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ABSTRACT

We present galaxy stellar mass functions (GSMFs) at z = 4–8 from a rest-frame ultraviolet (UV) selected sample of
∼4500 galaxies, found via photometric redshifts over an area of ∼280 arcmin2 in the Cosmic Assembly Near-
infrared Deep Extragalactic Legacy Survey (CANDELS)/Great Observatories Origins Deep Survey (GOODS)

fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data to date and the relatively large volume
allow us to place a better constraint at both the low- and high-mass ends of the GSMFs compared to previous
space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear
correlation between the rest-frame UV absolute magnitude at 1500 Å (MUV) and logarithmic stellar mass (

*
Mlog )

that holds for galaxies with ( )*
M Mlog 10. We use simulations to validate our method of measuring the slope

of the
*

Mlog –MUV relation, finding that the bias is minimized with a hybrid technique combining photometry of
individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not
significantly evolve over z = 4–8, while the normalization of the trend exhibits a weak evolution toward lower
masses at higher redshift. We combine the

*
Mlog –MUV distribution with observed rest-frame UV luminosity

functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with
increasing redshift from a = - -

+1.55 0.07
0.08 at z = 4 to a = - -

+2.25 0.35
0.72 at z = 8. The inferred stellar mass density,

when integrated over
*
=M 108–1013 Me, increases by a factor of -

+10 2
30 between z = 7 and z = 4 and is in good

agreement with the time integral of the cosmic star formation rate density.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: luminosity function,
mass function

1. INTRODUCTION

The near-infrared (near-IR) capability of the Wide Field
Camera 3 (WFC3) on board the Hubble Space Telescope (HST)

has nowyielded a statistically significant sample of galaxies in the
early universe, enabling us to pass the era of simply discovering
very distant galaxies and enter an era where we can perform
systematic studies to probe the underlying physical processes.
Such studies have begun to make progress toward understanding
galaxy evolution at high redshift, with particular advances in
measurements of the rest-frame ultraviolet (UV) luminosity
function (e.g., Bouwens et al. 2011, 2015; Oesch et al. 2012;
Lorenzoni et al. 2013; Schenker et al. 2013b; Finkelstein et al.
2015), the rest-frame UV spectral slope (e.g., Finkelstein
et al. 2012; Bouwens et al. 2014), and the cosmic star formation
rate density (SFRD; see Madau & Dickinson 2014 for a review).

A key constraint on galaxy evolution that has only recently
begun to be robustly explored is that of the growth of stellar
mass in the universe. This measurement requires a combination

of deep rest-frame UV data with constraints at rest-frame
optical wavelengths, to better probe the emission from older,
lower-mass stars. The mass assembly history across cosmic
time is governed by complicated processes, including star
formation, merging of galaxies, supernova feedback, etc. In
spite of the complexity of the baryonic physics of galaxy
formation, however, various studies have found that global
galaxy properties, such as star formation rate (SFR), metalli-
city, size, etc., all correlate tightly with the stellar mass
(Kauffmann et al. 2003b; Tremonti et al. 2004; Noeske et al.
2007; Williams et al. 2010), implying that the stellar mass plays
a major role in galaxy evolution. Thus, determining the
comoving number density of galaxies in a wide range of stellar
masses (i.e., the galaxy stellar mass function [GSMF]) and
following the evolution with redshift constitutes a basic and
crucial constraint on galaxy formation models. Specifically,
obtaining robust observational constraints on the low-mass-end
slope of the GSMF can provide insights on the impact of
feedback on stellar mass buildup of low-mass galaxies
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(Lu et al. 2014), as current theoretical models predict
steeper low-mass-end slopes than those previously observed
(e.g., Vogelsberger et al. 2013; see Somerville & Davé 2015
for a review). Consequently, the evolution of GSMFs over the
past 11 billion years has been extensively investigated
observationally during the past decade (e.g., Marchesini
et al. 2009; Baldry et al. 2012; Ilbert et al. 2013;
Muzzin et al. 2013; Tomczak et al. 2014), mostly using
traditional techniques (e.g., V1 max, maximal likelihood) that
assess and correct for the incompleteness in mass.

Nonetheless, the GSMF in the first 2 billion years after the
Big Bang has remained poorly constrained, due to (i) limited
sample sizes, particularly of low-mass galaxies at high redshift;
(ii) systematic uncertainties in stellar mass estimations; and (iii)
the lack of Spitzer Space Telescope Infrared Array Camera
(IRAC; Fazio et al. 2004) data with comparable depth to HST/
WFC3. IRAC data are essential to probe stellar masses of
galaxies at z 4 as the 4000 Å/Balmer break moves into the
mid-infrared (mid-IR), beyond the reach of HST (and ground-
based telescopes).

An alternative approach to deriving the GSMF takes
advantage of the fact that the selection effects and incomplete-
ness are relatively well known and corrected for in rest-frame
UV luminosity functions. Therefore, one can derive GSMFs by
taking a UV luminosity function and convolving it with a
stellar mass versus UV luminosity distribution at each redshift.
Using this approach, González et al. (2011) derived GSMFs at
< <z4 7 of Lyman break galaxies (LBGs) over ∼33 arcmin2

of the Early Release Science (ERS) field (for z = 4–6, and the
Hubble Ultra Deep Field [HUDF] and the Great Observatories
Origins Deep Survey [GOODS] fields with pre-WFC3 data for
z = 7) utilizing the HST/WFC3 and IRAC GOODS-South
data. They reported a shallow low-mass-end slope of
−(1.4–1.6) at z = 4–7, but the small sample size and limited
dynamic range made it difficult for them to explore the mass-
to-light distribution at >z 4, and their GSMFs were derived
under an assumption that the mass-to-light distribution at ~z 4
is valid up to ~z 7.

More recently, several studies have utilized the large HST

data set from the Cosmic Assembly Near-infrared Deep
Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011;
Koekemoer et al. 2011) to make progress on the measurements
of the GSMFs at >z 4. Duncan et al. (2014) and Grazian et al.
(2015) derived the GSMFs of galaxies at < <z4 7 in the
GOODS-S field and GOODS-S/UDS fields, respectively,
using the CANDELS HST data and the Spitzer Extended Deep
Survey (SEDS; Ashby et al. 2013) IRAC data. These studies
have reported a steeper low-mass-end slope of a ~ -(1.6–2.0)
than previous studies, but the uncertainties are still large, and
the inferred evolution of the low-mass-end slope of the GSMFs
remains uncertain.

Here we probe galaxy buildup from z= 4 out to z= 8, aiming
to improve on the limiting factors discussed above, with a goal of
providing robust constraints on the GSMFs of galaxies at
< <z4 8. We do this by combining near-IR data from

CANDELS GOODS-S and GOODS-N fields with the deepest
existing IRAC data over the GOODS fields from the Spitzer-
CANDELS (S-CANDELS; PI: Fazio; Ashby et al. 2015) and the
IRAC Ultra Deep Field 2010 Survey (Labbé et al. 2013). We
obtain reliable photometry on these deep IRAC data by
performing point-spread function (PSF) matched deblending
photometry, enabling us to extend the exploration of the GSMFs

to lower stellar masses and higher redshifts than previous studies.
Furthermore, a special emphasis is put on quantifying and
minimizing the systematics inherent in our analysis via mock
galaxy simulations. While taking a similar approach of
convolving a rest-frame UV luminosity function with stellar
mass to rest-frame UV luminosity distribution as González et al.
(2011), the increased sample size and deeper data enable us to
bypass the limitations of the previous studies, as we measure the
mass-to-light ratio distribution at every redshift.
This paper is organized as follows. Section 2 introduces the

HST data sets used in this study, as well as our sample at
< <z3.5 8.5 selected by photometric redshifts, and discusses

our IRAC photometry, which is critical for the stellar mass
estimation described in Section 3. Section 4 presents stellar
mass versus observed rest-frame absolute UV magnitude
(M*–MUV) distributions and introduces a stacking analysis
and mock galaxy simulations. By combining the rest-frame UV
luminosity function with the M*–MUV distribution, we derive
GSMFs and stellar mass densities in Sections 5 and 6,
respectively. A discussion and summary of our results follow
in Section 7 and Section 8. Throughout the paper, we use the
AB magnitude system (Oke & Gunn 1983) and a Salpeter
(1955) initial mass function (IMF) between 0.1 and 100 Me.
All quoted uncertainties represent 68% confidence intervals
unless otherwise specified. We adopt a concordance ΛCDM
cosmology with = =H h70 1000 km s−1Mpc−1, WM = 0.3,
and WL = 0.7. The HST bands F435W, F606W, F775W,
F814W, F850LP, F098M, F105W, F125W, F140W, and
F160W will be referred to as B, V, i, I814, z, Y098, Y, J,
JH140, and H, respectively.

2. DATA

Constraining GSMFs requires a deep multiwavelength data
set over a wide area in order to probe the full dynamic range of
a galaxy population. In this section, we describe the HST
imaging used to select our galaxy candidates, as well as the
candidate selection process. We then discuss the procedures
used to measure accurate photometry for these galaxies from
the Spitzer/IRAC S-CANDELS imaging.

2.1. HST Data and Sample Selection

The galaxy sample employed in this study is from
Finkelstein et al. (2015), to which we refer the reader for full
details of the HST data used and the galaxy sample selection.
This sample consists of ∼7000 galaxies selected via photo-
metric redshifts over a redshift range of z = 3.5–8.5. These
galaxies were selected using HST imaging data from the
CANDELS (Grogin et al. 2011; Koekemoer et al. 2011) over
the GOODS (Giavalisco et al. 2004) North (GOODS-N) and
South (GOODS-S) fields, the ERS (Windhorst et al. 2011)
field, and the HUDF (Beckwith et al. 2006; Bouwens
et al. 2010; Ellis et al. 2013) and its two parallel fields (Oesch
et al. 2007; Bouwens et al. 2011).14 We use the full data set,
which incorporates all earlier imaging from HST Advanced
Camera for Surveys (ACS), including the B, V, i, I814, and z
filters. We also use imaging from the HSTWFC3 in the Y098, Y,
J, JH140, and H filters. A complete description of these data is
presented by Koekemoer et al. (2011, 2013). These combined

14 Finkelstein et al. (2015) also include about 500 more galaxies from the
Abell 2744 and MACS J0416.1-2403 parallel fields from the Hubble Frontier
Fields data set, while we do not, reducing our full sample to ∼7000 galaxies.
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data are three-layered in depth, comprising the extremely deep
HUDF, moderately deep CANDELS-Deep fields, and rela-
tively shallow CANDELS-Wide and ERS fields, designed to
efficiently sample both bright and faint galaxies at high
redshifts.

As described by Finkelstein et al. (2015), sources were
detected in a summed J + H image, using a more aggresive
detection scheme compared to that used to build the official
CANDELS catalog (e.g., Guo et al. 2013, G. Barro et al. 2016,
in preparation) to detect faint sources at high redshifts, yielding
a catalog with the total number of sources a factor of two
larger.15 To minimize the presence of spurious sources, only
those objects with �3.5σ significance in both the J and H
bands were evaluated as possible high-redshift galaxies.
Photometric redshifts were estimated with EAZY (Brammer
et al. 2008), and selection criteria devised based on the full
redshift probability density function (pdf) were applied
(Finkelstein et al. 2015). These criteria were designed to assess
the robustnes of the sample, requiring the primary redshift
solution to have more than 70% of the integrated redshift pdf,
and the narrowness of pdf, by limiting the sample to those for
which the integral of the redshift pdf for the corresponding
redshift bin is at least 25% of the total integral of the pdf. A
comparison of our photometric redshifts for 171 galaxies with
spectroscopic redshifts in our >z 3.5 sample shows an
excellent agreement, with ( ( ))s D + =z z1 spec 0.03 (after
3σ clipping). All of the selected sources were visually
inspected for removal of artifacts and stellar contaminants.
Active galactic nuclei identified in X-rays were also excluded
from the sample. Our final parent sample consists of 4156,
2056, 669, 284, and 77 galaxies at z = 4 (  <z3.5 4.5), 5
(  <z4.5 5.5), 6 (  <z5.5 6.5), 7 (  <z6.5 7.5), and 8
(  <z7.5 8.5), respectively.

2.2. IRAC Data and Photometry

At < <z3.5 8.5, the observed mid-IR probes rest-frame
optical wavelengths redward of the Balmer/4000 Å break.
Deep Spitzer/IRAC data are therefore critical to constrain
stellar masses and the resulting GSMF. One of the key

advances of our study is the significantly increased depth in the
3.6 and 4.5 μm IRAC bands provided by the new S-CANDELS
survey (Ashby et al. 2015). The final S-CANDELS mosaics in
the GOODS-S and GOODS-N fields (where the former
includes the HUDF parallel fields) include data from three
previous studies: GOODS, with integration time of 23–46 hr
per pointing (M. Dickinson et al., in preparation); a ¢ ´ ¢5 5
region in the ERS observed to 100 hr depth (PI: Fazio); and the
IRAC Ultra Deep Field 2010 program, which observed the
HUDF and its two parallel fields to 120, 50, and 100 hr,
respectively (Labbé et al. 2013). The total integration time
within the S-CANDELS fields more than doubles the
integration time for most of the area used in this study (to
50 hr total), reaching a total formal depth of 26.5 mag (3σ) at
3.6 and 4.5 μm (Ashby et al. 2015). Imaging at 5.8 and 8.0 μm
was obtained with IRAC as part of the GOODS program.
However, these data are too shallow to provide meaningful
constraints for high-redshift faint galaxies, so we do not include
them in our analysis.
The FWHM of the PSF of the IRAC data (∼1 7 at 3.6 μm

versus ∼0 19 at 1.6 μm with WFC3) results in non-negligable
source confusion, making accurate flux determinations challen-
ging, as shown in Figure 1. The second panel of Figure 1 shows
that our high-redshift galaxies are extremely faint and are often
blended with nearby bright sources in the mid-IR, making
simple aperture photometry unreliable. For reliable IRAC
photometry on the deep S-CANDELS data, we therefore
perform PSF-matched photometry using the T-PHOT software
(Merlin et al. 2015), an updated version of TFIT (Laidler
et al. 2007), on the S-CANDELS 3.6 and 4.5 μm mosaics. This
PSF-matched photometry uses information in a high-resolution
image (here the H band), such as position and morphology, as
priors. Specifically, we use isophotes and light profiles from the
detection (J + H) image obtained by the Source Extractor
package (SExtractor; Bertin & Arnouts 1996). The high-
resolution image was convolved with a transfer kernel to
generate model images for the low-resolution data (here the
IRAC imaging), allowing the flux in each source to vary. This
model image was in turn fitted to the real low-resolution image.
The IRAC fluxes of sources are determined by the model that
best represents the real data.
As the PSF FWHM of the high-resolution image (H band) is

negligible (∼0 19) when compared to those of the low-

Figure 1. Example of our IRAC photometry modeling procedure. From left to right: (1) H-band WFC3 imaging of a 1′ × 1′ region in the GOODS-S field, (2)
S-CANDELS 3.6 μm imaging, (3) the best-fit 3.6 μm model image, and (4) the T-PHOT residual image (i.e., real science image subtracted by the best-fit model image).
Our high-redshift galaxies (gray squares) are often blended with nearby foreground sources; therefore, we perform PSF-matched photometry on the S-CANDELS data
using the WFC3 H-band imaging as a prior on the position and morphology of sources. Using the T-PHOT software package, we convolve the H-band image with
empirically derived IRAC PSFs to generate low-resolution (IRAC) model images, allowing the flux of each source to vary to simultaneously fit all sources in the
IRAC data.

15 Specifically, Finkelstein et al. (2015) used DETECT_MINAREA = 7 and
DETECT_THRESH = 0.6, while the “hot” mode of the official CANDELS
catalog was built with DETECT_MINAREA = 10 and
DETECT_THRESH = 0.7.
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resolution IRAC images (∼1 7), we used IRAC PSFs as
transfer kernels. We derive empirical PSFs in each band and in
each field by stacking isolated and moderately bright ([3.6],
[4.5] = 15.5–19.0 mag) stars identified in a half-light radius
versus magnitude diagram in IRAC imaging. As T-PHOT
requires the kernel to be in the pixel scale of the high-
resolution image, each star image was 10 times oversampled to
generate the final PSFs in the same pixel scale of the H-band
image (0 06 pixel−1). They were then registered, normalized,
and median-combined to generate the final IRAC PSFs.

Preparatory work for running T-PHOT includes performing
background subtraction on the S-CANDELS mosaics using the
script subtract_bkgd.py (written by H. Ferguson; see
Galametz et al. 2013 for details) and dilation of the J+H
SExtractor segmentation map, analogous to the traditional
aperture correction. The need for this dilation step originates
from the fact that under nonzero background fluctuations,
isophotes of faint sources include a smaller fraction of their
total flux compared to bright sources, and therefore their IRAC
fluxes based on isophotes tend to be underestimated. To
include the light in the wings and to counterbalance the
underestimation of flux for faint sources of which the amount
depends on the isophotal area, an empirical correction factor to
enlarge the SExtractor segmentation map was devised by the
CANDELS team by comparing isophotal area from deep and
shallow images (see Galametz et al. 2013 and Guo et al. 2013
for details). We applied this empirical correction factor to the J
+H segmentaion map using the program dilate (De Santis
et al. 2007) while preventing merging between sources.

To correct for potential small spatial distortions or mis-
registrations between the high-resolution and low-resolution
images, a second run of T-PHOT was performed using a shifted
kernel built by cross-correlating the model and real low-
resolution images. Figure 1 presents an example of our IRAC
photometry procedure on a subregion in GOODS-S. With the
exception of very bright sources, the residual image is
remarkably clean, highlighting the accuracy of this procedure.

2.2.1. Verification

We tested the accuracy of our IRAC photometry in two
ways. First, we compared our catalog with the official
CANDELS catalogs (Guo et al. 2013; G. Barro et al. 2016,
in preparation), in which IRAC fluxes were obtained from the
shallower SEDS data using TFIT. Figure 2 shows the
comparison between our magnitude and that from the official
catalog for sources with signal-to-noise ratio (S/N) greater than
1, 3, and 5 in both catalogs. As we compare two catalogs
generated from images with different depths with a certain S/N
cut, faint sources are dominated by background fluctuations
and the Eddington bias of upscattered sources in the shallower
SEDS data, making the comparison unreliable (see Figure 13 of
Guo et al. for a similar trend and discussion of the flux
comparison). Taking a similar approach to that of Guo et al.
(2013), we estimated this magnitude range in which the flux
comparison is unreliable due to the Eddington bias for the
S/N > 1 cut. We first found the best-fit power law to the
differential number count density of the sources in the official
CANDELS catalog without any S/N cut. Then, we compared
the differential number count density of sources with S/N > 1
with the best-fit power law to find the magnitude that the
former starts falling below 80% of what is expected by the best-
fit power law ([3.6] = 25.1 and [4.5] = 25.5; gray shaded

region in Figure 2). In magnitude bins brighter than this range,
the comparison indicates an excellent agreement with a
negligible systematic offset.
Second, we performed a mock source simulation in order to

validate our photometry. Briefly, mock sources with varying
physical properties (e.g., size, light profile, luminosity, redshift)
were generated using the GALFIT software (Peng et al. 2002),
of which flux densities in each band are assigned using the
updated Bruzual and Charlot (CB07; Bruzual & Charlot 2003)
stellar population synthesis (SPS) models. While the exact
shape of the assumed distribution of physical parameters such
as size or light profile can impact the detection rate of sources
close to the sensitivity limit and thus the results of simulations
designed to correct for completeness, T-PHOT photometry is by
design limited to the sources recovered in the high-resolution
detection image. Therefore, our simulation results should not
be sensitive to those assumptions in the first order. These mock
sources were convolved with the PSF of each filter and added
at random locations in the (H-band PSF-convolved) high-
resolution and IRAC low-resolution images. Our simulation
thus accounts fully for source confusion with nearby fore-
ground real sources, but we constrain the number density of
mock sources to be negligible (5 arcmin−2) compared to that of
real sources to ensure that our simulation results are not
dominated by self-crowding among the inserted artificial
sources. The mock sources were then recovered using the

Figure 2. Comparison between our T-PHOT S-CANDELS photometry and the
official CANDELS TFIT SEDS photometry from Guo et al. (2013) and
G. Barro et al. (2016, in preparation) for IRAC 3.6 μm (upper) and 4.5 μm
(lower) bands for sources with S/N > 1 (black), S/N > 3 (green), and
S/N > 5 (red) in both catalogs. Blue circles and error bars indicate the median
and robust standard deviation of the magnitude difference in each magnitude
bin for sources with S/N > 1, and the blue dashed lines encompass the central
68% of the distribution. The red vertical dotted line denotes the 5σ
S-CANDELS depth. The bias seen at faint magnitudes is due to Eddington
bias of upscattered sources in the shallower SEDS data, which is shown as the
gray shaded area (for the S/N > 1 cut; see Section 2.2.1 for more details). The
SEDS data are shallower; thus, the agreement between the two catalogs in
magnitude bins brighter than this range indicates that our photometry is
accurate.
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same procedures as for real sources, including T-PHOT
photometry. Figure 3 shows a comparison between the input
and recovered 3.6 and 4.5 μm magnitudes. It is encouraging
that we find no systematic offset between the two down to the
50% completeness limit of 25 mag (Ashby et al. 2015), given
that the IRAC photometry is affected with many sources of
uncertainty that demand accurate background subtraction,
aperture correction scheme (dilation), and buildup of transfer
kernels. As any observed offsets from these simulations are not
statistically significant, we do not apply any correction to our
observed IRAC photometry.

2.2.2. Visual Inspection

A practical limitation exists when building empirical IRAC
PSFs for deep fields, as such surveys by design target a
relatively small area well off the Galactic plane, resulting in
few stars present in the imaging. The severe source confusion
in the IRAC data further reduces the number of isolated stars
that can be used for the creation of PSFs. Therefore, although
our PSF-matched IRAC photometry significantly improves
photometric accuracy over more traditional methods (Lee
et al. 2012), our IRAC photometry may be imperfect. Its
significance, however, is likely small, as already discussed in
the previous sections.

Another source of uncertainty is that TFIT/T-PHOT assumes
no morphological k-corrections (no variation in the surface
profile or morphology) between short- and long-wavelength
images, which is likely not the case (although we attempted to
mitigate this by using the reddest HST image as our high-

resolution image). However, our high-redshift galaxies are
small enough to not be resolved in the low-resolution image
(see Figure 25 of Ashby et al. 2013), and thus it should have a
negligible effect on the derived fluxes. Bright (and extended)
foreground sources in close proximity to our high-redshift
sample, however, are prone to imperfect modeling in this case
(even with perfect PSFs) and leave residuals that in turn can
significantly affect the photometry of faint sources nearby.
To account for these uncertainties, we visually inspected the

IRAC science and residual images of all ∼7000 sources in our
sample to ensure that their IRAC photometry is reliable.
Sources falling on strong residuals from nearby bright sources
often have recovered S/Ns that are too high (even when we
cannot visually identify counterparts in the IRAC images) or
significantly negative, which indicates that their photometry is
not reliable in general. This is confirmed by a mock source
simulation in which we added mock sources at various
positions around a bright source, finding that the recovered
flux is highly biased (either overestimated or underestimated
depending on the “yin” and “yang” of the residual on which the
mock source was inserted). We therefore caution against
blindly taking IRAC fluxes from a catalog and stress the
importance of visual inspection of IRAC images and residuals
of all objects, as contaminated sources can significantly impact
studies on individual galaxies or with small number statistics
(e.g., the high-mass end of the GSMF).
Contaminated sources are excluded from the sample in our

subsequent analysis. This leaves ∼63%, 63%, 54%, 61%, and
57% of our =z 4, 5, 6, 7, 8 parent sample free from a
possible contamination from nearby bright sources,16 resulting
in 2611, 1292, 364, 172, and 44 sources in our final
=z 4, 5, 6, 7, 8 selection. Among the final sample, 1172/

2611, 480/1292, 108/364, 41/172, and 6/44 (45%, 37%,
30%, 24%, and 14%) sources at =z 4, 5, 6, 7, 8, respectively,
have 2σ detections at 3.6 μm, and 613/2611, 211/1292, 43/
364, 12/172, and 1/44 (23%, 16%, 12%, 7%, and 2%) show
S/N > 5. A final multiwavelength catalog was constructed by
combining the HST catalog and the IRAC T-PHOT catalog for
this final sample.

3. STELLAR POPULATION MODELING

We derived stellar masses and rest-frame UV luminosities
for our sample galaxies by fitting the observed spectral energy
distribution (SED) from the B, V, i, I850, z, Y098, Y, J, JH140, H,
3.6 μm, and 4.5 μm data to the Bruzual & Charlot (2003) SPS
models. We refer the reader to Finkelstein et al. (2012, 2015)
for a detailed explanation of our modeling process. Briefly, we
modeled star formation histories (SFHs) as exponentially
declining (τ = 1Myr–10 Gyr), constant (τ = 100 Gyr), and
rising (τ =−300Myr, −1 Gyr, −10 Gyr). Allowable ages
spanned a lower age limit of 1 Myr to the age of the universe at
the redshift of a galaxy, spaced semi-logarithmically, and
metallicity ranged from 0.02 to 1 Ze. We assumed the Calzetti
et al. (2000) attenuation curve with ( )- =E B V 0.0–0.8
( =AV 0.0–3.2), and intergalactic medium (IGM) attenuation

Figure 3. Comparison between the input and recovered IRAC 3.6 μm (upper)
and 4.5 μm (lower) magnitude in our mock source simulations. Symbols are
color-coded by blendedness in the two filters (shown in the inset in binary
notation)—00: contamination-free; 01: contaminated in 4.5 μm; 10: con-
taminated in 3.6 μm; 11: contaminated in both 3.6 and 4.5 μm. Large black
circles and error bars represent the median and standard deviation of the
magnitude difference of sources in each magnitude bin with the magnitude
difference between the input and the recovered less than 2 mag, demonstrating
the reliability of our IRAC photometry down to the 50% completeness limit of
25 mag (red vertical dotted line; Ashby et al. 2015).

16 These uncontaminated source fractions are consistent with the confusion-
free fraction of the S-CANDELS images found by Ashby et al. (2015). While
the symbols in Figure 3 are color-coded by the blendedness, which is
determined based on the SExtractor segmentation map, in this section we
visually inspected individual sources to exclude sources for which photometry
is affected by residuals of nearby bright sources. That is, those excluded by our
visual inspection are a subset of sources that are color-coded as being
contaminated in Figure 3, and likely catastrophic outliers.
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was applied using the Madau (1995) prescription. All the
models were normalized to a total mass of 1 Me.

One of the major sources of uncertainty in stellar mass
measurements of high-redshift galaxies derived from broad-
band imaging data via SED fitting is the contribution of nebular
emission. Spectroscopically measuring the contribution of
strong emission lines (e.g., Hα, [O III]ll4959, 5007) to the
broadband fluxes for z 4 galaxies is not currently feasible
because they redshift into the mid-IR. Many efforts, however,
have been made taking an alternative approach of investigating
IRAC colors of spectroscopically confirmed galaxies at the
redshift range such that only one of the first two IRAC bands is
expected to be contaminated by a strong emission line (e.g.,
Shim et al. 2011; Stark et al. 2013). Together with an inference
from the direct measurements of nebular lines of galaxies at
lower redshift (e.g., ~z 3; Schenker et al. 2013a), several
studies claim that the contribution of nebular emission to the
broadband fluxes for galaxies at high redshift, and thus to the
inferred stellar mass, can be significant (e.g., Schaerer & de
Barros 2010).

While a more concrete answer on the nebular contribution
will need to wait for the advent of the James Webb Space

Telescope ( JWST), we took into account the contribution of
nebular emission in our SED modeling in a self-consistent way
following the prescription of Salmon et al. (2015). In this
prescription, the strengths of H and He recombination lines
(including Hβ) are set by the number of non-escaping ionizing
photons, and the strengths of metal lines relative to Hβ are
given by Inoue (2011). The nebular line strengths are thus a
function of the population age and metallicity (which sets the
number of ionizing photons), as well as the ionizing photon
escape fraction. We added the nebular lines to the stellar
continuum assuming an escape fraction of zero17 and no extra
dust attenuation for nebular emission (i.e.,

( ) ( )- = -E B V E B Vstellar nebular). Figure 4 presents a com-
parison of the inferred equivalent width (EW) distribution of
[O III]ll4959, 5007 from our SED modeling for

spectroscopically confirmed galaxies at < <z3.5 4.5 with
the observed EW([O III]) histogram of 20 LBGs at similar
redshifts ( < <z3.0 3.8) in Schenker et al. (2013a), showing a
good agreement. As Figure 4 is based on spectroscopically
confirmed galaxies, they are biased toward high-mass
(median± standard deviation of the logarithmic stellar
mass = 9.7± 0.5) and UV-bright (−21.3± 0.8) galaxies.
However, the two samples shown in Figure 4 have similar
stellar mass distributions.
Our final stellar+nebular line stellar population models are

integrated through all of the filter bandpasses in our photometry
catalog. The best-fit model for each source was found as the
one that best represents the observed photometry via c2
minimization. During this procedure, we accounted for
uncertainties in the zero-point and aperture corrections by
adding 5% of the flux in quadrature to the flux error in each
band. For our fiducial stellar mass for each galaxy, we adopted
the median mass obtained from a Bayesian likelihood analysis
following Kauffmann et al. (2003a). We describe the procedure
briefly here, but we refer the reader to Kauffmann et al. (2003a)
and our previous work (Song et al. 2014) for more details of the
analysis (see also Salmon et al. 2015; Tanaka 2015). In short,
we used the c2 array that samples the full model parameter
space of our SPS models to compute the four-dimensional
posterior pdf of free parameters (dust extinction, age, metallicy,
and SFH) using the likelihood of each model,  µ c-e 22

. We
assumed flat priors in parameter grids and =z zphot. The stellar
mass for each grid point is taken to be the normalization factor
between the observed SED and the model. Then, the one-
dimensional posterior pdf for stellar mass was obtained by
marginalizing over all the parameters. The median and the
central 68% confidence interval of stellar mass were computed
from this marginalized pdf.
The rest-frame absolute magnitude at 1500 Å, MUV, was

obtained from the mean continuum flux density of the best-fit
model in a lD rest = 100 Å band centered at rest-frame 1500 Å.
Its uncertainty was derived from 100 Monte Carlo simulations
in which the redshift uncertainty was accounted for by varing
the redshift in our Monte Carlo simulations following the pdf,
pdf, obtained from our photometric redshift analysis (Finkel-
stein et al. 2015). Systematic biases and uncertainties of our
SED fitting method were estimated via mock galaxy simula-
tions and will be discussed in Section 4.3.

4. STELLAR MASS–REST-FRAME
UV LUMINOSITY DISTRIBUTION

With the stellar mass (M*) and the rest-frame absolute UV
magnitude (MUV) of our galaxy sample measured from the
previous section, we now explore the correlation between these
properties in our sample to infer whether it is possible to derive
a scaling relation.

4.1. Overall M*–MUV Distribution

Figure 5 presents the stellar mass versus rest-frame UV
absolute magnitude distribution at each redshift. Overall, we
find a strong trend between stellar mass and rest-frame absolute
UV luminosity at all redshifts probed in this study. The scatter
(standard deviation) in logarithmic stellar mass is about 0.4 dex
(0.52, 0.42, 0.36, 0.40, and 0.30 dex at z = 4, 5, 6, 7, and 8,
respectively, measured as the mean of standard deviation in
logarithmic stellar mass in bins with more than five galaxies),

Figure 4. Comparison of the inferred rest-frame EW([O III]ll4959, 5007)
distrbution derived from our SED fitting analysis for galaxies in our ~z 4
sample with spectroscopic redshifts (black solid histogram) with the spectro-
scopic EW([O III]) distribution of 20 LBGs from Schenker et al. (2013a, blue
dashed histogram; eight galaxies out of their 28 targets were not detected). The
good agreement implies that our implementation of nebular emission lines in
our stellar population models is a fair representation of reality.

17 Many studies at ~z 3, the highest redshift where we can estimate the LyC
escape fraction before the IGM becomes opaque to ionizing photons, have
shown no evidence of high escape fraction, only placing an upper limit of 0.1
(1σ; Siana et al. 2015).
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and no noticeable correlation of the scatter is found with
redshift or UV luminosity. The scatter at the bright end
(measured at - < < -M21.5 20.5UV ), where the effect of
observational uncertainty should be minimal, is 0.43, 0.47,
0.36, 0.52, and 0.40 dex at z = 4, 5, 6, 7, and 8, respectively,
similar to the quoted value above and the scatter at the faint end

(at - < < -M19.0 18.0UV ) of 0.51, 0.39, 0.39, and 0.41 dex
at z = 4, 5, 6, and 7, respectively.
Often raised as a weakness in studies of rest-frame UV-

selected galaxies is that such studies by construction miss dusty
star-forming or quiescent galaxies. As our sample is selected
mainly from rest-frame UV, the observedM*–MUV distribution

Figure 5. From upper left to lower right, stellar mass vs. rest-frame UV absolute magnitude at 1500 Å (MUV) at z = 4–8. For reference, SFR inferred from the UV
luminosity and the Kennicutt (1998) conversion assuming no dust is shown in the upper x-axis. Small gray filled circles indicate objects with IRAC detection ( s2 at
3.6 μm), while gray open circles are those with nondetections in IRAC ( s<2 at 3.6 μm). Gray error bars represent the 68% confidence intervals in stellar mass and
rest-frame absolute UV magnitude. Large red filled circles are the median stellar masses in each rest-frame absolute UV magnitude bin of 0.5 mag, while large open
circles indicate bins containing a single galaxy. Black error bars are standard deviations in stellar mass in each UV luminosity bin. Blue stars indicate median stellar
masses in each rest-frame absolute UV magnitude bin from our median-flux stacking analysis in Section 4.2, with error bars denoting the 1σ uncertainty, including
both photometric error and sample variance. We derived the best-fit relation (red solid line) by fitting data points that combine red filled circles with blue filled stars in
a redshift-dependent UV magnitude range specified in Section 4.3 (indicated as the light-red and light-blue filled regions). The 1σ uncertainty of the best-fit M*–MUV

relation is denoted as the light-red shaded region. The gray arrows and horizontal error bars at the bottom show the characteristic UV magnitude, L*, of the UV
luminosity function (Finkelstein et al. 2015) at each redshift. Gray dotted lines indicate minimum mass-to-light ratio allowed in our SPS models. We find that the best-
fit relation has a nonevolving slope at z = 4–6, which is marginally steeper than a constant mass-to-light ratio (gray dashed line; normalized to the mass-to-light ratio
of the Milky Way), and shows a weak evolution in the normalization. The inferred stellar mass from the best-fitM*–MUV relation for galaxies with = -M 21UV ( *~L )

is ( )*
=M Mlog 9.70, 9.59, 9.53, 9.36, and 9.00 at z = 4, 5, 6, 7, and 8, respectively. The typical mass-to-light ratio of galaxies at z = 4–8 at the rest-frame UV

absolute magnitude of the Milky Way ( = -M 20.5UV ) is lower by a factor of ∼30 (130) at z = 4 (8) than that of the Milky Way.
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shown in Figure 5 is also susceptible to this weakness.
Interestingly, however, we do observe populations of UV-faint
galaxies with high mass (given their UV luminosity) on the
upper right part of the M*–MUV plane at z = 4 and 5. Although
the lower limit of SFRs inferred from the UV luminosity and
the Kennicutt (1998) conversion assuming no dust (upper
x-axis in Figure 5) indicates that they are not completely
quenched systems, their inferred (dust-uncorrected) SFRs are
down to 2 orders of magnitude lower than those on the M*–

MUV relation (to be derived in the following section). Outliers
off the best-fit relation by more than 1 dex make up 6% (155/
2624) of the total sample at z = 4. The fraction decreases as
redshift increases to 3% (12/365) at z = 6. This increasing
fraction of massive and UV-faint galaxy populations from
z = 6 to z = 4 implies either that we may be witnessing the
formation of dusty star-forming or quiescent populations that
are very rare at high redshift ( ~z 6–7) or that the duty cycle of
those populations at high redshift is lower than that at low
redshift (with a star-forming timescale much longer than
100 Myr) so that fewer such galaxies are observed with the
current flux limit at higher redshift. Given the young age of the
universe at high redshift, the latter requires a very early and fast
growth of stellar mass for those galaxies that are completely
quenched or highly dust extincted by ~z 7. As we do not see
such extremely UV-luminous populations at higher redshifts in
the UV luminosity functions (e.g., Bouwens et al. 2015;
Finkelstein et al. 2015), we regard the former as a more
plausible scenario.

Interestingly, we do not find such populations in the opposite
(low-mass) side at a given UV luminosity. The lack of bright
and low-mass galaxies in the lower left region of Figure 5 is
most clearly shown at z = 4. This is unlikely to be a selection
effect or observational uncertainty, as had there been galaxies
with ( )*

M Mlog 9, they should have been detected in both
WFC3/IR and IRAC; although we impose an S/N cut in both J
and H bands in our sample selection and may thus be biased
against the bluest galaxies, this only applies for UV bins fainter
than those discussed here. It should not be an artifact of our
SPS modeling, as the minimum mass-to-light ratio allowed in
our SPS models is well below the mass-to-light ratio
distribution of our sample. Lee et al. (2012), based on LBGs
selected at z = 4–5 over the GOODS field, interpreted the
absence of undermassive galaxies as evidence of smooth
growth for UV-bright galaxies that has lasted at least a few
hundred million years. If dust extinction is proportional to UV
luminosity (e.g., Bouwens et al. 2014), this indicates a lack of
UV-bright galaxies with very high specific SFRs
(sSFR = SFR/M*). This lack of UV-bright and low-mass
galaxies at all redshifts we probe provides a further support on
our claim in the paragraph above of a growing population of
dusty star-forming or quiescent galaxies seen between z = 6
and z = 4.

4.2. Stacking Analysis

Despite our deep IRAC data, individual galaxies in our
sample, especially those in faint UV luminosity bins (which
likely have low masses), often suffer from low S/N in the
IRAC mosaics. This can make the reliability of an M*–MUV

relation derived based on individual galaxies questionable. We
therefore performed a stacking analysis to increase the S/N and
to examine the typical stellar mass in each rest-frame absolute
UV magnitude bin. We built median flux-stacked SEDs,

comprising a total of 12 bands (B, V, i, I z, ,814 Y098, Y, J, JH140,
H, m3.6 m, m4.5 m), for galaxies in each UV magnitude bin of
0.5 mag in the full sample. Uncertainties on the stacked SEDs
were assigned as the quadrature sum of the photometric
uncertainty and the uncertainty due to sample variance
(heterogeneity of the SEDs of galaxies) estimated via boot-
strapping on galaxies in each UV magnitude bin. The latter
dominates the error budget at z = 4, contributing on average
80% to the total uncertainty, but the contribution of sample
variance decreases with redshift, down to 45% at z = 8. This is
a combined effect (i) decreasing outliers in the M*–MUV plane
(i.e., decreasing fraction of dusty star-forming or quiescent
galaxy population) with redshift, as seen in Figure 5, and (ii)
increasing photometric uncertainty with redshift, as the
galaxies are fainter compared to the photometric depth.
Stacked SEDs were analyzed through our SED fitting

procedures described in Section 3 with the redshift of model
templates fixed to the median photometric redshift of galaxies
in each stack. Bands not common to all galaxies (e.g., JH140

covering only the HUDF) were included in the SED fitting only
when more than half of the stacked galaxies have measure-
ments. Our choice is a trade-off between making the most of
the available information and minimizing the chance of biasing
our results by including a subset not having the characteristics
of the parent sample. As the median flux-stacked SEDs
shortward of the Lyα line may still have some fluxes
depending on the redshift distribution of the stacked galaxies
and thus may not represent an SED of a galaxy at the median
redshift, we excluded bands shortward of the Lyα line.
The best-fit SPS models and stacked SEDs in each redshift

bin are shown in Figure 6. Overall, the shapes of the SEDs are
nearly similar but show a weak trend with UV luminosity such
that the typical UV-bright galaxies have slightly redder rest
UV-to-optical (observed NIR-to-MIR) color than UV-faint
galaxies at a given redshift, being in qualitative agreement with
other previous studies (e.g., González et al. 2012). This trend
indicates that on average UV-faint galaxies have (mildly) lower
mass-to-light ratios than UV-bright galaxies, suggesting that an
M*–MUV relation with a constant mass-to-light ratio would not
provide a good description of our data.
The results from our SED fitting analysis on the median flux-

stacked SEDs are included in the M*–MUV plots of Figure 5.
Comparing the stacked points to the median of individual
galaxies shows that they are largely consistent with each other
at the bright end ( ( -M 20UV – )21 ). But for fainter UV
luminosities, the stacked points are generally lower than the
medians. This may reflect the fact that the stellar masses of
individual IRAC-undetected galaxies are on average biased
toward higher masses, while they are relatively robust for
IRAC-detected galaxies.

4.3. Mock Simulation with Semianalytic Models

As noted in the previous section, stellar mass estimation
involves various sources of uncertainty, which impact the
derived GSMFs. In our methodology of convolving the M*–

MUV distribution with the completeness-corrected UV lumin-
osity functions to derive GSMFs, the reliability of our to-be-
derived GSMF and its low-mass-end slope is tied to our ability
to recover the intrinsic slope, normalization, and scatter of the
M*–MUV distribution.
To explore the systematics and uncertainties in our observed

M*–MUV distribution introduced by the photometric
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uncertainty of our data and our stellar mass estimation
procedure, and to examine whether we can recover the intrinsic
M*–MUV distribution (and the subsequent GSMF), we
simulated M*–MUV planes using mock galaxies drawn from
semianalytic models (SAMs). We used synthetic galaxy
photometry from the SAMs of R. S. Somerville et al. (2016,
in preparation). These SAMs are implemented on halos
extracted from the Bolshoi dark matter simulation (Klypin
et al. 2011), which has a dark matter mass resolution of 1.35
´ -h108 1Me and a force resolution of 1 -h 1 kpc. Galaxies
hosted in a halo more massive than 1010 Me are included in the
mock catalog. This corresponds to a typical stellar mass of a
few times 107 Me at z = 4–8 (e.g., Behroozi et al. 2013),
similar to the minimum stellar mass in our real sample. The
most notable characteristic of these SAMs is that their light
cones are specifically designed to provide realizations of the
five CANDELS fields (with albeit a factor of 6–9 larger areas
than the actual CANDELS HST coverage), aiming to help with
interpretation of observational data. Moreover, using synthetic
galaxy photometry from the SAMs has an advantage over using

SPS models in that mock galaxies have more realistic SEDs
based on more complicated SFHs and metal enrichment
histories, thus representing real galaxy populations more
closely. We refer the reader to Somerville et al. (2012) and
Lu et al. (2014) for full details of their mock galaxy models.
Here we specifically use the mock light cone of the CANDELS
GOODS-S field for our simulation.
We generated mock galaxy samples by populating the M*–

MUV plane at each redshift with objects from the SAM catalog
similar to our real sample in both sample size and rest-frame
UV absolute magnitude distribution, but with various input
slopes ranging from −0.3 to −0.8. We assumed a lognormal
distribution around a linear

*
Mlog –MUV relation with a

dispersion of ∼0.3 dex, motivated by the functional form of
the observed star-forming main sequence at lower redshifts
(Speagle et al. 2014 and references therein). Although the
SAMs have an inherent M/L relation, this does not affect our
results as we randomly draw galaxies from the SAM to fill in
our simulated plane based on the M/L slope in a given
simulation. We then added noise in each band based on the flux

Figure 6.Median flux-stacked SEDs at z = 4–8 in bins of rest-frame absolute UV magnitude withDMUV = 0.5 mag, for bins with < -M 17UV and more than 10 (for
z = 4–5) or 5 (for z = 6–8) galaxies (corresponding to blue stars in Figure 5). The stacked SEDs are denoted by filled circles and downward-pointing arrows
(indicating 2σ upper limits for bands with S/N < 2), with the rest-frame absolute UV magnitudes given by the inset text. The solid lines and open squares indicate the
best-fit SPS models and model bandpass-averaged fluxes, respectively. The best-fit SPS models for stacked SEDs with S/N < 2 in 3.6 μm are shown as dotted lines,
indicating that the inferred mass for stacked SEDs with S/N < 2 in 3.6 μm is uncertain.
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uncertainty of our real sample at a given magnitude and
perturbed the simulated photometry assuming a Gaussian error
distribution. The stellar masses and rest-frame UV absolute
magnitudes of these mock galaxies were calculated in the same
manner as in the real data. The above precedures describe a
single mock realization of one intrinsic M*–MUV distribution.
For each realization of a given intrinsic M*–MUV distribution,
we measured the recovered slope, normalization, and scatter of
the M*–MUV distribution. We repeated the above procedures
50 times for each input slope and redshift, from which we
constructed pdfs of the recovered slopes and normalizations.

In addition to allowing us to explore the best way to
minimize the bias and uncertainty in recovering the intrinsic
M*–MUV distribution, these simulations also allow us to test
the validity of our stellar mass measurements. First, we find
that if we use the classical maximum likelihood estimator (i.e.,
the best-fit model) as a fiducial stellar mass, the uncertainty in
the inferred stellar mass for individual galaxies is considerable,
differing up to 1 dex for galaxies with ( )*

~M Mlog 9 at
z = 4. As a result, the scatter of the recovered M*–MUV

distribution increases significantly compared to the original one
(a 0.2 dex increase at ~ -M 20UV and larger for fainter
galaxies; see also Salmon et al. 2015). This large spread in
stellar mass in the recovered distribution makes it hard to
recover the intrinsic relation at z 6 where the photometric
uncertainty is large and the sample size is small. The median
mass from our Bayesian likelihood analysis described in
Section 3 performs much better in the sense that it does not
significantly increase the scatter of the recovered M*–MUV

plane even in faint UV luminosity bins; the scatter of the
recovered M*–MUV distribution compared to that of the input
distribution shows an increase of only 0.05–0.10 dex at

~ -M 20UV , and the scatter remains nearly constant in fainter
UV luminosity bins. However, there exists a noticeable bias in
the recovered stellar mass for galaxies fainter (and lower in
mass) than a certain UV magnitude threshold at each redshift
(hereafter referred to as ( )M zthresh1 ). This is because, for low-
S/N data, the stellar mass is determined by the assumed priors
(e.g., flat priors in parameter grids in the case of our SPS
modeling) and the data have little constraining power.

Although the recovered M*–MUV distribution above
( )M zthresh1 is reliable in both bias and scatter, the small

dynamic range above this limit at high redshift still makes the
uncertainty of the recovered M*–MUV relation large. We thus
utilize a stacking analysis (described in Section 4.2) to increase
the S/N and dynamic range in UV luminosity at which we can
still reliably derive typical properties of sources (e.g., stellar
mass). In the simulation, we find that via stacking, we can
achieve this 1.5–2.0 mag further in UV magnitude, down to

~ -MUV (18.0–18.5) at =z 4–6 (hereafter ( )M zthresh2 ).
( )M zthresh2 corresponds roughly to the UV luminosity of the

stacked SEDs with S/N ∼ 1 at 3.6 μm, below which the
inferred mass remains uncertain just as one might expect.

In short, our simulation enables us to assess the bias and
uncertainty of the observed M*–MUV distribution, which has so
far been generally overlooked in the literature. We find that the
observed M*–MUV distribution and the inferred relation at high
redshift are very sensitive to the choice of stellar mass estimator
and the UV magnitude range even when using the same data set
and can be dominated by systematics if not tested thoroughly.
From this simulation, we derive the redshift-dependent UV
magnitude thresholds, ( )M zthresh1 and ( )M zthresh2 , above which

we can rely on the median mass and scatter of individual
galaxies in each UV magnitude bin and the median mass of
stacks, respectively. Specifically, we find ( )M zthresh1 to be

= - - - - -M 20.0, 20.0, 20.0, 22.5, 22.5UV and ( )M zthresh2

to be = - - - - -M 18.0, 18.5, 18.5, 20.5, 20.5UV at z = 4, 5,
6, 7, 8.
Based on our findings, we derive the best-fit M*–MUV

relation by combining the median mass of galaxies in each UV
magnitude bin at ( )<M M zUV thresh1 and the median mass of
stacked points at ( ) ( )< <M z M M zthresh1 UV thresh2 , neglecting
galaxies fainter than ( )M zthresh2 when fitting this relation. To
explore the validity of this optimized method of combining
individual bright galaxies with stacked faint galaxies, we show
in Figure 7 the distribution of the recovered slope at z = 4–8 for
various input slopes with our optimized method, demonstrating
that we can recover the intrinsic relation fairly well even at
z = 6. From this simulation, we derive the probability
distribution function of intrinsic slope (slope in) of the M*–

MUV relation given the observed slope (slopeout), based on the
results from each of the 50 simulations at each input slope. We
find, for the given slope observed from our real sample, the
central 68% range of the intrinsic slope to be

Figure 7. Probability distribution function of the recovered M*–MUV slope as a
function of the intrinsic slope at z = 4–8 in our SAM mock galaxy simulations.
Darker gray colors indicate a higher probability. For reference, a 1:1 line is
shown as the black solid line. The best-fit slope of the M*–MUV relation and its
1σ uncertainty obtained from our real sample (using our optimized fitting
method) at each redshift are denoted as the red dashed horizontal line and
shaded region, respectively. At z = 4–6, we can recover the intrinsic slope
within ±0.07. At z = 7–8, the uncertainties become much larger; thus, as
discussed in Section 4.4, we fix the slope (which does not significantly evolve
from z = 4 to 6) at z = 7 and 8 to the z = 6 value.
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- < < -0.57 slope 0.63in , - < < -0.42 slope 0.53in , and
- < < -0.42 slope 0.64in at z = 4, 5, and 6, respectively.
This is comparable with the 1σ confidence level of the
observed slope, indicating that our M*–MUV relations and their
uncertainties at z = 4–6 measured from our real sample are
relatively reliable, when we use this optimized method.

It is encouraging that we find no bias at z = 7–8, but the
broad pdf of the recovered slope for a given input slope at z =
7–8 indicates that it is hard to constrain the intrinsic slope with
the currently available data. Therefore, we perform another test
to see if our current data can constrain the normalization of the
intrinsic M*–MUV relation when we apply an additional prior
of a known intrinsic slope. Figure 8 shows the pdf of the
recovered normalization as a function of intrinsic normalization
at z = 7–8 when the slope is fixed to the intrinsic slope,
illustrating that the normalization can be recovered accurately
within ±0.5.

The best-fit relation for our real sample in Section 4.4 is
derived with the optimized method of combining individual
bright galaxies with stacks of fainter galaxies. When we need to
use the full M*–MUV distribution or a scatter for our GSMF
derivation, we use those inferred at ( )<M M zUV thresh1 .

4.4. M*–MUV Relation

Using our optimized method vetted in Section 4.3, we derive
the best-fit linear ( )*

M Mlog10 –MUV relation at each redshift.
Specifically, we use the median mass of individual galaxies for
bins with ( )<M M zUV thresh1 and the median mass of median
flux-stacked SEDs for bins with ( )<M M zUV thresh2 . Our best-fit
mass-to-light relation, listed in Table 1, has a slope of

( – )- 0.50 0.69 , which is slightly steeper than a constant mass-
to-light ratio of a slope of −0.40. As the slope between z = 4
and z = 6 is nearly constant (~-0.5) but the uncertainty at z =
7–8 is large, we fix the slope at z = 7 and z = 8 to be the same
as the best-fit slope at z = 6 while leaving the normalization as
a free parameter.18 Our mock galaxy simulation in Section 4.3
indicates that our current data allow us an accurate recovery of
the intrinsic normalization at z = 7–8 with a prior of a known
input slope (Figure 8). We find a (very) weak evolution in the
normalization between z = 4 and z = 7 (a decreasing
normalization with increasing redshift). The normalization
evolves from ( )( )* =-M Mlog M 21UV

= 9.70 (at =z 4) to 9.36

(at =z 7) at only 2σ significance. Interestingly, the normal-
ization appears to decrease more rapidly from z = 7 to z = 8
than at lower redshifts, although the small sample at z = 8
prevents drawing any firm conclusions. We discuss this further
in Section 6.
Although the M*–MUV distribution of our flux-limited

sample has nonzero scatter, the derived M*–MUV relation is
not subject to Malmquist bias (i.e., missing faint galaxies at a
given stellar mass) as we estimate the M*–MUV relation in bins
of luminosity and not stellar mass. Therefore, the derived
relation should be robust against the Malmquist bias, which
could artificially result in a steeper slope than the intrinsic one
by losing the faint envelope of galaxy distribution for a given
stellar mass.19

There are discrepancies of 0.3–0.7 dex between different
studies in the measured median mass at a given UV magnitude
even at ~z 4, which are larger at fainter UV bins (González
et al. 2011; Lee et al. 2012; Stark et al. 2013; Duncan
et al. 2014; Salmon et al. 2015). This may reflect a number of
systematic uncertainties associated with sample selection and
stellar mass estimation. As these uncertainties make a direct
comparison between different studies difficult, it highlights the
importance of a comprehensive and independent analysis to
verify systematics.
Overall, we found the best-fit slope shallower than that of

González et al. (2011) but similar to those of Stark et al. (2013)
and Duncan et al. (2014), with an exception at z = 4. First, the
slope of our best-fit relation of ( )- 0.54 0.03 at z = 4 is
significantly shallower than that of González et al. of

( )- 0.68 0.08 , which is based on an order-of-magnitude-
smaller sample. As the relation of González et al. is derived
with no nebular correction, it is not surprising that their stellar
masses for UV-bright galaxies are higher than ours. However,
their stellar masses for galaxies in faint UV bins are lower than
ours by ∼0.2 dex at ~ -M 18UV , resulting in a steeper slope
than ours. Meanwhile, the M*–MUV relation of Stark et al.
(2013) shows a good agreement with ours at all redshifts with

Figure 8. Probability distribution function of the recovered M*–MUV

normalization as a function of intrinsic normalization at z = 7 and z = 8 in
our mock galaxy simulations, when the slope is fixed to the intrinsic slope.
When the slope is fixed, the normalization can be recovered at high confidence.

Table 1

Best-fit Fiducial log10(M*)–MUV Relation

z Normalization Slope ( )* =-Mlog M 21UV

(Me) (Me)

4 −1.70 ± 0.65 −0.54 ± 0.03 9.70 ± 0.02
5 −0.90 ± 0.74 −0.50 ± 0.04 9.59 ± 0.03
6 −1.04 ± 0.57 −0.50 ± 0.03 9.53 ± 0.02
7 −1.20 ± 0.16 −0.50 ± — 9.36 ± 0.16

(−4.23 ± 2.12) (−0.65 ± 0.10) (9.45 ± 0.07)
8 −1.56 ± 0.32 −0.50 ± — 9.00 ± 0.32

(−5.47 ± 6.19) (−0.69 ± 0.31) (9.00 ± 0.31)

Note. At ~z 7–8, numbers in parentheses are the best-fit parameters when we
do not fix the slope to the best-fit slope at ~z 6. The quoted errors represent
the 1σ uncertainties. The normalization is defined as the logarithmic stellar
mass at =M 0UV ( ( )* =Mlog M 0UV ).

18 Albeit slightly shallower (−(0.44–0.48)), the slope predicted from the
SAMs of R. S. Somerville et al. (2016, in preparation) is almost constant over
the redshift interval as well.

19 As discussed in Section 4.1, objects with high mass and low UV flux that
are observed or that we may be missing are believed to be the subdominant
population for all UV luminosity bins and thus would not change the derived
relation (see also Salmon et al. 2015 for a similar argument based on the tight
scatter of the star-forming main sequence). When probing in bins of stellar
mass, however, those massive outliers seen at z = 4–5 with ( )*

>M Mlog 10
are off from the linear correlation derived in bins of UV luminosity in this
section.
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only a slightly shallower slope than ours. Duncan et al. (2014)
in general find higher stellar masses for galaxies than we do in
faint UV bins, resulting in a higher normalization and a
shallower slope than ours, with the biggest difference in
normalization ( ( )*

D ==-M Mlog M 21UV
0.25) and slope

(D = 0.09; 2.5σ significance) being observed at z = 4 (see
Section 5.4 for more discussion).

5. THE GALAXY STELLAR MASS FUNCTION

5.1. Derivation of the GSMFs

We now convolve our M*–MUV distribution with the
observed rest-frame UV luminosity function to derive GSMFs.
The luminosity functions we utilize in this study are from
Finkelstein et al. (2015), which included the full CANDELS
GOODS fields, the HUDF and two parallel fields, and the Abell
2744 and MACS J0416.1-2403 parallel fields from the Hubble
Frontier Fields data set. These luminosity functions are already
corrected for incompleteness and selection effects using the
detection probability kernels derived from fake source simula-
tions, as discussed by Finkelstein et al. (2015).

Figure 9 presents GSMFs constructed using four different
methods:

1. “Raw Bootstrapped GSMF”:
We constructed the “observed” GSMF by combining the UV

luminosity function with the observedM*–MUV distribution. We
first drew 105 galaxies from the best-fit Schechter function of the
UV luminosity function in the range of - < < -M30 13UV .
Then, we assigned stellar mass for each galaxy to be the stellar
mass of the randomly chosen galaxy with similar rest-frame UV
absolute magnitude from the observed M*–MUV distribution.
This method accounts for outliers, which may be a non-
negligible fraction of galaxies at z = 4.

The non-negligible spread in stellar mass at a fixed rest-
frame UV absolute magnitude observed in Figure 5 can result
in GSMFs with an underestimated low-mass-end slope if we do
not account for the “unobserved” population of galaxies below
the detection threshold of the survey. This is because galaxies
at a given UV luminosity have a range of mass-to-light ratios;
thus, galaxies below the detection limit can still have stellar
masses high enough to contribute to the number density in the
stellar mass bins of our interest (affecting the last few points in
the GSMFs depending on the amount of spread). Therefore, we

need to correct for the incompleteness by assuming an M*–

MUV distribution in UV luminosity bins below the current
sensitivity limit. We use three different incompleteness
correction schemes.

2. “Incompleteness-corrected Bootstrapped GSMF”:
A reasonable assumption on the M*–MUV distribution in the

unobserved faint UV luminosity bins is that the observed
distribution of individual galaxies in bright UV bins above a
threshold represents the intrinsic distribution and can be
extended to fainter bins. In Section 4.3, we found the
redshift-dependent threshold ( )M zthresh1 at each redshift above
which the intrinsic distribution can be recovered well without
any noticeable bias or increase in scatter. We extend the
observed M*–MUV distribution at ( )<M M zUV thresh1 to fainter
UV luminosities down to = -M 13UV , keeping the distribution
centered around the best-fit M*–MUV relation. The rest of the
procedures are the same as those for the “raw boot-
strapped GSMF.”

3. “Constant-scatter GSMF”:
Instead of using individual points in the M*–MUV distribu-

tion, we assumed an idealized lognormal distribution around
the best-fit M*–MUV relation with a constant scatter, inferred
from bright UV luminosity bins that have a statistical number
of galaxies and high completeness. We used the mean scatter
estimated from the two faintest bins at ( )<M M zUV thresh1 with
more than 10 galaxies, which is ∼0.4–0.5 dex. The UV
luminosity function was then convolved with this lognormal
distribution to derive the “constant-scatter GSMF.”

4. “Asymmetric-scatter GSMF”:
The three approaches above are basically the same as those

used by González et al. (2011). However, the mass distribution
of our sample in a given rest-frame UV absolute magnitude bin
is not symmetric with respect to the best-fit relation. Rather, the
lower side of the best-fit relation has in general a smaller
scatter. As already noted in Section 4.1, the lack of galaxies
with high UV luminosity and low mass contributes in part to
the asymmetric scatter, and the results in Section 4.3 in
addition indicate that it could be an intrinsic property and
not just an observational bias. Therefore, we assume a
lognormal distribution with an asymmetric scatter with
respect to the best-fit M*–MUV relation (a different sigma
above and below the mean) inferred from the two faintest
bins at ( )<M M zUV thresh1 and extend it to fainter UV

Table 2

Galaxy Stellar Mass Function at z = 4–8

log M*
flog

(Me) (dex−1 Mpc−3)

z = 4 z = 5 z = 6 z = 7 z = 8
7.25 - -

+1.57 0.16
0.21 - -

+1.47 0.21
0.24 - -

+1.47 0.32
0.35 - -

+1.63 0.54
0.54 - -

+1.73 0.84
1.01

7.75 - -
+1.77 0.14
0.15 - -

+1.72 0.20
0.20 - -

+1.81 0.28
0.23 - -

+2.07 0.41
0.45 - -

+2.28 0.64
0.84

8.25 - -
+2.00 0.10
0.13 - -

+2.01 0.16
0.16 - -

+2.26 0.16
0.21 - -

+2.49 0.32
0.38 - -

+2.88 0.57
0.75

8.75 - -
+2.22 0.09
0.09 - -

+2.33 0.10
0.15 - -

+2.65 0.15
0.15 - -

+2.96 0.30
0.32 - -

+3.45 0.60
0.57

9.25 - -
+2.52 0.09
0.09 - -

+2.68 0.14
0.07 - -

+3.14 0.11
0.12 - -

+3.47 0.35
0.32 - -

+4.21 0.78
0.63

9.75 - -
+2.91 0.05
0.12 - -

+3.12 0.11
0.09 - -

+3.69 0.13
0.12 - -

+4.11 0.57
0.41 - -

+5.31 1.64
1.01

10.25 - -
+3.37 0.12
0.09 - -

+3.47 0.14
0.16 - -

+4.27 0.86
0.38 - -

+4.61 0.82
0.72

L

10.75 - -
+4.00 0.25
0.20 - -

+4.12 0.38
0.25

L - -
+5.24 0.57
0.90

L

11.25 - -
+4.54 0.55
0.34 - -

+4.88 0.61
0.40

L L L

Note. The quoted 1σ errors include the uncertainties of the UV luminosity function and the M*–MUV relation.
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luminosity bins.20 The resultant GSMF constructed via this
method is referred to as the “asymmetric-scatter GSMF.”

While the asymmetric-scatter GSMFs were devised to probe
the incompleteness-corrected low-mass-end slope, they might
not account properly for the fraction of outliers seen at z = 4
and z = 5 that can impact the high-mass end of the GSMF.
Thus, we combine the bootstrapped GSMF for high masses

Figure 9. Our fiducial galaxy stellar mass functions, from a J+H-band-selected sample of galaxies at z = 4–8 (red filled circles). The open squares, filled squares,
small stars, and small red filled circles indicate raw bootstrapped, incompleteness-corrected bootstrapped, constant-scatter, and asymmetric-scatter GSMFs,
respectively. The red dotted, red dashed, red dot-dashed, and red solid lines represent the Schechter fit for the last three and for our fiducial GSMFs, respectively. The
uncertainty on our fiducial GSMF includes contributions from both the UV luminosity function uncertainties and the uncertainty in the M*–MUV relation. The light-
red shaded regions denote 1000 Schechter fits for our fiducial GSMF randomly chosen within the 1σ three-dimensional contour of the Schechter parameters
determined from our MCMC analysis. The blue points (open squares, filled squares, dashed line) correspond to previous estimates (raw bootstrapped, incompleteness-
corrected bootstrapped, constant-scatter GSMF) of González et al. (2011) from WFC3/IR data of the ERS (for z = 4–6) and from WRC3/IR data of the ERS,
HUDF09, and NICMOS over the GOODS fields (for z = 7). Also overplotted are recent estimates for GSMFs from the literature—from the Ks-band-selected sample
at ~z 4 (Ilbert et al. 2013; Muzzin et al. 2013), from the 4.5μm selected sample (Caputi et al. 2011, 2015), and from rest-frame UV-selected samples (Stark
et al. 2009; Lee et al. 2012; Santini et al. 2012; Duncan et al. 2014; Grazian et al. 2015). All points and lines are converted to a Salpeter IMF. The thick gray lines show
dark matter halo mass functions scaled to a baryon conversion efficiency of 20% (i.e., 20% of halo mass times the cosmic baryon fraction of Wb/Wm). Our GSMFs are
characterized by a steeper low-mass-end slope of ( )- -1.55 2.25 at z = 4 (z = 8) compared to that of González et al. of ( )- -1.43 1.55 at z = 4 (z = 7).

20 For z = 7 and z = 8, where the scatter is not robustly measured due to the
small sample size, we assume that the M*–MUV distribution follows that
at z = 6.
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( ( )*
>M Mlog 10) and the asymmetric-scatter GSMFs for

low masses ( ( )*
>M Mlog 10), and consider this our fiducial

GSMF. We found that the GSMFs computed using the V1 max

method (Schmidt 1968; gray diamonds in Figure 9) are in
excellent agreement with our fiducial GSMFs at the high-mass
end. Figure 9 shows our fiducial GSMFs at z = 4–8 (listed in
Table 3), as well as those derived from the four methods
described above. The incompleteness-corrected, constant-
scatter, and asymmetric-scatter methods yield consistent results
(except at z= 8, where the GSMF is less robust due to the
small sample size), and their Schechter fits (see Section 5.2) are
nearly indistinguishable within the uncertainties on the low-
mass end.

5.2. Schechter Fit and Uncertainties

Before we parameterize our GSMF with a Schechter
function, we first need to derive the uncertainties for our
GSMF data points. Randomly perturbing points of the GSMFs
is not a proper way to estimate the uncertainties of the GSMFs
because they are correlated. Thus, we derive the 68%
confidence interval of our fiducial GSMFs as follows. First,
we randomly drew 1000 samples from a Markov Chain Monte
Carlo (MCMC) chain of the UV luminosity function Schechter
parameters derived by Finkelstein et al. (2015) within the three-
dimensional 1σ contour of ( * *a fL , ,L L

). Then, for each
luminosity function generated from the Schechter parameters,
we assigned an M*–MUV relation with (slope, normalization)
values randomly chosen within the two-dimensional 1σ
contour of the best-fit parameters of the M*–MUV relation.21

The new M*–MUV distribution was then combined with the
new luminosity function to generate a GSMF in the same way
that our GSMF was constructed. This generates 1000 GSMFs,
of which the minimum and maximum represent the 1σ upper
and lower limits of the GSMFs, respectively.

We parameterize our GSMFs with a Schechter (1976)
function,

( ) ( ) ( ) [ ( )]

( )
* *

* *
*
*

*
*

*
f f= ´ -aM dM M M M M M dMexp ,

1

which is characterized by a power law with a low-mass-end slope
of α, an exponential cutoff at stellar masses larger than a
characteristic mass, M*, and a normalization *f . The best fit,
uncertainties, and posterior distributions of the Schechter
parameters for our fiducial asymmetric-scatter GSMFs were
derived by running an MCMC algorithm that samples the three-
dimensional parameter space of the Schechter parameters. To
ensure full coverage of the parameter space and assess
convergence, we ran five parallel chains composed of 105 steps
each. The starting position of the chain was determined by a
coarse grid search that minimized the c2 statistic between the
model and the data. The first 10% of steps were disregarded in
the burn-in phase before running each chain to reduce the
dependence of the posterior distribution on the initial position.
The proposal distribution of each parameter was assigned as a
normal (lognormal) distribution for α (M* and *f ) with the width
tuned to generate an acceptance rate of ∼23%–30%.22 As a prior,
we limited the sampling parameter space to be a > -10,

( )*< <M M8 log 13, and ( )*f > --log Mpc 83 . For
 z6 8, where the constraints on M* are weak (see the large

error bars on the open gray circles in Figure 10), we took a
lognormal prior on M* with mean ( )*

=M Mlog 10.75 and
standard deviation of 0.3 dex, following the posterior distribution
ofM* at z= 4 and z = 5. Comparing the likelihood of the current
step, which is defined as  µ c-e 22

, with the proposed set of
parameters determines whether the proposal is accepted. We
employ the Metropolis–Hastings algorithm for the acceptance
criteria. After running all chains, convergence was assessed by
examining trace plots of parameters, as well as using the Rubin–
Gelman R̂ diagnostic (Gelman & Rubin 1992) for each
marginalized posterior distribution. The diagnostic value ˆ ~R 1

suggests convergence, and we confirmed that for all redshifts and
parameters the diagnostic has a value ˆ< <R1.00 1.01.
From the resulting joint posterior distribution, we extracted

the marginal posterior distribution of each parameters. The
median and the central 68% of the marginal posterior
distributions provide our fiducial Schechter parameters and an
estimate of the 68% confidence interval on each parameter
(shown as the error bars in Figure 10). In short, the
uncertainties on the GSMFs and Schechter parameters include
(i) the uncertainty of the best-fit M*–MUV relation and (ii) the
uncertainty of the Schechter parameters in the UV luminosity
function, the latter of which includes Poisson errors. Other
sources of random errors on the derived GSMFs, including
cosmic variance, are discussed in Section 7.2.
Our best-fit Schechter parameters are listed in Table 4 and

plotted in Figure 10 as a function of redshift. Our data support a
decreasing (steepening) of the low-mass-end slope (a ~
- -

+1.55 0.07
0.08, - -

+1.70 0.07
0.08, - -

+1.91 0.09
0.09, - -

+1.95 0.18
0.18, - -

+2.25 0.35
0.72 at

=z 4, 5, 6, 7, 8) with increasing redshift, asymptoting to the
faint-end slope of the UV luminosity function (a ~L

- -
+1.56 0.05
0.06, - -

+1.67 0.06
0.05, - -

+2.02 0.10
0.10, - -

+2.03 0.20
0.21, - -

+2.36 0.40
0.54 at

=z 4, 5, 6, 7, 8), and possibly a decrease in *f with
increasing redshift as well. Conversely, our GSMFs favor no
evolution in M* with redshift, although we cannot rule out the
possiblity of evolution due to the large uncertainties, in

Table 3

Best-fit Schechter Function Parameters of Our Fiducial GSMFs

z log M
* α *f

(Me) (10−5 Mpc−3)

4 -
+10.50 0.24
0.30 - -

+1.55 0.07
0.08

-
+25.68 12.80
21.75

5 -
+10.97 0.36
0.68 - -

+1.70 0.07
0.08

-
+5.16 4.08
7.05

6 -
+10.72 0.30
0.29 - -

+1.91 0.09
0.09

-
+1.35 0.75
1.66

( -
+11.08 1.04
1.27) (- -

+1.90 0.10
0.12) ( -

+0.57 0.54
7.70)

7 -
+10.78 0.28
0.29 - -

+1.95 0.18
0.18

-
+0.53 0.38
1.10

( -
+11.33 1.11
1.05) (- -

+1.96 0.17
0.20) ( -

+0.13 0.12
2.37)

8 -
+10.72 0.29
0.29 - -

+2.25 0.35
0.72

-
+0.035 0.030
0.246

( -
+10.30 1.08
1.31) (- -

+2.12 0.46
0.87) ( -

+0.125 0.120
5.057)

Note. The quoted best-fit values and 1σ errors of the Schechter parameters
represent the median and the central 68% confidence interval of the marginal
posterior distribution of each parameter obtained from our MCMC analysis. At
 z6 8, we show in parentheses the results derived with a flat prior on M

*.

21 For =z 7–8, where we fix the slope of the M*–MUV relation to the z = 6
value, the uncertainty in the normalization is taken into account.

22 The ideal acceptance rate, which affects the efficiency of the chain, depends
on the dimension (d) of the problem, decreasing from ∼44% for d = 1 to ∼23%
for  ¥d (Gelman et al. 1996).
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particular at z 6 (see the gray open circles in Figure 10,
which are derived with a flat prior on M*

). The large error bars
on M* are because constraints on the bright end of the
luminosity function (and thus the massive end of the GSMF)

remain weak, as even our wide-area data reach only 1–2 mag
brighter than the characteristic magnitude of the UV luminosity
function, L* (marked as arrows at the bottom of Figure 5), and
the UV magnitude bins brighter than L* are populated by only a
few galaxies. The lack of robust constraints on the massive end
of the GSMF leads to a well-known degeneracy betweenM*, α,
and *f , as shown in Figure 11 with confidence contours on the
Schechter parameters.

5.3. Eddington Bias

Several recent studies (Ilbert et al. 2013; Caputi et al. 2015;
Grazian et al. 2015) investigated the effect of the Eddington
bias (Eddington 1913) on the low-mass-end slope of the
GSMF, finding that the increase in the stellar mass uncertainties
for individual galaxies at low masses results in an artificial
steepening of the low-mass-end slope (Caputi et al. 2015;
Grazian et al. 2015). In our methodology, the “effective”
uncertainty in stellar mass is not stellar mass dependent, as we
do not use individual stellar masses to construct the GSMF on
the low-mass end but rather convolve the UV LF with stellar
mass–UV luminosity distribution, where we use the

distribution around *~L (- < < -M21 20UV ) to extend to
fainter luminosities. Taking a similar approach to other studies,
we investigated the effect of the Eddington bias by parameter-
izing the observed GSMF as a convolution of an “intrinsic”
Schechter function with a lognormal function with its width to
be the mean stellar mass uncertainty of galaxies with
- < < -M21 20UV . We implemented a grid search for the
“intrinsic” Schechter parameter to correct for the Eddington
bias, finding that while we see a similar trend to what Grazian
et al. (2015) found (the “intrinsic” low-mass-end slope is
similar [at z = 4–5] or slightly flatter [at z 6], driven by the
change in M*, which is uncertain), the change in the number
density on the low-mass end is negligible and the trend of
steepening low-mass-end slope with increasing redshift persists
after correcting for the Eddington bias.

5.4. Comparison with Previous Work

Figure 9 compares our GSMFs with recent estimates
from the literature determined by rest-frame UV-selected
galaxies (either using photometric redshift or color–color

Figure 10. Redshift evolution of the best-fit Schechter parameters for our
fiducial GSMFs. The low-mass-end slope, α, evolves toward a steeper value
with increasing redshift, asymptoting to the faint-end slope of the UV
luminosity function. Conversely, the open gray circles denoting the best-fit
Schechter parameters with a flat prior on M

* show that we observe no
significant evolution in the characteristic mass, M*, though our observations do
not allow us to place reasonable constraints on M* at z 6.

Figure 11. Confidence contours of the best-fit Schechter parameters for our
fiducial GSMFs at z = 4–8 at the 68% and 95% levels, showing that we can
place reasonable constraints on α. The best-fit Schechter parameters at z = 6–8
were derived with a lognormal prior on M*, and their contours are denoted as
dot-dashed lines. The best-fit values are shown as filled circles.

Table 4

Cosmic Stellar Mass Density at z = 4–8

z log
*
r

(Me Mpc−3)

4 7.17 -
+
0.13
0.22

5 7.09 -
+
0.19
0.28

6 6.48 -
+
0.18
0.31

(6.53 -
+
0.26
0.55)

7 6.19 -
+
0.40
0.62

(6.24 -
+
0.45
0.88)

8 5.50 -
+
0.81
0.83

(5.51 -
+
1.80
1.64)

Note. Stellar mass estimates by integrating the best-fit Schechter functions for
our GSMFs over ( )*

< <M M8 log 13. The quoted 1σ error bars represent
the mininum and maximum values of stellar mass density allowed by the three-
dimensional 1σ contour of the Schechter parameters. The values in parentheses
at  z6 8 are the results from the best-fit Schechter function derived with a
flat prior on M*, displaying negligible difference from our fiducial stellar mass
estimates.
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selection; Stark et al. 2009; González et al. 2011; Grazian et al.
2015; Lee et al. 2012; Santini et al. 2012; Duncan et al. 2014)23

or rest-frame optical-selected galaxies (Caputi et al. 2011,
2015; Ilbert et al. 2013; Muzzin et al. 2013). All GSMFs are
converted to a Salpeter IMF when necessary. Overall, the
comparison of our GSMFs with previous estimates demon-
strates that there exists a considerable discrepancy in the high-
and/or low-mass ends and in the normalization of the GSMFs
at all redshifts. However, before discussing the discrepancy in
detail, we point out that the error bars of the GSMFs compared
in Figure 9 include only random uncertainties. For example,
those of Grazian et al. (2015) include Poisson errors and errors
(photometric scatter and photometric redshifts) derived from
their Monte Carlo simulations, while those of Duncan et al.
(2014) include Poisson errors and photometric redshift
uncertainty. Those of González et al. (2011) include the
uncertainties of the UV luminosity function of Bouwens et al.
(2007, 2011) and the scatter of the M*–MUV relation. None of
the plotted points include cosmic variance or other sources of
systematic uncertainties.

A major source of discrepancy in the GSMFs between
different studies may be attributed to the systematic uncertain-
ties associated with stellar mass estimation, as already noted by
many studies (e.g., Marchesini et al. 2009; Mobasher
et al. 2015). Each study adopts different assumptions on the
SFH, dust law, metallicity, nebular emission, etc., in their SPS
modeling, of which effects on the derived stellar mass can be
significant. Moreover, many parameters are degenerate, thus
making assessment of the systematic effects induced by these
different assumptions on the disagreement of the observed
GSMFs hard to achieve. While investigating the systematic
effects caused by the different sets of assumptions adopted in
previous studies is beyond the scope of our study, we stress that
we have focused on deriving the intrinsic GSMFs by exploring
the systematic effects inherent in our analysis, minimizing them
via our SAM+mock galaxy simulations (see Section 4.3).

With these above caveats in mind, we now discuss the
discrepancy highlighted by the direct comparison between the
GSMFs in Figure 9. First, we observe a disgreement in the
normalization of the GSMFs between ours and the estimates
from the literature at all redshifts. At z = 4 and z = 5, although
our normalization is in good agreement with Lee et al. (2012)
and Grazian et al. (2015), a prominent discrepancy is observed
with González et al. (2011), Santini et al. (2012), and Duncan
et al. (2014). The GSMFs of González et al. (2011) are found to
lie systematically below ours and others in the literature at
z = 4 and z = 5, and the GSMFs of Santini et al. (2012) at
~z 4 and Duncan et al. (2014) at all redshifts are found to lie

above. At higher redshifts of z = 6–7, the normalization of our
GSMFs is lower with respect to those of Duncan et al. (2014)
and Grazian et al. (2015, at z= 6) but shows a good agreement
with Stark et al. (2009) (at the massive end; they do not correct
for incompleteness), González et al. (2011), and Grazian et al.
(2015, at z= 7). Although the overall difference in the
normalization of the GSMFs between different studies remains
similar at z = 7, the larger error bars at z = 7 render any
differences at that high redshift insignificant.

Examining the different mass regimes, we notice an
interesting disagreement at z = 4, where wide-area ground-

based surveys (Ilbert et al. 2013; Muzzin et al. 2013), which are
potentially more sensitive to more rare, massive galaxies, may
be more robust. Specifically, in the most massive bin of our
study at ( )*

=M Mlog 11.25, both Muzzin et al. (2013) and
Ilbert et al. (2013) found a number density ∼0.1–0.3 dex higher
than we find (and ∼0.2–0.3 dex higher than Duncan et al. 2014
and Grazian et al. 2015). This discrepancy may be attributed in
part to the fact that the median redshift of these ground-based
surveys is z = 3.5, lower than ours, as well as the other studies
shown ( z 4). Moreover, the former is derived from a shallow
but wide (∼1.6 deg2 down to ~K 24s ) Ks-band (rest-frame
optical) selected catalog. Thus, they should be more complete
and less susceptible to cosmic variance and Poisson noise at the
high-mass end than other works that are based on small-field,
rest-frame UV-selected catalogs. Meanwhile, Caputi et al.
(2015), who investigated the high-mass end of the GSMFs by
adding the contribution of Ks-band faint but 4.5 μm bright
([4.5] < 23) galaxies to the previous determinations of the Ks-
band-selected GSMFs by Caputi et al. (2011) and Ilbert et al.
(2013), present consistent results with ours, which may be
attributed to the lower normalization of the GSMFs of Caputi
et al. (2011) with respect to others.
At the high-mass end, GSMFs based on rest-frame UV-

selected galaxies (Stark et al. 2009; González et al. 2011;
Grazian et al. 2015; Lee et al. 2012; Duncan et al. 2014) agree
reasonably well with each other when the cosmic variance is
accounted for (see Section 7.2.2). However, the high-mass end
at z = 4 from Santini et al. (2012) still shows a mild tension
with ours due to their overall higher normalization with respect
to others.
Turning to the low-mass end, while our survey volume is

smaller than those of the ground-based surveys of Ilbert et al.
(2013) and Muzzin et al. (2013), the deep data set in this study
enables us to reach lower in mass than these surveys can
( ( )*

M Mlog 10), allowing more robust constraints on the
low-mass-end slope. Starting at z = 4, our results at the low-
mass end are consistent with most previous rest-frame UV-
selected studies (González et al. 2011; Lee et al. 2012; Duncan
et al. 2014; Grazian et al. 2015), with the exception of Duncan
et al. (2014).
Because Grazian et al. (2015) restrict their analysis to higher

masses, the only points for comparison at ( )*
M Mlog 9 are

those from González et al. (2011) and Duncan et al. (2014).
Interestingly, the largest disagreement at the low-mass end is
found at the lowest redshift of z = 4, where Duncan et al.
(2014) find significantly higher number densities (∼0.5 dex at

( )*
~M Mlog 9) and a steeper low-mass-end slope

(a ~ -1.9) with respect to the others. This may result from
differences in the measured M*–MUV relation, as well as in the
faint-end slope of the UV luminosity function between our
study and that of Duncan et al. (2014). At z = 4, Duncan et al.
(2014) found a shallower M*–MUV slope than what we find
here. One difference in methods is that rather than using our
hybrid approach of using individual high-mass galaxies and
stacks of lower-mass galaxies, Duncan et al. (2014) fit their
M*–MUV distribution over a wide stellar mass range down to

( )*
~M Mlog 8. As shown in their simulations (see their

Figure 5), stellar masses for galaxies with ( )*
<M Mlog 9 are

biased toward higher masses (a similar result to what we find
here), leading to their derivation of a shallower M*–MUV slope.
A shallower slope of the M*–MUV relation translates into a
steeper low-mass-end slope and a higher normalization of the

23 For the GSMFs of Stark et al. (2009), we apply correction factors for
nebular emission of ×1.1, 1.3, and 1.6 at =z 4, 5, 6 that are inferred in Stark
et al. (2013).
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GSMF: for a given number density of galaxies in bins of UV
luminosity (fL), the number density of galaxies in bins of
stellar mass (fM) is given by ( )f fµ dL dMM L and is thus
higher for a shallower M*–MUV slope. We do note, however,
that Duncan et al. (2014) did not use this M*–MUV relation to
measure their GSMF; they used a V1 max method. However, the
biases inherent in measuring masses from individual poorly
detected galaxies may still be responsible for their steeper low-
mass-end slope at z = 4. Moreover, their faint-end slope of the
UV luminosity function at ~z 4 is steeper (by ∼0.2) than that
from Finkelstein et al. (2015), on which our GSMF is based.

Unsurprisingly, differences are thus found in the evolution of
the low-mass-end slope with redshift. The Schechter fit for our
GSMF indicates steeper low-mass-end slopes. While González
et al. found a tentative steepening in the low-mass-end slope
with increasing redshift, the steepening is mild, from −1.43 at z
= 4 to −1.55 at z = 7. This is a combined effect of a steeper
faint-end slope of the updated UV luminosity function by
Finkelstein et al. (2015) used in our analysis and a shallower
M*–MUV relation found in this study (Section 4.2). Grazian
et al. (2015) and Duncan et al. (2014) both find a nearly
constant low-mass-end slope of a = -1.6 and a = -1.9,
respectively, and no evidence of the steepening that we
observe.

At lower redshifts of <z 4, the consensus is that the
characteristic mass does not change but the normalization
evolves (e.g., Marchesini et al. 2009), although the evolution of
the low-mass-end slope remains controversial as some find no
evolution (Marchesini et al. 2009) while others find a
steepening low-mass-end slope with increasing redshift (for a
single Shechter function fit; Kajisawa et al. 2009; Santini
et al. 2012; Ilbert et al. 2013; Tomczak et al. 2014). In this
study, at z 4, the observed evolution of the GSMF shows a
low-mass-end slope that steepens with redshift. Additionally,
our results tentatively confirm a roughly constant M*, with a
decreasing *f with increasing redshift, qualitatively similar to
results at lower redshift (e.g., Ilbert et al. 2013), though we
acknowledge that our relatively small volume prevents robust
constraints on M*.

6. STELLAR MASS DENSITY

To measure the stellar mass density at z = 4–8, we integrated
the best-fit Schechter function at each redshift from

( )*
< <M M8 log 13, an often adopted interval for stellar

mass density estimates at high redshift in the literature. Table 4
lists our estimates of the stellar mass density along with their
1σ uncertainties, calculated as the minimum and maximum
stellar mass densities allowed by the three-dimensional 1σ
contour of the Schechter parameters obtained in Section 5.2.
Figure 12 presents the evolution of the stellar mass density at
z = 4–8, alongside values compiled from the literature
(converted to a Salpeter IMF when necessary). Most data
points from the literature are taken from the compilation by
Madau & Dickinson (2014), with the exception of González
et al. (2011), which Madau & Dickinson (2014) corrected for
nebular emission. We instead show the uncorrected (original)
points together with Stark et al. (2013), which are the González
et al. values corrected for nebular emission. We also add the
recently published works of Duncan et al. (2014) and Grazian
et al. (2015). The error bars from most of the studies include
only random errors.

Our estimates of the stellar mass density at z = 4–5 are in
broad agreement with previous measurements within the
uncertainty, with the exception of Caputi et al. (2011) at
z = 5 and Duncan et al. (2014) at z = 4. Duncan et al. found a
∼0.5 dex higher stellar mass density at z = 4, a deviation at
1.9σ, mainly due to their steeper low-mass-end slope compared
to ours. The stellar mass density at ~z 5 from Caputi et al.
shows a value lower by about 0.8 dex than our estimates (a
deviation at 4.2σ), which is surprising, given that their median
redshift is slightly lower ( ~z 4.6). However, the sample
selection of Caputi et al. is very different from ours, such that
their sample is selected in the IRAC 4.5 μm band, which, while
more complete for very red galaxies, may underestimate the
incompleteness to star-forming galaxies.
At higher redshifts of z = 6–7, our measurements are

∼0.5–0.7 dex lower than those of González et al. (2011) and
Duncan et al. (2014) but show an excellent consistency with
the recent estimate of Grazian et al. (2015). The agreement in
the stellar mass density in spite of the difference in the
normalization of the GSMFs between our study and Grazian
et al. (2015) at z = 6 (their higher normalization compared to
ours) is a consequence of their shallower low-mass-end slope
by 0.4, which compensates the difference in the stellar mass
density due to their higher normalization when integrating the
GSMFs. As the GSMFs are less well constrained at these high
redshifts, our stellar mass density is only in mild tension with
other studies at z = 6 ( s<2 ). At z = 7, although the estimates
of the stellar mass density from different studies differ up to
0.7 dex, the increased error bars mean that these differences are
not currently statistically significant.
As the stellar mass is to first order the time integral of past

star formation activity, a comparison of the stellar mass density
with the time integral of the SFRD should yield similar values
if both estimates are accurate. At high redshifts, however, both
quantities have large uncertainties. The limiting factor in
determining an accurate SFRD is a determination of dust
attenuation, for which the observed UV luminosity density is
corrected, without a direct observation of the dust-obscured star
formation for most cases. Likewise, the uncertainties involved
in the determination of the stellar mass density (the systematics
in stellar mass estimates, the uncertainties on the abundance of
low-mass galaxies, etc.) can impact the stellar mass density and
potentially result in a mismatch between the integral of the
SFRD and the stellar mass density.
Figure 12 compares the time integral of the SFRDs with the

stellar mass density derived in this work. In Figure 12, the
black solid line indicates the parameterization by Madau &
Dickinson (2014) of the time integral of the SFRD.24 The black
dashed line shows the stellar mass density inferred by the
SFRD parameterization of Finkelstein et al. (2015,

( )µ + -zlog SFRD 1 4.3), which used updated values for the
SFRD at z = 4–8. Finally, the blue dashed line is from Oesch
et al. (2014), who suggested from a dearth of >z 8 galaxy
candidates that the SFRD appears to decline more rapidly at
>z 8 ( ( )µ + -zlog SFRD 1 10.9) than predicted from the

evolutionary trend in the SFRD at lower redshifts of
< <z4 8, though given the large uncertainty in the SFRD

estimates at >z 8, this claim currently remains controversial.
While at low redshift the expected stellar mass density from

the SFRD systematically exceeds the observed stellar mass

24 All the time integrals of the SFRDs presented in this paper account for a gas
recycling fraction of R = 0.27 for a Salpeter IMF.
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density by ∼0.3 dex (see Conroy 2013 for summary and
discussion on recent improvements), at < <z4 7 we do not
observe such a trend. In particular, with the updated SFRD
measurements from Finkelstein et al. (2015), the expected
stellar mass density from the SFRD is in good agreement with
our stellar mass densities within the uncertainties, which is a
somewhat remarkable result given the potential systematic
uncertainties in the measurements of both the SFRD and the
stellar mass density. In a scenario in which galaxies undergo
episodic star formation with a timescale longer than 100Myr
(the timescale traced by UV), they would have a UV-“dark”
phase, and thus the stellar mass density would be lower than
the time integral of the SFRD when both measurements are
based on the UV-“bright” sample. Therefore, the agreement
between the two estimates implies that on average the duty
cycle of star formation in relatively massive star-forming
galaxies is high and episodic accretion is not the dominant
mode of star formation. This is also hinted at in Section 4.1 and
is in agreement with other studies (e.g., Papovich et al. 2011).
Nonetheless, we cannot rule out short-term fluctuations (<100
Myr) in the SFH, which would still give an agreement between
the two quantities if measured from the rest-frame UV-selected
sample.

At z = 8, there is an intriguing steep drop in the stellar mass
density, which results in it being consistent with the steep
dropoff in the SFRD inferred by Oesch et al. (2014), although
still consistent with a smooth extrapolation from the SFRD
evolution from Finkelstein et al. (2015) and Madau &
Dickinson (2014). However, the constraints on the stellar mass
density at z = 8 are weak, due to the large uncertainties in the
M*–MUV relation, which is based on two stacked points
consisting of only 11 galaxies. Thus, a larger sample of z = 8
galaxies, combined with deeper IRAC imaging, is necessary to
robustly measure the z = 8 stellar mass density.

Our estimates imply that the stellar mass density has
increased by a factor of -

+10 8
30from z = 7 to z = 4, and 0.4%,

0.7%, 3.0%, and 3.5% of the present-day stellar mass density is
formed by =z 7, 6, 5, 4, respectively.

The inferred steep low-mass-end slope at high redshift
indicates that the contribution of low-mass galaxies below our
mass limit that we are missing (

*
<M 108 Me) to the total

stellar mass density may be significant if the extension of the
Schechter fit is valid at smaller masses than those probed by
our sample. Using our best-fit Schechter function parameters,
the stellar mass density at z = 4, 5, 6, and 7 would increase by
factors of 1.1, 1.1, 1.5, and 1.6, respectively, if the low-mass
end of the integral were ( )*

=M Mlog 6.

7. DISCUSSION

7.1. Physical Implications

Figure 9 shows the halo mass functions determined by
volume-averaging the Bolshoi snapshot mass functions
(Behroozi et al. 2013) over the same redshift ranges as those
defining our galaxy samples. Comparing the shape of the halo
mass function to that of our GSMF, we can see that the shapes
become more similar with increasing redshift. Specifically,
while at z = 4 the low-mass-end slope is clearly shallower than
the halo mass function, in contrast to some other studies that
found a low-mass-end slope scaling closely with the halo mass
function (see Section 5.4), the steepening of our observed
GSMF at low masses leads to a more similar slope at z 7.

This implies that whatever the physical cause of the
suppression of galaxy formation in low-mass halos is at z
4, it gradually becomes less relevant at z 7.
Our observations cannot constrain the characteristic mass M*

at z 6. This may imply that our volume is too small to
capture the needed numbers of rare, massive galaxies.
However, the absence of a distinct turnover may also imply
that the mechanisms suppressing the massive end of the GSMF
are less severe at high redshift. Over the past few years, a
number of studies have found that the exponential cutoff of the
UV luminosity function appears to weaken at z 7 (Bowler
et al. 2014, 2015; Finkelstein et al. 2015). Those observations
could have been interpreted in two ways: either as a result of a
decreasing efficiency for feedback processes (or other mechan-
isms of suppression), or as a reduction in the impact of dust
extinction. Because the GSMF is not primarily affected by dust
attenuation (modulo its impact on sample selection), a similar
observation with the GSMF would imply that the reduced
amplitude of an exponential cutoff is due to a cause other than
dust, potentially less efficient feedback.
The steepening of the low-mass-end slope with increasing

redshift we observe has an implication for the differential mass

Figure 12. Evolution of the stellar mass density. The stellar mass densities
were obtained by integrating the best-fit Schechter functions for our fiducial
GSMFs between

*
=M 108 Me and

*
=M 1013 Me (red circles). The error bars

indicate the minimum and maximum values of stellar mass density allowed by
the 1σ contour of the Schechter parameters. Small symbols are the compilation
of the stellar mass densities from the literature by Madau & Dickinson (2014)
(using their colors and symbols) along with recent estimates from Stark et al.
(2013), Duncan et al. (2014), and Grazian et al. (2015), listed in the legend. All
points and lines are converted to a Salpeter IMF. The solid black curve marks
parameterization of the time integral of SFRD from Madau & Dickinson (2014)
after gas recycling (R = 0.27) is accounted for, representing the prediction for
the stellar mass density. The stellar mass densities predicted for the two
scenarios suggested by Oesch et al. (2014) for the SFRD evolution at >z 8 are
denoted as the black and blue dashed lines (see Section 6 for more details). Our
stellar mass densities show a remarkable agreement with estimates of the stellar
mass density from the SFRD. Other colored solid curves are stellar mass
densities predicted from the three SAMs introduced in Section 7.1.1, and the
cyan hatched region denotes the 95% posterior range of the Lu et al. (2014)
model. For reference, we denote fractions of the local stellar mass density
measurement (Baldry et al. 2012) as horizontal dotted lines.
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growth of galaxies. Figure 13 shows the evolution of the
GSMF with redshift, presenting a steep increase of more than
one order of magnitude in number density of high-mass
galaxies ( ( )*

~M Mlog 10.5) over the redshift range
< <z4 7. On the other hand, for low-mass galaxies

( ( )*
~M Mlog 8), we detect only a mild evolution of a

factor of two increase between z = 7 and z = 4. This suggests
that the evolution of the low-mass-end slope between z = 7 and
z = 4 is driven by the buildup of intermediate- and high-mass
galaxies relative to low-mass galaxies, while the number
density of low-mass galaxies remains nearly constant, showing
the seemingly opposite of the “downsizing” seen at <z 4. For
a galaxy population that forms the star-forming main sequence
with a less-than-unity slope (e.g., Salmon et al. 2015), this
behavior is in contrast to what is predicted for the stellar mass
growth dominated by a pure smooth in situ star formation: in
such a scenario, the specific stellar mass growth rate for low-
mass galaxies is larger than for high-mass galaxies; thus, the
GSMF is expected to steepen with time. Therefore, the
observed flattening of the low-mass-end slope with time may
indicate that other processes, such as hierarchical merging or
low duty cycle in low-mass galaxies, must be important in the
physical processes governing the stellar mass buildup of
galaxies at high redshifts. A more detailed exploration of the
underlying physical processes can be undertaken by linking
galaxies to halos at each redshift and constraining the galaxy
stellar mass growth history across time. This can be done by
combining techniques such as abundance matching and the
mass accretion history of halos inferred from dark matter
simulations. We will investigate this in a follow-up paper and
show how this observed “upsizing” can be explained without
invoking any unplausible scenarios.

7.1.1. Comparison with Theoretical Studies

Figure 14 compares our GSMFs at < <z4 8 with the
predictions from galaxy formation models. First, we compare
our measurements with three SAMs described in Lu et al.
(2014) and briefly summarized in Section 4.3. These SAMs are
based on the same halo merger trees extracted from the Bolshoi
N-body simulations, but each employs different recipes for
modeling the baryonic physics and makes different predictions
for the observables. One difference is the different implementa-
tion for the outflow mass-loading factor due to stellar-driven
winds, which is the ratio of mass ejection to the star formation

rate. While these SAMs parameterize the outflow mass-loading
factor as the same functional form of a power law in halo
circular velocity, the values of parameters describing the
function—the normalization and the power-law slope (β)—

vary between models. This is because, while the velocity of
outflows can be constrained relatively well from observations
of blushifted interstellar absorption lines probing the material in
outflows, it is hard to place a tight constraint on the mass of the
outflowing material directly from observations (e.g., Heckman
et al. 1990; Martin 2005). Lu et al. (2014) compared the
observables predicted from these SAMs and found that the
low-mass-end slope of the GSMFs has a clear correlation only
with the parameters describing the outflow mass-loading factor
or the timescale for ejected gas to return to the disk and not
with other parameters. This suggests that the low-mass-end
slope of the GSMFs may be able to provide an alternative
constraint on the physics of outflows and can provide insights
into the processes responsible for the deficit of baryons in
galaxies relative to the cosmological baryonic fraction.
Figure 14 compares our GSMFs at z = 4–6 with the

SAMs.25 Focusing on the low-mass-end slope, the Lu model,
which implements the strongest outflows in low-mass galaxies
(i.e., set by a steep dependence of the mass-loading factor on
halo circular velocity of b- < < -3.3 9.9), predicts some-
what shallower low-mass-end slopes of ( )a = - 1.52 1.61
at = z 4 6 than observed, while the Croton model with the
weakest outflows in low-mass galaxies (b = 0) has steeper
slopes of ( )a = - 1.68 2.17 at = z 4 6. The Somerville
model with b = -2.25 displays the most similar low-mass-end
slopes to ours ( ( )a = - 1.64 1.93 at = z 4 6).26 How-
ever, none of the models match the observed GSMFs over the
entire redshift range. As noted by Lu et al. (2014), the three
models are consistent within the 1σ confidence level of the Lu
model, demonstrating the need for further constraints from
observations.
The comparison in Figure 14 also includes the results from

cosmological hydrodynamics simulations by Genel et al.
(2014), Choi & Nagamine (2012), and Dayal et al. (2014),
among which we limit our discussion here to the cosmological
smoothed particle hydrodynamics simulation Illustris (Genel
et al. 2014), in which energy-driven outflows are implemented
(b = -2.0; Vogelsberger et al. 2013). The simulation with a
dark matter mass resolution of ´6.26 106 Me was run in a box
∼(100 Mpc)3 and was tuned to reproduce the observed GSMF
at ~z 0 and the evolution of the cosmic SFRD. Figure 14
shows that the predictions from Illustris are consistent with our
observations at all masses at z = 6–7 and at ( )*

>M Mlog 9
(10) at z = 5 (z= 4). However, this model increasingly
overestimates the abundance of low-mass galaxies with the
discrepancy increasing from z = 6 to z = 4. Thus, while the
model is in qualitative agreement with our results in that it
predicts a steepening of the low-mass-end slope with increasing
redshift, the evolution in the model is milder than observed in
that the z = 4 low-mass-end slope is much steeper than we
observe. The simulation is also known to overpredict the
number density of low-mass galaxies at ~z 0 and also at

Figure 13. Redshift evolution of our fiducial GSMFs at z = 4–8. For reference,
the gray thick line denoting the ~z 0 GSMF (Baldry et al. 2012) is shown.

25 The lack of sufficient time resolution in the simulation hinders a reliable
construction of the SAM GSMF at z = 7–8. This problem will be solved in the
final release of the light cones, and predictions for the z = 7–8 GSMFs will be
presented in L. Y. Yung et al. (2016, in preparation).
26 We parameterize the SAM GSMF at ( )*

< <M M8.0 log 11.5 with a
single Schechter function.
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intermediate redshifts z = 1–2 (Genel et al. 2014). This
suggests that the recipes regulating the stellar mass growth via,
e.g., stellar feedbacks in simulations are still overly simplified.
The Illustris model does provide a good match at the low-mass
end to the observed GSMFs at z = 4 by Duncan et al. (2014)
and Grazian et al. (2015), but at z 5, the normalization of the
GSMF from the model is lower than theirs, in a better
agreement with ours. The good agreement in the high- and
intermediate-mass range between the model prediction from the

Illustris and our observed GSMFs may be attributed to the fact
that the model has an extra tuning to match the evolution of the
cosmic SFRD in addition to the local GSMF.
Lastly, we compare our GSMFs with the Munich SAM from

Clay et al. (2015). In its latest version of the model (Henriques
et al. 2015), they tuned their model parameters to reproduce the
observed evolution of the GSMFs and passive fractions of
galaxies at z 3. Among the model parameters, they found
that the problem of overproducing the number density of low-

Figure 14. Comparison of the observed GSMFs (red circles) and their best-fit Schechter functions (gray solid lines) in this work with theoretical predictions.
We show the results from a set of hydrodynamical simulations (the Illustris simulation [Genel et al. 2014], Choi & Nagamine 2012, and Dayal et al. 2014) and SAMs
(the Croton model, the Somerville model, the Lu model [described by Lu et al. 2014], and the Munich model [Clay et al. 2015]). The GSMFs predicted from
the SAMs are convolved with a lognormal distribution of redshift-dependent standard deviation σ = 0.2–0.4 dex to account for the measurement errors in stellar
mass.

20

The Astrophysical Journal, 825:5 (25pp), 2016 July 1 Song et al.



mass galaxies at >z 1, which has been known to be common
to many theoretical models, can be solved by implementing a
halo-mass-dependent timescale for the reincorporation of gas
ejected by winds onto the disk. In this new scheme, strong
winds and a long timescale for the reincorporation of ejected
material in low-mass galaxies delay their growth at high
redshift until the ejected gas is finally returned at lower redshift
( <z 2; Henriques et al. 2015). By applying the same model
parameters (except the dust model) at higher redshifts, Clay
et al. (2015) predicted the properties of galaxies at  z4 7,

which are compared with our GSMFs in Figure 14. As shown
in the figure, the agreement is remarkable: the model
predictions show an excellent agreement with our measure-
ments in the normalization, as well as in both the high- and
low-mass-end slopes, except that the model slightly over-
predicts the abundance of low-mass galaxies at ~z 4
(<0.2 dex at ( )*

=M Mlog 8.5). Especially, the normal-
ization of the model at z 6 is lower than that in other
observations but is consistent with ours. Understanding what
physical process in the model is responsible for the lower
normalization at z 6 would be interesting to investigate in
the future.

7.2. Uncertainties

Section 5.4 compared our GSMFs with other estimates from
the literature and found considerable discrepancy between
different studies. Although one of our two fields used here
(GOODS-S) was also used by Duncan et al. (2014) and
Grazian et al. (2015), and thus cosmic variance is not likely to
explain the discrepancy, none of the previous GSMF studies
includes cosmic variance in their error bars. We explore the
uncertainties in our GSMFs due to cosmic variance to see
whether it can resolve the observed discrepancies.

7.2.1. Cosmic Variance

Deep surveys, probing small volumes, are subject to an
uncertainty in the number density of galaxies due to underlying
large-scale density fluctuations (in addition to the general
Poisson uncertainty in the counting of objects). This fractional
variance in number density is referred to as “cosmic variance,”
given as the product of the dark matter cosmic variance (=f (z))
and galaxy bias (= ( )

*
f M z, ; the clustering of galaxies relative

to dark matter) squared. Cosmic variance can be quantified
empirically by comparing GSMFs from well-separated (uncor-
related) multiple fields. Because we have only two independent
fields, GOODS-S and GOODS-N, our data set is insufficient to
quantify cosmic variance, so we turn to other means to estimate
its potential impact on our results.
To get mass- and redshift-dependent estimates of cosmic

variance for our survey area, we used eight realizations of the
GOODS-S field from the SAM of R. S. Somerville et al. (2016,
in preparation). These SAMs are a reasonable tool for our
study, as they have been modified to match the luminosity
functions of Finkelstein et al. (2015) used here (the modifica-
tion was a removal of the birth-cloud component of the
dust attenuation; see Finkelstein et al. [2015] for more details).
The combined area coverage is about a factor of 40 larger
than that of the combined GOODS (N+S) CANDELS fields,
allowing us to extract volumes from these catalogs to estimate
cosmic variance. We approximate our survey geometry as
the two GOODS fields (two 10′ × 16′ fields), because the two
HUDF parallel fields are small (∼10 arcmin2) compared to
the GOODS-S field, and galaxies in these fields likely
correlate with those in the GOODS-S field given their close
proximity.
We cut the full GOODS-S SAM catalog into independent

subregions so that their shapes and areas are the same as a
single GOODS field (10′ × 16′). Then, we calculated the
number of galaxies as a function of stellar mass at each redshift
( ( )

*
N M z, ). The 1σ fractional uncertainty on the number
density, s Ncv , for the GOODS-S field was calculated by

Figure 15. Fractional uncertainty on the number density due to cosmic
variance, as a function of stellar mass for our survey area (approximated as two
10′ × 16′ fields for log(

*
M M ) > 8.5 [circles], and a single HUDF-sized

field at lower masses [star symbols]). The solid lines represent this quantity
estimated from the SAMs (R. S. Somerville et al. 2016, in preparation). Dashed
lines are values obtained from the tool getcv (Moster et al. 2011), and dotted
lines (plotted on the lower right side) are from quickcv (Newman &
Davis 2002; dark matter only, single value at each redshift).

Figure 16. Comparison of fractional 1σ uncertainties on the number densities
of galaxies at a given stellar mass, shown separately for contributions due to
cosmic variance, due to the uncertainties of the UV luminosity function and the
M*–MUV relation (which includes Poisson uncertainties), and due to Poisson
uncertainties alone. The Poisson errors were computed as the half-width of the
68% confidence interval using the recipe of Gehrels (1986).
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bootstrap resampling galaxies in a given stellar mass bin at
each redshift. Then, the uncertainty for the total survey volume
was calculated by adding the variance for two GOODS-sized
fields in quadrature and presented in Figure 15. For

( ) ( )*
<M Mlog 8.0 8.5 at z = 4 (z = 5–8), our galaxies

primarily come from the HUDF main field alone. Thus, for
those mass bins we estimated the cosmic variance uncertainty
for a single HUDF-sized field (2 4 × 2 4).

Figure 15 also shows calculations of cosmic variance using
the recipe of Moster et al. (2011) with the tool getcv and the
method of Newman & Davis (2002) with quickcv. The latter

gives lower limits on cosmic variance, as it is for dark matter
only and therefore does not account for the possible biased
clustering of galaxies relative to the dark matter. While the
former does include an estimate of galaxy bias as a function of
stellar mass, it depends on the extrapolation of the stellar mass–
dark matter halo mass relation inferred at lower redshifts
( <z 4) to higher redshifts, where the stellar mass–dark matter
halo mass relation is poorly constrained and the extrapolation
may not be valid (Behroozi et al. 2013). Our values for cosmic
variance computed from the SAMs are on average a factor of 2
smaller compared to those of Moster et al.

Figure 17. Galaxy stellar mass functions at z = 4–8 (from upper left to lower right). This figure is the same as Figure 9, only here showing gray shaded boxes which
represent the total 1σ random uncertainties including cosmic variance, the uncertainties of the UV luminosity function, and the uncertainties in the M*–MUV relation.
The best-fit Schechter functions derived with the increased uncertainties are shown as the black solid lines, demonstrating that there are negligible differences from the
original fit (red solid line).
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7.2.2. Comparison of Different Sources of Uncertainties

Figure 16 compares fractional uncertainties in the number
density of galaxies in the GSMFs due to cosmic variance to
those currently shown in Figure 9, which are due to the
combination of uncertainties on the UV luminosity function
(which includes Poisson errors) and on the M*–MUV relation.

In general, cosmic variance increases with stellar mass and
redshift. Specifically, for a given stellar mass, the larger galaxy
bias with increasing redshift leads to larger values for cosmic
variance as redshift increases. For a given redshift, as massive
galaxies are more clustered, cosmic variance increases toward
the massive end of the GSMF. For example, at z = 4, cosmic
variance reaches up to 40% (∼0.15 dex) for

( )*
=M Mlog 11.25, while for low-mass galaxies it decreases

to ∼7% (0.03 dex) for ( )*
=M Mlog 8.25. However, as the

stellar mass bins at the low-mass end of the GSMFs are
dominated by galaxies from the much smaller HUDF, the effect
of cosmic variance rises again to ∼20% at z = 4 and ∼50%
at z = 8.

Due to the small number of galaxies observed at the high- and
low-mass ends, cosmic variance for a field comparable to our
survey volume is not a dominant source of uncertainty in the
number density of galaxies in our GSMFs at the redshifts and
stellar masses probed in this study (Figure 16). While the
contribution of cosmic variance is comparable to the contribution
of Poisson noise to our uncertainty budget, our formal
uncertainty, which is the combination of the uncertainty of the
UV luminosity function and the M*–MUV relation, is a factor of
two larger than cosmic variance. Nonetheless, we examined the
impact of the added uncertainty due to cosmic variance on our
GSMF. We calculated the total 1σ uncertainties as the quadrature
sum of the two components, ( )( )s s s= + + -M LCV

2
LF
2 1 2. While

the increased uncertainties alleviate the tension between different
studies to some degree at the massive end, a statistically
significant level of discrepancy is still present at all stellar masses
and redshifts. This indicates that systematic uncertainties between
studies are the likely explanation for the observed differences, as
discussed in Section 5.4.

With the increased error bars, we re-fit a Schechter function
to our GSMFs with our MCMC analysis (Figure 17). From the
fit, we derived the best-fit Schechter parameters listed in
Table 5, which show a negligible difference from our fiducial
results. In summary, including the impact of cosmic variance
on our GSMFs does not change our finding of a steepening of
the low-mass-end slope of the GSMFs with increasing reshift.

8. CONCLUSIONS

This paper demonstrates the power of combining HST with
Spitzer to explore the stellar mass buildup of galaxies out to
~z 8. Our study is based on a sample of ∼4500 galaxies

selected via photometric redshifts over ∼280 arcmin2 in the
GOODS-South and North fields, where deep near-IR and mid-
IR imaging data exist from the CANDELS, HUDF, and
S-CANDELS surveys.

Our results improve on previous studies in three ways:

1. The three-layered depth of CANDELS leads to an
increased dynamic range, allowing us to constrain both
the high-mass end of the GSMF using data from wide-
area, shallow survey fields and the low-mass end using
data from deep fields.

2. Using the deepest available mid-IR data from the
S-CANDELS and the IRAC Ultra Deep Field 2010
surveys with accurate deblending photometry, we have
estimated stellar masses more robustly for low-mass
galaxies, and subsequently better constrained the low-
mass-end slope of the GSMF.

3. We have explored and minimized the systematic and
random uncertainties inherent in our stellar mass estima-
tion and determination of the M*–MUV relation via
simulations using SAMs, which highlight the need for a
comprehensive analysis to quantify and minimize the
systematics. With the aid of stacking, we can constrain
the slope of the M*–MUV relation to within<0.1 of the
intrinsic slope at z 6 (and also robustly constrain the
normalization when fixing the slope at z = 7 and 8),
lending credence to our GSMFs.

Our main results are summarized as follows:

1. Stellar mass and rest-frame UV absolute magnitude are
correlated at all redshifts for ( )*

M Mlog 10. The
best-fit M*–MUV relation has a slope marginally steeper
than a constant mass-to-light ratio, indicating a higher
M/L ratio for massive galaxies than for low-mass
galaxies. The slope remains constant over the redshift
range < <z4 6, while the normalization shows a weak
evolution toward a lower M/L ratio with increasing
redshift.

2. Taking advantage of the fact that the completeness of the
UV luminosity function is relatively well known, we
convolved the M*–MUV distribution with a published
rest-frame UV luminosity function to derive GSMFs. Our
new GSMFs show a clear trend of an evolving low-mass-
end slope toward a steeper value with increasing redshift,
from a = - -

+1.55 0.07
0.08 at z = 4 to a = - -

+1.95 0.18
0.18 at

z = 7, providing support for an extension of the trend that
is seen at lower redshift but has not been shown (or only
marginally hinted at) in previous studies at similar
redshifts. Conversely, we find no statistically significant
evolution in the characteristic mass, M*, although a larger

Table 5

Best-fit Schechter Function Parameters of Our Fiducial GSMFs Refitted with
the Uncertainties Including Cosmic Variance

z log M* α *f
(Me) (10−5 Mpc−3)

4 -
+10.49 0.26
0.33 - -

+1.54 0.07
0.08

-
+26.15 14.08
24.11

5 -
+10.95 0.38
0.56 - -

+1.69 0.08
0.09

-
+5.43 4.04
8.22

6 -
+10.73 0.30
0.30 - -

+1.90 0.10
0.10

-
+1.32 0.77
1.74

( -
+10.97 1.00
1.35) (- -

+1.89 0.11
0.14) ( -

+0.75 0.71
9.18)

7 -
+10.75 0.29
0.29 - -

+1.94 0.21
0.24

-
+0.52 0.40
1.23

( -
+11.08 1.31
1.24) (- -

+1.93 0.21
0.29) ( -

+0.21 0.20
6.20)

8 -
+10.72 0.30
0.29 - -

+2.16 0.42
1.06

-
+0.04 0.03
0.34

( -
+10.26 1.10
1.42) (- -

+1.99 0.56
1.13) ( -

+0.15 0.14
5.78)

Note. The quoted best-fit values and 1σ uncertainties of the Schechter
parameters represent the median and the central 68% confidence interval of the
marginal posterior distribution of each parameter obtained from our MCMC
analysis. The error bars include the uncertainties due to cosmic variance, as
well as the uncertainties of the UV luminosity function and the M*–MUV

relation. Results in parentheses were derived with a flat prior on M*.
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survey volume will be required to break the degeneracy
between M* and α.

3. Our GSMFs at < <z4 8 are indicative of differential
mass growth of galaxies, where the number density of
massive galaxies increases more rapidly than low-mass
galaxies, which is the opposite of the observed behavior
at lower redshifts.

4. Our estimates of stellar mass density (over
( )*

< <M M8 log 13) indicate a factor of -
+10 2
30

increase between z = 7 and z = 4, driven mainly by
the evolution in the normalization *f of the GSMF,
compensated partially by the evolving α toward a
shallower slope with decreasing redshift. Comparing
our stellar mass density with the time integral of SFRD
estimates at similar redshifts shows an excellent agree-
ment at < <z4 7.

While this study provides better constraints on the GSMF at
z = 4–8, the uncertainties of the GSMFs on both mass ends and
at the highest redshift probed in this study are still substantial.
Although the advent of JWST will make strong advances in this
area, the combination of ongoing and planned surveys targeting
wide or deep fields will allow us to extend this work to higher
and lower masses in the near future. Progress on the high-mass
end of the GSMF can also be made with ALMA by placing a
more robust constraint on the abundance of dusty star-forming
galaxies at high redshift that our current rest-frame UV
selection may be missing. On the low-mass end, the Hubble
Frontier Field data set, benefitting from magnification due to
gravitational lensing, enables us to observe galaxies that are
intrinsically fainter than the limits of current unlensed surveys.
Including the six “blank fields” located near the Hubble
Frontier Field clusters, all covered by Spitzer/IRAC to the
same depth as the S-CANDELS fields, will soon yield more
robust constraints on the evolution of the low-mass-end slope
of the GSMF.
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