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ABSTRACT

I present a simplified analytical model that simulates the evolution of the binary population

in a dynamically evolving globular cluster. A number of simulations have been run spanning

a wide range in initial cluster and environmental conditions by taking into account the main

mechanisms of formation and destruction of binary systems. Following this approach, I in-

vestigate the evolution of the fraction, the radial distribution, the distribution of mass ratios

and periods of the binary population. According to these simulations, the fraction of surviving

binaries appears to be dominated by the processes of binary ionization and evaporation. In

particular, the frequency of binary systems changes by a factor of 1–5 depending on the initial

conditions and on the assumed initial distribution of periods. The comparison with the existing

estimates of binary fractions in Galactic globular clusters suggests that significant variations

in the initial binary content could exist among the analysed globular cluster. This model has

been also used to explain the observed discrepancy found between the most recent N-body

and Monte Carlo simulations in the literature.

Key words: stellar dynamics – methods: analytical – binaries: general – globular clusters:

general.

1 IN T RO D U C T I O N

The study of the evolution of binary stars both in the solar neigh-

bourhood and in stellar clusters is one of the most interesting topics

of stellar astrophysics. Binarity, under particular conditions, induces

the onset of nuclear reactions leading to the formation of peculiar

objects like novae and determines the fate of low-mass stars leading

to supernova type Ia (SNIa) explosions. In collisional systems bina-

ries provide the gravitational fuel that can delay and eventually stop

and reverse the process of core collapse in globular clusters (see

Hut et al. 1992a, and references therein). Furthermore, the evolu-

tion of binaries in star clusters can produce peculiar stellar objects

of astrophysical interest like blue stragglers, cataclysmic variables,

low-mass X-ray binaries, millisecond pulsars, etc. (see Bailyn 1995,

and reference therein).

From an observational point of view, there is an extensive

literature on the analysis of the main characteristics of the bi-

nary population of the Galactic field (Duquennoy & Mayor 1991;

Halbwachs et al. 2003 and references therein). Conversely, the anal-

ysis of the binary population in star clusters is still limited to small

samples of open clusters (Bica & Bonatto 2005) and to few globu-

lar clusters (Romani & Weinberg 1991; Bolte 1992; Yan & Mateo

1994; Yan & Cohen 1996; Yan & Reid 1996; Rubenstein & Bailyn

⋆E-mail: asollima@iac.es

1997; Albrow et al. 2001; Bellazzini et al. 2002; Clark, Sandquist

& Bolte 2004; Zhao & Bailyn 2005). More recently, Sollima et al.

(2007) estimated the binary fraction in 13 low-density Galactic

globular clusters. They found that the fractions of binary systems

span a wide range comprising 10–50 per cent. This spread could be

due either to differences in the primordial binary fractions or to a

different evolution of the binary populations.

Theoretical studies addressed to the study of the evolution of the

properties of the binary population in globular clusters are mainly

based on two different approaches: (i) full N-body simulations and

(ii) Monte Carlo simulations. The former follows the dynamical

evolution of the stellar system assuming simplified treatments of

single and binary star evolution (see Portegies Zwart et al. 2001;

Shara & Hurley 2002; Hurley & Shara 2003; Hurley, Aarseth &

Shara 2007; Trenti, Heggie & Hut 2007). This approach is ex-

tremely expensive computationally and has been often performed

with unrealistically small numbers of binaries. The latter method

uses a binary population synthesis code to evolve large numbers of

stars and binaries by introducing a simple treatment of dynamics. In

this type of approach it is often assumed that all the relevant param-

eters of the cluster (central density, velocity dispersion, mass, etc.)

remain constant during the cluster evolution (see Hut, McMillan &

Romani 1992b; Di Stefano & Rappaport 1994; Davies 1995; Davies

& Benz 1995; Sigurdsson & Phinney 1995; Davies 1997; Portegies

Zwart et al. 1997a; Portegies Zwart, Hut & Verbunt 1997b; Rasio,

Pfahl & Rappaport 2000; Smith & Bonnell 2001; Ivanova et al.
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308 A. Sollima

2005). The most recent works performed following these two dif-

ferent approaches leaded to apparently contradictory results: while

Monte Carlo simulations (Ivanova et al. 2005) predict a strong de-

pletion of the binary population in the cluster core, the N-body

simulations performed by Hurley et al. (2007) show a progressive

increase of the core binary fraction as a function of time.

In this paper I study the evolution of the binary population in a

dynamically evolving globular cluster using a simplified analytical

approach. Following this approach, I investigate the evolution of

the fraction, the radial distribution, the distribution of mass ratios

and periods of the binary population. A number of simulations have

been run spanning a wide range in initial cluster and environmental

conditions.

In Section 2 I describe in detail the code. In Section 3 I present

the complete set of simulations and discuss the dependence of the

results on the underlying assumptions. In Section 4 the predicted

evolution of the binary fraction as a function of the initial cluster

structural and environmental parameters is presented. Section 5 is

devoted to the study of the radial distribution of binary systems.

In Sections 6 and 7 the distribution of periods and mass ratios are

investigated together with their dependence on the environmental

conditions. A comparison with the most recent N-body and Monte

Carlo simulations is performed in Section 8. In Section 9 the predic-

tions of the code are compared with the estimates of binary fractions

in globular clusters available in the literature. Finally, I discuss the

obtained results in Section 10.

For clarity, I list below the notation used throughout the paper.

General:

ρr density at the distance r from the

cluster centre

σv,r velocity dispersion at the distance

r

rc core radius

rt tidal radius

ξ binary fraction

ξ c core binary fraction

ν fraction of evaporating systems

t9 cluster age

α IMF power-law index

〈m〉 average object mass

(binaries + single stars)

Nsys number of cluster objects

(binaries + single stars)

M cluster mass

Mc cluster core mass

tr local relaxation time at the

distance r

rrel relaxation radius

x polytropic index

f(v, r) distribution of velocities at the

distance r

σX cross-section of the process X

ve,r escape velocity at the distance r

G Newton constant

log � Coulomb logarithm

	r potential at the distance r

ǫr energy per unity of mass at the

distance r

Binaries:

m1 mass of the primary star

m2 mass of the secondary star

P period

η hardness parameter

Eb binding energy

Nb(m1, m2, log P) number of binaries with

parameters m1, m2, log P

nb,r (m1, m2, log P) number density of binaries with

parameters m1, m2, log P at the

distance r

g(log P) distribution of periods

q mass ratio

Single stars:

ms mass

Ns(ms) number of single stars with mass

ms

ns,r (ms) number density of single stars

with mass ms at the distance r

2 M E T H O D

Each simulation is characterized by four initial parameters: the

cluster central density ρ0, the central velocity dispersion σv,0, the

initial binary fraction ξ and the rate of evaporating systems ν.

The code simulates the evolution of the number of binaries and

single stars by taking into account the main processes of formation,

destruction and evolution of binaries and single stars. In particular,

the following processes have been considered:

(i) tidal capture

(ii) direct collisions

(iii) exchanges

(iv) collisional hardening

(v) binaries ionization

(vi) stellar evolution

(vii) coalescence

(viii) mass segregation

(ix) evaporation

A detailed description of the analytical treatment of each of these

processes is given in Sections 2.2–2.7. Moreover, during its evolu-

tion, the cluster dynamical parameters are assumed to evolve (see

Section 2.8).

The binary population of the system has been divided in several

groups according to the masses of the primary and secondary stars

(m1 and m2), and to the period (P). Similarly, the population of

single stars has been divided in groups of masses (ms).

The evolution of each population of single and binary stars is

calculated in layers of variable width located at different distances

from the cluster centre.

At the beginning of the simulation, the density and the distribu-

tion of velocities of both single and binary stars is assumed to follow

the radial behaviour of a monomass King profile, as expected for a

non-relaxed stellar system. During this initial stage, the cluster is as-

sumed to be a non-collisional system. Therefore, the only processes

at work are those related to stellar evolution and evaporation.

After this initial stage, the evolution of the cluster and its binary

population is followed in time-steps. For each time-step the adopted

general procedure is schematically the following.

(i) The code calculates the maximum radius in which the local

relaxation time is smaller than the cluster age (relaxation radius;

rrel). The local relaxation time at the radius r has been calculated

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 307–322
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The binary population in globular clusters 309

using the relation

tr = 0.34
σ 3

v,r

G2ρr〈m〉 log �
(Binney Tremaine 1987) (1)

with � = 0.4 Nsys.

(ii) The number of newly formed and destroyed binary sys-

tems have been calculated in all the layers located inside the

relaxation radius. The number of binaries Nb(m1, m2, log P) and

single stars Ns(ms) belonging to each group have been consequently

updated.

(iii) A set of partially relaxed multimass King profiles has been

calculated (see Appendix A). The density and velocity distribution

of each subpopulation of binary and single stars have been assumed

to follow a given profile according to their systemic masses.

(iv) The mass of the cluster has been calculated and the values

of ρ0, σv,0 and W0 have been updated (see Section 2.8).

Points (i)–(iv) have been repeated until the cluster reach an age

of 13 Gyr. In the next subsection I will report the assumptions made

in all the simulations presented in this paper.

2.1 Assumptions

The simulations have been performed assuming a time-step of �t =
0.1 Gyr. This quantity has been chosen to be larger than the cluster

crossing time, in order to ensure that all the stars of a given mass

group can approach the radial distribution predicted by their own

King profile, and short enough to avoid significant variations of the

cluster structural parameters. During each time-step, the equivalent

effect of the multiple interactions that occur for a binary population

is calculated.

The width of the layers has been chosen to allow a higher res-

olution in the inner (i.e. more populated) regions of the cluster. I

assumed �r = 0.1 rc for r < 5 rc, �r = rc for 5 < r/rc < 50 and

�r = 10 rc for r > 50 rc.

The cluster stars have been divided in mass bins of size 0.1 M⊙
in the mass range 0.1 < M/M⊙ < 5. An additional bin formed by

stars in the mass range 5 < M/M⊙ < 120 has been considered.

These massive stars have lifetimes shorter than the time-step of the

simulation and are removed during the first stage of evolution (see

Section 2). I adopted the initial mass function (IMF) by Kroupa

(2002), which can be written as a broken power law dN = mα dm,

with α = −1.3 for 0.1 < M/M⊙ < 0.5, and α = −2.3 for M >

0.5 M⊙.

The initial mass ratios and periods distributions of the binary

population have been chosen in agreement with the results of

Duquennoy & Mayor (1991). In particular, the initial mass ratio

distribution has been derived by random associating stars belong-

ing to different mass bins. I assumed a lognormal distribution of

periods g(log P) centred at log P(d) = 4.8 and with a dispersion

σ logP = 2.3, where P is the period expressed in days. The corre-

sponding semi-axes distribution of each group of binaries can be

derived by considering the third Kepler’s law

a =
[

G (m1 + m2) P 2

4π
2

]1/3

.

The distribution of periods has been truncated assuming an upper

limit1 of P = 107 d in agreement with Sills et al. (2003). More-

1 I did not assumed a criterion to link the upper truncation of the period

distribution to the local velocity dispersion, assuming that binaries born in

all clusters with the same initial properties.

over, a lower limit has been imposed by rejecting all the binaries

whose major semi-axes (a) turn out to be lower than their limiting

orbital distance (amin; see Section 2.6). The distribution of binary

eccentricities has been assumed to follow a thermal distribution

with probability density p(e) = 2e.

The mass–radius relation and the evolutionary time-scales of each

mass group have been derived from the models by Pietrinferni et al.

(2006) assuming a metal mass fraction Z = 10−3.

In order to limit the number of free parameters, I assumed the

King parameter W0 as a linear combination of the central density

and velocity dispersion

W0 =
[

log

(

ρ0

M⊙ pc3

)

− 2. log

(

σv,0

km s−1

)]

1.921 + 2.934. (2)

This relation has been derived empirically using the central densities

and velocity dispersions reported by Djorgovski (1993) and the

cluster concentrations by Trager, King & Djorgovski (1995). In the

same way, the core radius rc has been assumed to be linked to the

above parameters in the following way:

rc =
(

σv,0

km s−1

) (

Mc

102.67 M⊙

)−1/2

pc (Bellazzini 1998).

The dependence of the obtained results on the choice of some of

these assumptions is investigated in Section 3.

2.2 Tidal capture

A mechanism proposed to form binary systems is based on the

tidal capture of a companion induced by a close encounter between

two single stars (Clark 1975). Indeed, when two colliding stars

approach with a relative velocity and an impact parameter lower

than given limits, they can form a bound system. The rate of binary

systems formed through this mechanism has been evaluated using

the cross-section σ tc provided by Kim & Lee (1999). I considered

the collisions between two non-degenerate stars with a polytropic

index x = 1.5 (see their equation 6). In a time interval �t, the number

of tidal captured binaries having primary and secondary masses m1

and m2 and period P turns out to be

�Nb(m1, m2, log P ) =
∫ rrel

0

dNb,tc

dV
d3r,

where

dNb,tc

dV
=

ns,r (m1) ns,r (m2) �t g(log P )

1 + δ1,2

×
∫ ve,r

0

(1 − Fcoll,v)v σtc f (v, r) d3v,

where δ1,2 is the Kronecker delta which is unity if stellar type 1 and 2

are identical and zero otherwise. The quantity Fcoll,v is the fraction of

collisions which lead to the formation of an unstable binary system

whose natural evolution is the coalescence in a single massive star

(see Section 2.6) and can be written as

Fcoll,v = σcoll

σtc
.

As can be seen from the above equations, the binary systems

formed via tidal capture are assumed to follow the original period

distribution.

2.3 Collisional hardening and binaries ionization

When a single star collides with a binary systems, the two ob-

jects exchange part of their energy. In particular, the colliding star

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 307–322
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310 A. Sollima

gain (lose) a fraction of its kinetic energy, which is balanced by

an decrease (increase) of the binary system binding energy, if the

hardness parameter

η =
Eb

ms σ 2
v,r

, where Eb =
G m1 m2

2 a
(3)

is larger (smaller) than unity (Heggie 1975). The variation of binding

energy of the binary system translates into a change in the period

(i.e. in the orbital separation). This process is called ‘collisional

hardening (softening)’. If the binding energy of the binary system

drops to zero then the binary is disrupted (binary ionization).

The code follows the evolution of the binding energy of each sub-

population of binaries and calculates the number of binaries which

undergo ionization. In particular, the fraction of binding energy

gained (lost) by the binary system after a time interval �t has been

assumed to be

�Eb

Eb

∼ �t

∫ rrel

0

nb,r (m1, m2, log P )

(

1

Eb

dEb

dt

)

r

d3r

and

(

1

Eb

dEb

dt

)

r

=

⎧

⎪

⎨

⎪

⎩

7.6
√

π G a 〈ns ms〉
σv,r

if η > 1

−
16

√
π G a 〈ns m2

s 〉 log �

σv,r (m1 + m2)
if η < 1

(Binney & Tremaine 1987; Hills 1992).

Here the quantities 〈X〉 indicates the mean value of X measured at

the radius r. I assumed � = 1/η, which is a suitable choice for η <

1 (Binney & Tremaine 1987). I neglected the change of the binary

eccentricity distribution due to collisions.

Collisions between binaries play also an important role, in partic-

ular when high primordial binary fractions are considered. Binary–

binary interactions are very efficient for ionizing one (or both) of

the two binaries (Mikkola 1983a; Sweatman 2007). In a collision

between binaries the most probable outcome is the disruption of the

softer binary and hardening of the harder one. As a first-order ap-

proximation, the collisions between two binary systems have been

treated as normal collisions between a binary and a single point-

mass object with a mass equal to the systemic mass of the colliding

binary system (m1 + m2). Note that this simplification underesti-

mates the amount of energy transferred between the two binaries

since the geometrical part of the cross-sections defined above would

be few times larger then what assumed. Moreover, under this as-

sumption only one of the various possible outcomes of a binary–

binary collision is considered (see Fregeau et al. 2004). However,

despite the adopted simplifications, the treatment described above

accounts for most of the contribution of collisions between binaries

to the ionization process.

Similarly, the variation of periods and semi-axes have been cal-

culated considering that

�a

a
= −

�Eb

Eb

and � log P = −
2 ln 10

3

�Eb

Eb

. (4)

2.4 Exchanges

A possible occurrence in a collision between a single star and a

binary system consists in the formation of an unstable triple system

which naturally evolves by expelling one of the components (usually

the least massive) of the original system. The number of exchanges

has been estimated by means of the cross-section σ exch provided

by Heggie, Hut & McMillan (1996) (see their equations 4 and 17).

Since this formulation is valid only in the case η > 1, I calculated

the number of exchanges only in this regime. On the other hand, the

process of exchange in soft binaries is largely less efficient than the

one of ionization and can be neglected. Therefore, the number of

exchanges involving an hard binary having components of masses

m1 and m2 and period P with a colliding star with mass ms is

�Nexch(m1, m2, ms, log P ) =
∫ rrel

0

dNexch

dr
d3r

with

dNexch

dr
= ns,r (ms) nb,r (m1, m2, log P ) �t

×
∫ ve,r

0

v σexch f (v, r) d3v

At each time-step, the number of binary systems and single stars

have been corrected for this effect.

2.5 Stellar evolution

As time passes, most stars evolve and die after time-scales which

depend mainly on the star’s mass. Massive stars (M > 7 M⊙) at

the end of their evolution explodes as SNII. Less massive stars

suffer strong mass-losses during their latest stages of evolution and

terminate their evolution as white dwarf (WD).

When a star belonging to a binary system evolves there are many

possible outcomes. If the mass of the primary star is large enough to

produce a SNII explosion part of the elapsed energy is converted in a

velocity kick that increase the total energy of the system. If the total

energy (potential and kinetic) is positive then the system is disrupted

and its components will evolve separately. Else, the system remains

in a bound state in which one of the two companions is the compact

remnant of the evolved star.

Otherwise, if the primary component of the binary system is

small enough to avoid the ignition of the triple-α cycle, mass-

losses produce a rapid halting of the nuclear reactions leading to the

formation of a WD. Given the large number of low-mass stars, this

event is the most probable among the various possible outcomes.

In particular, I considered two important cases: (i) the envelope of

the evolving stars reach the Roche-lobe of the companion, igniting

the process of mass transfer (see Section 2.6); (ii) the star follows an

unperturbed evolution leading to the formation of a binary system

formed by a WD and a companion.

To account for these processes, at each time-step of the simula-

tion, a limiting mass has been associated. Then, for each mass bin,

the code calculates the fraction of stars with masses larger then this

limiting mass, assuming the stars to populate uniformly the mass

bin. When this process takes place in a binary system, the occur-

rence of the various possible processes described above has been

considered. In particular, in the case of a massive primary compo-

nent I followed the prescriptions of Belczynski, Kalogera & Bulik

(2002). In the case of binary systems formed by low-mass stars a

distinction between processes (i) and (ii) has been made using the

criterion described in Section 2.6. The amount of mass lost at the

end of the evolution has been calculated using the prescriptions by

Weidemann (2000).

The number of binary and single stars is updated accordingly.

2.6 Direct collisions and coalescence

From the early 1950s it is well known that in globular clusters

exists a population of massive objects that, in the colour–magnitude

diagram, lie along an extension of the main sequence, in a region

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 307–322
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The binary population in globular clusters 311

which is brighter and bluer than the turn-off (Piotto et al. 2004,

and references therein). These stars are called Blue Straggler Stars

(BSSs). Two mechanisms have been proposed to explain the origin

of these stars: (I) direct collision between two single stars (Hills &

Day 1976) and (II) mass transfer activity in close binary systems

(McCrea 1964).

Case (I) occurs if the impact parameter of the collision between

two single stars is small enough to form an unstable system in

which the process of mass transfer leads to the formation of a single

massive star.

In case (II) when the orbital separation of a binary system re-

duces to a critical distance, the binary system became unstable

and the ignition of the process of stable mass transfer occurs. This

phenomenon can be induced by two different mechanisms: (IIa)

collisional hardening (see Section 2.3) and (IIb) off-main-sequence

evolution of the primary component of the binary system. In the

former case, hard binaries subject to a high number of collisions

tend to reduce their orbital separation (see equation 4). In the latter

case, when the primary component of the binary system exhausts

the hydrogen in its core, it expands its envelope by a large factor

(which depends on its mass) possibly reaching the Roche radius of

the secondary component.

The critical distance between two companions in a binary system

to ignite stable mass transfer is

amin = 2.17

(

m1 + m2

m2

)1/3

R2 (Lee Nelson 1988).

The final product of these processes is a system containing a

massive star having a mass m1 < m < (m1 + m2). The formation of

BSSs affects the number of binary and single stars.

To evaluate the frequency of the processes described above, I first

consider the cross-section σ coll for a stellar collision which leads to

a close binary system with orbital separation a < amin (case I). This

cross-section has been calculated using the formulation by Lee &

Ostriker (1986; see their equations 2.8 and 4.12):

σcoll = πamin

2Gm2

v2
.

Then, the number of coalesced stars via direct collision can be

written as

�Nb(m1, m2, log P ) =
∫ rrel

0

dNb,coll(m1, m2)

dr
d3r,

where

dNb,coll

dr
=

ns,r (m1) ns,r (m2) �t

1 + δ1,2

∫ ve,r

0

v σcoll f (v, r) d3v.

The fraction of coalesced stars via collisional hardening

(case IIa) has been calculated by following the evolution of the

semi-axes of the binary population (see Section 2.3). Instead, when

the coalescence is due to the evolution of the primary star of a binary

system (case IIb), the code calculates the fraction of system with an

evolving primary star which satisfies the condition

a < amin

R1,max

R1

,

where R1 and R1,max are the radii of the primary star during its

quiescent and evolved stages, respectively.

2.7 Evaporation

During its evolution, a globular cluster undertakes the tidal stress

of its host galaxy. As a result of this interaction, it loses part of

its stellar systems decreasing its total mass. The rate of evaporating

systems depends on the cluster orbit and on its structural parameters

(Gnedin & Ostriker 1997).

Here, the treatment of evaporation has been greatly simplified

assuming the cluster to lose a constant fraction ν of its objects during

all its evolution. Although this is a crude approximation, it can be

used to simulate the effect of a tidal field on the relative amount

of single and binary stars survived to the evaporation process. A

homogeneous evaporation rate is also in agreement with the most

recent N-body simulation (Hurley et al. 2007; Kim et al. 2008).

At a given distance from the cluster centre, I assumed the velocity

distribution of a population of objects with mass m can be well

represented by a Maxwellian distribution2

f (v, r) = A e−v2/2K ,

where K is a term proportional to σ 2 and A is a normalization factor.

The quantity K depends on the stellar mass according to the status

of relaxation of the cluster (see Appendix A).

The relative number of evaporating systems belonging to a given

group of mass can be therefore calculated by integrating over the

entire cluster extension the fraction of stars with a velocity higher

than the escape velocity (ve,r =
√

−2	r ):

N ′(m) = B

∫ rt

0

nr (m)
dν ′(m)

dr
d3r,

where

dν ′(m)

dr
=

∫ +∞

βWr (m)

y1/2 e−y dy,

Wr (m) = −
	r

σ 2
v,0

.

The term β accounts for the state of partial relaxation (see Appendix

A)

β =
m

[γ 〈m〉 + (1 − γ )m]
,

where

γ =
Nm(r < rrel)

Nm

is the fraction of stars with mass m located in the region where

relaxation already occurred.

Once this ratios are calculated for all the mass groups, the nor-

malization factor B can be derived by imposing that

�Nsys =
∑

i

N ′(mi) = νNsys.

2.8 Cluster dynamical evolution

During its evolution, the cluster core loses part of its mass as a

result of the processes of mass segregation and evaporation. To

maintain its virial equilibrium the cluster collapses increasing its

central density and velocity dispersion. A significant population of

hard binaries feeds kinetic energy into the cluster through binary–

single and binary–binary interactions which counteract the effects of

evaporation. This process can halt and even reverse the contraction

of the core (Hills 1975; Gao et al. 1991). Fregeau et al. (2003)

showed that also a small fraction of hard binaries is sufficient to

support the core against collapse significantly beyond the normal

core-collapse time.

2 Although this assumption holds only in the core, I extended its validity to

the entire cluster only to calculate the relative fraction of evaporating stars

belonging to different mass groups.
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312 A. Sollima

I considered the evolution of the structural properties of the clus-

ter in a highly simplified way. In particular, the code calculates at

each time-step of the simulation the number of stars contained in

the cluster core and updates the core radius and the central velocity

dispersion using the relations

r ′
c

rc

=
E

E′

(

N ′

N

)2

and

σ ′
v,0

σv,0

=
(

E′

E

N

N ′

)1/2

,

where

E′

E
=

[

ln(N ′/2)

ln(N/2)

]88 z(ξ )

(Hills 1975).

Here the symbols X and X′ indicate the values of X in two sub-

sequent time-steps. The term E′/E represents the ratio between the

cluster binding energies in two subsequent time-steps due to the

contribution of binaries. Here, all quantities refers to the cluster

core and ξ refers to the fraction of hard binaries. The exponent z(ξ )

is related to the heating of binaries due to binary–single stars and

binary–binary interaction and can be written as

z(ξ ) = (ξ/1.3) + 10.3 ξ 2(1.2 − 1/〈η〉) (Mikkola 1983b).

Moreover, the King parameter has been updated using equation (2).

In this way, the cluster structural parameters satisfy the virial theo-

rem during all the simulation.

In Fig. 1 the evolution of the core radius for the models s5p3e5f50

and s5p3e5f10 are shown. As can be seen, the general trend of the

core radius evolution is characterized by a progressive contraction

of the core induced by the ever continuing losses of stars. In model

s5p3e5f50 the heat generated by hard binaries halts the contrac-

tion and leads to a stabilization toward an equilibrium value. The

behaviour of the evolution of the cluster characteristic radii qual-

itatively agree quite well with the most recent N-body simulation

computations (see Fregeau et al. 2003; Kim et al. 2008). The details

Figure 1. The evolution of the core radius is shown as a function of time

for the models s5p3e5f50 (solid line) and s5p3e5f10 (dashed line).

of the core oscillations and post-collapse evolution are not repro-

duced by the code as a consequence of the simplified treatment

described above. However, this should have only a minor effect on

the predicted evolution of the properties of the binary population.

3 R E S U LT S A N D D E P E N D E N C E O N T H E
ASSUMPTI ONS

I run a set of 36 simulations spanning a wide range in density, ve-

locity dispersion, evaporation efficiency and initial binary fraction.

A list of all the performed simulations and their initial and final

parameters is provided in Table 1.

To test the dependence of the obtained results on the adopted

assumptions in the following subsections I compare the model

s5p3e5f50 with a set of simulations preformed with the same initial

conditions but different assumptions. The results of these additional

simulations are listed in Table 2.

3.1 Dependence on metallicity

As described in Section 2.1, the simulations have been performed

adopting a metal mass fraction Z = 10−3. Metallicity influences

both the evolutionary time-scales and the mass–radius relation and

can in principle affect the evolution of the binary population.

In the upper panels of Fig. 2 the behaviour of the binary fraction

as a function of time is showed for the model s5p3e5f50 and for

a simulation performed with Z = 10−4. As can be noted, the two

models are indistinguishable even when the core binary fraction is

considered. Also the final binary fraction of the metal-poor model

is the consistent with the reference metal-rich one within 0.3 per

cent (see Table 2).

I conclude that the metallicity plays a negligible role in the evo-

lution of the binary fraction in the presented simulations. Note

however that metallicity can play an important role in the primor-

dial fraction of binaries and in the formation of X-ray binaries (see

Ivanova 2006). In the models presented here such effects can remain

hidden because of the adopted simplifications.

3.2 Dependence on the IMF

Another important ingredient of the simulations is the IMF. Indeed,

it determines the relative fraction of each mass group and influences

the distribution of mass ratios.

Although the power-law exponent of the IMF is well established

for stars with masses M > 0.5 M⊙, there are still large uncertainties

in the shape of the low-mass end of the IMF. Moreover, some authors

claim a dependence of the power-law exponent of the low-mass end

of the IMF on metallicity (McClure et al. 1986; Djorgovski, Piotto

& Capaccioli 1993).

In the central panels of Fig. 2 the model s5p3e5f50 is compared

with two simulations performed using two extreme values of the

IMF power-law exponent in the mass range M < 0.5 M⊙ (α =
0 and 1.8). As can be seen, the three models show a very similar

behaviour during all the cluster evolution. The final binary fractions

of the three models are also compatible within ∼5 per cent.

Therefore, although the IMF plays a fundamental role in the

determinations of the main characteristics of the binary popula-

tion, it plays only a minor role in the evolution of the binary

fraction.
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The binary population in globular clusters 313

Table 1. Complete list of simulations.

Initial conditions Final conditions

Model ID log ρ0 σv,0 ξ ν ξ ξ c

(M⊙ pc−3) (km s−1) (per cent) (per cent Gyr−1) (per cent) (per cent)

s2p1e0f10 1 2 10 0 8.3 12.4

s3p2e0f10 2 3 10 0 6.6 10.7

s5p2e0f10 2 5 10 0 6.6 10.0

s5p3e0f10 3 5 10 0 4.7 7.8

s5p4e0f10 4 5 10 0 2.8 5.3

s5p5e0f10 5 5 10 0 2.1 4.3

s9p4e0f10 4 9 10 0 2.9 5.0

s9p5e0f10 5 9 10 0 1.7 3.3

s13p5e0f10 5 13 10 0 1.6 2.9

s2p1e5f10 1 2 10 5 10.3 14.7

s3p2e5f10 2 3 10 5 7.5 11.0

s5p2e5f10 2 5 10 5 6.8 9.9

s5p3e5f10 3 5 10 5 4.8 7.6

s5p4e5f10 4 5 10 5 4.1 6.9

s5p5e5f10 5 5 10 5 3.1 5.7

s9p4e5f10 4 9 10 5 3.0 4.9

s9p5e5f10 5 9 10 5 2.5 4.1

s13p5e5f10 5 13 10 5 2.3 3.8

s2p1e0f50 1 2 50 0 40.9 51.5

s3p2e0f50 2 3 50 0 30.6 42.5

s5p2e0f50 2 5 50 0 31.5 41.8

s5p3e0f50 3 5 50 0 20.0 30.2

s5p4e0f50 4 5 50 0 12.1 21.0

s5p5e0f50 5 5 50 0 9.3 17.4

s9p4e0f50 4 9 50 0 11.6 18.8

s9p5e0f50 5 9 50 0 6.6 12.3

s13p5e0f50 5 13 50 0 6.0 10.5

s2p1e5f50 1 2 50 5 56.0 64.3

s3p2e5f50 2 3 50 5 44.6 53.8

s5p2e5f50 2 5 50 5 28.0 37.2

s5p3e5f50 3 5 50 5 29.9 39.0

s5p4e5f50 4 5 50 5 16.6 25.0

s5p5e5f50 5 5 50 5 11.5 20.2

s9p4e5f50 4 9 50 5 14.3 22.0

s9p5e5f50 5 9 50 5 8.2 13.5

s13p5e5f50 5 13 50 5 7.9 12.7

Table 2. Results of the test simulations.

Initial conditions Final conditions

Model ID ξ log Z α (M < 0.5 M⊙) g(log P) log Pmax ξ ξ c

(per cent) (d) (per cent) (per cent)

s5p3e5f50 50 −3 1.3 Gaussian 7 29.9 39.0

s5p3e5f50.zlow 50 −4 1.3 Gaussian 7 30.0 39.3

s5p3e5f50.m18 50 −3 1.8 Gaussian 7 24.9 35.7

s5p3e5f50.m0 50 −3 0.0 Gaussian 7 31.3 41.2

s5p3e5f50.pflat 50 −3 1.3 Flat 7 39.8 48.3

s5p3e5f50.p6 50 −3 1.3 Gaussian 6 35.2 44.9

3.3 Dependence on the period distribution

One of the most important assumptions made in the simulations

regards the distribution of periods of the binary population. The

shape and the extremes of this distribution determine the ratio of

soft-to-hard binaries (i.e. the fraction of binaries which can undergo

ionization).

To evaluate the impact of these assumptions on the evolution of

the binary fraction I compared the model s5p3e5f50 with two sim-

ulations performed assuming (i) a flat period distribution truncated

at log P(d) = 7 (where P is expressed in days) and (ii) a lognormal

distribution truncated at log P(d) = 6. The results of this comparison

are shown in the lower panels of Fig. 2. Note that, while a variation

of the upper limit of the period distribution produces only small

changes (�ξ < 6 per cent) in the final binary fraction, the model

with a flat period distribution maintains a significantly higher frac-

tion of binary systems during all the cluster evolution. In particular,

after 13 Gyr, this last model contains ∼10 per cent of binaries more
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314 A. Sollima

Figure 2. The evolution of the binary fraction is shown as a function of time for the reference model s5p3e5f50 (solid lines) and for the models calculated

under different assumptions. Left-hand panels show the binary evolution in the whole cluster, right-hand panels show the binary evolution in the cluster core.

than the reference model. As pointed out above, this effect is due to

the higher fraction of hard binaries resulting from the flat distribu-

tion of periods (60 per cent at the beginning of the simulation) with

respect to the lognormal distribution (43 per cent).

All the results presented in the following sections are based on

simulations run assuming a lognormal distribution of periods trun-

cated at log P(d) = 7. Although the dependence of the properties

of the binary population on the cluster structural and environmental

parameters should not be influenced by this choice, it is important to

bear in mind that the absolute results of the individual simulations

are highly sensitive to this assumption.

4 EVO L U T I O N O F TH E B I NA RY FR AC T I O N

The simulations listed in Table 1 cover a range of structural and

environmental parameters comparable to those spanned by Galactic

globular clusters. Thus, they can be used to study the efficiencies of

the various processes of binary formation/destruction as a function

of the initial conditions.

For this purpose consider the derivative

dξ

dt9
=

∑

X

(

dξ

dt9

)

X

.

This quantity can be seen as the sum of the contributions of the

individual processes, where
(

dξ

dt9

)

X

=
NsysdXNb − NbdXNsys

N 2
sys

represents the contribution of the process X to the above derivative.

In Fig. 3 the behaviour of the derivatives defined above are shown

Figure 3. Derivative of the binary fraction as a function of time for model

s5p3e5f50. The contributions of the various processes are indicated.

as a function of time for the model s5p3e5f50. Such a behaviour

is qualitatively the same in the other models with different initial

conditions. As can be noted, the process of ionization is the main

responsible for the variation of the binary fraction reaching its max-

imum efficiency in the first Gyr of evolution. Another important

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 307–322
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The binary population in globular clusters 315

Figure 4. The evolution of the binary fraction in the core (dashed lines) and in the whole cluster (solid lines) are shown as a function of time for all the models

with ν = 0 and ξ = 50 per cent.

Figure 5. Same of Fig. 4 but for all the models with ν = 5 per cent Gyr−1 and ξ = 50 per cent.

C© 2008 The Author. Journal compilation C© 2008 RAS, MNRAS 388, 307–322
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316 A. Sollima

contribution is given by evaporation (in models where ν 
= 0) which

enhances the fraction of binaries systematically during the whole

cluster evolution. All the other processes play only a minor role.

In Figs 4 and 5 the behaviour of the binary fraction as a function

of time is shown for all the simulations with initial binary fraction

ξ = 50 per cent. As can be noted, the general evolution of the

binary fraction is characterized by a sudden decrease in the first Gyr,

followed by a constant trend during the subsequent Gyr of evolution.

In simulations run assuming ν 
= 0, the fraction of binaries slightly

increase in the last Gyr of evolution. The fraction of binaries in

the core is systematically larger than that of the entire cluster. This

difference is more evident after 2–3 Gyr evolution.

The strong initial decrease of the binary fraction is due to the

process of binary ionization which destroys a large fraction of bina-

ries during the first Gyr of evolution. After this initial stage, all the

soft binaries have been destroyed and the evolution of the binary

fraction is driven by the other processes which have a smaller effi-

ciency. In particular, if the efficiency of the process of evaporation

is large, the fraction of binaries increases again. Binary systems are

in fact on average more massive than single stars and tend to have

therefore smaller velocities. Therefore, a larger number of single

stars reach the cluster escape velocity with respect to binary sys-

tems, thus increasing the relative fraction of binaries. As relaxation

Figure 6. Maps of the surviving binary fraction in the plane log ρ0 − σv,0 for ξ = 50 per cent, ν = 0 (left-hand panels) and ν = 5 per cent Gyr−1 (right-hand

panels). Lower panels refer to the core binary fraction, upper panels to the whole cluster binary fraction. Darker regions indicate higher binary fractions in

steps of 10 per cent. The locations of the Galactic globular clusters (from Djorgovski 1993) are also marked with open circles.

proceeds a larger fraction of binaries sink into the central regions

of the cluster, as a consequence of the process of mass segregation,

thus increasing the core binary fraction.

Fig. 6 shows a map of the fraction of surviving binary sys-

tems after 13 Gyr in the log ρ0–σv,0 plane for the simulations with

initial binary fraction ξ = 50 per cent. As can be seen, a clear

trend is visible as a function of the cluster final conditions. In

particular,

(i) the fraction of binaries decreases by increasing the central

velocity dispersion;

(ii) the fraction of binaries decreases by increasing the central

density;

(iii) the fraction of binaries increases by increasing the efficiency

of the evaporation.

The physical reasons at the basis of these trends are linked to the

efficiencies of the processes of binary ionization and evaporation.

Indeed, by increasing the cluster velocity dispersion increase the

ratio of soft-to-hard binaries (see equation 3) which are destroyed by

the process of ionization in the first Gyr of evolution. The efficiency

of ionization increase also by increasing the cluster density (see

Section 2.3). On the other hand, evaporation tends to increase the

fraction of binaries (see above).
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The binary population in globular clusters 317

Figure 7. The surviving fraction of binaries after 13 Gyr is shown as a

function of the residual cluster mass for all the models with ξ = 50 per

cent and ν = 5 per cent. A clear anticorrelation between these quantities is

visible.

Interestingly, the efficiency of ionization and the cluster mass

have the same dependences on the cluster structural parameters (ρ0

and σv,0). Indeed, more massive clusters have, on average, larger

densities and velocity dispersions (Djorgovski & Meylan 1993).

In Fig. 7 the fraction of binaries after 13 Gyr is plotted against

the residual cluster mass for all models with ξ = 50 per cent and

ν = 5 per cent. As expected, a clear anticorrelation is clearly visible

between these two quantities. The same result can be achieved

considering different values of the primordial binary fraction and

evaporation efficiency.

In Fig. 8 the evolution of the binary fraction for the model

s5p3e5f50 is compared with that calculated for a model with the

same initial conditions but a significantly smaller initial binary frac-

tion (model s5p3e5f10). The binary fractions for the two models

have been normalized to their initial values in order to compare the

relative trend of their evolution. Note that the model which starts

with a lower binary fraction maintaining a larger fraction of bina-

ries in the first stages of its evolution. This evidence is more evident

when the core binary fraction is considered. This is a consequence

of two effects: (i) the effect of the binary–binary collisions and (ii)

the dependence of the local relaxation time on the mean stellar mass

(see equation 1). Indeed, in clusters with higher binary fractions,

binary–binary collisions are ∼25 times more frequent and, given

their higher energetic budget, dominate the process of binary ion-

ization. Moreover, the mean stellar mass is smaller in clusters with

smaller binary fractions. The local relaxation time in these clusters

is therefore longer, and a smaller fraction of binaries is therefore in-

volved in the process of binaries destruction. This effect is amplified

in the core where more binaries sink as a result of mass segregation.

The trend is reversed after few Gyr when the impact of evaporation

became more important. In fact, models with higher fractions of

binaries tend to maintain binaries more efficiently. At the end of

the simulation the two models contain a similar fraction of their

initial budget of binaries in the core regardless of their primordial

Figure 8. The binary fraction normalized to the initial value is shown as

a function of time for the model s5p3e5f50 (solid lines) and s5p3e5f10

(dashed lines). The upper panel refers to the entire cluster, the lower panel

to the cluster core.

content. In the following I discuss the dependence of the evolution

of the binary population considering the models calculated assum-

ing an initial binary fraction ξ = 50 per cent. The conclusions are

qualitatively the same for the models with a smaller initial binary

fraction.

5 R ADI AL D I STRI BUTI ON O F BI NARI ES

Binary systems are on average more massive then single stars.

Therefore, they are expected to have a different radial distribu-

tion with respect to single stars, as a result of the process of mass

segregation.

Fig. 9 shows the fraction of binaries (model s5p3e5f50) normal-

ized to the central value as a function of the radial distance from the

cluster centre at different times. As expected, the fraction of bina-

ries shows a central peak, decreasing toward the external regions of

the cluster. As time passes, relaxation occurs in the external regions

and the cluster increases its concentration as a result of the ever

continuing losses of stars. Consequently, the fraction of binaries

populating the outermost part of the cluster slightly increases.

In Fig. 10 the radial behaviour of the normalized fraction of

binaries (model s5p3e5f50) calculated after 13 Gyr is compared

with models with extremely different initial conditions (models

s2p1e5f50 and s13p5e5f50; upper panel) and with a smaller evap-

oration efficiency (s5p3e0f50; lower panel). Note that the slope

of the decreasing trend of the binary fraction in the external part

of the cluster is less steep in model s13p5e5f50 which undergo a

stronger dynamical evolution. The same behaviour is visible when

evaporation accelerates the cluster dynamical evolution.

Summarizing, the slope of the external decrease of the radial

distribution of the binary fraction is steeper as the cluster is dynam-

ically younger.
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318 A. Sollima

Figure 9. Normalized binary fraction as a function of the radial distance to

the cluster centre at different times from the beginning of the simulation for

the model s5p3e5f50.

Figure 10. In the upper panel the comparison among the normalized binary

fractions as a function of the radial distance to the cluster centre is shown for

the model s5p3e5f50 (solid line), s2p1e5f50 (dashed line) and s13p5e5f50

(dotted line). The lower panel shows the same comparison but for the models

s5p3e5f50 (solid line) and s5p3e0f50 (solid line).

A note of caution is worth taking: the code assumes that all the

cluster stars follow the radial distribution predicted by a given King

model according to their masses during the whole cluster evolution.

Under this assumption, the process of mass segregation removes in-

stantaneously all the radial differences in binary fraction produced

by the various mechanisms of binary formation/destruction. How-

ever, while this approximation is reasonable in the central regions

(where the local relaxation time is relatively short) in the outer re-

gions this assumption could not hold. Therefore, the predicted radial

distribution of binaries could not be reliable in the external regions

of the cluster.

6 PERI OD D I STRI BUTI ON

As outlined in Section 4, one of the main processes that drive the

evolution of the binary fraction is the process of binary ionization.

The binaries which are more subject to this process are those with

smaller binding energy (i.e. longer periods). The shape of the dis-

tribution of periods therefore changes during the cluster evolution

according to the efficiency of the process of binaries ionization.

In Fig. 11 the initial and final periods distributions of three models

with different ionization efficiencies are shown. As expected, in

models with a high ionization efficiency (see model s13p5e5f50)

all binaries with log P(d) > 2 are destroyed. On the opposite side,

when ionization plays a minor role (model s2p1e5f50) a significant

fraction of binaries with period as long as log P(d) = 6 still survives.

7 MASS R ATI O DI STRI BU TI ON

During the cluster evolution also the mass ratio distribution changes.

There are three main processes that drive its evolution: stellar evo-

lution, ionization and exchanges. Indeed, at the beginning of the

simulation a large number of binaries are formed by a massive pri-

mary star which dies during the cluster evolution. The minimum

possible mass ratio therefore increases with time. Moreover, the

mean binding energy of the binary population is proportional to the

average mass ratio. Thus, in clusters where ionization has a higher

efficiency the mass ratio distribution should be more efficiently de-

pleted up to larger values of q. During close encounters between

a binary system and a massive colliding single star, the secondary

star of the binary system is usually ejected from the system. When

this process becomes frequent, the more stable systems against ex-

changes are those formed by equal-mass components. Thus, clusters

with high collisional rates should show an increase of the number

of equal-mass binaries.

In Fig. 12 the distribution mass ratios of the model s5p3f5e50 is

compared with those of two models with extremely different densi-

ties (models s5p2e5f50 and s5p5e5f50) and evaporation efficiency

(model s5p3e0f50). As expected, in all the distributions there are

few systems with q < 0.2, as a result of stellar evolution. Moreover,

the model s5p5e5f50 shows a lack of stars with low mass ratios with

respect to the three other models. This is an effect of the high effi-

ciency of ionization which depletes the distribution of mass ratios

up to larger values of q. In none of the performed simulations an

increase of the fraction of equal-mass binaries is noticeable. This

means that the efficiency of the exchange process is rather low over

the entire range of parameters spanned by the simulations. Indeed,

even in the densest systems, where collisions are more frequent, the

fraction of exchanges Nexch/Nb never exceeds few per cent.

8 C OMPA RI SON W I TH N- B O DY A N D M O N T E
C A R L O SI M U L AT I O N S

The analytical model presented here has been compared with the

most recent existing N-body (Hurley et al. 2007) and Monte Carlo

(Ivanova et al. 2005) simulations. As outlined in Section 1, the
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Figure 11. Period distributions of three different models. Grey histograms show the distribution after 13 Gyr. Open histograms show the distribution at the

beginning of the simulation. Periods are expressed in days.

Figure 12. The mass ratio distributions after 13 Gyr of models s5p2e5f50 (left-hand panel) and s5p5e5f50 (right-hand panel) are shown with grey histograms.

The mass ratio distribution of model s5p3e5f50 (open histograms) is shown in both panels for comparison.

two above approaches are completely different and lead to appar-

ently discrepant results. In fact, while Monte Carlo simulations by

Ivanova et al. (2005) predict a strong depletion of the core binary

fraction, N-body simulations by Hurley et al. (2007) show the in-

verse trend.

Part of these discrepancies can be due to the very different initial

conditions of the two simulations (Fregeau 2007). Indeed, Ivanova

et al. (2005) simulated a series of high-density cluster with a sig-

nificant velocity dispersion. In the following I refer to their model

B05 which has n = 105 pc−3 and σv,0 = 10 km s−1. In the approach

followed by these authors, the evolution of the binary population is

supposed to proceed in a ‘fixed background’ (i.e. a cluster whose

structural parameters do not change during the simulation). The

fraction of evaporating stars in these simulation is also very small

(∼6 per cent after 13 Gyr; N. Ivanova, private communication). This

condition can be reproduced by assuming a very small efficiency of

evaporation (ν ≃ 0). Instead, Hurley et al. (2007) performed four

different simulations assuming lower densities and velocity disper-

sions for cluster which interact with the Galactic disc on a circular

orbit in the solar neighbourhood. I considered their model K24-50

which have an initial binary fraction ξ = 50 per cent a central star

density n = 100 pc−3 and a velocity dispersion of σv,0 = 3 km s−1.

According to fig. 4 of Hurley et al. (2007), the cluster lose ∼70 per

cent of its object after 13 Gyr (comparable with a model with ν =
8 per cent Gyr−1). Considering the results obtained in Section 4 (see

e.g. Fig. 6) the model of Hurley et al. is expected to retain much

more binaries with respect to that of Ivanova et al. (2005).

Moreover, the two above authors make different assumptions

regarding the distribution of periods. In fact, although both authors

adopt a flat distribution, Ivanova et al. (2005) assume an upper

truncation at log P(d) = 7 while Hurley et al. (2007) impose an

upper limit to the orbital distance of 50 au (corresponding to a

truncation at log P(d) ∼ 5, see their fig. 2). Consequently, the model

of Ivanova et al. contains a larger initial fraction of soft binaries

which are easily destroyed during the cluster evolution.

To test the consistency of the approach followed in this paper

with the ones quoted above, I run two simulations with the same

assumptions and initial conditions of the above authors. I will refer

to these two simulations as the H- and I-like models. Considering

that both simulations start with an initial binary fraction ξ = 50 per

cent, at the end of its evolution the H-like model contains a fraction

of binaries in the core of ξ = 76.9 per cent while the I-like contains

only a fraction of binaries ξ = 25.1 per cent. Although the absolute

values of the above simulations differ from those reported by those

authors, the qualitative behaviour of both simulations is well repro-

duced. This means that all the three approaches are qualitatively

self-consistent, and that the observed discrepancy (�ξ ∼ 52 per

cent) is due to both the intrinsic different starting parameters and

the different assumptions.

To quantify the effect of the different assumptions on the result-

ing binary fraction, I performed a series of simulations adopting

the starting conditions of the H-like and I-like models but differ-

ent values of the maximum period and evaporation efficiency. The

complete set of simulations are summarized in Table 3. As can be
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Table 3. Results of the H- and I-like simulations.

Initial conditions Final conditions

Model ID ξ log ρ0 σv,0 ν log Pmax ξ ξ c

(per cent) (M⊙ pc−3) (km s−1) (per cent) (Gyr−1) (d) (per cent) (per cent)

H-like 50 2.35 3 8 5 73.7 76.9

Hp7e8 50 2.35 3 8 7 56.3 61.7

Hp5e0 50 2.35 3 0 5 48.8 60.3

Hp7e0 50 2.35 3 0 7 33.8 45.8

I-like 50 5.4 10 0 7 15.7 25.1

Ip5e0 50 5.4 10 0 5 21.6 33.2

seen, adopting the same assumptions, the difference between the

fractions of survived binaries predicted by the two models reduces

by a factor of 2 (�ξ = 21–27 per cent). Therefore, at least an half of

the difference between the fractions of survived binaries predicted

by the above models is due to the different assumptions. The re-

maining difference can be addressed to the different initial cluster

conditions.

9 C OMPARISON W ITH OBSERVATIONS

The code described here has been used to interpret the observational

evidence that young globular clusters contain a higher fraction of

binaries with respect to older ones (Sollima et al. 2007). As outlined

in Section 4, the fraction of binaries should not show significant

variations in the last Gyr of evolution. Therefore, this trend could

be due to (i) differences in the primordial binary fractions or (ii) to a

different evolution of the binary populations linked to the different

structural and environmental parameters of these two groups of

clusters. Indeed, the group of young globular clusters of the sample

of Sollima et al. (2007) is characterized by an age of t9 ∼ 7 Gyr,

a mean central density 〈log ρ0〉 = 0.65 (where ρ0 is expressed in

M⊙ pc−3) and a velocity dispersion 〈σv,0〉 = 1.3 km s−1 which are

significantly different from those of the old group of that sample

(〈t9〉 = 11, Gyr, 〈log ρ0〉 = 2.15 and 〈σv,0〉 = 3.3 km s−1). According

to the results found in Section 4, the group of young clusters should

maintain a larger fraction of binaries during their evolution.

To test if these differences can be responsible for the difference

in the observed binary fractions, I tried to reproduce the mean

observed conditions of the two above groups of globular clusters

assuming the same initial binary fraction. It is worth noting that the

fraction of binaries derived by Sollima et al. (2007) is calculated in

a restricted range of masses and mass ratios. To compare the results

of the simulations with the observations, I compared the minimum

binary fraction ξmin defined in Sollima et al. (2007) with the ratio

between the number of binaries with a primary star in the mass range

0.5 < m1/M⊙ < 0.8 and a mass ratio q > 0.5, and the number of

objects in the same mass range. Of course, the relation between this

quantity and the global binary fraction depends on the distribution

of mass ratios. Given the arbitrary choice of this distribution (see

Section 2.1) the absolute value of the initial fraction of binaries

derived here is not reliable and can be only used for differential

comparisons. According to Sollima et al. (2007), the groups of old

and young globular clusters have minimum binary fractions ξmin =
6 and 20 per cent, respectively.

The model that better reproduces the fraction of binaries in the

old group of globular clusters after 11 Gyr is characterized by an

initial binary fraction of ξ = 8 per cent. I found no combinations

of the initial parameters able to reproduce the observed fraction of

binaries in the young group of globular clusters without assuming

a larger initial binary fraction. This indicates that, although the

dynamical status of the young group of globular clusters favours

the survival of a larger fraction of binaries, the most of the observed

difference have to be due to primordial differences in the cluster

binary content.

1 0 C O N C L U S I O N S

I presented a code designed to simulate the evolution of the prop-

erties of a binary population in a dynamically evolving star cluster.

A number of simulations spanning a wide range of structural and

environmental parameters have been run.

In general, the fraction of binaries appears to decrease with time

by a factor of 1–5, depending on the initial cluster parameters. In

particular, the fraction of binaries quickly decreases in the first Gyr

of evolution, as a result of the high efficiency of the ionization

process in this initial stage.

The analysis of the contributions of each mechanism of forma-

tion and destruction of binaries indicates that the main processes

that drive the evolution of the binary fraction in globular clusters

are the processes of binary ionization and evaporation. This result

seems to be confirmed by the observational fact that open clus-

ters and low-density globular clusters contain more binary systems

than dense high-velocity dispersion globular clusters (Sollima et al.

2007). As a consequence, the fraction of survived binaries increases

when the cluster structural parameters support a lower efficiency of

the process of ionization and in clusters subject to strong evapo-

ration. Moreover, also the final distributions of periods and mass

ratios change as a function of the cluster structural parameters.

In particular, clusters with a higher efficiency of binary ionization

tend to have binaries with shorter periods and higher mass ratios. At

present, the range in central density and velocity dispersion spanned

by the sample of globular clusters with homogeneous estimates of

binary fraction is very small and does not allow a proper com-

parison (see Sollima et al. 2007). However, preliminary results by

Milone et al. (2008) based on the analysis of a larger sample of

globular clusters seems to confirm this trend. These authors found

a significant anticorrelation between the fraction of binaries and the

cluster luminosity (i.e. mass). Indeed, more massive clusters have,

on average, larger densities and velocity dispersions (Djorgovski &

Meylan 1993). Therefore, the observed anticorrelation could be due

by the fact that the cluster mass and the efficiency of binary ioniza-

tion have the same dependence on the cluster structural parameters

(ρ0 and σv,0).

The dependence of the obtained results on the assumptions has

been tested. The evolution of the binary fraction appears to be non-

sensitive to the assumed cluster metallicity and to the shape of the
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low-mass end of the IMF. A significant dependence on the initial

shape of the distribution of periods has been found. In particular,

a difference of ∼10 per cent has been found by switching from a

lognormal to a flat distribution. Therefore, the decreasing trend of

the binary fraction with time could be even inverted assuming a dif-

ferent distribution of periods at least in those clusters where the ef-

ficiency of the ionization process is small. Unfortunately, the shape

of this distribution is still largely uncertain (Halbwachs et al. 2003).

Studies performed on large samples of binaries in the Galactic field

are not able to distinguish between the various proposed distribu-

tions, suffering strong observational biases (Abt 1983; Eggleton,

Tout & Fitchett 1989; Duquennoy & Mayor 1991; Halbwachs et al.

2003). Moreover, detections of long-period binary systems (with P

> 106 d) are limited by the intrinsic impossibility to detect photo-

metric and/or kinematical variability over such large time-scales.

Given the importance of this parameter, an indication of the true

shape of the period distribution would be valuable.

The predicted radial distribution of binary systems shows a de-

creasing trend with central peak and a rapid drop toward the external

regions of the cluster. The reason at the basis of this behaviour is

linked to the process of mass segregation which produces a con-

centration of the massive binary systems in the central region of

the cluster. The higher concentration of binary systems has been al-

ready observed by several authors in different clusters (Yan & Reid

1996; Rubenstein & Bailyn 1997; Albrow et al. 2001; Bellazzini

et al. 2002; Zhao & Bailyn 2005; Sollima et al. 2007).

The results of the code presented here have been compared with

the most recent N-body and Monte Carlo simulations available in the

literature. Despite the many adopted simplifications, the predictions

of the code appear to be qualitatively consistent with the results

of the above approaches. I estimated that at least an half of the

difference between the fractions of survived binaries predicted by

the N-body simulations by Hurley et al. (2007) and the Monte

Carlo simulations by Ivanova et al. (2005) is due to the different

assumptions made by these authors regarding the upper end of the

periods distribution and the treatment of evaporation. The remaining

difference can be addressed to the different initial cluster conditions

assumed by these authors (as already suggested by Fregeau 2007).

The code presented here has been used to interpret the differences

in the binary fractions measured in the sample of globular clusters

presented by Sollima et al. (2007). There is no combination of

initial parameters able to reproduce the observed fraction of binaries

observed in group of clusters with different ages unless assuming a

different initial binary content. The group of young globular clusters

in the sample of Sollima et al. (2007) is formed by three clusters

(viz. Terzan 7, Palomar 12 and Arp 2). These clusters are also

the most distant from the Sun and they are thought to belong to

the Sagittarius Stream (Bellazzini, Ferraro & Ibata 2003). Thus,

they might be stellar systems with intrinsically different origins and

properties, whose initial conditions could significant differ from

those of ‘genuine’ Galactic globular clusters (see also Sollima et al.

2008). Future studies addressed to the estimate of the binary fraction

in other clusters suspected to have an extragalactic origin will help to

understand how the environmental conditions influence the original

content of binaries of globular clusters.
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APPEN D IX A : PARTIALLY R ELAXED
MULTIM A SS K ING MODELS

The density and velocity distribution profiles of globular clusters

are well represented by King models (King 1966). These models

assume that cluster stars located at a distance r from the cluster

centre follow a distribution of velocities

f (ǫ, J ) = Ae−βJ 2

(e−ǫr /K − 1) (A1)

(Michie 1963; King 1966; Gunn & Griffin 1979).

Here K is a quantity proportional to σ 2
v that accounts for the cluster

relaxation, ǫr is the energy for unity of mass (ǫr = 	r + v2/2), J

is the angular momentum and A is a normalization factor. The term

exp(−βJ2) accounts for anisotropies in the distribution function

(here I set this quantity equal to unity). The shape of distribution of

stars in these models is completely defined by the King parameter

W0 = −	0/σ
2
v . The density profile can be derived from the above

distribution considering the Poisson equation and the relation

ρr (m) =
∫ ve,r

0

f (v, r)d3v.

After a time-scale comparable to the local relaxation time, colli-

sions become frequent and produce the equipartition of the kinetic

energy (K ∝ m−1). Under this condition, the distribution of veloc-

ities becomes a function of the mass. Otherwise, the distribution

of velocities does not depend on mass (K = constant) and the

above formulation reduces to the case of a single-mass King model.

However, relaxation occurs after different time-scales at different

distances from the cluster centre (see equation 1). Therefore, only

a fraction of stars follow relaxed orbits.

For this reason, the code calculates at each time-step of the sim-

ulation the fraction of stars located in the region where relaxation

already occurred. Defining

γ =
Nm(r < rrel)

Nm

the distribution of velocities has been then assumed to follow the

form of equation (A1) where

K =
γ 〈m〉 + (1 − γ )m

m
σ 2

v .

The density and velocity dispersion profiles have been therefore

calculated accordingly.
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