn/2+s, except for its vertices on its giant
component.

The giant component of G„/2+s has (4 + o(l))s vertices. Most vertices are on
small components which are trees. The distributions of these tree-components of
Gn/2-s and Gn/2+s are vei7 similar, except in Gn/2+s there are about 1 — 2s/n2
times as many of them as in Gn/2-s. As an easy corollary of our results, for t ~ cn,
c > 1/2, we obtain precise information about the distribution of the order of the
rth largest component of Gt for every fixed r.

2. Definitions and basic facts. In addition to graph processes we shall con-
sider two other models of random graphs. The space $(n, M) consists of all graphs
with M = M(n) edges and with vertex set V = {1,2,...,n}; the elements of
Ç(n,M) are equiprobable. The model $(n,p) consists of all 2N graphs with ver-
tex set V, in which the probability of a graph with m edges is pmqN~m, where
q — Í — p. Thus Ç(n,p) consists of all graphs with vertex set V in which the edges
are chosen independently and with the same probability p = p(n), 0 < p < 1. For
basic properties of these models see [1, Chapter 7 and 3]; for undefined terminology
in graph theory see [2]. As customary, we shall talk of random graphs G m and Gp,
meaning that we consider elements of Q(n,M) and Q(n,p). Note that the prob-
ability that a r.g. Gm has Q is the same as the probability that a graph process
G = {Gt)Q is such that Gt has Q for t = M. Therefore no confusion will arise
from the two slightly different meanings of the symbol Gm- We say that almost
every G m (or Gp) has a property Q if the probability that G m (or Gp) has Q tends
to 1 as n —► oo. If M is close to pN then the models §(n,M) and ${n,p) are
virtually interchangeable. In particular, if pqN —» oo, Q is a convex property (that
is if F c G C H and F and H have Q then so does G) and a.e. Gp has Q then so
does a.e. Gm, provided \M - pn\ = 0(pqN)1^2. These remarks imply that most
of our results could be formulated for any of our models; nevertheless, there are
advantages in considering all three.

Denote by C{k,d) the number of connected labelled graphs with k vertices and
k + d edges. Thus C(k,d) = 0 if d < 2, C(k, -1) is the number of labelled trees
of order k, so C{k, -1) = kk~2, and C(k,0) is the number of connected unicyclic
graphs.  For d > 0 the function C(k,d) is less simple.  It was proved by Katz [9]
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THE EVOLUTION OF RANDOM GRAPHS 259

and Rényi [10] (and it is also a consequence of more general formulae in [8]) that

r=3j=l   ^ '

For d > 1 Wright [11-13] proved a number of results about C(k,d). He showed
that for d = oik1'3)

(2) C{k,d) = fakd+^d-^2{l + 0(d3/2 /fc)},

where f¿ depends only on d. In particular, /o = (tt/8)1/2, /i = 5/24 and /2 =
5\/2/128. We shall not need exact estimates in the vein (2), but we shall need
a bound on C(k, d) which is valid for all values of d. To be precise, we need the
following inequality from [4]: for every K > 0 there is a constant cc, = cq(K) such
that
(3) C(k,d)<c0K-dkk+^d-x^2

for every d, — 1 < d < (2) — fc. In fact, we could manage with considerably
cruder bounds than (3) but the calculations become more pleasant if fck+f3«'-1)/2
is multiplied by a factor tending to 0 as d —► oo, rather than by one increasing with
d. We could also use the fact that C(fc, d) is long concave as a function of d. This
was proved by Odlyzko, answering a question of mine, by making use of the proof
in [13].

A component of a graph is said to be a (k,d)-component if it has fc vertices and
fc + d edges. We denote by X(k,d) the number of (k,d)-components of a random
graph. Note that in §{n,p) the expectation of X(k,d) is

(4) Ep(X(k, d)) = (f\ C(k, d)pk+d(l - p)k(n-k)+(i)-k-d

In particular, the expected number of tree-components of Gp is

(5) Ep(X(k,-l)) = ^V-V-1(l-p)fcn~fc2/2~3fc/2+1-

For the sake of convenience we shall omit the integrality signs throughout the
paper. It is easily seen that the validity of the arguments will remain unaffected.
Furthermore, our inequalities are asserted to hold if n is sufficiently large. Finally,
Ci,c2,... denote positive constants.

3. Gaps in the sequences of components. The key result in proving the sud-
den emergence of the giant component and in estimating its order rather precisely
is that from shortly after time n/2 most graph processes never have a component
of order between n2/3/2 and n2/3. The restriction t < 2n/3 in the result below is
only for the sake of convenience, it can be easily removed.

THEOREM 1. Let s0 = (f logn)1/2n2/3 and t0 = n/2 + s0. Then a.e. graph
process G — (Gt)o° is such that ifto<t< 2n/3 and Gt has a component of order
fc then either k < n2^3/2 or else k > n2/3.

PROOF. Throughout the proof we shall assume that n2/3/2 < fc < n2/3. De-
note by Et(k) the expected number of components of order fc in Gt:  Et(k) =

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



260 BÉLA BOLLOBÁS

J2{Et(X{k,d)): -1 < d < (*) - fc}- In order to prove our theorem it suffices to
show that

2n/3      n*'3

¿2  £ Et(k) = 0(i).
t=t0 fc=n2/3/2

For d > (j) - fc we have X(k, d) = 0 and for fc + d < t and -1 < d < (k) - fc the
expected number of (fc, d)-components of Gt is

(6) WMt-^IMJ/^J/^).
Indeed, having chosen the k + d edges of a (fc, d)-component, the remaining t — k — d
edges have to be chosen from a set of (n^k) edges. Set

lOfc

£
d=-l

E't(k) = J2 Et{X{k + d))    and    E't'(k) = Et{k) = E't{k).

We shall estimate separately the sums of the ¿£{(fc)'s and E't'(k)'s. In the first case
we shall make use of (3), but in the second case it will suffice to bound C(k,d)
by the total number of graphs with fc labelled vertices and k + d edges. In both
cases the initial difficulty is that (6) is considerably more unpleasant than (4) with
p = t/N.

(i) Suppose \n2>3 < fc < n2/3, t0 < t < 2n/3 and -1 < d < lOfc. Then
(7)
( W \;(N\   {t)k+d{n~2^-k-d
yt-k-d)'\tj (N)t

k+d '      (k + d)2\(n2k)t-k-d

s«(¿r-{JHrt-ís^<»-*-<>
(fcn - fc2/2)2

2A"2
, k+d        (    1_1.2

<c2{ ^7

(« -fc-d)|

/i\fc+d fcn-fc2/2 _,, rifen-ifc2/2     fc + dl     fc2nM

*C3 {h)k+d exp {-^sr^*+2<fc+d)k'n - ^r- -2kH/n2}

( t \k+d         f    kn-k2/2 )^C3U)        eXP{-A^}-

The last inequality holds since for fixed values of n, fc and d the minimum of
(fc 4- d)2/2t + 2k2t/n2 is attained at t = (fc + d)n/2fc and the minimum is exactly
2(fc + d)fc/n.
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THE EVOLUTION OF RANDOM GRAPHS 261

Relations (3), (6) and (7) imply that
lOfc /  .  N fc+d

Setting s = t - n/2 and e = 2a/n (so that t/N is well approximated by (1 + e)/n
and e < ~) we find that

{fc2                   £2       e3             fc2 efc21-— +k + ek-—k+—k-k+--efc + -— >2n                      2         3               2n 2n J

< cenfc-^expí-^íl - e)fc| = c6nfc-5/2exp i~s2 (l - *\ fc/n2 j .

Consequently

¿     4(fc) < c7n-2/3exp{-iS2 (l - ??) „-V3J
=nJ/3/2 ^ V n / J

2   -2n a
fc=n3/3/2

and so
n/6       r,2/3

£     £     f;i(fc)<c8n4/3aô2exp{-|a2(l-2^)n-4/3ln4/3/ao
.=aofc=„V3/2 I     »       \ n   J )

<c9n8/3a0-3exp|-ía2n-4/3}

< ci0n2/3(logn)-3/2exp |-| (^ logn) J

-o(l).

(ii) Suppose ±n2/3 < fc < n2/3, t0 < í < 2n/3 and lOfc < d < (*) - fc. In this
case rather crude estimtes will suffice:

( (V) W"W n V^'^w'^w
t-k-dj' \tj - \t-k-d) '\tj- \NJ       -\n)

and

Therefore by (6)

«***(?)'(Ar er o'^-
This implies that £"(fc) = o(n-3) and so

2n/3      n2/3

¿     £     £?(*)= oí»'1).
t=t0 fc=n2/3/2
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262 BELA BOLLOBAS

Let us call a component small if it has fewer than n2//3/2 vertices and large if it
has more than n2//3 vertices. Theorem 1 states that a.e. graph process is such that
for to < t < 2n/3 every component of Gt is either small or large. This will enable
us to prove that a.e. graph process such that shortly after time n/2 it has a unique
large component (a 'giant' component), and all other components are small. In the
sequel we shall need a fairly good upper bound for the variance of the number of
small components.

THEOREM 2. Suppose A C N x {NU {0,-1}}, -1 < e = e(n) < n/4 and
p= (l + e)/n. Set

Xt = £{fclX(fc,d): (fc,d) G A},    m = Ep(Xl)

and k = max{fc: (fc,d) e A}. If -I < e < -(1 -I- e)2/n then <r2(X¿) < ^2, and if
-(1 + e)2/n < e and k2(e + (1 -f e)2/n) < n then

o2(Xi)<P2x + l(e + (l + e)2/n)p2+i.

PROOF. By relation (4)

Ep(Xt) =   Yl   fcl(^G(fc,d)pfc+d(l-P)fc("-fc)+^)-^.
(fc,d)€A       ^    '

Also, if (fci,di) and (fc2,d2) are distinct elements of A then

n\ (n — k\
£p(X(fci,d1)(fc2,d2))=(fc  )(    fc2 MG(fci,di)G(fc2,d2)

(8) .pfci+fcs+di+djQ _p\(k¡+k2)(n-kl-k2) + (kl¿k2)-k1-k2-dí-d2

= Ep(x(ki,di))Ep(x(k2,d2))/")fc;+t2 (i-p)"fclfca-
(«)fcl(")fc2

Similarly, for (fc, d) € A,

^2^ ^ p /vit jh a  xr tvtt, jh*    (n)2*    n _ ^-*a
(»)k(«)*

Relations (8) and (9) give

(9) Ep(X(k, d)2) < £p(X(fc, d)) + £p(X(fc, d))a,_\/"v (1 - PY

u+^Ukiep(x2) < Ep(Xi) + >    k\k2E(X(k1,di))E(x(k2,d2))
(10)

•/w+î'  (l-p)-fclfca: (fc1,di),(fc2,d2)€A
(n)fc.(n)fc2 J

Since 1 — y < (1 - x)eI-y whenever 0 < x < y < 1, we find that

(n)
< exp ^ ^ (-j > = exp{-fc!fc2/n}.
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THE EVOLUTION OF RANDOM GRAPHS 263

Furthermore,

,     1 + e           /    1 + e     (1 + e)2)
1 _ p = i-> exp {-— - i-s-i- \ ,n I       n n       J

so by (11)

Wfc.+fc»  (1       i-fc.fc, <        Í    fclfc2   |   (! + £)fcifca   !  (l + g)2Mfrl
(»)fci(«)fc2 I      n n n2 J

ffcifc2 /       (1 + £)2\1      ,     C/I    ,  ,= expj -i-i Í£ + --'—) > = l + <5(fci,fc2).

Now if £ + (1 + £)2/n < 0 then ¿(fci, fc2) < 0 and so by (10)

o-2(Xt) < Ep(X2t) = p2l.

Finally, if -(1 + e)2/n < e and fc2(£ + (1 + e)2/n) < n then

¿ fci,fc2   < —— l£+-ZT-)-
n     \ n      /

Therefore (10) gives

cr2(Xt) < E(X2t) + (| + 2(1nh2£)2) ^i^^^W*»»*))*^*!»**))!

(fci,di),(fc2,d2)GA}
/2£     2(l + £)2\   2

Armed with Theorem 2, we can locate the maximal order of a component of Gp
having fewer than n2^3 vertices, provided p is too close to the critical value 1/n.
As for p > 1/n this will turn out to be the order of the second largest component,
we denote it by S(GP):

S(GP) = max{fc: fc = 0 or fc < n2'3 and Gp has a component of order fc}.

Theorem 3.  Let -\ < e = e(n) <\,p = (\ + e)/n and define

g£{k) = logn - - logfc + fc(log(l + £)-£) + 21og(l/£).

Let fco = fcn(n) and fc2 = fc2(n) < n2^3 be such that

Çe(ko) —► oo    and   ge{k2) -» -co.

Then a.e. Gp is such that S(GP) < fc2 and i/n|£|3(logn)~2 —> oo then a.e. Gp is
such that fc0 < S(GP).

PROOF,  (i) As in the proof of Theorem 1, for fc < n2/3

£ Ep(X(k,d))<ClEp(X(k,-l)).
d>-l
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264 BÉLA BOLLOBÁS

Hence the expected number of components of Gp with order between fc2 and n2^3
is at most

„2/3

c, £i?p(X(fc,-l))
k=k?

n2/3 , , fcn-fc2/2
< c2n £ fc~5/2 exP{fc - fc2/2n}(l + £)fc I 1 - — )

k=k3 \       n   '

«2/3

<c2n V fc-5/2expifc- — +fclog(l + £)-fc(l + £)-—(l + £)l
k% y        2n 2n J

< c3n ]T fc_5/2exp{fc(log(l +e) - £)}
k=k2

< c^nk^     exp{fc2(log(l + £) - £)}£~2
= c4exp{i/£(fc2)}.

By our choice of fc2 we have g£(fc2) —> — oo so almost no Gp has a component whose
order is between fc2 and n2!3.

(ii) In the proof of the second inequality we may and shall assume that
n|£|3(logn)~2 —> oo and fco —♦ oo. Set ke =■- [8(logn)£_2J, A = {(fc,-1): fco <
fc < fc£} and let Xr, be as in Theorem 2. Then g€(ke) —* —oo and

k k
p0 = E(X0) = ¿ E(Tk) ~ JL ¿ ^5/2 exp{fc(log(l + e) - £)}•

fc = fco fc = fco

Clearly fc£ > fco + £2 so by the choice of fco we have po —* oo. Furthermore, we may
suppose that p0 does not grow too fast, say po = o(n|£|3(logn)~2). Then

po,ek2/n = O(/x0£(logn)2£"4n_1) = o(l).

Theorem 2 implies that

cr2(X0) <po + 2>zp\/n < p0 + 3£/igfc2/n = /¿0(1 + o(l)),

so by Chebyshev's inequality P(X > 0) —► 1.    D
Let us state some explicit bounds for S(GP) implied by Theorem 3.

COROLLARY 4.  Let p = (1 + e)/n.
(i)IfO<£<\ is fixed then a.e. Gp satisfies S(GP) < 3(logn)£-2,
(ii) If n   '° < £ — o((logn)_1) ond w(n) —» oo then

\S(GP) - (2 logn + 6 log£ - 5 loglogn)£-2| < u(n)e~2

for a.e. Gp.

PROOF,  (i) All we have to check is that g£(3(logn)£-2) —► -oo.
(ii) Straightforward calculations show that

fc0 = (2 logn + 6 log£ - 5 loglogn - uj(n))e~2
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THE EVOLUTION OF RANDOM GRAPHS 265

and
k2 — (2 log n -I- 6 log £ - 5 log log n + u>(n))e~2

satisfy the conditions in Theorem 3.    G
The corollary above enables us to prove an analog of Theorem 1 for t > |n.

THEOREM 5. A.e. graph process G = {Gt)o is such that for t > 5n/8 the graph
Gt has no small component of order at least 100 logn.

PROOF. By Corollary 4 a.e. graph process is such that for some t satisfying
3n/5 < t < 5n/8 the graph Gt has no small component whose order is at least
75 logn. Since the union of two components of order at most a = [100 logn] has
order at most 2a < n2/3, the assertion of the theorem will follow if we show that
a.e. graph process is such that for t > 3n/5 the graph Gt has no component whose
order is at least a and at most 2a. Furthermore, since for t > 2n logn a.e. Gt is
connected, it suffices to prove this for t < 2n logn.

Let |n < í < 2n logn and set c = 2t/n. Then the expected number of compo-
nents of Gt having order at least a and at most 2a is

Sc.gM^l)'-'^)'-'

2a
<c2nJ2ekk~5/2cke-ck

fc=a

^n^V^ce1-)",
fc=a

where Co,ci and c2 are absolute constants. Since for c = 1.2 we have c — 1 — loge >
0.0176, the last expression is at most

canOogn)-3/^"1-7 = o{n~1'2).    D

4. The emergence of the giant component. Given a graph process G —
(Gt)o°, denote by wt the number of components of Gt and let

ft

V=[jUt(Gt)
t=i

be the partition of V into vertex sets of its components. Note that for every t
either Gt and Gt+i define the same partition of V or else wt+i = wt — 1 and the
partition defined by Gt is a refinement of the partition defined by Gt+i- Hence if
G is such that for t > t0 the graph Gt does not have a component whose order is
between n2!3 ¡2 and n2/3 then for tr¡ <t <t' the graph Gt< has at most as many
components of order at least n2//3 as Gt.
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266 BÉLA BOLLOBÁS

Moreover, if in such a G the graph Gt has a component which contains all large
components of Gto then Gt has a unique component of order at least n2/3 and
so has Gf for every f > 1. Therefore in order to establish the existence of the
giant component, we have to show that the large components of Gt0 are contained
in a single component of Gt for some t > to- Furthermore, we have to estimate
the number of vertices on the giant component or, equivalently, the number of
vertices on the small components. We start with the second task. For the sake of
convenience we take £ — pn — 1 = n   '.

THEOREM 6. Let 0 < -y < |, £ = n"1, p = (l + e)/n ond w(n) -♦ 00. For
a graph G, denote by Yi(G) the number of vertices on the small (fc, d)-components
with d > 1, by Yr,{G) the number of vertices on the small unicyclic components and
by V_i(G) the number of vertices on the small tree-components. Then a.e. Gp is
such that

Yi < uj(n)n5~<-1,    Y0 < u{n)n2~<

and
F_i = n - 2nx^ + 0{u(n)nil+"l)/2 + (logn)n1"2^).

PROOF. Set fc3 = 9(logn)n21. Then for fc3 < fc < n2/3 we have

£2fc/2 - fc£3/3 - fc2£/(2n) > £2fc/3 > 3 logn,

so

n2'3   ("2') in2'3

Y,   £ E(kX(k,d)) = O i Y, E(kX(k,-l))
k=fc3d=-l \k=k3

= 0\nY k'3/2 exp {-£2fc/2 + fc£3/3 + fc2£/(2n)}

= Oln-2 Y k~3/A =o(n-2).
V k=k3 J

This shows that in our proof we may replace Y¿ by

Yi= £fcX(M),       i = -1,0,1-
fc<fc3

(i) Note first that by (3)

\fcn-fc2/2E(Yi) = O l Y k(nk)C^ l)Pk+1(l - V?

0\n-x £fc3/2exp{-£2fc/2}
k<k3

since for 1 < fc < fc3 we have

fc£3/3 + fc2£/(2n) = 0(l).
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THE EVOLUTION OF RANDOM GRAPHS 267

Hence
£(y1) = 0(n-1£-5) = 0(n5'»-1),

implying the first assertion.
(ii) The expectation of Fo is easily estimated:

E(F0)- Y fc£(*(M))
k<k3

fcn-fc2/2+3fc/2

-L^^ exp{-fc£2/2}

U°°exp{"
fc<fc3

■z£2/2}dx~^n2\
¿a

Therefore, by Chebyshev's inequality, F0 < ui(n)n21 for a.e. random graph Gp.
(iii) We shall estimate E(Y-i) rather precisely and then we shall make use of

Theorem 2 to conclude that for a.e. Gp the variable Y_i is rather close to its
expectation.

Set p' = (1 — £)/n and write E' for the expectation in ${n,p'). We shall exploit
the fact that E and E' are rather closely related.

First of all, calculations analogous to those in (i) and (ii) show that

E'{n-Y0-Y-i)=o(n2'>)    and    E'{Y0) ~ ±n2^.

Hence
E!(Y-i) = n - \n* - o{n2"i).

In order to pass from £"(F_i) to E[Y-i), note that for fc < fc3 we have

/.   .      \ fc-l   /,       z,   ,     \ /    \ fcn-fc2/2+3fe/2-l
E,x(*,-1,,Wx(t,-i„ = (i±|)    (!={£$)

= exp {2(fc - 1)£ - (2fcn - fc2)£/n + 0((logn)n-2"')}
= exp { -2e + fc2£/n + 0((logn)n-2^)}
= 1 - 2£ + 0(fc2£/n) + 0((logn)n-2^).

Consequently

(12)

£(F_i) - (1 - 2£)E'(Y-i) + OUlognjn1-2^)

= n - 2n1""' + 0{n2-<) + 0({logn)nx-2~<)

+ 0(£^fc1/2exp{-fc£2/2})

= n - 2n^ + 0(n2^ + (logn)n1-2^).
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Finally, in order to apply Theorem 2 we have to estimate the following expectation:

E ( Y k2X(k,-\) j = O I n Y k~1/2 exp{-fc£2/2} j - Oin1^).
\k<k3 J \   k<k3 J

By Theorem 2 we have <r2(F_i) = 0(n1+1) so by Chebyshev's inequality a.e. Gp
satisfies

(13) |F_i - £(Y_i)| < w(n)n<1+^/2.

Relations (12) and (13) imply that

Y-i = n - 2n1-'1 + 0(u)(n)n(l+~<V2 + (lognjn1"2^),

as claimed.    D
Let us establish now the emergence of the giant component shortly after time

n/2.

THEOREM 7. A.e. graph process G = (Gt)o' is such that for every t > t\ =
n/2 + (logn)1/2n2/3 the graph Gt has a unique component of order at least n2/3.
The other components of Gt have at most n2/3/2 vertices each.

PROOF. As before, we call a component small if it has fewer than n2/,3/2 ver-
tices, and large if it has at least n2/3 vertices. By Theorem 1 a.e. graph process G
is such that for t > to — n/2 + so every component of Gt is either small or large,
where to is as defined in Theorem 1. Let Ci, C2,..., C¡ be the large components of
Gt0 in such a G and suppose in some Gt, t > to, all the Cj's are contained in the
same component. Then this component of Gt is the unique large component and
for V > t the graph Gf has also a unique large component. Indeed, as t increases
from io, a vertex x GV can become a vertex of a large component only if that com-
ponent contains a C¿, for the union of two small components contains fewer than
n2/3 vertices. Consequently our theorem will follow if we show that a.e. G is such
that for some t between to and ti all large components of Gto are contained in the
same component of Gt. Imitating the proof of Theorem 6, one can show that a.e. G
is such that Gto has at least 2ao > (logn)1/2^/3 vertices on its large components.
(In fact, the expected number of these vertices is about 4ao.) Therefore one can
find disjoint subsets Vi, V2,..., Vm of V(Gto) = V such that

m>(logn)1/2/2,     |Vi|>n2/3,        ¿=l,...,m,

each Vi is contained in some V(Cj) and

m (

\JVi~\JViCj),
t=l        j=l

where Ci,..., C¡ are the large components of Gto.
Set p — n~4/3 and denote by Hp the random graph obtained from Gto by

adding to it edges independently and with probability p. Then a.e. Hp has at most
to + n2/3 < ¿i edges so it suffices to show that (J^i Vj is contained in a single
component in a.e. Hp.
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What is the probability that for a given pair {i,j), 1 < i < j < m, some edge of
Hp joins Vi to Vj? It is clearly at least

l-(l-p)n"/3 >l-e-x > 1/2.

Hence the probability that in Hp all V¿'s are contained in the same component is
at least the probability that an element of G(m, 5) is connected. Since m —► 00,
this probability tends to 1. (See [5 or 2, p. 140] for considerably stronger results.)
This completes our proof.    D

Combining Theorems 3, 6 and 7, we obtain rather precise information about the
orders of the largest components. Since the property of having at most x vertices on
the small tree components is monotone, and so are the properties of having at least
y vertices on the large components and at most z vertices on the small components
which are trees or unicyclic graphs, using [2, Theorem 8, p. 133] we may pass from
the model §(n,p) to the model §(n, M). Denote by LT{G) the rth largest order of
a component of a graph G.

THEOREM 8. Let 0 < 7 < |, a = ¿nl~~< and t = n/2 + s. Then for every
m G N and w(n) —+00 a.e. Gt is such that

Li(G) = 4a + 0{u>{n)n/sx/2 + (logn)a2/n)

and
fco < Lm(G) < Lm_i(G) <      < L2(G) < fc2,

where fco and fc2 are as in Theorem 3.    D

Before extending the range of t in the theorem above, we investigate the distri-
bution of the small components of Gp in the case when p is not as close to 1/n as
has been required so far.

5. Components of order less than n2//3. First we consider the small com-
ponents of Gp with p < 1/n.

THEOREM 9. Let 0 < e = e(n) = o(l) be such that £nn —* cx> for every fixed
n > 0 and set p = (1 — £)/n. Given A G R+, choose l\ = l\(n) in such a way that

p(n,£,lx) = (2/7r)1/2nZA-5/2((l -e)e')h£-7 - A

and denote by Z = Z(GP) the number of components of Gp having at least l\
vertices. Then the distribution of Z tends to P\, the Poisson distribution with
mean A.

PROOF. The assumptions imply easily that l\ —► 00, l\ = o(nn) for every « > 0
and the expected number of vertices on components containing cycles is bounded.
Hence we may assume that Z is the number of tree-components of order at least
l\. Since also l\£2 —> 00, a trite calculation shows that

e(z) = y Ewk> -1)) ~ 4= ¿ fc-5'2«1 - £y)k
¿si ^27r fetr,

i;5/2((l - £)Ofc/(l - (1 - £)e£) ~ p(n, £, /A) ~ A.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



270 BÉLA BOLLOBÁS

Furthermore, by making use of l\ = o(nn) it is easily shown that for every r € N
the rth factorial moment

Er{Z) = E(Z{Z-l)---(Z-r + l))

converges to Ar. Hence Z —> P\, as claimed.    D

COROLLARY 10. Let £, p and l\ be as in Theorem 9, and let ui(n) —► oo. Then
for every m G N a.e. Gp satisfies

h - w(n)/e < Lm{Gp) <  ••< Li(Gp) <h+ u{n)/e.
PROOF. It is easily seen that for every fixed A we have

lx ~ (logn)/(e-log(l/(l-e))) ~2(logn)/£   and   /i-w(n)/e < l\ < li+u(n)/e.

Hence the assertion follows from Theorem 9.    D
If p = c/n for some constant c < 1 then we need not be able to find numbers

l\ = l\{n) ensuring that p(n, 1 — c, l\) —> A. Nevertheless, with some simple changes
the results above carry over to this case without any difficulty. In fact, our task is
easier since the tree-components we have to consider have only O(logn) vertices.
Thus one arrives at the following result of Erdös and Rényi [6, p. 49].

If 0 < c < 1 is a constant, p = c/n, a — c — 1 — loge,

fco = - < log n - - log log n - l0 > G N    and    l0 = 0(1)

then the number of components of Gp with at least fco vertices has asymptotically
Poisson distribution with mean

1 «5/2        in

cy/2^ 1 - e-°
Though the simple method of means is sufficient to prove this assertion, we would
like to point out that recently Barbour [1] applied a more sophisticated and powerful
method to prove that the number of certain components has asymptotically Poisson
distribution.

Let us turn to the case p = (1 + £)/n > 1/n. The proof of Theorem 6 is easily
adapted to show that if £ = o(l) then the distribution of the number of components
of order less than n2/3 in Gp is almost the same as the distribution in GP' with
p' = (l-£)/n. Furthermore, it is easily seen that £ can be rather small for a slightly
weaker version of Theorem 6 to remain valid. As in Theorem 8, we state the result
for Gt rather than Gp.

THEOREM 11. Lett = n/2 + a, a = o(n), an"2/3(logn)2 -* oo, £ = 2a/n and
for A > 0 choose l\ = l\{n) in such a way that

(2/7r)1/2n/;5/2((l - £)e£)^£-2 -♦ A.

Then for w(n) —» oo and m G N a.e. Gt is such that

Li(Gt) = (4 + o(l))a,

h - w(n)/e < Lm(Gt) <       < L2(Gt) < h + w(n)/e,
Li(G) = (l + o(l))/i,        t = 2,...,m.

If En11 -> oo for every n > 0 then Z* -i Pa, where Z* = max{m- 1: Lm > l\}.    D
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6. The small components after time n/2. As t increases, our task of locating
the orders of the components of G« becomes easier. Indeed, if c > 1 is a constant
and t — cn/2 = o(n) then the expected number of vertices on components containing
cycles and having fewer than n2/3 vertices is bounded and so is the expected number
of vertices on components whose order is between ci logn and n2//3. Hence if
u>(n) —► oo then a.e. Gt is such that with the exception of uj(n) vertices all vertices
belong to the giant component or else to trees of order at most ci logn. Now the
expectation of the number of vertices on these trees is about C2n and by a slight
variant of Theorem 2 the variance is 0(n(logn)2). Therefore we are led to the
following result.

THEOREM 12. Let c > 1 be a constant and let t = [cn/2j, w(n) —► oo. Then
a.e. Gt is such that, with the exception of at most w(n) vertices, all vertices of Gt
belong to the giant component or to components which are trees. Furthermore,

Li(Gt)-n   1-TV(C^c^   fc!fc=i
< ¡jj(n)nx'2 logn

and if ko = ¿{logn- § loglogn-/o} G N, where a = c- 1 -loge and Iq = 0(1),
then Z* = max{m— 1: Lm(Gt) > fco} bas asymptotically Poisson distribution with
mean

A~——-el°.    D
cs/2ñl-e~a

In the range of t covered by Theorem 11 the giant component increases about
four times as fast as t. Another way of proving Theorem 12 would be to establish
this fact first and then use it to deduce the assertion about the size of the giant
component. What is the expectation of the increase of Li(Gt) as í changes to
t + 1? The probability that the (t + l)st edge will join the giant component to a
component of order Lj is about LiLj/Q). Hence the expectation is about

n2/3        /   x /. x fc-1   / ,   ,      x fcn-fc2/2

n2/3

~(2L1/n2)^-^=fc1/2exp{-£2fc/2}
fc=i v

~(2V/a(Ll/n) ¡°° xxl2e~^l2dx

= (^y    (Li/n)r Q) {£2/2)-x'2 = 2Li/{£n) = LJs.

From this one can deduce that if t is o(n) but not too small then Li(i) =
¿i(n/2 + a) ~ Cia. By considering the crude order of Li(Gt) as t ceases to be
o(n), one can show easily that the constant ci is 4.

Using Theorem 2, for t > (l + £)n/2 it is easy to obtain fairly precise information
about the distribution of the orders of the components of Gt- We shall do a little
more than that: we shall prove some results about all graphs G( of a graph process
after time (1 + £)n/2. Let us start with a rather crude result.
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THEOREM 13. Let £ > 0 be fixed and for c0 = c0(n) > I + £ set ci =
3/(co — 1 — log Co). Then a.e. graph process G = (Gt)o îS such that for t > con/2
the graph Gt does not contain a component whose order is between ci logn and
n2'3.

PROOF. Let co < c < 3 logn and set p = c/n. By inequality (3) the expected
number of components of Gp whose order fc satisfies fci = [ci log nj < fc < k2 =
[n2/3\ is at most

-oix)t(t)^&-'(i-T'k)
k=ki   v   '

= o(n)cex~c ' = o(n~2).

Since the property of containing a component of order fc is convex and a.e. graph
process becomes connected by time n log n, this implies our assertion.    D

THEOREM 14. (i) Let c0 > 1 be fixed. Then a.e. G is such that for t > c0n/2
the graph Gt does not contain a (fc, d)-component with d > 1 ond fc < n2¡3'.

(ii) For w(n) -»oo a.e. G is such that for t > w(n)n every component of Gt,
with the exception of its giant component is a tree.

PROOF. Since for t > n log n a.e. Gt is connected, it suffices to restrict our
attention to the range con/2 < t < n logn. Furthermore, by Theorem 11 it suffices
to consider components of order at most fci = [ci lognj, where

ci =3/(c0 - 1 - logc0).

Note that the expected number of (fc, d)-components with 4 < fc < fci and d > 1 a
graph process contans between times to = [con/2J and ¿i = [2n lognj is at most

t=t0k=4  v/d>lv/ N/ N '

On the other hand, it is easily seen (cf. Theorem 9c of [6]) that for to <
t < ti = [n lognj and 1 < fc < fci the life-time of a component of order fc in
Gt has approximately exponential distribution with mean n/(2fc). In particular,
a component of order fc in Gt will be a component of Gt+i,Gt+2,... ,Gt+i with
probability at least \, where I = [n/(3fci)J. Consequently the probability that G
is such that there is a time t with (0 < t < tx for which Gt has a (fc, d)-component
with 4 < fc < fci and d > 1 is at most

0(l)(2//) = 0((logn)/n).

This proves (i). Assertion (ii) is proved analogously.    D
Let fc = O(logn), A = {(fc,d): 1 < fc < fc, d = —1 or 0}, and define the

Xt as in Theorem 2.   Then for every fixed i there is a constant d, such that for
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n/2 <t<n logn in Gt we have

«• - *•<*•> s•1 (:y-2+- (§r (« - s)""~" s *■"-*
and, using a slight variant of Theorem 2,

4i
a2(Xi) < p2x + —ß2+i/n < d,p2l.m

Consequently by Chebyshev's inequality

(14) Pt(\Xi(Gt)-K\>u)<^.

This relation enables us to deduce uniform bounds for the X¿. Here we state only
a rather simple result about wt = w(Gt), the number of components of Gt.

THEOREM 15. Suppose 0 < £, w(n) —> oo and c(n) = logn-u;(n) —► oo. Then
a.e. G is such that for every t satisfying n <2t < c(n)n we have

(15) \wt - nß{2t/n)\ < £nß{2t/n),

where
i   ~  kk-2

PROOF. Let n >0 and set tj = L(l+jn)n/2j, j = 0,1,... ,m = [c(n)/nj. Put
fc = [(3 logn)/(n - log(l + n))] and let A and Xi be as above. Then a.e. G is such
that for tj < í < tm we have wt = w(Gt) = Xo(Gt) +1. This implies that it suffices
to estimate Ao(Gt) instead of w(Gt).

It is easily seen that if n > 0 is sufficiently small then for n/2 < t' < t < c(n)n/2

(16) \Et,{Xo)-nß(2t/n)\<£-nß2t/n

and

(17) \ß(2t/n)-ß(2t'/n)\<-tß(2t/n).

25d0        . 50d0   _,   ■
< —=— n    eJ '.

E2

Note that ß(c) > ex~c. Hence by (14) and (16)

Ptj(|X0(GtJ-^(Xo)|>^tj(Xo))<^^

Since X!7Li e3T} — °(l)i a-e- G is such that

(18) \X0(Gtj) - Etj(X0)\ < 6-Et](X0)

for every j = l,...,m. A.e. G is such that u;t+i(G) < wt(G) if t > ii so a.e. G is
such that Xo = Xo(Gt) is a monotone decreasing function of t for t > t¡. Therefore
relations (16), (17) and (18) imply that a.e. G satisfies (15) if ti < t < c(n)n/2.

Finally, if n is sufficiently small then a.e. G is such that \wt - n/2| < £n/5 and
\ß(2t/n) - §| < e/5 whenever n/2 < t < ij, so (15) holds in this range as well.
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In Theorem 15 the approximation of Wt becomes more precise as t grows. From
inequality (14) one can also obtain approximations to the same degree for every
value of t. For example, it is easy to show that if w(n) —► oo then G is such that

fciMG)-n4t"
k=\

k\
2_/2t

\n
I -e-2t/"

for every t > n/2.
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