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Abstract The evolution of states in a spatial population model is studied. The model

describes an infinite system of point entities in R
d which reproduce themselves at distant

points (disperse) and die with rate that includes a competition term. The system’s states are

probability measures on the space of configurations, and their evolution is obtained from

a hierarchical chain of differential equations for the corresponding correlation functions

derived from the Fokker–Planck equation for the states. Under natural conditions imposed

on the model parameters it is proved that the correlation functions evolve in a scale of Banach

spaces in such a way that at each moment of time the correlation function corresponds to a

unique sub-Poissonian state. Some further properties of the evolution of states constructed

in this way are described.
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semigroup · Individual-based model · Correlation function · Scale of Banach spaces
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1 Introduction

1.1 Posing

The development of a mathematical theory of complex living systems is a challenging task

of modern mathematics [4]. In many cases of such systems, one deals with birth-and-death

B Yuri Kozitsky

jkozi@hektor.umcs.lublin.pl

Yuri Kondratiev

kondrat@math.uni-bielefeld.de

1 Fakutät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany

2 Interdisciplinary Center for Complex Systems, Dragomanov University, Kiev, Ukraine

3 Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, 20-031 Lublin, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-016-9526-6&domain=pdf


136 J Dyn Diff Equat (2018) 30:135–173

processes the theory of which traces back to works by Kolmogorov and Feller, see [9, Chap-

ter XVII] and e.g. [16,30] for a more recent account on the related concepts and results. In the

simplest models of this kind, the system is finite and the state space is N0 := N ∪ {0}. Then

the time evolution of the probability of having n particles in the system is obtained from the

Kolmogorov equation in which the generator is a tridiagonal infinite matrix containing the

birth and death rates λn andμn , respectively. If their increase is controlled by affine functions

of n, the evolution is obtained with the help of a stochastic semigroup, see e.g. [3,22] and the

papers quoted in these works. However, if λn and μn increase faster than n, one would not

expect that the evolution takes place, for all t > 0, in one and the same Banach space and thus

is described by a C0-semigroup of operators acting in this space. For infinite systems, the

situation is much more complex as the very definition of the Kolmogorov equation cannot be

performed directly (for λ∞ and μ∞ are infinite in such cases). The main result of the present

paper consists in constructing the evolution of states of an infinite birth-and-death system

of particles placed in R
d with ‘rates’ that roughly speaking increase as n2, cf. (3.9) below.

This evolution takes place in an ascending sequence of Banach spaces and is obtained by a

method developed in the paper. To the best of our knowledge, this is the first construction of

this type.

We continue, cf. [10,12,13,23], studying the model introduced in [6,7,24]. It describes

an infinite evolving population of identical point entities (particles) distributed over R
d ,

d ≥ 1, which reproduce themselves and die, also due to competition. This is one of the

most important individual-based models in studying large ecological communities (e.g. of

perennial plants), see [27] and [25, page 1311]. As is now commonly adopted [6,7,27],

the appropriate mathematical context for studying models of this kind is provided by the

theory of random point fields in R
d in which populations are modeled as point configurations

constituting the set

Ŵ =
{
γ ⊂ R

d : |γ ∩�| < ∞ for any compact � ⊂ R
d
}
, (1.1)

where | · | denotes cardinality. It is equipped with a σ -field of measurable subsets that allows

one to consider probability measures on Ŵ as states of the system. To characterize such states

one employs observables – appropriate functions F : Ŵ → R. Their evolution is obtained

from the Kolmogorov equation

d

dt
Ft = L Ft , Ft |t=0 = F0, t > 0, (1.2)

where the generator L specifies the model. The states’ evolution is then obtained from the

Fokker–Planck equation
d

dt
μt = L∗μt , μt |t=0 = μ0, (1.3)

related to that in (1.2) by the duality

∫

Ŵ

F0dμt =

∫

Ŵ

Ft dμ0.

The generator for the model studied in this paper is

(L F)(γ ) =
∑

x∈γ

[
m + E−(x, γ \ x)

] [
F(γ \ x)− F(γ )

]

+

∫

Rd

E+(y, γ )
[
F(γ ∪ y)− F(γ )

]
dy, (1.4)
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where

E±(x, γ ) :=
∑

y∈γ

a±(x − y). (1.5)

The first summand in (1.4) corresponds to the death of the particle located at x occurring

independently at rate m ≥ 0 (intrinsic mortality) and under the influence of the other particles

in γ – at rate E−(x, γ \ x) ≥ 0 (competition). The second term in (1.4) describes the birth

of a particle at y ∈ R
d occurring at rate E+(y, γ ) ≥ 0. In the sequel, we call a− and a+

competition and dispersal kernels, respectively. The particular case of (1.4) with a− ≡ 0 is

the continuum contact model studied in [18,21]. Having in mind the results of these works,

along with purely mathematical tasks we aim at understanding the ecological consequences

of the competition taken into account in (1.4).

The problem of constructing spatial birth and death processes in infinite volume was

first studied by Holley and Stroock in their pioneering work [15], where a special case of

nearest neighbor interactions on the real line was considered. For more general versions of

continuum birth-and-death systems, the few results known by this time were obtained under

severe restrictions imposed on the birth and death rates. This relates to the construction of a

Markov process in [14], as well as to the result obtained in [12] in the statistical approach

(see below). In the present work, we make an essential step forward in studying the model

specified in (1.4) assuming only that the kernels a± satisfy some rather natural condition.

The set of finite configurationsŴ0 is a measurable subset ofŴ. Ifμ is such thatμ(Ŵ0) = 1,

then the considered system is finite in this state. Ifμ0 in (1.3) has such a property, the evolution

μ0 �→ μt can be obtained directly from (1.3), see [23]. In this case μt (Ŵ0) = 1 for all t > 0.

States of infinite systems are mostly such that μ(Ŵ0) = 0, which makes direct solving (1.3)

with an arbitrary initial state μ0 rather unaccessible for the method existing at this time, cf.

[20]. In this work we continue following the statistical approach [5,10,12,13,20] in which

the evolution of states is described by means of the corresponding correlation functions.

To briefly explain its essence let us consider the set of all compactly supported continuous

functions θ : R
d → (−1, 0]. For a probability measure μ on Ŵ its Bogoliubov functional

[11,19] is defined as

Bμ(θ) =

∫

Ŵ

∏

x∈γ

(1 + θ(x))μ(dγ ), (1.6)

with θ running through the mentioned set of functions. For π̹ – the homogeneous Poisson

measure with intensity ̹ > 0, (1.6) takes the form

Bπ̹ (θ) = exp

(
̹

∫

Rd

θ(x)dx

)
.

In state π̹ , the particles are independently distributed over R
d with density ̹. The set of

sub-Poissonian states PsP is then defined as that containing all the states μ for which Bμ

can be continued, as a function of θ , to an exponential type entire function on L1(Rd). This

exactly means that Bμ can be written down in the form

Bμ(θ) =

∞∑

n=0

1

n!

∫

(Rd )n
k(n)μ (x1, . . . , xn)θ(x1) · · · θ(xn)dx1 · · · dxn, (1.7)

where k
(n)
μ is the n-th order correlation function corresponding toμ. It is a symmetric element

of L∞((Rd)n) for which

‖k(n)μ ‖L∞((Rd )n) ≤ C exp(αn), n ∈ N0, (1.8)
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with some C > 0 and α ∈ R. This guarantees that Bμ is of exponential type. One can also

consider a wider class of states, Panal, by imposing the condition that Bμ can be continued to

a function on L1(Rd) analytic in some neighborhood of the origin, see [19]. In that case, the

estimate corresponding to (1.8) will contain n!Ceαn in its right-hand side. States μ ∈ Panal

are characterized by strong correlations corresponding to ‘clustering’. In the contact model

the clustering does take place, see [18,21] and especially [10, Eq. (3.5), page 303]. Namely, in

this model for each t > 0 and n ∈ N the correlation functions satisfy the following estimates

const · n!cn
t ≤ k

(n)
t (x1, . . . , xn) ≤ const · n!Cn

t ,

where the left-hand inequality holds if all xi belong to a ball of sufficiently small radius. If

the mortality rate m is big enough, then Ct → 0 as t → +∞. That is, in the continuum

contact model the clustering persists even if the population asymptotically dies out. With this

regard, a paramount question about the model (1.4) is whether the competition contained in

L can suppress clustering. In short, the answer given in this work is in affirmative provided

the competition and dispersal kernels satisfy a certain natural condition. They do satisfy if

a− is strictly positive in some vicinity of the origin, and a+ has finite range.

1.2 Presenting the Result

(i) Under the condition on the kernels a± formulated in Assumption 1 we prove in Theorem

3.3 that the correlation functions evolve k
(n)
μ0 �→ k

(n)
t in such a way that each k

(n)
t is the

correlation function of a unique sub-Poissonian measure μt .

(ii) We give examples of the kernels a± which satisfy Assumption 1. These examples

include kernels of finite range – both short and long dispersals (Proposition 3.7), and

also Gaussian kernels (Propositions 3.8).

(iii) For the whole range of values of the intrinsic mortality rate m, in Theorem 3.4 we obtain

the following bounds for the correlation functions holding for all t ≥ 0:

(i) 0 ≤ k
(n)
t (x1, . . . , xn) ≤ Cn

δ exp
(
n(〈a+〉 − δ)t

)
, 0 ≤ m ≤ 〈a+〉,

(i i) 0 ≤ k
(n)
t (x1, . . . , xn) ≤ Cn

ε e−εt , m > 〈a+〉,

where 〈a+〉 is the L1-norm of a+, Cδ and Cε are appropriate positive constants, whereas

δ < m and ε ∈ (〈a+〉,m) take any value in the mentioned sets. By (1.7) these estimates

give upper bounds for the type of Bμt . We describe also the pure death case where

〈a+〉 = 0.

More detailed comments and comparison with the previous results on this model are given

in Sect. 3.3 below.

2 The Basic Notions

A detailed description of various aspects of the mathematical framework of this paper can be

found in [1,5,10,12,13,17,18,21,26]. Here we present only some of its aspects and indicate

in which of the mentioned papers further details can be found. By B(Rd) and Bb(R
d) we

denote the set of all Borel and all bounded Borel subsets of R
d , respectively.
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2.1 The Configuration Spaces

The space Ŵ defined in (1.1) is endowed with the weakest topology that makes continuous

all the maps

Ŵ ∋ γ �→
∑

x∈γ

f (x), f ∈ C0

(
R

d
)
.

Here C0(R
d) stands for the set of all continuous compactly supported functions f : R

d →

R. The mentioned topology on Ŵ admits a metrization which turns it into a complete and

separable metric (Polish) space. By B(Ŵ) we denote the corresponding Borel σ -field. For

n ∈ N0 := N ∪ {0}, the set of n-particle configurations in R
d is

Ŵ(0) = {∅}, Ŵ(n) = {η ⊂ X : |η| = n}, n ∈ N.

For n ≥ 1, Ŵ(n) can be identified with the symmetrization of the set
{
(x1, . . . , xn) ∈

(
R

d
)n

: xi �= x j , for i �= j
}
,

which allows one to introduce the topology on Ŵ(n) related to the Euclidean topology of R
d

and hence the corresponding Borel σ -field B(Ŵ(n)). The set of finite configurations

Ŵ0 :=
⊔

n∈N0

Ŵ(n)

is endowed with the topology of the disjoint union and with the corresponding Borel σ -field

B(Ŵ0). It is a measurable subset of Ŵ. However, the topology just mentioned and that induced

on Ŵ0 from Ŵ do not coincide.

For � ∈ Bb(R
d), the set Ŵ� := {γ ∈ Ŵ : γ ⊂ �} is a Borel subset of Ŵ0. We equip Ŵ�

with the topology induced by that of Ŵ0. Let B(Ŵ�) be the corresponding Borel σ -field. It

can be proved, see [26, Lemma 1.1 and Proposition 1.3], that

B(Ŵ�) =
{
Ŵ� ∩ ϒ : ϒ ∈ B(Ŵ)

}
.

It is known [1, page 451] that B(Ŵ) is the smallest σ -field of subsets of Ŵ such that all the

projections

Ŵ ∋ γ �→ p�(γ ) = γ� := γ ∩�, � ∈ Bb

(
R

d
)
, (2.1)

are B(Ŵ)/B(Ŵ�) measurable. This means that (Ŵ,B(Ŵ)) is the projective limit of the mea-

surable spaces (Ŵ�,B(Ŵ�)), � ∈ Bb(R
d).

Remark 2.1 From the latter discussion it follows that Ŵ0 ∈ B(Ŵ) and

B(Ŵ0) = {A ∩ Ŵ0 : A ∈ B(Ŵ)}. (2.2)

Hence, a probability measure μ on B(Ŵ) with the property μ(Ŵ0) = 1 can be considered

also as a measure on B(Ŵ0).

2.2 Functions and Measures on Configuration Spaces

A Borel set ϒ ⊂ Ŵ is said to be bounded if the following holds

ϒ ⊂

N⋃

n=0

Ŵ
(n)
� ,
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for some � ∈ Bb(R
d) and N ∈ N. In view of (2.2), each bounded set is in B(Ŵ0). A function

G : Ŵ0 → R is measurable if and only if, for each n ∈ N, there exists a symmetric Borel

function G(n) : (Rd)n → R such that

G(η) = G(n)(x1, . . . , xn), for η = {x1, . . . , xn}. (2.3)

Definition 2.2 A bounded measurable function G : Ŵ0 → R is said to have bounded support

if: (a) G(η) = 0 whenever η ∩ �c �= ∅ for some � ∈ Bb(R
d), �c := R

d \ �; (b) G(n) ≡ 0

whenever n > N for some N ∈ N. The set of all such functions is denoted by Bbs(Ŵ0). For

a given G ∈ Bbs(Ŵ0), by N (G) we denote the smallest N with the property as in (b).

A map F : Ŵ → R is called cylinder function if there exist � ∈ Bb(R
d) and a measurable

G : Ŵ� → R such that, cf. (2.1), F(γ ) = G(γ�) for all γ ∈ Ŵ. Clearly, such a map F is

measurable. By Fcyl(Ŵ) we denote the set of all cylinder functions. For γ ∈ Ŵ, by writing

η ⋐ γ we mean that η ⊂ γ and η is finite, i.e., η ∈ Ŵ0. For G ∈ Bbs(Ŵ0), we set

(K G)(γ ) =
∑

η⋐γ

G(η), γ ∈ Ŵ. (2.4)

As proved in [17], K maps Bbs(Ŵ0) onto Fcyl(Ŵ) and is invertible. The Lebesgue-Poisson

measure λ on B(Ŵ0) is defined by the relation

∫

Ŵ0

G(η)λ(dη) = G(∅)+

∞∑

n=1

1

n!

∫

(Rd )n
G(n)(x1, . . . , xn)dx1 · · · dxn, (2.5)

which has to hold for all G ∈ Bbs(Ŵ0), cf. (2.3). Note that Bbs(Ŵ0) is a measure defining

class. Clearly, λ(ϒ) < ∞ for each bounded ϒ ∈ B(Ŵ0). With the help of (2.5), we rewrite

(1.7) in the following form

Bμ(θ) =

∫

Ŵ0

kμ(η)

(∏

x∈η

θ(x)

)
λ(dη). (2.6)

In the sequel, by saying that something holds for all η we mean that it holds for λ-almost all

η ∈ Ŵ0. This relates also to (2.3).

Let P(Ŵ), resp. P(Ŵ0), stand for the set of all probability measures on B(Ŵ), resp. B(Ŵ0).

Note that P(Ŵ0) can be considered as a subset of P(Ŵ), see Remark 2.1. For a givenμ ∈ P(Ŵ),

the projection μ� is defined as

μ�(A) = μ
(

p−1
� (A)

)
, A ∈ B(Ŵ�), (2.7)

where p−1
� (A) := {γ ∈ Ŵ : p�(γ ) ∈ A}, see (2.1). The projections of the Lebesgue-Poisson

measure λ are defined in the same way.

Recall that Panal (resp. PsP) denotes the set of all those μ ∈ P(Ŵ) for each of which

Bμ defined in (1.6), or (2.6), admits continuation to a function on L1(Rd) analytic in some

neighborhood of zero (resp. exponential type entire function). The elements of PsP are called

sub-Poissonian states. One can show [17, Proposition 4.14] that for each � ∈ Bb(R
d) and

μ ∈ PsP, μ� is absolutely continuous with respect to λ�. The Radon-Nikodym derivative

R�
μ (η) =

dμ�

dλ�
(η), η ∈ Ŵ�, (2.8)
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and the correlation function kμ satisfy

kμ(η) =

∫

Ŵ�

R�
μ (η ∪ ξ)λ�(dξ), η ∈ Ŵ�, (2.9)

which holds for all � ∈ Bb(R
d). Note that (2.9) ties R�

μ with the restriction of kμ to Ŵ�. The

fact that these are the restrictions of one and the same function kμ : Ŵ0 → R corresponds to

the Kolmogorov consistency of the family {μ�}�∈Bb(R
d ).

By (2.4), (2.7), and (2.9) we get
∫

Ŵ

(K G)(γ )μ(dγ ) = 〈〈G, kμ〉〉,

which holds for each G ∈ Bbs(Ŵ0) and μ ∈ PsP. Here and in the sequel we use the notation

〈〈G, k〉〉 =

∫

Ŵ0

G(η)k(η)λ(dη), (2.10)

Define

B⋆
bs(Ŵ0) = {G ∈ Bbs(Ŵ0) : K G �≡ 0, (K G)(γ ) ≥ 0 for all γ ∈ Ŵ}. (2.11)

By [17, Theorems 6.1 and 6.2 and Remark6.3] we know that the following holds.

Proposition 2.3 Let a measurable function k : Ŵ0 → R have the following properties:

(i) 〈〈G, k〉〉 ≥ 0 for all G ∈ B⋆
bs(Ŵ0), (2.12)

(ii) k(∅) = 1, (i i i) k(η) ≤ C |η|, η ∈ Ŵ0,

property (iii) holding for some C > 0. Then there exists a unique μ ∈ PsP for which k is the

correlation function.

Finally, we mention the convention
∑

a∈∅

φa := 0,
∏

a∈∅

ψa := 1

which we use in the sequel and the integration rule, see, e.g. [10],
∫

Ŵ0

∑

ξ⊂η

H
(
ξ, η \ ξ, η

)
λ(dη) =

∫

Ŵ0

∫

Ŵ0

H
(
ξ, η, η ∪ ξ

)
λ(dξ)λ(dη), (2.13)

valid for appropriate functions H .

2.3 Spaces of Functions

For each μ ∈ PsP, the correlation function satisfies (1.8) in view of which we introduce the

following Banach spaces. For α ∈ R, we set

‖k‖α = ess sup
η∈Ŵ0

|k(η)| exp(−α|η|). (2.14)

It is a norm that can also be written as follows. As in (2.3), each k : Ŵ0 → R is defined

by its restrictions to Ŵ(n). Let k(n) : (Rd)n → R be a symmetric Borel function such that

k(n)(x1, . . . , xn) = k(η) for η = {x1, . . . , xn}. We then assume that k(n) ∈ L∞((Rd)n),

n ∈ N, cf. (1.8), and define

‖k‖α = sup
n∈N0

e−αnνn(k), νn(k) := ‖k(n)‖L∞((Rd )n), (2.15)

123



142 J Dyn Diff Equat (2018) 30:135–173

that yields the same norm as in (2.14). Obviously,

Kα := {k : Ŵ0 → R : ‖k‖α < ∞}, (2.16)

is a Banach space. For α′ < α′′, we have ‖k‖α′′ ≤ ‖k‖α′ . Hence,

Kα′ →֒ Kα′′ , for α′ < α′′. (2.17)

Here and in the sequel X →֒ Y denotes continuous embedding. For α ∈ R, we define, cf.

(2.11) and (2.10),

K
⋆
α = {k ∈ Kα : ∀G ∈ B⋆

bs(Ŵ0) 〈〈G, k〉〉 ≥ 0}. (2.18)

It is a subset of the cone

K
+
α = {k ∈ Kα : k(η) ≥ 0 for a.a. η ∈ Ŵ0}. (2.19)

By Proposition 2.3 we have that each k ∈ K⋆
α with the property k(∅) = 1 is the correlation

function of a unique μ ∈ PsP. We also put

K∞ =
⋃

α∈R

Kα, (2.20)

and equip this set with the inductive topology.

Finally, we define

K
⋆
∞ =

⋃

α∈R

K
⋆
α .

3 The Model and the Results

3.1 The Model

As was already mentioned, the model is specified by the expression given in (1.4). Regarding

the kernels in (1.5) we suppose that

a± ∈ L1
(
R

d
)
∩ L∞

(
R

d
)
, a±(x) = a±(−x) ≥ 0, (3.1)

and thus define

〈a±〉 =

∫

Rd

a±(x)dx, ‖a±‖ = ess sup
x∈Rd

a±(x), (3.2)

and

E±(η) =
∑

x∈η

E±(x, η \ x) =
∑

x∈η

∑

y∈η\x

a±(x − y), η ∈ Ŵ0. (3.3)

We also denote

E(η) =
∑

x∈η

(
m + E−(x, η \ x)

)
= m|η| + E−(η), (3.4)

where m is the same as in (1.4).

In addition to the standard assumptions (3.1) we shall use the following

Assumption 1 ((b, ϑ)-assumption) There exist ϑ > 0 and b ≥ 0 such that the functions

introduced in (3.3) satisfy

b|η| + E−(η) ≥ ϑE+(η), η ∈ Ŵ0. (3.5)
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Note that the case of point-wise domination

a−(x) ≥ ϑa+(x), x ∈ R
d , (3.6)

cf. [13, Eq. (3.11)], corresponds to (3.5) with b = 0. In Sect. 3.4 below we give examples

of the kernels a± which satisfy (3.5). To exclude the trivial case of a+ = a− = 0 we also

assume that

〈a−〉 > 0.

3.2 The Results

3.2.1 The Operators

In view of the relationship between states and correlation functions discussed in Sect. 2.3, we

describe the system’s dynamics in the following way. First we obtain the evolution kμ0 �→ kt

by proving the existence of a unique solution of the Cauchy problem of the following type

dkt

dt
= L�kt , kt |t=0 = kμ0 , (3.7)

where the action of L� is calculated from (1.4). Thereafter, we show that each kt has property

kt (∅) = 1 and lies in K⋆
α for some α ∈ R. Hence, it is the correlation function of a unique

μt ∈ PsP. This yields in turn the evolution μ0 �→ μt .

To describe the action of L� in a systematic way we write it in the following form, see

[10,13],

L� = A� + B�, (3.8)

where

A� = A�
1 + A�

2 ,(
A�

1 k
)
(η) = −E(η)k(η),

(
A�

2 k
)
(η) =

∑

x∈η

E+(x, η \ x)k(η \ x), (3.9)

see also (3.3), (3.4), and

B� = B�
1 + B�

2 ,

(
B�

1 k
)
(η) = −

∫

Rd

E−(y, η)k(η ∪ y)dy,

(
B�

2 k
)
(η) =

∫

Rd

∑

x∈η

a+(x − y)k(η \ x ∪ y)dy. (3.10)

The key idea of the method that we use to study (3.7) is to employ the scale of spaces (2.16)

in which A� and B� act as bounded operators from Kα′ , to any Kα with α > α′, cf. (2.17).

For such α and α′, by (2.14) and (2.15) we have, see (3.9),

‖A�
1 k‖α ≤ ‖k‖α′ ess sup

η∈Ŵ0

E(η) exp
(
−

(
α − α′

)
|η|

)
,

‖A�
2 k‖α ≤ ess sup

η∈Ŵ0

e−α|η|
∑

x∈η

E+(x, η \ x)|k(η \ x)|

≤ ‖k‖α′e−α′
ess sup
η∈Ŵ0

E+(η) exp
(
−

(
α − α′

)
|η|

)
,
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which by (2.15) and (3.2) yields

‖A�
1 k‖α ≤ ‖k‖α′

(
m

e(α − α′)
+

4‖a−‖

e2(α − α′)2

)

‖A�
2 k‖α ≤ ‖k‖α′e−α′ 4‖a+‖

e2(α − α′)2
, (3.11)

where we have used the estimate

n pe−σn ≤
( p

eσ

)p

, p ≥ 1, σ > 0, n ∈ N. (3.12)

In a similar way, we obtain from (3.10) the following estimate, see (3.2),

‖B�k‖α ≤ ‖k‖α′
〈a+〉 + 〈a−〉eα

′

e(α − α′)
. (3.13)

Thus, by means of (3.8) – (3.10), and then by (3.11) and (3.13), for each α, α′ ∈ R, α′ < α,

one can define a continuous operator

L�
αα′ : Kα′ → Kα . (3.14)

Let L(Kα′ ,Kα) stand for the set of all bounded linear operators Kα′ → Kα . The operator

norm of L�
αα′ can be estimated by means of the above formulas. Thus, the family {L�

αα′}α,α′

determines a continuous linear operator L� : K∞ → K∞. Along with them in each Kα ,

α ∈ R, we define an unbounded operator, L�
α , with domain

D
�
α =

{
k ∈ Kα : L�k ∈ Kα

}
⊃ Kα′ , (3.15)

with the inclusion holding for each α′ < α, see (3.11), (3.13), and (3.8). The operators such

introduced are related to each other in the following way:

∀α′ < α ∀k ∈ Kα′ L�
αα′k = L�

α k. (3.16)

3.2.2 The Statements

Now we can make precise which equations we are going to solve. One possibility is to

consider (3.7) in a given Banach space, Kα .

Definition 3.1 Given α ∈ R and T ∈ (0,+∞], by a solution of the Cauchy problem

d

dt
kt = L�

α kt , kt |t=0 = k0 ∈ D
�
α , (3.17)

in Kα we mean a continuous map [0, T ) ∋ t �→ kt ∈ Dα , continuously differentiable in Kα

on [0, T ) and such that (3.17) is satisfied for all t ∈ [0, T ).

Another possibility is to define (3.7) in the locally convex space (2.20).

Definition 3.2 By a global solution of the Cauchy problem (3.7) in K∞ with a given k0 ∈ K∞

we mean a map [0,+∞) ∋ t �→ kt ∈ K∞, continuously differentiable on [0,+∞) and such

that (3.7) is satisfied for all t ≥ 0.

According to Definition 3.2, for each T < +∞, there exist α0, α ∈ R, α0 < α, for which the

mentioned kt is a solution as in Definition 3.1 with k0 ∈ Kα0 . Our main results are contained

in the following two statements.
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Theorem 3.3 Let (b, ϑ)-assumption (3.5) hold true, andμ0 be an arbitrarily sub-Poissonian

state. Then the problem (3.7) with k0 = kμ0 has a unique global solution kt ∈ K⋆
∞ with

property kt (∅) = 1. Therefore, for each t ≥ 0 there exists a unique sub-Poissonian measure

μt such that kt = kμt .

The next statement describes the solutions in more detail.

Theorem 3.4 Let (b, ϑ)-assumption (3.5) hold true with b > 0 (resp. b = 0), and let α0 be

such that kμ0 ∈ Kα0 . Then the solution kt as in Theorem 3.3, corresponding to this kμ0 , for

all t ≥ 0, satisfies the following estimates.

(i) Case 〈a+〉 > 0 and m ∈ [0, 〈a+〉]: for each δ < m (resp. δ ≤ m) there exists a positive

Cδ such that log Cδ ≥ α0 and

kt (η) ≤ C
|η|
δ exp

[
(〈a+〉 − δ)|η|t

]
, η ∈ Ŵ0. (3.18)

(ii) Case 〈a+〉 > 0 and m > 〈a+〉: for each ε ∈ (0,m − 〈a+〉), there exists a positive Cε

such that log Cε ≥ α0 and

kt (η) ≤ C |η|
ε exp(−εt), η �= ∅. (3.19)

(iii) Case 〈a+〉 = 0:

kt (η) ≤ k0(η) exp [−E(η)t] , η ∈ Ŵ0. (3.20)

If m = 0 and a−(x) = ϑa+(x), then

kt (η) = ϑ−|η|, t ≥ 0, (3.21)

is a stationary solution.

Corollary 3.5 In case (i) of Theorem 3.4, for each T > 0, kt solves (3.17) in KαT
on the

time interval [0, T ), where

αT = log Cδ +
(
〈a+〉 − δ

)
T . (3.22)

In case (ii) (resp. (iii)), kt solves (3.17) in Kα , α = log Cε (resp. any α > α0) on the time

interval [0,+∞).

3.3 Comments and Comparison

3.3.1 Comments on the Basic Assumption

By means of the function

φϑ (x) = a−(x)− ϑa+(x) (3.23)

one can rewrite (3.5) in the following form

∑

x∈η

∑

y∈η\x

φϑ (x − y) ≥ −b|η|, η ∈ Ŵ0.

This resembles the stability condition (with stability constant b ≥ 0) for the interaction

potential φϑ used in the statistical mechanics of continuum systems of interacting particles,

see [31, Chapter 3]. Below we employ some techniques developed therein to prove that

important classes of the kernels a± have this property, see Propositions 3.7 and 3.8.

The (b, ϑ) assumption holds with b = 0 if and only if (3.6) does. In this case, the

dispersal kernel a+ decays faster than the competition kernel a− (short dispersal). It can be
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characterized as the possibility for each daughter-entity to kill her mother-entity, or to be

killed by her. In the previous works on this model [10,12,13] the results were based on this

short dispersal condition. The novelty of the result of Proposition 3.7 is that it covers also

the case of long dispersal where the range of a+ is finite but can be bigger than that of a−.

Noteworthy, by our Proposition 3.7 it follows that the interaction potential � used in [29] is

stable, which was unknown to the authors of that paper, cf. [29, page 146]. Proposition 3.8

describes Gaussian kernels, for which the basic assumption is valid also for both long and

short dispersals. In this paper, we restricted our attention to the classes of kernels described in

Propositions 3.7 and 3.8. Extensions beyond this classes, which we plan to realize in a separate

work, can be made by means of the corresponding methods of the statistical mechanics of

interacting particle systems.

3.3.2 Comments on the Results

An important feature of Theorems 3.3 and 3.4 is that the intrinsic mortality rate m ≥ 0 can be

arbitrary. Theorem 3.3 gives a general existence of the evolutionμ0 �→ μt , t > 0, in the class

of sub-Poissonian states through the evolution of the corresponding correlation functions. Its

ecological outcome is that the competition in the form as in (1.4), (1.5) excludes clustering

provided the kernels satisfy (3.5). A complete characterization of the evolution k0 �→ kt is

then given in Theorem 3.4. By means of it this evolution is ‘localized’ in the spaces Kα in

Corollary 3.5. According to Theorem 3.4, for m < 〈a+〉, or m ≤ 〈a+〉 and b > 0 in (3.24),

the evolution described in Theorem 3.3 takes place in an ascending sequence {KαT
}T ≥0 of

Banach spaces, see (2.14) – (2.17), and also (3.22). If m > 〈a+〉, the evolution holds in one

and the same space, see Corollary 3.5. The only difference between the cases of b > 0 and

b = 0 is that one can take δ = m in the latter case. This yields different results for m = 〈a+〉,

where the evolution takes place in the same space Kα with α = log Cm . Note also that for

m = 0, one should take δ < 0. For m > 〈a+〉, it follows from (3.19) that the population dies

out: for 〈a+〉 > 0, the following holds

k(n)μt
(x1, . . . , xn) ≤ e−εt k(n)μ0

(x1, . . . , xn), t > 0,

for some ε ∈ (0,m − 〈a+〉), almost all (x1, . . . , xn), and each n ∈ N. For m > 0 and

〈a+〉 = 0, by (3.20) we get

k(n)μt
(x1, . . . , xn) ≤ exp (−nmt) k(n)μ0

(x1, . . . , xn), t > 0.

This means that k
(n)
μt (x1, . . . , xn) → 0 as n → +∞ for sufficiently big t > 0. This phenom-

enon does not follow from (3.19). Finally, we mention that (3.21) corresponds to a special

case of (3.6) and m = b = 0.

3.3.3 Comparison

Here we compare Theorems 3.3 and 3.4 with the corresponding results obtained for this

model in [10,12] (where it was called BDLP model), and in [13]. Note that these are the

only works where the infinite particle version of the model considered here was studied. In

[10,12], the model was supposed to satisfy the conditions, see [12, Eqs. (3.38) and (3.39)],

which in the present notations can be formulated as follows: (a) (3.6) holds with a given

ϑ > 0; (b) m > 16〈a−〉/ϑ holding with the same ϑ . Under these conditions the global

evolution k0 �→ kt was obtained in Kα with some α ∈ R by means of a C0-semigroup. No

information was available on whether kt is a correlation function and hence on the sign of kt .
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In [13], the restrictions were reduced just to (3.6). Then the evolution k0 �→ kt was obtained

in a scale of Banach spaces Kα as in Theorem 3.3, but on a bounded time interval. Like in

[10,12], also here no information was obtained on whether kt is a correlation function. Until

the present work no results on the extinction as in (3.19) and on the case of a+ ≡ 0 were

known.

3.4 Kernels Satisfying the Basic Assumption

Our aim now is to show that the assumption (3.5) can be satisfied in the most of ‘realistic’

models. We begin, however, by establishing an important property of the kernels satisfying

(3.5). To this end we rewrite (3.5) in the form

�ϑ (η) :=
∑

x∈η

∑

y∈η\x

[
a−(x − y)− ϑa+(x − y)

]
≥ −b|η|, η ∈ Ŵ0. (3.24)

Proposition 3.6 Assume that (3.24) holds with some ϑ0 > 0 and b0 ≥ 0. Then for each

ϑ < ϑ0, it also holds with b = b0ϑ/ϑ0.

Proof For ϑ ∈ (0, ϑ0], we have

�ϑ (η) =
ϑ

ϑ0

[(
ϑ0

ϑ
− 1

)
E−(η)+�ϑ0(η)

]
≥ −

ϑ

ϑ0
b0|η|,

which yields the proof. ⊓⊔

In the following two propositions we give examples of the kernels with the property (3.5).

In the first one, we assume that the dispersal kernel has finite range, which is quite natural in

many applications. The competition kernel in turn is assumed to be just nontrivial.

Proposition 3.7 In addition to (3.1) and (3.2) assume that the kernels a± have the following

properties:

(a) there exist positive c− and r such that a−(x) ≥ c− for |x | < r;

(b) there exist positive c+ and R such that a+(x) ≤ c+ for |x | < R and a+(x) = 0 for

|x | ≥ R.

Then for each b > 0, there exists ϑ > 0 such that (3.24) holds for these b and ϑ .

Proof For r ≥ R, (3.24) holds with b = 0 and ϑ = c−/c+. Thus, it remains to consider the

case r < R.

For |η| = 0 and |η| = 1, (3.24) trivially holds with each b > 0 and ϑ > 0. For |η| = 2,

(3.24) holds whenever ϑ ≤ b/c+. For |η| > 2, we apply an induction in |η|, similarly as it

was done in [2]. For x ∈ η, we define

ξ−
x =

{
y ∈ η : |y − x | < r

}
, ξ+

x =
{

y ∈ η : r ≤ |y − x | < R
}
.

Set

Uϑ (η) = �ϑ (η)+ b|η| = b|η| + E−(η)− ϑE+(η).

Then the next estimate holds true for each x ∈ η:

Uϑ (x, η \ x) := Uϑ (η)− Uϑ (η \ x)

= b + 2E−(x, η \ x)− 2ϑE+(x, η \ x)

≥ b + 2(c− − ϑc+)|ξ−
x | − 2ϑc+|ξ+

x |. (3.25)
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Given n > 2 and positive ϑ and b, assume that Uϑ (η) ≥ 0 for each |ϑ | = n − 1. Then

to make the inductive step by means of (3.25) we have to show that, for each η such that

|η| = n, there exists x ∈ η such that Uϑ (x, η \ x) ≥ 0. Set

n̄ = |ξ−
x | = max

y∈η
|ξ−

y |, x ∈ η. (3.26)

If n̄ = 0, then η is such that |y − z| ≥ r for each distinct y, z ∈ η. In this case, the balls

Bz := {y ∈ R
d : |y − z| < r/2}, z ∈ η, do not overlap. Then |ξ+

x | ≤ �(d, r, R) − 1 ≤

�(d)(1+2R/r)d −1, where�(d, r, R) is the maximum number of rigid spheres of radius r/2

packed in a ball of radius R+r/2, and�(d) is the density of the densest packing of equal rigid

spheres in R
d , see e.g. [8, Chapter 1]. We apply this in (3.25) and get that Uϑ (x, η \ x) ≥ 0

whenever ϑ ≤ b/2c+(�(d, r, R) − 1). For n̄ > 0, let x be as in (3.26). Choose y1, . . . , ys

in ξ+
x such that the balls Bx and Byi

, i = 1, . . . , s, realize the densest possible packing of

the ball of radius R + r/2 centered at x . Then s ≤ �(d, r, R) − 1 and, for each y ∈ ξ+
x ,

one finds i such that |y − yi | < r . Otherwise By would not overlap each Byi
, and thus the

mentioned packing is not the densest one. Therefore, the balls Ci := {z ∈ R
d : |z − yi | < r},

i = 1, . . . , s, cover ξ+
x . By (3.26) each Ci contains n̄ + 1 elements at most. This yields

|ξ+
x | ≤ (n̄ + 1)(�(d, r, R) − 1).

Now we apply this in (3.25) and obtain that Uϑ (x, η \ x) ≥ 0 for

ϑ = min

{
c−

c+�(d, r, R)
;

b

2c+(�(d, r, R) − 1)

}
.

Thus, the inductive step can be done, which yields the proof. ⊓⊔

As an example of kernels with infinite range we consider the Gaussian kernels

a±(x) =
c±

(2πσ 2
±)

d/2
exp

(
−

1

2σ 2
±

|x |2

)
, (3.27)

where c± > 0 and σ± > 0 are parameters.

Proposition 3.8 Let a± be as in (3.27). Then for each b > 0, there exists ϑ such that (3.5)

holds for these ϑ and b.

Proof For σ− ≥ σ+, we have a−(x) ≥ ϑa+(x) for all x and

ϑ ≤

(
σ+c

1/d
−

σ−c
1/d
+

)d

.

Then (3.24), and thus (3.5), hold for such ϑ and all b ≥ 0. For σ− < σ+, we can write, see

(3.23),

φϑ (x) =

∫

Rd

φ̂ϑ (k) exp(ik · x)dk,

where

φ̂ϑ (k) = c− exp

(
−

1

2
σ 2

−|k|2
) [

1 − ϑ
c+

c−
exp

(
−

1

2

(
σ 2

+ − σ 2
−

)
|k|2

)]
.

For ϑ0 = c−/c+, we have that φ̂ϑ0(k) ≥ 0 for all k ∈ R
d . Then φϑ0 is positive definite in

the sense of [31, Sect. 3.2]. This means that it is the Fourier transform of a positive finite

measure on R
d , and hence by the Bochner theorem it follows that
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∑

x,y∈η

φϑ0(x − y) = φϑ0(0)|η| +�ϑ0(η) ≥ 0.

Thus, �ϑ0 satisfies (3.24) with stability constant b0 = φϑ0(0). Then we apply Proposition

3.6 and obtain that (3.24) holds for

ϑ =
(2πσ 2

−)
d/2b

σ+

(
1 −

(
σ−

σ+

)d
)

which completes the proof. ⊓⊔

4 Evolution of Correlation Functions and States

Our proof of Theorems 3.3 and 3.4 may roughly be divided into the following three steps.

First, we show that for each k0 ∈ Kα1 and any α2 > α1, cf. (2.17), the problem in (3.17)

has a unique solution in Kα2 on the time interval [0, T (α2, α1)) with an explicitly computed

T (α2, α1) < ∞, see Lemma 4.8. To this end, in Lemma 4.5 we construct a family of

bounded operators, indexed by t ∈ [0, T (α2, α1)) and acting from Kα1 to Kα2 , which gives

the solution in question in the way resembling the action of a C0-semigroup. Here we employ

a combination of the usual Ovcynnikov method, as in e.g. [5], based on the estimates in (4.18)

and (4.19), and a substochastic semigroup constructed in the pre-dual space in Lemma 4.2.

The construction employs Assumption 1 and a perturbation result of [32] applied to the

operator pre-dual to A�
b given in (4.15). In this way, we avoid the consequences of the right-

hand sides of (3.11) related to (α − α′)2, bad for using Ovcynnikov’s method. However,

due to the term eα2 in (4.20) the length of the time interval T (α2, α1)) is bounded by some

τ(α1) < ∞. This and the fact that τ(α1) → 0 as α1 → +∞ do not allow one to increase

T (α2, α1)) ad infinitum just by increasing the space Kα2 containing the solution. To overcome

this difficulty, and thus to construct the global solution, we make another two steps. In Lemma

4.9, we show that the constructed solution kt lies in the cone defined in (2.18), and hence is

the correlation function of a unique state μt , see Proposition 2.3. The relevance of this fact

is twofold. First of all, it implies that the evolution kμ0 �→ kt corresponds to the uniquely

determined evolution of states – the main aim of this work. At the same time, by Lemma 4.9 we

obtain that kt (η) ≥ 0. By the comparison made in Lemma 4.10 based on this positivity we get

rid of the mentioned term eα2 , cf. the second line in (4.20). This finally allows us to continue

the solution kt to all t > 0 – the third step – and thereby to construct the solution as claimed

in Theorem 3.3. The estimates as in Theorem 3.4 are obtained by the mentioned comparison.

We begin by constructing auxiliary semigroups used to make (in Sect. 4.2) the first step

of the construction outlined above.

4.1 Auxiliary Semigroups

For a given α ∈ R, the space predual to Kα , defined in (2.16), is

Gα := L1(Ŵ0, eα|·|dλ), (4.1)

in which the norm is, cf. (2.5),

|G|α =

∫

Ŵ0

|G(η)| exp(α|η|)λ(dη)

=

∞∑

n=0

eαn

n!
‖G(n)‖L1((Rd )n). (4.2)
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Clearly, |G|α′ ≤ |G|α for α′ < α, which yields

Gα →֒ Gα′ , for α′ < α, (4.3)

cf. (2.17). One can show that this embedding is also dense.

Recall that by m ≥ 0 we denote the mortality rate, see (1.4). For b ≥ 0 as in (3.5) we set

Eb(η) = (b + m)|η| + E−(η) = b|η| + E(η). (4.4)

Here E−(η) and E(η) are as in (3.3) and (3.4), respectively. For the same b, let the action of

Ab on functions G : Ŵ0 → R be as follows

Ab = A1,b + A2

(A1,bG)(η) = −Eb(η)G(η),

(A2G)(η) =

∫

Rd

E+(y, η)G(η ∪ y)dy. (4.5)

Our aim now is to define Ab as a closed unbounded operator in Gα the domain of which

contains Gα′ for any α′ > α. Let G+
α denote the set of all those G ∈ Gα for which G(η) ≥ 0

for λ-almost all η ∈ Ŵ0. Set

Dα = {G ∈ Gα : Eb(·)G(·) ∈ Gα}. (4.6)

For eachα′ > α, Dα contains Gα′ and hence is dense in Gα , see (4.3). Then the first summand in

Ab turns into a closed and densely defined operator (A1,b,Dα) in Gα such that −A1,bG ∈ G+
α

for each G ∈ D+
α := Dα ∩ G+

α . By (2.13) and (3.5) one gets

|A2G|α ≤

∫

Ŵ0

∫

Rd

E+(y, η)|G(η ∪ y)|eα|η|dyλ(dη)

= e−α

∫

Ŵ0

|G(η)|eα|η|

(∑

x∈η

E+(x, η \ x)

)
λ(dη)

= e−α|E+(·)G(·)|α ≤ (e−α/ϑ)|A1,bG|α. (4.7)

Then for α > − logϑ , we have that e−α/ϑ < 1, and hence A2 is A1,b-bounded. This means

that (Ab,Dα) is closed and densely defined in Gα , see (4.5).

In the proof of Lemma 4.2 below we employ the perturbation theory for positive semi-

groups of operators in ordered Banach spaces developed in [32]. Prior to stating the lemma

we present the relevant fragments of this theory in spaces of integrable functions. Let E be

a measurable space with a σ -finite measure ν, and X := L1 (E → R, dν) be the Banach

space of ν-integrable real-valued functions on X with norm ‖·‖. Let X+ be the cone in X

consisting of all ν-a.e. nonnegative functions on E . Clearly, ‖ f + g‖ = ‖ f ‖ + ‖g‖ for any

f, g ∈ X+, and X = X+ − X+. Recall that a C0-semigroup {S(t)}t≥0 of bounded linear

operators on X is called positive if S(t) f ∈ X+ for all f ∈ X+. A positive semigroup

is called substochastic (resp. stochastic) if ‖S(t) f ‖ ≤ ‖ f ‖ (resp. ‖S(t) f ‖ = ‖ f ‖) for all

f ∈ X+. Let (A0, D(A0)) be the generator of a positive C0 -semigroup {S0 (t)}t≥0 on X .

Set D+(A0) = D(A0) ∩ X+. Then D(A0) is dense in X , and D+(A0) is dense in X+. Let

P : D(A0) → X be a positive linear operator, i.e., P f ∈ X+ for all f ∈ D+(A0). The next

statement is an adaptation of Theorem 2.2 in [32].

Proposition 4.1 Suppose that for any f ∈ D+(A0), the following holds
∫

E

(
(A0 + P) f

)
(x) ν (dx) ≤ 0. (4.8)
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Then for all r ∈ [0, 1), the operator
(

A0 + r P, D(A0)
)

is the generator of a substochastic

C0-semigroup in X.

Lemma 4.2 For eachα > − logϑ , the operator (Ab,Dα) is the generator of a substochastic

semigroup {S(t)}t≥0 in Gα .

Proof We apply Proposition 4.1 with E = Ŵ0, X = Gα as in (4.1), and A0 = A1,b. For r > 0

and A2 as in (4.5), we set P = r−1 A2. For such A0 and P , and for G ∈ D+
α , the left-hand

side of (4.8) takes the form, cf. (4.7),

−

∫

Ŵ0

Eb(η)G(η) exp(α|η|)λ(dη)

+ r−1

∫

Ŵ0

∫

Rd

E+(y, η)G(η ∪ y) exp(α|η|)dyλ(dη)

=

∫

Ŵ0

(
−Eb(η)+ r−1e−αE+(η)

)
G(η) exp(α|η|)λ(dη).

For a fixed α > − logϑ , pick r ∈ (0, 1) such that r−1(e−α/ϑ) < 1. Then, for such α and r ,

we have ∫

Ŵ0

(
−Eb(η)+ r−1e−αE+(η)

)
G(η) exp(α|η|)λ(dη) ≤ 0, (4.9)

which holds in view of (3.5). Since r−1 A2 is a positive operator, by Proposition 4.1 we have

that Ab = A1,b + A2 = A1,b + r(r−1 A2) generates a substochastic semigroup {S(t)}t≥0 in

Gα . ⊓⊔

Now we turn to constructing the semigroup ‘sun-dual’ to that mentioned in Lemma 4.2.

Let A∗
b be the adjoint of (Ab,Dα) in Kα with domain, cf. (3.13),

Dom(A∗
b) =

{
k ∈ Kα : ∃k̃ ∈ Kα ∀G ∈ Dα 〈〈AbG, k〉〉 = 〈〈G, k̃〉〉

}
.

For each k ∈ Dom(A∗
b), the action of A∗

b on k is described in (3.9) with E replaced by Eb,

see (4.4). By (3.11) we then get Kα′ ⊂ Dom(A∗
b) for each α′ < α. Let Qα stand for the

closure of Dom(A∗
b) in ‖ · ‖α . Then

Qα := Dom(A∗
b) ⊃ Dom(A∗

b) ⊃ Kα′ , for any α′ < α. (4.10)

Note that Qα is a proper subset of Kα . For each t ≥ 0, the adjoint S∗(t) of S(t) is a bounded

operator in Kα . However, the semigroup {S∗(t)}t≥0 is not strongly continuous. For t > 0, let

S⊙
α (t) denote the restriction of S∗(t) to Qα . Since {S(t)}t≥0 is the semigroup of contractions,

for k ∈ Qα and all t ≥ 0, we have that

‖S⊙
α (t)k‖α = ‖S∗(t)k‖α ≤ ‖k‖α. (4.11)

Proposition 4.3 For every α′ < α and any k ∈ Kα′ , the map

[0,+∞) ∋ t �→ S⊙
α (t)k ∈ Kα

is continuous.
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Proof By [28, Theorem 10.4, page 39], the collection {S⊙
α (t)}t≥0 constitutes a C0-semigroup

on Qα the generator of which, A⊙
α , is the part of A∗

b in Qα . That is, A⊙
α is the restriction of

A∗
b to the set

Dom
(

A⊙
α

)
:=

{
k ∈ Dom(A∗

b) : A∗
bk ∈ Qα

}
,

cf. [28, Definition 10.3, page39]. The continuity in question follows by the C0-property of

the semigroup {S⊙
α (t)}t≥0 and (4.10). ⊓⊔

By (3.11) it follows that

Dom
(

A⊙
α′′

)
⊃ Kα′ , α′ < α′′, (4.12)

and hence, see [28, Theorem 2.4, page4],

S⊙
α′′(t)k ∈ Dom

(
A⊙
α′′

)
, (4.13)

and
d

dt
S⊙
α′′(t)k = A⊙

α′′ S
⊙
α′′(t)k, (4.14)

which holds for all α′′ ∈ (α′, α] and k ∈ Kα′ .

4.2 The Main Operators

For Eb as in (4.4), we set

A�
b = A�

1,b + A�
2 ,(

A�
1,bk

)
(η) = −Eb(η)k(η), (4.15)

and A�
2 being as in (3.9). We also set

B�
b = B�

1 + B�
2,b,(

B�
2,bk

)
(η) =

(
B�

2 k
)
(η)+ b|η|k(η). (4.16)

Here B�
1 and B�

2 are as in (3.10). Note that

L� = A� + B� = A�
b + B�

b . (4.17)

The expressions in (4.15) and (4.16) can be used to define the corresponding continuous

operators acting from Kα′ to Kα , α′ < α, cf. (3.14), and hence the elements of L(Kα′ ,Kα)

the norms of which are estimated by means of the analogies of (3.11) and (3.13). For these

operators, we use notations (B�
b )αα′ and (B�

2,b)αα′ . Then‖(B�
b )αα′‖will stand for the operator

norm, and thus (3.13) can be rewritten in the form

‖(B�
b )αα′‖ ≤

〈a+〉 + b + 〈a−〉eα
′

e(α − α′)
. (4.18)

For fixed α > α′ > − logϑ , we construct continuous operators Qαα′(t; B) : Kα′ → Kα ,

t > 0, which will be used to obtain the solution kt as in Theorem 3.3 and to study its

properties. Here B will be taken in the following two versions: (a) B = B�
b ; (b) B = B�

2,b,

see (4.16). In both cases, for each α1, α2 ∈ [α′, α] such that α1 < α2, cf. (4.18), the following

holds

‖Bα2α1‖ ≤
β(α2; B)

e(α2 − α1)
, (4.19)
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with

β
(
α2; B�

b

)
= 〈a+〉 + b + 〈a−〉eα2 ,

β
(
α2; B�

2,b

)
= 〈a+〉 + b. (4.20)

For t > 0 and α1, α2 as above, let �α2α1(t) : Kα1 → Kα2 be the restriction of S⊙
α2
(t) to Kα1 ,

cf. (4.12) and (4.13). Note that the embedding Kα1 →֒ Kα2 . can be written as �α2α1(0), and

hence

�α2α1(t) = �α2α1(0)S
⊙
α1
(t). (4.21)

Also, for each α3 > α2, we have

�α3α1(t) = �α3α2(0)�α2α1(t) := �α2α1(t), t ≥ 0. (4.22)

Here and in the sequel, we omit writing embedding operators if no confusing arises. In view

of (4.11), it follows that

‖�α2α1(t)‖ ≤ 1. (4.23)

Remark 4.4 By Lemma 4.2 we have that

∀k ∈ K
+
α1

�α2α1(t)k ∈ K
+
α2
, t ≥ 0,

see (2.19). Also (B�
2,b)α2α1 , but not (B�

b )α2α1 , has the same positivity property.

Set, cf. (4.20),

T (α2, α1; B) =
α2 − α1

β(α2; B)
, α2 > α1, (4.24)

and then

A(B) =
{
(α1, α2, t) : − logϑ < α1 < α2, 0 ≤ t < T (α2, α1; B)

}
. (4.25)

Lemma 4.5 For each of the two choices of B, see (4.20), there exists the corresponding

family of linear maps, {Qα2α1(t; B) : (α1, α2, t) ∈ A(B)}, each element of which has the

following properties:

(i) Qα2α1(t; B) ∈ L(Kα1 ,Kα2);

(ii) the map [0, T (α2, α1; B)) ∋ t �→ Qα2α1(t; B) ∈ L(Kα1 ,Kα2) is continuous;

(iii) the operator norm of Qα2α1(t; B) ∈ L(Kα1 ,Kα2) satisfies

‖Qα2α1(t; B)‖ ≤
T (α2, α1; B)

T (α2, α1; B)− t
; (4.26)

(iv) for each α3 ∈ (α1, α2) and t < T (α3, α1; B), the following holds

d

dt
Qα2α1(t; B) =

((
A�

b

)
α2α3

+ Bα2α3

)
Qα3α1(t; B). (4.27)

The proof of this lemma is based on the following construction. For l ∈ N and t > 0, we set

Tl :=
{
(t, t1, . . . , tl) : 0 ≤ tl ≤ · · · ≤ t1 ≤ t

}
, (4.28)
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take α ∈ (α1, α2], and then take δ < α − α1. Next we divide the interval [α1, α] into

subintervals with endpoints αs , s = 0, . . . , 2l + 1, as follows. Set α0 = α1, α2l+1 = α, and

α2s = α1 +
s

l + 1
δ + sǫ, ǫ = (α − α1 − δ)/ l,

α2s+1 = α1 +
s + 1

l + 1
δ + sǫ, s = 0, 1, . . . , l. (4.29)

Then for (t, t1, . . . , tl) ∈ Tl , define

�(l)
αα1

(t, t1, . . . , tl ; B) = �αα2l (t − t1)Bα2lα2l−1 × · · ·

×�α2s+1α2s (tl−s − tl−s+1)Bα2sα2s−1 · · ·�α3α2(tl−1 − tl)Bα2α1�α1α1
(tl). (4.30)

Proposition 4.6 For both choices of B and each l ∈ N, the operators defined in (4.30) have

the following properties:

(i) for each (t, t1, . . . , tl) ∈ Tl , �
(l)
αα1(t, t1, . . . , tl ; B) ∈ L(Kα1 ,Kα), and the map

Tl ∋ (t, t1, . . . , tl) �→ �(l)
αα1

(t, t1, . . . , tl ; B) ∈ L(Kα1 ,Kα)

is continuous;

(ii) for fixed t1, t2, . . . , tl , and each ε > 0, the map

(t1, t1 + ε) ∋ t �→ �(l)
αα1

(t, t1, . . . , tl ; B) ∈ L(Kα1 ,Kα2)

is continuously differentiable and for each α′ ∈ (α1, α) the following holds

d

dt
�(l)
αα1

(t, t1, . . . , tl ; B) = (A�
b )αα′�

(l)

α′α1
(t, t1, . . . , tl ; B). (4.31)

Proof The first part of claim (i) follows by (4.30), (4.19), and (4.23). To prove the second part

we apply Proposition 4.3 and (4.21), and then (4.19), (4.20). By (4.12), (4.14), and (4.22),

and the fact that

A⊙
α′k =

(
A�

b

)
α′α

k, for k ∈ Kα,

one gets
d

dt
�α′α2l

(t) =
(

A�
b

)
α′α

�αα2l
(t), α′ > α, (4.32)

which then yields (4.31). ⊓⊔

Proof of Lemma 4.5 Take any T < T (α2, α1; B) and then pick α ∈ (α1, α2] and a positive

δ < α − α1 such that

T < Tδ :=
α − α1 − δ

β(α2; B)
.

For this δ, take �
(l)
αα1 as in (4.30), and then for set

Q(n)
αα1

(t; B) = �αα1(t)

+

n∑

l=1

∫ t

0

∫ t1

0

· · ·

∫ tl−1

0

�(l)
αα1

(t, t1, . . . , tl ; B)dtl · · · dt1, n ∈ N. (4.33)
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By (4.23), (4.19), and (4.29) we have from (4.30) that

‖�(l)
αα1

(t, t1, . . . , tl ; B)‖ ≤

(
l

eTδ

)l

, (4.34)

holding for all l = 1, . . . , n. This yields

‖Q(n)
αα1

(t; B)− Q(n−1)
αα1

(t; B)‖

≤

∫ t

0

∫ t1

0

· · ·

∫ tn−1

0

‖�(n)
αα1

(t, t1, . . . , tl ; B)‖dtn · · · dt1

≤
1

n!

(n

e

)n
(

T

Tδ

)n

, (4.35)

hence,

∀t ∈ [0, T ] Q(n)
αα1

(t; B) → Qαα1(t; B) ∈ L(Kα1 ,Kα), as n → +∞.

This proves claim (i) of the lemma. The proof of claim (ii) follows by the fact that the

mentioned above convergence is uniform on [0, T ]. The estimate (4.26) readily follows from

that in (4.34). Now by (4.30) and (4.32) we obtain

d

dt
Q(n)
α2α1

(t; B) =
(

A�
b

)
α2α

Q(n)
αα1

(t; B)+ Bα2αQ(n−1)
αα1

(t; B), n ∈ N.

Then the continuous differentiability of the limit and (4.27) follow by standard arguments. ⊓⊔

Remark 4.7 By (4.30), (4.33), and Lemma 4.5 we have that

∀k ∈ K
+
α1

Qα2α1(t; B�
2,b)k ∈ K

+
α2
, t ∈ [0, T (α2, α1; B�

2 )). (4.36)

At the same time, Qα2α1(t; B�
b ) is not positive, see (3.10) and Remark 4.4.

4.3 The Proof of Theorem 3.3

First we prove that the problem (3.17) has a unique solution on a bounded time interval.

Lemma 4.8 For each α2 > α1 > − logϑ , the problem (3.17) with k0 ∈ Kα1 has a unique

solution kt ∈ Kα2 on the time interval [0, T (α2, α1, B�
b )). The solution has the property:

kt (∅) = 1 for all t ∈ [0, T (α2, α1, B�
b )).

Proof For each t ∈ [0, T (α2, α1, B�
b )), one finds α ∈ (α1, α2) such that also t ∈

[0, T (α, α1, B�
b )). Then by claim (i) of Lemma 4.5 and (3.15)

kt := Qαα1(t; B�
b )k0 (4.37)

lies in D�
α2

. By (4.27) the derivative of kt ∈ Kα2 is

d

dt
kt =

((
A�

b

)
α2α

+
(
B�

b

)
α2α

)
kt = L�

α2α
kt .

Hence, kt is a solution of (3.17), see (3.16). Moreover, kt (∅) = 1 since k0(∅) = 1, see (2.12),

and
(

d

dt
kt

)
(∅) =

(
L�
α kt

)
(∅) = 0,
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see (3.8) – (3.10). To prove the stated uniqueness assume that k̃t ∈ D�
α2

is another solution

of (3.17) with the same initial condition. Then for each α3 > α2, vt := kt − k̃t is a solution

of (3.17) in Kα3 with the zero initial condition. Here we assume that t and α3 are such that

t < T (α3, α1; B�
b ). Clearly, vt also solves (3.17) in Kα2 . Thus, it can be written down in the

following form

vt =

∫ t

0

�α3α(t − s)
(
B�

b

)
αα2

vsds, (4.38)

where vt on the left-hand side (resp. vs on the right-hand side) is considered as an element

of Kα3 (resp. Kα2 ) and α ∈ (α2, α3). Indeed, one obtains (4.38) by integrating the equation,

see (4.17),

d

dt
vt = L�

α3α2
vt =

((
A�

b

)
α3α2

+
(
B�

b

)
α3α2

)
vt , v0 = 0,

in which the second summand is considered as a nonhomogeneous term, see (4.32). Let us

show that for all t < T (α2, α1; B�
b )), vt = 0 as an element of Kα2 . In view of the embedding

Kα2 →֒ Kα3 , cf. (2.17), this will follow from the fact that vt = 0 as an element of Kα3 . For a

given n ∈ N, we set ǫ = (α3 −α2)/2n and αl = α2 + lǫ, l = 0, . . . , 2n. Then we repeatedly

apply (4.38) and obtain

vt =

∫ t

0

∫ t1

0

· · ·

∫ tn−1

0

�α3α
2n−1(t − t1)

(
B�

b

)
α2n−1α2n−2 × · · ·

× �α2α1(tn−1 − tn)
(
B�

b

)
α1α2

vtn dtn · · · dt1.

Similarly as in (4.34) we then get from the latter, see (4.19), (4.20), and (4.23),

‖vt‖α3 ≤
tn

n!

n∏

l=1

∥∥∥(B�
b )α2l−1α2l−2

∥∥∥ sup
s∈[0,t]

‖vs‖α2

≤
1

n!

(n

e

)n
(

2tβ
(
α3; B�

b

)

α3 − α2

)n

sup
s∈[0,t]

‖vs‖α2 . (4.39)

This implies that vt = 0 for t < (α3 − α2)/2β(α3; B�
b ). To prove that vt = 0 for all t of

interest one has to repeat the above procedure appropriate number of times. ⊓⊔

To make the next step we need the following result, the proof of which will be done in Sect. 5

below.

Lemma 4.9 (Identification Lemma) For each α2 > α1 > − logϑ , there exists τ(α2, α1) ∈

(0, T (α2, α1; B�
b )) such that Qα2α1(t; B�

b ) : K⋆
α1

→ K⋆
α2

for each t ∈ [0, τ (α2, α1)], see

(2.18) and Lemma 4.5.

In the light of Proposition 2.3, Lemma 4.9 claims that for t ∈ [0, τ (α2, α1)], the solution kt

as in Lemma 4.8 is the correlation function of a unique sub-Poissonian state μt whenever

k0 = kμ0 for some μ0 ∈ PsP.

To complete the proof of Theorem 4.2 we need the following result. Recall that K⋆
α ⊂ K+

α ,

α ∈ R, see (2.19).

Lemma 4.10 Let α2, α1, and τ(α2, α1) be as in Lemma 4.9. Then there exists positive

τ1(α2, α1) ≤ τ(α2, α1) such that, for each t ∈ [0, τ1(α2, α1)] and arbitrary k0 ∈ K⋆
α1

the

following holds, cf. (4.20) and Remark 4.4,

0 ≤
(
Qα2α1

(
t; B�

b

)
k0

)
(η) ≤

(
Qα2α1

(
t; B�

2,b

)
k0

)
(η), η ∈ Ŵ0. (4.40)
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Proof The left-hand inequality in (4.40) follows directly by Lemma 4.9. By Lemma 4.8 kt

as in (4.37) solves (3.17) in Kα2 . Set

L�
2 = A� + B�

2 = A�
b + B�

2,b,

where A�, B�
2 and A�

b , B�
2,b are as in (3.9), (3.10) and (4.15), (4.16), respectively. Then we

introduce ((L�
2 )α,D

�
α ) and (L�

2 )αα′ as in Sect. 3.2. By claims (i) and (iv) of Lemma 4.5 we

have that

ut := Qαα1

(
t; B�

2,b

)
k0, α ∈ (α1, α2), (4.41)

solves the problem
d

dt
ut =

(
L�

2

)
α2

ut , u0 = k0, (4.42)

on the time interval [0, T (α2, α1; B�
2,b)). Note that

T
(
α2, α1; B�

b

)
≤ T

(
α2, α1; B�

2,b

)
,

see (4.20) and (4.24). Take α, α′ ∈ (α1, α2), α
′ < α, and pick positive τ1 ≤ τ(α2, α1) such

that

τ1 = τ1(α2, α1) < min
{

T
(
α2, α; B�

b

)
; T

(
α′, α1; B�

2,b

)}
.

By (4.42) the difference ut − kt ∈ Kα2 can be written down in the form

ut − kt =

∫ t

0

Qα2α

(
t − s; B�

2,b

) (
−B�

1

)
αα′ ksds, (4.43)

where t ≤ τ1 and the operator (−B�
1 )αα′ is positive with respect to the cone (2.19), see

(3.10) and (3.13). In (4.43), ks ∈ Kα′ and Qα2α(t − s; B�
2,b) ∈ L(Kα,Kα2) for all s ∈ [0, τ1].

Since Qα2α(t − s; B�
2,b) is also positive, see Remark 4.4, and ks ∈ K⋆

α′ ⊂ K
+
α′ (by (4.37) and

Lemma 4.9), we have ut − kt ∈ K+
α2

for t ≤ τ1(α2, α1), which yields (4.40). ⊓⊔

Corollary 4.11 Let α2, α1, and τ1(α2, α1) be as in Lemma 4.10. Then the following holds

for all t ≤ τ1(α2, α1)

‖kt‖α2 =
∥∥Qα2α1

(
t; B�

b

)
k0

∥∥
α2

≤
(α2 − α1)‖k0‖α1

α2 − α1 − t (〈a+〉 + b)
. (4.44)

Proof Apply (4.40) and then (4.20) and (4.24). ⊓⊔

Proof of Theorem 3.3 Let α0 > − logϑ be such that kμ0 ∈ Kα0 , cf, (2.17). Then by Lemma

4.8 we have that for each α1 > α0 and α ∈ (α0, α1),

kt := Qαα0

(
t; B�

b

)
k0 ∈ K

⋆
α, t ≤ τ1(α1, α0),

solves (3.17) in Kα1 . Its continuation to an arbitrary t > 0 follows by (4.44) in a standard

way. ⊓⊔

4.4 The Proof of Theorem 3.4

4.4.1 Case 〈a+〉 > 0 and m ∈ [0, 〈a+〉]

The proof will be done by picking the corresponding bounds for ut defined in (4.41) with

k0 = kμ0 ∈ K⋆
α0

. Recall that, for α1 > α0, ut ∈ Kα1 for t < T (α1, α0; B�
2,b). For a given

δ ≤ m, let us choose the value of Cδ . The first condition is that

123



158 J Dyn Diff Equat (2018) 30:135–173

C
|η|
δ ≥ k0(η). (4.45)

Next, if (3.5) holds with a given ϑ > 0 and b = 0, we take any δ ≤ m and Cδ ≥ 1/ϑ such that

also (4.45) holds. If (3.5) holds with b > 0, we take any δ < m and then Cδ ≥ b/(m − δ)ϑ

such that also (4.45) holds. In all this cases, by Proposition 3.6 we have that

E−(η)−
1

Cδ

E+(η) ≥ −(m − δ)|η|, η ∈ Ŵ0. (4.46)

Let rt (η) denote the right-hand side of (3.18). For α1 > α0, we take α, α′ ∈ (α0, α1), α
′ < α

and then consider

vt := Qα1α0

(
t; B�

2,b

)
r0

= rt +

∫ t

0

Qα1α

(
t − s; B�

2,b

)
Dαα′rsds, (4.47)

where

t ≤ τ2 := min

{
α′ − α0

〈a+〉 − δ
; T

(
α1, α; B�

2,b

)}
. (4.48)

The operator D in (4.47) is

(Dαα′rs)(η) =

[
− m|η| − E−(η)+

1

Cδ

exp

(
−

(
〈a+〉 − δ

)
s

)
E+(η)

+δ|η|

]
rs(η) ≤ 0, η ∈ Ŵ0. (4.49)

The latter inequality holds for all s ∈ [0, τ2], see (4.46), and all m ∈ [0, 〈a+〉] and δ < m.

Then by (4.36) we obtain from (4.41), the first line of (4.47), and (4.45) that

ut (η) ≤ vt (η), t < T
(
α1, α0; B�

2,b

)
.

Then by the second line of (4.47) and (4.49) we get that for t ≤ τ2, see (4.48), the following

holds

ut (η) ≤ vt (η) ≤ rt (η), η ∈ Ŵ0.

The continuation of the latter inequality to bigger values of t is straightforward. This com-

pletes the proof for this case.

4.4.2 Case 〈a+〉 > 0 and m > 〈a+〉

Take ε ∈ (0,m − 〈a+〉) and then set

ϑε = ϑ

(
1 −

ε + 2〈a+〉

2m

)
.

Thereafter, choose Cε ≥ 1/ϑε such that

C |η|
ε ≥ k0(η), η ∈ Ŵ0.

Then, cf. (4.46),

E−(η)−
1

Cε

E+(η) ≥ −
(
m − 〈a+〉 − ε/2

)
|η|, η ∈ Ŵ0. (4.50)
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Let now rt stand for the right-hand side of (3.19). Then the second line of (4.47) holds with

Dαα′ replaced by Dε
αα′ . By definition the latter is such that: (a) (Dε

αα′rs)(∅) = 0;

(b)
(
Dε
αα′rs

)
({x}) = −

(
m − 〈a+〉 − ε

)
rs({x}) ≤ 0,

and, for |η| ≥ 2, see (4.50),

(c)
(
Dε
αα′rs

)
(η) =

[
ε − m|η| − E−(η)+

1

Cε

E+(η)+ 〈a+〉|η|

]
rs(η)

≤ ε (1 − |η|/2) rs(η) ≤ 0.

This yields (3.19) and thus completes the proof for this case.

4.4.3 The Remaining Cases

For 〈a+〉 = 0 and t > 0, we set

(
Q
(0)
αα′(t)u

)
(η) = exp [−t E(η)] u(η), (4.51)

where α′ < α and u ∈ Kα′ . Then, cf. Lemma 4.5, Q
(0)
αα′(t) : Kα′ → Kα continuously, and

the map

[0,+∞) ∋ t �→ Q
(0)
αα′(t) ∈ L(Kα′ ,Kα)

is continuous and such that, cf. (4.27),

d

dt
Q
(0)
α′′α′(t) =

(
A�

1

)
α′′α

Q
(0)
αα′(t), α′′ > α, (4.52)

where (A�
1 )α′′α is defined in (3.9) and (3.11). Now we set ut = Q

(0)
αα0(t)kμ0 and obtain from

(4.51) and (4.52), similarly as in (4.43),

ut − kt =

∫ t

0

Q(0)
αα1

(t)
(
−B�

1

)
α1α2

ksds ≥ 0,

which yields (3.20).

To prove that rt (η) := ϑ−|η|, t ≥ 0, is a stationary solution we set

kt = Qαα0

(
t; B�

b

)
r0,

where α0 > − logϑ and α > α0. Then the following holds, cf. (4.43),

kt = rt +

∫ t

0

Qαα2

(
t − s; B�

b

)
L�
α2α1

rsds,

where α1 < α2 are taken from (α0, α). For the case considered, we have

L�
α2α1

rs = L�
α2α1

r0 = 0,

which completes the proof for this case.
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5 The Proof of the Identification Lemma

To prove Lemma 4.9 we use Proposition 2.3. Note that the solution mentioned in Lemma 4.8

already has properties (ii) and (iii) of (2.12), cf. (2.14). Thus, it remains to prove that also

(i) holds. We do this as follows. First, we approximate the evolution k0 �→ kt established in

Lemma 4.8 by evolutions k0,app �→ kt,app such that kt,app has property (i). Then we prove that

for each G ∈ B⋆
bs(Ŵ0), 〈〈G, kt,app〉〉 → 〈〈G, kt 〉〉 as the approximations are eliminated. The

limiting transition is based on the representation 〈〈G, kt,app〉〉 = 〈〈G t , k0,app〉〉 in which we use

the so called predual evolution G �→ G t . Then we just show that 〈〈G t , k0,app〉〉 → 〈〈G t , k0〉〉.

5.1 The Predual Evolution

The aim of this subsection is to construct the evolution Bloc(Ŵ0) ∋ G0 �→ G t ∈ Gα1 , see

(4.1) and (4.2), such that, for each α > α1 and k0 ∈ Kα1 , the following holds, cf. (4.37),

〈〈
G0, Qαα1

(
t; B�

b

)
k0

〉〉
= 〈〈G t , k0〉〉, (5.1)

where b ≥ 0 and B�
b are as in (3.5) and (4.16), respectively. Let us define the action of Bb

on appropriate G : Ŵ0 → R via the duality

〈〈G, B�
b k〉〉 = 〈〈BbG, k〉〉.

Similarly as in (4.16) we then get

(BbG)(η) = b|η|G(η)+

∫

Rd

∑

x∈η

a+(x − y)G(η \ x ∪ y)dy

−
∑

x∈η

E−(x, η \ x)G(η \ x). (5.2)

For α2 > α1, let (Bb)α1α2 be the bounded linear operator from Gα2 to Gα1 the action of which

is defined in (5.2). As in estimating the norm of B�
b in (4.18) one then gets

‖(Bb)α1α2‖ ≤
〈a+〉 + b + 〈a−〉eα2

e(α2 − α1)
. (5.3)

For the same α2 and α1, let Sα1α2(t) be the restriction to Gα2 of the corresponding element of

the semigroup mentioned in Lemma 4.2. Then Sα1α2(t) acts as a bounded contraction from

Gα2 to Gα1 .

Now for a given l ∈ N and α, α1 as in (5.1), let δ and αs , s = 0, . . . , 2l + 1, be as in

(4.29). Then for t > 0 and (t, t1, . . . , tl) ∈ Tl , see (4.28), we define, cf. (4.30),

�(l)
α1α

(t, t1, . . . , tl) = Sα1α
1(tl)(Bb)α1α2 Sα2α3(tl−1 − tl)× · · ·

×(Bb)α2s−1α2s Sα2sα2s+1(tl−s − tl−s+1) · · · (Bb)α2l−1α2l Sα2lα(t − t1).

As in Proposition 4.6, one shows that the map

Tl ∋ (t, t1, . . . , tl) �→ �(l)
α1α

(t, t1, . . . , tl) ∈ L(Gα,Gα1)

is continuous. Define

H (n)
α1α

(t) = Sα1α(t)+

n∑

l=1

∫ t

0

∫ t1

0

· · ·

∫ tl−1

0

�(l)
α1α

(t, t1, . . . , tl)dtl · · · dt1. (5.4)
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Lemma 5.1 For each T ∈ (0, T (α, α1; B�
b )), see (4.24) and (4.20), the sequence of opera-

tors defined in (5.4) converges in L(Gα,Gα1) to a certain Hα1α(t) uniformly on [0, T ], and

for each G0 ∈ Gα and k0 ∈ Kα1 the following holds
〈〈
G0, Qαα1

(
t; B�

b

)
k0

〉〉
= 〈〈Hα1α(t)G0, k0〉〉, t ∈ [0, T ]. (5.5)

Proof For the operators defined in (5.4), similarly as in (4.35) we get the following estimate

∥∥H (n)
α1α

(t)− H (n−1)
α1α

(t)
∥∥ ≤

1

n!

(n

e

)n
(

T

Tδ

)n

,

which yields the convergence stated in the lemma. By direct inspection one gets that
〈〈
G0, Q(n)

αα1
(t; B�)k0

〉〉
=

〈〈
H (n)
α1α

(t)G0, k0

〉〉
,

see (4.33). Then (5.5) is obtained from the latter in the limit n → +∞. Similarly as in (4.26),

for the limiting operator the following estimate holds

‖Hα1α(t)‖ ≤
T

(
α, α1; B�

b

)

T
(
α, α1; B�

b

)
− t

. (5.6)

⊓⊔

5.2 An Auxiliary Model

The approximations mentioned at the beginning of this section employ also an auxiliary

model, which we introduce and study now. For this model, we construct three kinds of

evolutions. The first one is k0 �→ kt ∈ Kα obtained as in Lemma 4.8. Another evolution q0 �→

qt ∈ Gω is constructed in such a way that qt is positive definite in the sense that 〈〈G, qt 〉〉 ≥ 0

for all G ∈ B⋆
bs(Ŵ0). These evolutions, however, take place in different spaces. To relate them

to each other we construct one more evolution, u0 �→ ut , which takes place in the intersection

of the mentioned Banach spaces. The aim is to show that kt = ut = qt and thereby to get

the desired property of kt . Thereafter, we prove the convergence mentioned above.

5.2.1 The Model

The function

ϕσ (x) = exp
(
−σ |x |2

)
, σ > 0, x ∈ R

d , (5.7)

has the following evident properties

ϕ̄σ :=

∫

Rd

ϕ(x)dx < ∞, ϕσ (x) ≤ 1, x ∈ R
d . (5.8)

The model we need is characterized by L as in (1.4) with E+(x, η), cf. (1.5), replaced by

E+
σ (x, η) = ϕσ (x)E

+
σ (x, η) = ϕσ (x)

∑

y∈η

a+(x − y). (5.9)

5.2.2 The Evolution in Kα

For the new model (with E+
σ as in (5.9)), the operator L�,σ corresponding to L� takes the

form, cf. (3.8) – (3.10) and (4.15) – (4.17),

L�,σ = A�,σ + B�,σ = A
�,σ
b + B

�,σ
b . (5.10)
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Here

A�,σ = A�
1 + A

�,σ
2 , A

�,σ
b = A�

1,b + A
�,σ
2 ,

B�,σ = B�
1 + B

�,σ
2 , B

�,σ
b = B�

1 + B
�,σ
2,b , (5.11)

where A�
1 , B�

1 , and A�
1,b are the same as in (3.9), (3.10), and (4.15), respectively, and

(
A
�,σ
2 k

)
(η) =

∑

x∈η

ϕσ (x)E
+(x, η \ x)k(η \ x),

(
B
�,σ
2 k

)
(η) = b|η|k(η)+

∫

Rd

∑

x∈η

ϕσ (x)a
+(x − y)k(η \ x ∪ y)dy. (5.12)

Note that these A
�,σ
b and B

�,σ
b define the corresponding bounded operators acting from Kα′

to Kα for each real α > α′. As in (3.15) we then set

D
�,σ
α =

{
k ∈ Kα : L�,σ k ∈ Kα

}
, (5.13)

and thus define the corresponding operator (L�,σ
α ,D�,σ

α ). Along with (3.17) we also consider

d

dt
kt = L�,σ

α kt , kt |t=0 = k0 ∈ D
�,σ
α . (5.14)

By the literal repetition of the construction used in the proof of Lemma 4.5 one obtains the

operators Qσ
αα′(t; B

�,σ
b ), (α, α′, t) ∈ A(B�

b ), see (4.25), the norm of which satisfies, cf.

(4.26),
∥∥Qσ

αα′(t; B
�,σ
b )

∥∥ ≤
T

(
α, α′; B�

b

)

T
(
α, α′; B�

b

)
− t

, (5.15)

which is uniform in σ .

Lemma 5.2 Let α1 and α2 be as in Lemma 4.8. Then for a given k0 ∈ Kα1 , the unique

solution of (5.14) in Kα2 is given by

kt = Qσ
αα1

(
t; B

�,σ
b

)
k0, α ∈ (α1, α2), t < T

(
α2, α1; B�

b

)
. (5.16)

Proof Repeat the proof of Lemma 4.8. ⊓⊔

5.2.3 The Evolution in Uσ,α

For ϕσ as in (5.7) we set

e(ϕσ ; η) =
∏

x∈η

ϕσ (x), η ∈ Ŵ0,

and introduce the following Banach space. For u : Ŵ0 → R, we define the norm, cf. (2.14),

‖u‖σ,α = ess sup
η∈Ŵ0

|u(η)| exp(−α|η|)

e(ϕσ ; η)
. (5.17)

Thereafter, set

Uσ,α = {u : Ŵ0 → R : ‖u‖σ,α < ∞}.

By (5.7) and (2.14) we have that

‖u‖α ≤ ‖u‖σ,α, u ∈ Uσ,α,
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which yields Uσ,α →֒ Kα . Moreover, as in (2.17) we also have that Uσ,α′ →֒ Uσ,α for each

real α > α′.

Now let us define the operator L
�,σ
α,u in Uσ,α the action of which is described in (5.10) –

(5.12) and the domain is, cf. (5.13),

D
�,σ
α,u =

{
u ∈ Uσ,α : L�,σ u ∈ Uσ,α

}
. (5.18)

Then we consider
d

dt
ut = L�,σ

α,u ut , ut |t=0 = u0 ∈ D
�,σ
α,u . (5.19)

Note that Uσ,α′′ ⊂ D(L
�,σ
α,u ) for each α′′ < α, and

(
L�,σ
α,u ,D�,σ

α,u

)
⊂

(
L�,σ
α ,D�,σ

α

)
. (5.20)

Our aim now is to prove that the problem (5.19) with u0 ∈ Uσ,α1 has a unique solution in

Uσ,α2 , where α1 < α2 are as in Lemma 4.8. To this end we first construct the semigroup

analogous to that obtained in Lemma 4.2. Thus, in the predual space Gσ,α equipped with the

norm, cf. (4.2),

|G|σ,α :=

∫

Ŵ0

|G(η)| exp(α|η|)e(ϕσ ; η)λ(dη)

we define the action of Aσ
b as follows, cf. (4.5),

Aσ
b = A1,b + Aσ

2

(
Aσ

2 G
)
(η) =

∫

Rd

ϕσ (y)E
+(y, η)G(η ∪ y)dy,

and A1,b acts as in (4.5). Then we have, cf. (4.7),

|Aσ
2 G|σ,α

≤

∫

Ŵ0

(∫

Rd

ϕσ (y)E
+(y, η)|G(η ∪ y)|dy

)
exp(α|η|)e(ϕσ ; η)λ(dη)

=

∫

Ŵ0

e−α

(∑

x∈η

E+(x, η \ x)

)
|G(η)| exp(α|η|)e(ϕσ ; η)λ(dη)

≤ (e−α/ϑ)|A1,bG|σ,α.

Now the existence of the substochastic semigroup {Sσ,α(t)}t≥0 generated by (Aσ
b ,Dσ,α)

follows as in Lemma 4.2. Here, cf. (4.6),

Dσ,α :=
{
G ∈ Gσ,α : Eb(·)G ∈ Gσ,α

}
.

Let S⊙
σ,α(t) be the sun-dual to Sσ,α(t), cf. (4.11). Then for each α′ < α and any u ∈ Uσ,α′ ,

the map

[0,+∞) ∋ t �→ S⊙
σ,α(t)u ∈ Uσ,α

is continuous, see Proposition 4.3. For real α′ < α and t > 0, let �
σ,u
αα′(t) be the restriction

of S⊙
σ,α(t) to Uσ,α′ . Then the map

[0,+∞) ∋ t �→ �
σ,u
αα′(t) ∈ L(Uσ,α′ ,Uσ,α)

is continuous and such that, cf. (4.23),
∥∥�σ,u

αα′(t)
∥∥ ≤ 1, t ≥ 0. (5.21)
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Now we define (B
�,σ
b )αα′ which acts from Uσ,α′ to Uσ,α according to (5.11) and (5.12). Then

its norm satisfies
∥∥(B�,σ

b )αα′

∥∥ ≤
〈a+〉 + b + 〈a−〉eα

e(α − α′)
. (5.22)

In proving this we take into account thatϕσ (x) ≤ 1 and repeat the arguments used in obtaining

(4.18).

For real α2 > α1 > − logϑ , we take α ∈ (α1, α2] and then pick δ < α − α1 as in the

proof of Lemma 4.5. Next, for l ∈ N we divide [α1, α] into subintervals according to (4.29)

and take (t, t1, . . . , tl) ∈ Tl , see (4.28). Then define, cf. (4.30),

�l,σ
αα1

(t, t1, . . . , tl) = �
σ,u

αα2l (t − t1)
(
B
�,σ
b

)
α2lα2l−1

×�
σ,u

α2l−1α2l−2(t1 − t2)× · · · ×�
σ,u

α3α2

(
tl−1 − tl

)(
B
�,σ
b

)
α2α1�

σ,u

α1α1
(tl).

Thereafter, for n ∈ N we set, cf. (4.33),

U (n)
αα1

(t) = �σ,u
αα1

(t)

+

n∑

l=1

∫ t

0

∫ t1

0

· · ·

∫ tn−1

0

�l,σ
αα1

(t, t1, . . . , tl)dtl · · · dt1.

By means of (5.21) and (5.22) we then prove that the sequence {U
(n)
αα1(t)}n∈N converges in

L(Uσ,α1 ,Uσ,α), uniformly on [0, T ], T < T (α, α1; B�
b ), see (4.24) and (4.20). The limit

Uαα1(t) ∈ L(Uσ,α1 ,Uσ,α) has the property, cf. (4.27),

d

dt
Uα2α1(t) =

((
A
�,σ
b

)
α2α

+
(
B
�,σ
b

)
α2α

)
Uαα1(t),

where (A
�,σ
b )α2α ∈ L(Uσ,α,Uσ,α2) is defined in (5.11) and (5.12), analogously to (5.22).

Note that

∀u ∈ Uσ,α L�,σ
α2,u

u =
((

A
�,σ
b

)
α2α

+
(
B
�,σ
b

)
α2α

)
u, (5.23)

see (5.18). Now we can state the following analog of Lemma 4.8.

Lemma 5.3 Let α2 > α1 > − logϑ be as in Lemma 4.8. Then the problem (5.19) with

u0 ∈ Uσ,α1 has a unique solution ut ∈ Uσ,α2 on the time interval [0, T (α2, α1; B�
b )).

Proof Fix T < T (α2, α1; B�
b ) and find α ∈ (α1, α2) such that also T < T (α′, α1; B�

b ).

Then, cf. (4.37),

ut := Uαα1(t)u0 (5.24)

is the solution in question, which can be checked by means of (5.23). Its uniqueness can be

proved by the literal repetition of the corresponding arguments used in the proof of Lemma

4.8. ⊓⊔

Corollary 5.4 Let kt be the solution of the problem (5.14) with k0 ∈ Uσ,α1 mentioned in

Lemma 5.2. Then kt coincides with the solution mentioned in Lemma 5.3.

Proof Since (L�,σ
α ,D�,σ

α ) is an extension of (L
�,σ
α,u ,D

�,σ
α,u ), see (5.20), and the embedding

Uσ,α →֒ Kα is continuous, the solution as in (5.24) with u0 = k0 satisfies also (5.14), and

hence coincides with kt in view of the uniqueness stated in Lemma 5.2. ⊓⊔

123



J Dyn Diff Equat (2018) 30:135–173 165

5.2.4 The Evolution in Gω

We recall that the space Gα was introduced in (4.1), (4.2), where we used it as a predual space

to Kα . Now we employ Gα to get the positive definiteness mentioned at the beginning of this

subsection. Here, however, we write Gω to show that we use it not as a predual space.

Let L�,σ be as in (5.10). For ω ∈ R, we set, cf. (5.13) and (5.18),

D
�,σ
ω =

{
q ∈ Gω : L�,σq ∈ Gω

}
.

Then we define the corresponding operator (L�,σ
ω ,D�,σ

ω ) and consider the following Cauchy

problem
d

dt
qt = L�,σ

ω qt , qt |t=0 = q0 ∈ D
�,σ
ω . (5.25)

As above, one can show that Gω′ ⊂ D�,σ
ω for each ω′ > ω. By (5.17) and (4.2) for u ∈ Uσ,α

we have

|u|ω ≤ ‖u‖σ,α

∫

Ŵ0

exp((ω + α)|η|)e(ϕσ ; η)λ(dη)

≤ ‖u‖σ,α exp
(
ϕ̄σ eω+α

)
, (5.26)

see also (5.8). Hence Uσ,α →֒ Gω for each ω and α. Like in (5.20) we then get
(
L�,σ
α,u ,D�,σ

α,u

)
⊂

(
L�,σ
ω ,D�,σ

ω

)
. (5.27)

Lemma 5.5 Assume that the problem (5.25) with ω > 0 and q0 ∈ Gω′ , ω′ > ω, has a

solution, qt ∈ Gω, on some time interval [0, T (ω′, ω)). Then this solution is unique.

Proof Set

wt (η) = (−1)|η|qt (η),

which is an isometry on Gω. Then qt solves (5.25) if and only if wt solves the following

equation

d

dt
wt (η) = −E(η)wt (η)+

∫

Rd

E−(y, η)wt (η ∪ y)dy

−
∑

x∈η

ϕσ (x)E
+(x, η \ x)wt (η \ x)

+

∫

Rd

∑

x∈η

ϕσ (x)a
+(x − y)wt (x \ x ∪ y)dy. (5.28)

Set

Dω = {w ∈ Gω : E(·)w ∈ Gω}.

By Proposition 4.1 we prove that the operator defined by the first two summands in (5.28)

with domain Dω generates a substochastic semigroup, {Vω(t)}t≥0, acting in Gω. Indeed, in

this case the condition analogous to that in (4.8) takes the form, cf. (4.9),

−

∫

Ŵ0

E(η)w(η) exp(ω|η|)λ(dη)

+ r−1e−ω

∫

Ŵ0

E−(η)w(η) exp(ω|η|)λ(dη) ≤ 0,
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which certainly holds for each ω > 0 and an appropriate r < 1. For each ω′′ ∈ (0, ω), we

have that Gω →֒ Gω′′ , and the second two summands in (5.28) define a bounded operator,

Wω′′ω : Gω → Gω′′ , the norm of which can be estimated as follows, cf. (5.3),

‖Wω′′ω‖ ≤
(eω + 1)〈a+〉

e(ω − ω′′)
. (5.29)

Assume now that (5.28) has two solutions corresponding to the same initial conditionw0(η) =

(−1)|η|q0(η). Let vt be their difference. Then it solves the following equation, cf. (4.38),

vt =

∫ t

0

Vω′′(t − s)Wω′′ωvsds, (5.30)

where vt on the left-hand side is considered as an element of Gω′′ and t > 0 will be chosen

later. Now for a given n ∈ N, we set ǫ = (ω − ω′′)/n and then ωl := ω − lǫ, l = 0, . . . , n.

Thereafter, we iterate (5.30) and get

vt =

∫ t

0

∫ t1

0

· · ·

∫ tn−1

0

Vω′′(t − t1)Wω′′ωn−1 Vωn−1(t1 − t2)× · · ·

× Wω2ω1 Vω1(tn−1 − tn)Wω1ωvtn dtn · · · dt1.

Similarly as in (4.39), by (5.29) this yields the following estimate

|vt |ω′′ ≤
1

n!

(n

e

)n
(

t〈a+〉(eω + 1)

ω − ω′′

)n

sup
s∈[0,t]

|vs |ω.

The latter implies that vt = 0 for t < (ω− ω′′)/〈a+〉(eω + 1). To prove that vt = 0 for all t

of interest one has to repeat the above procedure appropriate number of times. ⊓⊔

Recall that each Uσ,α is continuously embedded into each Gω, see (5.26).

Corollary 5.6 For each ω > 0, the problem (5.25) with q0 ∈ Uσ,α0 has a unique solution qt

which coincides with the solution ut ∈ Uσ,α mentioned in Lemma 5.3.

Proof By (5.27) ut is a solution of (5.25). Its uniqueness follows by Lemma 5.5. ⊓⊔

5.3 Local Evolution

In this subsection we pass to the so called local evolution of states of the auxiliary model

(5.10), (5.11). For this evolution, the corresponding ‘correlation function’ qt ∈ Gω has the

positive definiteness in question. Then we apply Corollaries 5.4 and 5.6 to get the same for

the evolution in Kα . Thereafter, we pass to the limit and get the proof of Lemma 4.9.

5.3.1 The Evolution of Densities

In view of (2.2), each state with the property μ(Ŵ0) = 1 can be redefined as a probability

measure on B(Ŵ0), cf. Remark 2.1. Then the Fokker–Planck equation (1.3) can be studied

directly, see [23, Eq. (2.8)]. Its solvability is described in [23, Theorem 2.2], which, in

particular, states that the solution is absolutely continuous with respect to the Lebesgue-

Poisson measure λ if μ0 has the same property. In view of this we write the corresponding

problem for the density

Rt :=
dμt

dλ
, (5.31)

123



J Dyn Diff Equat (2018) 30:135–173 167

see also [23, Eq. (2.16)], and obtain

d

dt
Rt (η) = (L†,σ Rt )(η), Rt |t=0 = R0, (5.32)

where

(L†,σ R)(η) := −!σ (η)R(η)+
∑

x∈η

ϕσ (x)E
+(x, η \ x)Rt (η \ x)

+

∫

Rd

(
m + E−(x, η)

)
Rt (η ∪ x)dx, (5.33)

and

!σ (η) = E(η)+

∫

Rd

ϕσ (x)E
+(x, η)dx .

We solve (5.32) in the Banach spaces G0 = L1(Ŵ0, dλ), cf. (4.1). For n ∈ N we denote by

G0,n the subset of G0 consisting of all those R : Ŵ0 → R for which
∫

Rd

|η|n |R(η)| λ(dη) < ∞.

Let also G+
ω stand for the cone of positive elements of Gω. Set

D0 = {R ∈ G0 : !σ R ∈ G0}. (5.34)

Then the relevant part of [23, Theorem 2.2] can be formulated as follows.

Proposition 5.7 The closure in G0 of the operator (L†,σ ,D0) defined in (5.33) and (5.34)

generates a stochastic semigroup {S†,σ (t)}t≥0 := S†,σ of bounded operators in G0, which

leaves invariant each G0,n , n ∈ N. Moreover, for each β ′ > 0 and β ∈ (0, β ′), R ∈ G
+
β ′

implies S†,σ (t)R ∈ G
+
β holding for all t < T (β ′, β), where T (β ′, β) = +∞ for 〈a+〉 = 0,

and

T (β ′, β) = (β ′ − β)e−β ′
/〈a+〉, for 〈a+〉 > 0. (5.35)

Let now μ0 be the initial state as in Theorem 3.3. Then for each � ∈ Bb(R
d), the projection

μ� is absolutely continuous with respect to λ�, see (2.7). For this μ0, and for � ∈ Bb(R
d)

and N ∈ N, we set, see (5.31),

R�
0 (η) =

dμ�

dλ�
(η)IŴ�(η), R

�,N
0 (η) = R�

0 (η)IN (η), η ∈ Ŵ0. (5.36)

Here IN and IŴ� are the indicator functions of the sets {η ∈ Ŵ0 : |η| ≤ N }, N ∈ N, and Ŵ�,

respectively. Clearly,

∀β > 0 R
�,N
0 ∈ G

+
β . (5.37)

Set

R
�,N
t = S†,σ (t)R

�,N
0 , t > 0, (5.38)

where S†,σ is the semigroup as in Proposition 5.7. Then also R
�,N
t ∈ G

+
0 for all t > 0.

For some G ∈ Bbs(Ŵ0), let us consider F = K G, cf. (2.4). Since G(ξ) = 0 for all ξ such

that |ξ | > N (G), see Definition 2.2, we have F ∈ Fcyl(Ŵ) and

|F(γ )| ≤ (1 + |γ |)N (G)C(G), γ ∈ Ŵ0,

for some C(G) > 0. By Proposition 5.7 we then have from the latter
∣∣∣
〈〈
K G, R

�,N
t

〉〉∣∣∣ < ∞. (5.39)
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5.3.2 The Evolution of Local Correlation Functions

For a given μ ∈ PsP, the correlation function kμ and the local densities R�
μ , � ∈ Bb(R

d),

see (2.8), are related to each other by (2.9). In the first formula of (5.36) we extend R�
0 to the

whole Ŵ0. Then the corresponding integral as in (2.9) coincides with kμ0 only on Ŵ�. The

truncation made in the second formula in (5.36) diminishes R�
0 . Its aim is to satisfy (5.37).

Thus, with a certain abuse of the terminology we call

q
�,N
0 (η) =

∫

Ŵ0

R
�,N
0 (η ∪ ξ)λ(dξ) (5.40)

local correlation function. The evolution q
�,N
0 �→ q

�,N
t can be obtained from (5.38) by

setting

q
�,N
t (η) =

∫

Ŵ0

R
�,N
t (η ∪ ξ)λ(dξ), t ≥ 0. (5.41)

However, so far this can only be used in a weak sense based on (5.39). Note that for G ∈

B⋆
bs(Ŵ0), cf. (2.11), we have

〈〈
G, q

�,N
t

〉〉
=

〈〈
K G, R

�,N
t

〉〉
≥ 0, (5.42)

since R
�,N
t ∈ G

+
0 . To place the evolution q

�,N
0 �→ q

�,N
t into an appropriate Banach space

we use the concluding part of Proposition 5.7 and the following fact

∫

Ŵ0

eω|η|q
�,N
t (η)λ(dη) =

∫

Ŵ0

(
1 + eω

)|η|
R
�,N
t (η)λ(dη), (5.43)

that can be obtained by (2.13). Since R
�,N
0 ∈ Gβ ′ for any β ′ > 0, see (5.37), we can take

β ′ = β + 1 which maximizes T (β ′, β) given in (5.35). Then for each β > 0, we have that

R
�,N
t ∈ Gβ , for t < τ(β) :=

e−β

e〈a+〉
. (5.44)

Hence, q
�,N
t ∈ Gω whenever R

�,N
t ∈ Gβ with β such that eβ = 1+eω, cf. (5.43). Moreover,

for such ω and β the right-hand side of (5.41) defines a continuous map from Gβ to Gω.

Lemma 5.8 Given ω1 > 0 and ω2 > ω1, let βi be such that eβi = eωi + 1, i = 1, 2. Then

q
�,N
t is continuously differentiable in Gω1 on [0, τ (β2)) and the following holds

d

dt
q
�,N
t = L�,σ

ω1
q
�,N
t . (5.45)

Proof By the mentioned continuity of the map in (5.41) the continuous differentiability of

q
�,N
t follows from the corresponding property of R

�,N
t ∈ Gβ2 , which it has in view of (5.38).

Then the following holds

(
d

dt
q
�,N
t

)
(η) =

∫

Ŵ0

(
L

†,σ
β1

R
�,N
t

)
(η ∪ ξ)λ(dξ) (5.46)

Where L
†,σ
β1

is the trace of L†,σ in Gβ1 . We define the action of L̂σ = Aσ + Bσ in such a

way that 〈〈
L̂σ G, k

〉〉
=

〈〈
G, L�,σ k

〉〉
,
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where that L�,σ acts as in (5.10) and (5.11). Then Aσ acts as in (4.5) with E+(y, η) replaced

by ϕσ (y)E
+(y, η), and Bσ acts as in (5.2) with a+(x − y) multiplied by ϕσ (x). Let G :

Ŵ0 → R be bounded and continuous. Then for some C > 0 we have, see (2.4),

∣∣L̂σ G(η)
∣∣ ≤ |η|2C sup

η∈Ŵ0

|G(η)|,
∣∣K (L̂σ G)(η)

∣∣ ≤ |η|22|η|C sup
η∈Ŵ0

|G(η)|,

and hence we can calculate the integrals below

〈〈
L̂σ G, q

�,N
t

〉〉
=

〈〈
G, L�,σ

ω1
q
�,N
t

〉〉
, (5.47)

where ω1 and q
�,N
t are as in (5.46). On the other hand, by (5.46) we have

〈〈
L̂σ G, q

�,N
t

〉〉
=

〈〈
K L̂σ G, R

�,N
t 〉

〉

=
〈〈
K G, L

†,σ
β1

R
�,N
t

〉〉
=

〈〈
G,

d

dt
q
�,N
t

〉〉
. (5.48)

Since (5.47) and (5.48) hold true for all bounded continuous functions, we have that the

expression on both sides of (5.45) are equal to each other, which completes the proof. ⊓⊔

Corollary 5.9 Let k
�,N
t ∈ Kα2 be the solution of the problem (5.14) with k

�,N
0 = q

�,N
0 ∈

Kα1 , see Lemma 5.2. Then for each G ∈ B⋆
bs(Ŵ0) and

t < min{T (α2, α1; B�); 1/e〈a+〉},

see (5.44), we have that 〈〈
G, k

�,N
t

〉〉
≥ 0. (5.49)

Proof By (5.36) and (5.40) we have that q
�,N
0 ∈ Uσ,α1 (this is the reason to consider such

local evolutions). Let then ut be the solution as in Lemma 5.3 with this initial condition.

Then by Corollaries 5.4 and 5.6 it follows that k
�,N
t = ut = q

�,N
t for the mentioned values

of t . Thus, the validity of (5.49) follows by (5.42). ⊓⊔

5.4 Taking the Limits

Note that (5.49) holds for

k
�,N
t = Qσ

αα1

(
t; B

�,σ
b

)
q
�,N
0 ,

with α ∈ (α1, α2) dependent on t , see (5.16). In this subsection, we first pass in (5.49) to the

limit σ ↓ 0, then we get rid of the locality imposed in (5.36).

Lemma 5.10 Let kt and kσt be the solutions of the problems (3.17) and (5.14), respectively,

with kt |t=0 = kσt |t=0 = k0 ∈ Kα0 , α0 > − logϑ . Then for each α > α0 there exists

T̃ = T̃ (α, α0) < T (α, α0; B�
b ) such that for each G ∈ Bbs(Ŵ0) and t ∈ [0, T̃ ] the following

holds

lim
σ↓0

〈〈G, kσt 〉〉 = 〈〈G, kt 〉〉. (5.50)

Proof Take α2 ∈ (α0, α) and α1 ∈ (α0, α2). Thereafter, take

T̃ < min
{
T

(
α1, α0; B�

b

)
; T

(
α, α2; B�

b

)}
. (5.51)
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For t ≤ T̃ , by (4.27), (4.37), (5.11), and (5.16) we then have that the following holds, see

(4.37) and (5.24),

Qαα0

(
t; B�

b

)
k0 = Qσ

αα0
(t)k0 + Mσ (t)+ Nσ (t),

Mσ (t) :=

∫ t

0

Qαα2

(
t − s; B�

b

) ((
A�

2

)
α2α1

−
(

A
�,σ
2

)
α2α1

)
kσs ds

Nσ (t) :=

∫ t

0

Qαα2

(
t − s; B�

b

) ((
B�

2,b

)
α2α1

−
(
B
�,σ
2,b

)
α2α1

)
kσs ds,

where

kσs = Qσ
α1α0

(s; B�
b )k0. (5.52)

Then

〈〈G, kt 〉〉 − 〈〈G, kσt 〉〉 = 〈〈G, Mσ (t)〉〉 + 〈〈G, Nσ (t)〉〉. (5.53)

By (5.5) we get

〈〈G, Mσ (t)〉〉 =

∫ t

0

〈〈
G, Qαα2

(
t − s; B�

b

)
vs

〉〉
ds

=

∫ t

0

〈〈Hα2α(t − s)G, vs〉〉ds =

∫ t

0

〈〈G t−s, vs〉〉ds, (5.54)

where

〈〈G t−s, vs〉〉

=

∫

Ŵ0

G t−s(η)
∑

x∈η

(1 − ϕσ (x)) E+(x, η \ x)kσs (η \ x)λ(dη)

=

∫

Ŵ0

∫

Rd

G t−s(η ∪ x) (1 − ϕσ (x)) E+(x, η)kσs (η)dxλ(dη), (5.55)

where the latter line was obtained by means of (2.13). Note that kσs ∈ Kα1 and G t−s ∈ Gα2

for s ≤ t ≤ T̃ , see (5.51). We use this fact to prove that

gs(x) :=

∫

Ŵ0

1

|η| + 1
|Gs(η ∪ x)| eα2|η|λ(dη)

lies in L1(Rd) for each s ∈ [0, t]. Indeed, by (2.13) and (4.2) we get

‖gs‖L1(Rd ) ≤ e−α2 |Gs |α2 ≤ C1 < ∞, (5.56)

where

C1 := e−α2 max
s∈[0,T̃ ]

|Gs |α2 ≤
e−α0 T (α, α2; B�

b )|G|α

T (α, α2; B�
b )− T̃

, (5.57)

see (5.6). By (5.15) and (5.52) we also get

max
s∈[0,T̃ ]

‖kσs ‖α2 ≤
T (α1, α0; B�

b )‖k0‖α0

T (α1, α0; B�
b )− T̃

=: C2 < ∞, (5.58)
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see (5.51). Now we use (5.55), (5.56), (5.58) and obtain by (3.2) and (3.12) that the following

holds

|〈〈G, Mσ (t)〉〉| ≤ ̹(α2 − α1)‖a+‖eα1 C2

×

∫ T̃

0

∫

Rd

gs(x)(1 − ϕσ (x))dxds, (5.59)

where

̹(β) :=
1

eβ
+

(
2

eβ

)2

.

By (5.56) and (5.57) we conclude that the integrand in the right-hand side of (5.59) is

bounded by C1. By the Lebesgue dominated convergence theorem this yields RHS (5.59)

→ 0 as σ ↓ 0. In the same way one proves that also

|〈〈G, Nσ (t)〉〉| → 0, σ ↓ 0,

which yields (5.50), see (5.53). ⊓⊔

Below by a cofinal sequence {�n}n∈N ⊂ Bb(R
d) we mean a sequence such that: �n ⊂ �n+1

for all n, and each x ∈ R belongs to a certain �n .

Lemma 5.11 Let {�n}n∈N be a cofinal sequence and q
�,N
0 be as in (5.40). Let also α1 and

α2 be as in Lemma 4.9. Then for each t ∈ [0, T (α2, α1; B�
b )) and G ∈ Bbs(Ŵ0), the following

holds

lim
n→+∞

lim
N→+∞

〈〈
G, Qα2α1

(
t; B�

b

)
q
�n ,N
0

〉〉
=

〈〈
G, Qα2α1

(
t; B�

b

)
kμ0

〉〉
. (5.60)

Proof As in (5.54), we prove (5.60) by showing that

lim
n→+∞

lim
N→+∞

〈〈
G, Qα2α1(t; B�

b )q
�n ,N
0

〉〉

= lim
n→+∞

lim
N→+∞

〈〈
Hα1α2(t)G, q

�n ,N
0

〉〉
=

〈〈
Hα1α2(t)G, kμ0

〉〉
. (5.61)

Since G t := Hα1α2(t)G lies in Gα1 , the proof of (5.61) can be done by the repetition of

arguments used in the proof of the analogous result in [5, Appendix]. ⊓⊔

5.5 The Proof of Lemma 4.9

Let α1 and α2 be as in Lemma 4.9 and {�n}n∈N be a cofinal sequence. Take kμ0 ∈ Kα1 and

then produce q
�n ,N
0 , n ∈ N, by employing (5.36) and (5.40). Let T (α2, α1) < T (α2, α1; B�

b )

be such that (5.49) holds with

k
�n ,N
t = Qσ (α2, α1; B�

b )q
�n ,N
0 , t ≤ T (α2, α1).

Note that T (α2, α1) is independent of �n and N , see Corollary 5.9. By Lemma 5.11 we then

have that

〈〈
G, Qσ

α2α1

(
t; B�

b

)
kμ0

〉〉
≥ 0.

Now we apply Lemma 5.10 and obtain

〈〈
G, Qα2α1

(
t; B�

b

)
kμ0

〉〉
≥ 0,
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which holds for

t ≤ τ(α2, α1) := min
{
T (α2, α1); T̃ (α2, α1)

}
,

which completes the proof.
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