
NOVEMBER 2001 1801K U M M E R O W E T A L .

q 2001 American Meteorological Society

The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation
from Passive Microwave Sensors

CHRISTIAN KUMMEROW,* Y. HONG,1 W. S. OLSON,# S. YANG,# R. F. ADLER,@ J. MCCOLLUM,&

R. FERRARO,& G. PETTY,** D.-B. SHIN,* AND T. T. WILHEIT11

*Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
1The Aerospace Corporation, Los Angeles, California

#Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, Maryland
@NASA Goddard Space Flight Center, Greenbelt, Maryland

&NOAA/NESDIS, Camp Springs, Maryland
**University of Wisconsin—Madison, Madison, Wisconsin

11Texas A&M University, College Station, Texas

(Manuscript received 28 November 2000, in final form 5 June 2001)

ABSTRACT

This paper describes the latest improvements applied to the Goddard profiling algorithm (GPROF), particularly
as they apply to the Tropical Rainfall Measuring Mission (TRMM). Most of these improvements, however, are
conceptual in nature and apply equally to other passive microwave sensors. The improvements were motivated
by a notable overestimation of precipitation in the intertropical convergence zone. This problem was traced back
to the algorithm’s poor separation between convective and stratiform precipitation coupled with a poor separation
between stratiform and transition regions in the a priori cloud model database. In addition to now using an
improved convective–stratiform classification scheme, the new algorithm also makes use of emission and scat-
tering indices instead of individual brightness temperatures. Brightness temperature indices have the advantage
of being monotonic functions of rainfall. This, in turn, has allowed the algorithm to better define the uncertainties
needed by the scheme’s Bayesian inversion approach. Last, the algorithm over land has been modified primarily
to better account for ambiguous classification where the scattering signature of precipitation could be confused
with surface signals. All these changes have been implemented for both the TRMM Microwave Imager (TMI)
and the Special Sensor Microwave Imager (SSM/I). Results from both sensors are very similar at the storm
scale and for global averages. Surface rainfall products from the algorithm’s operational version have been
compared with conventional rainfall data over both land and oceans. Over oceans, GPROF results compare well
with atoll gauge data. GPROF is biased negatively by 9% with a correlation of 0.86 for monthly 2.58 averages
over the atolls. If only grid boxes with two or more atolls are used, the correlation increases to 0.91 but GPROF
becomes positively biased by 6%. Comparisons with TRMM ground validation products from Kwajalein reveal
that GPROF is negatively biased by 32%, with a correlation of 0.95 when coincident images of the TMI and
Kwajalein radar are used. The absolute magnitude of rainfall measured from the Kwajalein radar, however,
remains uncertain, and GPROF overestimates the rainfall by approximately 18% when compared with estimates
done by a different research group. Over land, GPROF shows a positive bias of 17% and a correlation of 0.80
over monthly 58 grids when compared with the Global Precipitation Climatology Center (GPCC) gauge network.
When compared with the precipitation radar (PR) over land, GPROF also retrieves higher rainfall amounts (20%).
No vertical hydrometeor profile information is available over land. The correlation with the TRMM precipitation
radar is 0.92 over monthly 58 grids, but GPROF is positively biased by 24% relative to the radar over oceans.
Differences between TMI- and PR-derived vertical hydrometeor profiles below 2 km are consistent with this
bias but become more significant with altitude. Above 8 km, the sensors disagree significantly, but the information
content is low from both TMI and PR. The consistent bias between these two sensors without clear guidance
from the ground-based data reinforces the need for better understanding of the physical assumptions going into
these retrievals.

1. Introduction

Microwave remote sensing of clouds and precipita-
tion has been successfully used for a number of years
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and continues to improve as new sensors become avail-
able. The Tropical Rainfall Measuring Mission (TRMM)
carries the TRMM Microwave Imager (TMI), which is
similar to the existing Special Sensor Microwave Imager
(SSM/I) sensor but has an additional 10-GHz channel
and significantly better spatial resolution. The instru-
ment characteristics are described in Kummerow et al.
(1998). TRMM employs two distinct algorithms to ob-
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tain rainfall from the TMI instrument. The first algo-
rithm is designed to provide instantaneous rainfall rates,
the vertical structure of precipitation and the associated
latent heating. The algorithm, described here, is known
as the Goddard profiling algorithm (GPROF) even
though it now extends to researchers well beyond God-
dard Space Flight Center. It was first described in the
literature by Kummerow et al. (1996) but has undergone
significant improvements in the last five years.

The second algorithm, for reference, is based upon
the emission signatures of the 19.3- and 21.3-GHz chan-
nels to retrieve rainfall over radiometrically cold oceans.
It is a very robust emission-based algorithm that min-
imizes retrieval assumptions but in the process is re-
stricted to monthly mean oceanic rainfall accumulations
over 58-lat 3 58-long boxes instead of pixel-level re-
trievals. It has been used in the Global Precipitation
Climatology Project (GPCP) estimate (Huffman et al.
1997) as well as TRMM. The algorithm is based on the
technique developed by Change et al. (1993) and Wilheit
et al. (1991). Chang et al. (1999) compared results of
the technique from TMI and SSM/I data for six months
of 1998 and found no significant differences between
the two products.

In contrast to the emission algorithm described above,
GPROF aims to retrieve the instantaneous rainfall and
the rainfall vertical structure. This is made possible by
the response functions for different channels peaking at
different depths within the raining column. There are,
however, more independent variables within raining
clouds than there are channels in the observing system.
The solution to this problem therefore requires addi-
tional assumptions or constraints. Radiative transfer cal-
culations can be used to determine a brightness tem-
perature vector, Tb, given a vertical distribution of hy-
drometeors represented by R. An inversion procedure,
however, is needed to find the hydrometeor profile, R,
given a vector Tb. The present retrieval method has its
foundation in Bayes’s theorem. In Bayes’s formulation,
the probability of a particular profile R, given Tb can
be written as:

Pr(R | Tb) 5 Pr(R) 3 Pr(Tb | R), (1)

where Pr(R) is the probability with which a certain pro-
file R will be observed and Pr(Tb | R) is the probability
of observing the brightness temperature vector, Tb, giv-
en a particular rain profile R. The first term on the right-
hand side of Eq. (1) is derived using cloud-resolving
models (CRM). While the models are only reviewed
briefly, those aspects of the model that are important to
the current discussion are described in detail in section
1a. To obtain the second term on the right-hand side of
Eq. (1), radiative transfer schemes are used to compute
the brightness temperatures corresponding to the CRM
output. Together, the radiative transfer and the convo-
lution of these temperatures to the appropriate sensor
resolution scheme compose the forward modeling por-
tion of the retrieval algorithm, which is covered in sec-

tion 1b. The inversion scheme (section 1c) follows the
description of the forward problem. Section 2 is devoted
to a description of the algorithm improvements that have
been undertaken in the last five years. Section 3 com-
pares results from the operational algorithm to ground
and complimentary spaceborne observations, and sec-
tion 4 discusses the known shortcomings and future de-
velopment strategies.

a. The cloud-resolving models

During the past two decades, convective-scale models
have advanced sufficiently to study the dynamic and
microphysical processes associated with mesoscale con-
vective systems. The basic feature of these models is
that they are nonhydrostatic and include an explicit rep-
resentation of microphysical processes. The latter is crit-
ical in that it affects the computed brightness temper-
atures that must eventually be matched to the brightness
temperatures observed by the satellite. GPROF cur-
rently uses two cloud-resolving models in its database,
the Goddard Cumulus Ensemble Model (GCE) and the
University of Wisconsin Nonhydrostatic Modeling Sys-
tem (UW-NMS). A description of the GCE model can
be found in Tao and Simpson (1993). The cloud mi-
crophysics include a parameterized Kessler-type two-
category liquid water scheme (cloud water and rain),
and parameterized Lin et al. (1983) three-category ice-
phase schemes (cloud ice, snow, and graupel). The dis-
tributions of rain, snow, and graupel are taken to be
inverse exponential with respect to the liquid equivalent
diameter D such that

N(D) 5 N exp(2lD),0 (2)

where N(D) is the number of drops of diameter between
D and D 1 dD per unit volume, N0 is the intercept
parameter, and l is the slope of the distribution given by

0.25
pr Nx 0,x

l 5 . (3)1 2rqx

The intercept parameters, N0,x, used in the GCE model
for rain, snow, and graupel are 0.08, 0.04, and 0.04
cm24, respectively. The density rx of rain, snow, and
graupel are 1, 0.1, and 0.4 g cm23, respectively. Cloud
water and cloud ice are assumed monodisperse with a
diameter of 20 mm and a density of 1.0 and 0.917 g
cm23, respectively. The density of air is given by r,
while the mass density of the different hydrometeor spe-
cies is given by qx. The shapes of liquid and ice particles
are not specified by the model. They are assumed spher-
ical for the radiative transfer computations.

A stretched vertical coordinate (height increments
from 220 to 1050 m) with 31 grid points is used in order
to maximize the resolution of the lowest levels, with
the model top at 20 km for the simulations used by
GPROF. The GPROF algorithm makes use of three sep-
arate simulations from this model. Two simulations are
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initialized using Tropical Ocean and Global Atmosphere
Coupled Ocean–Atmosphere Response Experiment
(TOGA COARE) soundings, while a third one uses
Global Atmospheric Research Program (GARP) Atlan-
tic Tropical Experiment (GATE) soundings. The first
TOGA COARE simulation was run with a 1-km spatial
resolution over a 128 km 3 128 km domain. Eight
model time steps starting at 30 min and ending at 240
min are used. The second simulation has a 3-km spatial
resolution over a 384 km 3 384 km domain. Six model
steps are again used from 60 to 360 min in the simu-
lation. The GATE model has a 1.5-km horizontal res-
olution over a 96 km 3 96 km domain. Five model
times, from 30 to 184 min in the simulation, are used.

The second model used is UW-NMS model described
by Tripoli (1992a). Two simulations from this model
are used in the GPROF database. These are the Coop-
erative Huntsville Meteorological Experiment (COH-
MEX) simulation and the hurricane simulation as de-
scribed at length by Panagrossi et al. (1998). Aside from
differences in the dynamical assumptions in the model,
the UW-NMS considers four classes of ice: graupel,
pristine crystals, snow crystals, and aggregates that need
to be treated differently in the generation of the GPROF
cloud model database. A detailed description of these
ice categories and their interaction may be found in
Tripoli (1992b). Unlike the GCE, snow crystals as well
as aggregates have a size-dependent density given by

15
23r 5 (kg m ), (4)

0.6(2r)

where the liquid equivalent radius r is specified in cen-
timeters. In the hurricane simulation, snow and aggre-
gates are assumed to be a single category with a mean
radius of 1.65 mm. In the COHMEX simulation, these
categories are treated separately, with snow having a
mean radius of 0.5 mm and aggregates having a mean
diameter of 1.65 mm. The pristine ice category is as-
sumed to have a uniform mass of 1.5 3 1029 kg m23,
and the density is assumed to be 0.22 gm cm23. Graupel,
like the GCE model, follows a Marshall and Palmer
(1948) distribution but is assumed to have a density of
0.6 gm cm23 in this model.

The COHMEX simulation was carried out with a 1-
km spatial resolution over a 50 km 3 50 km domain.
Twelve time steps from 45 to 180 min in the simulation
are used. The hurricane model has 3.3-km spatial res-
olution over a domain of 205 km 3 205 km. Time steps
from 40 to 220 min are used. The time steps selected
in all the models are intended to represent a good sam-
pling of early, mature and decaying portions of each
storm. The somewhat larger number of COHMEX time
steps was intended to insure that enough models were
selected from this simulation that had a more limited
spatial domain.

b. The radiative transfer model

The observed microwave radiances at the top of the
atmosphere originate partly at the earth’s surface and
partly from atmospheric constituents. The contribution
from the earth’s surface depends primarily upon the na-
ture of the surface (i.e., water or land) and on the tem-
perature of that surface. Atmospheric constituents such
as oxygen, water vapor and cloud water act to absorb
and emit upwelling radiation. Large precipitation drops
further act to scatter upwelling radiation. Because of the
varied, and often complex nature of each of these com-
ponents, it is necessary to first understand the radiative
properties of each of these components before attempt-
ing to understand the propagation of radiation through
the medium.

The emissivity « of a surface at a particular frequency,
polarization, and incidence angle is determined by the
complex index of refraction of the surface as described
by the Fresnel relations (Jackson 1962), as well as the
surface roughness. Ocean and land surfaces must be
treated separately. Over ocean, the index of refraction
at the TMI frequencies depends primarily upon the sur-
face temperature. In the current model, the salinity is
taken to be constant at 34.5 ppb. The surface roughness
is typically related to wind-driven waves and thus is
related to the near-surface wind speed. While the effects
of temperature and salinity are well understood, the ef-
fect of surface roughening is much more uncertain. In
this study, the model of Wilheit (1979) is used to com-
pute the ocean emissivity as a function of near-surface
wind speed. While this model provides a satisfactory
first-order correction to account for wind-induced
roughening, it is recognized that this is an area of on-
going research that requires attention. However, it is not
thought to be a dominant source of uncertainty at this
time. Over land, the emissivity depends primarily upon
the soil moisture but also on the soil and vegetation
types. The surface emissivity is therefore assumed to
be 0.9 corresponding to moderately dry, bare soil, and
modified with a variable fraction of water-covered sur-
face (between 0% and 20%) to represent various soil
moistures. The very indirect way in which soil moisture
enters into the rainfall retrieval over land has not war-
ranted improvement of this parameterization to date.

Among atmospheric absorbers of microwave radia-
tion, water vapor, molecular oxygen, and cloud water
must be considered. Water vapor has a weak pressure-
broadened absorption line at 22.235 GHz and a strong
line at 183 GHz. The 22.235-GHz line is of special
significance since all sensors currently used for precip-
itation make a measurement near this line (SSM/I at
22.235 GHz; TMI at 21.3 GHz, and AMSR at 23.8
GHz). Oxygen displays a strong complex of lines at 60
GHz as well as a single transition line at 118 GHz. The
atmosphere is relatively clear in the window regions
between these absorption lines. In this study, both the
water vapor absorption and the oxygen absorption are
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calculated from Liebe et al. (1993). Nonprecipitating
cloud particles of 20 mm are specified in the cloud mod-
els. This dimension is much smaller than typical wave-
lengths under consideration (3.5 mm to 3 cm), thus per-
mitting the use of the Rayleigh approximation. The ab-
sorption cross section in this case depends only upon
the dielectric constant of the liquid and upon the third
power of the diameter of the cloud droplets. Thus, the
absorption of the cloud water is simply proportional to
the total mass of cloud water and is independent of the
droplet size distribution. Scattering is negligible in this
limit.

As cloud drops coalesce into raindrops, their dimen-
sions can get comparable to microwave wavelengths and
the Rayleigh approximation becomes invalid. If parti-
cles are assumed spherical, Mie theory may be em-
ployed. For shapes other than spheres, solutions like the
Extended Boundary Condition Method (Barber and Hill
1990), or the discrete dipole approximation (Draine and
Flatau 1988) must be employed. The difficulties intro-
duced by any of these methods are threefold. The first
is due to scattering parameters exhibiting resonance fea-
tures that effectively increase the scattering efficiency
beyond the third power of the drop diameter. This causes
the volume scattering characteristics to depend upon the
drop size distribution. The second difficulty introduced
by the larger size parameters is that scattering becomes
important. In the case of 85 GHz, ice scattering from
precipitation-size hydrometeors becomes the dominant
characteristic. Last, it must be mentioned that compu-
tationally these codes are all far more intensive than the
closed-form expression of the Rayleigh approximation.
The operational version of GPROF uses Mie theory to
compute all single particle scattering properties. This,
as noted above, implies that all particles are assumed
spherical—even when this is known not to be the case.
Assuming spherical particles for rainfall introduces er-
rors in the extinction cross section and asymmetry pa-
rameter that can account for up to 4 K at very heavy
rainfall rates at 19 GHz, with smaller maximum errors
at 10 GHz and slightly larger errors at 37 and 85 GHz.
Ice particles are more complicated yet, with unknown
particle sizes, densities, and shapes all affecting the up-
welling brightness temperatures. These are currently
also treated as spheres despite evidence that oriented
ice particles can cause polarization differences of up to
10 K in stratiform regions associated with strong con-
vection. Last, the effect of melting particles is currently
not considered by GPROF because, once again, there
is not enough observational evidence to suggest how
the bright band should be modeled at this time. Recent
studies by Bauer et al. (1999) and Olson et al. (2001a)
begin to address this issue.

Once the radiative properties of the surface and at-
mosphere are known or assumed, it is straightforward
to apply radiative transfer techniques to compute the
brightness temperatures emerging at the top of the at-
mosphere. A one-dimensional Eddington approximation

is currently being used in the operational version of
GPROF. The details of the Eddington approximation, as
well as its accuracy (1–2 K for the present application),
are summarized by Kummerow (1993). While one-di-
mensional models can be constructed to better account
for the inhomogeneity of variability in adjacent cloud
model profiles and three-dimensional methods have
been available for a number of years now (e.g., Petty
1994; Roberti et al. 1994), these are not used in the
operational version. Sensitivity tests have shown only
minor impacts on the retrieved rainfall (;1%), and it
was felt that the faster one-dimensional methods would
be more practical at this time.

When high-resolution brightness temperature fields
have been calculated using either plane parallel or Mon-
te Carlo methods, it is necessary to simulate the radi-
ances as they would be measured from a downviewing
microwave sensor. For simplicity, GPROF uses the pub-
lished resolution of each channel (as defined by the 3-
dB gain) to determine the number of cloud model grid
elements that must be averaged to best match the res-
olution of each channel. Sensitivity studies show that
the more precise convolution with the exact antenna
gain function has little effect upon the retrieved rainfall
rates. The effects of deconvolution schemes that in-
crease the spatial resolution of the observed brightness
temperatures at the expense of some additional noise
(Robinson et al. 1992; Farrar and Smith 1992) have not
been examined in the context of GPROF.

c. The retrieval procedure

The retrieval procedure follows the Bayesian ap-
proach outlined in Kummerow et al. (1996). The vector
x is used to represent all of the physical quantities to
be retrieved in the inversion method, and the vector y0

represents the set of available sensor observations. Fol-
lowing Lorenc (1986), it is assumed that the ‘‘best’’
estimate of x, given the set of observations y0, is the
expected value,

E(x) 5 · · · xp df (x) dx, (5)EE E
where the probability density function pdf(x) is pro-
portional to the conditional probability that x represents
the true earth–atmosphere state, xtrue, given that y is
equal to the observed y:

pdf(x) } P(x 5 x | y 5 y ).true 0 (6)

The expected value E(x) in Eq. (5) is known as the
minimum variance solution for x. The multiple integral
signs in Eq. (5) indicate integration over all dimensions
of the state vector x. Using Bayes’s theorem (again fol-
lowing Lorenc 1986), Eq. (6) may be rewritten as

pdf(x) } P(y 5 y | x 5 x ) 3 P(x 1 x )0 true true

} P |y 2 y (x) , «| 3 P (x 5 x ), (7)OS 0 s AS true
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where POS is equivalent to the probability that the set of
observations y0 deviate from the set of simulated obser-
vations ys(x) by a certain amount, given the earth–atmo-
sphere state x, and « is the uncertainty introduced by the
forward modeling assumptions discussed in section 2b. In
future discussions, POS will be called the probability of the
observational deviation, and PAS is the a priori probability
that x is the true state of the earth–Atmosphere.

If it is further assumed that the errors in the obser-
vations and the simulated observations are Gaussian,
uncorrelated, and with zero mean, then the probability
of observational deviation can be expressed as

P [y 2 y (x)]OS 0 s

T 21} exp{20.5[y 2 y (x)] 3 (O 1 S)0 s

3 [y 2 y (x)]}, (8)0 s

where O and S are the observation and model error
covariance matrices, respectively. Substituting for POS

in Eq. (7) using Eq. (8) and then using the resulting
expression to substitute for pdf in Eq. (5), the final ex-
pression for the minimum variance solution is

T 21x exp{20.5[y 2 y (x)] (O 1 S) [y 2 y (x)]}0 s 0 sE(x) 5 · · · P (x 5 x ) dx, (9)EE E AS trueA

where A is the normalization factor

T 21A 5 · · · exp{20.5[y 2 y (x)] (O 1 S)EE E 0 s

3 [y 2 y (x)]}P (x 5 x ) dx.0 s AS true

(10)

The approach utilized in the present study is to make

an approximate evaluation of the integral form of the
minimum variance solution, Eq. (9). A sufficiently large
database of atmospheric profiles and associated bright-
ness temperatures is generated using output of the cloud-
resolving models (section 2a) in conjunction with the
forward passive microwave radiometer model (section
2b). Using the large atmospheric profile–radiative da-
tabase, the integral form of the minimum variance so-
lution, Eq. (9) can be approximated by

T 21exp{20.5[y 2 y (x )] (O 1 S) [y 2 y (x )]}0 s j 0 s jÊ(x) 5 x , (11)O j Aj

where A is the normalization factor:
T 21A 5 exp{20.5[y 2 y (x )] (O 1 S)O 0 s j

j

3 [y 2 y (x )]}. (12)0 s j

The integrals in Eqs. (9) and (10) are replaced by the
summations in Eqs. (11) and (12) over all model sim-
ulated profiles (xj) in the atmosphere–radiative model
database. Here the main assumption is that profiles in
the model database occur with nearly the same relative
frequency as those found in nature, or at least with the
same frequency as those found in the region where the
inversion method is to be applied. Under this assumption
the weighting by PAS(x 5 xtrue) in the integral form [Eq.
(9)] is represented simply by the relative number of
occurrences of a given profile type xj in the summation
[Eq. (11)]. Since the profiles are simulated using a model
that incorporates most relevant physical processes of the
earth and atmosphere, the relative abundance of profiles
of a certain type should be roughly the same as those
of naturally occurring profiles if 1) the atmospheric
model is used to simulate cloud development over the

range of environments that are observed in the region
of interest; 2) each cloud model simulation is sampled
at regular time intervals, such that no particular stage
of cloud or cloud system development is favored over
another; and 3) the model is sufficiently complete as to
yield realistic simulations. The degree to which a break-
down of these assumptions can cause random and sys-
tematic errors is a topic of current research.

2. Algorithm improvements

Figure 1 shows a comparison of rainfall rates derived
before (version 4) and after (version 5) improvement of
the GPROF algorithm. As can be seen from Fig. 1, the
general patterns are quite similar but the latest version
has much better defined convective areas and much less
rainfall in the stratiform regions between rain bands than
its predecessor. Qualitatively, this agrees much better
with the rainfall structure derived from the precipitation
radar (bottom panel). Validation of rainfall rates and
accumulations, as will be seen in the subsequent section,
yields often contradictory information. Changes to the
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FIG. 1. Comparison of the TRMM GPROF algorithms: (top) the
at-launch algorithm (version 4), (middle) the current product (version
5), and (bottom) current PR estimated rainfall.

algorithm were therefore motivated primarily by phys-
ical arguments rather than agreement with validation
data. A list of improvements, as well as the rationale
for undertaking these improvements, is presented next.

a. Improved freezing level over oceans

While already incorporated in version 4 of the al-
gorithm, a change in the freezing-level height deter-
mination is included here because it represents a sig-
nificant change from the algorithm description pub-
lished previously. Early versions of the GPROF algo-
rithm (pre-1998) made use of climatological freezing
level data in order to choose from the appropriate subset
of a priori cloud models (those matching the presumed
freezing level). This caused the algorithm to signifi-
cantly overestimate the rainfall at mid- and high lati-
tudes. An example of this overestimation occurred dur-
ing the Third WetNet Precipitation Intercomparison Pro-
ject (PIP-3) intercomparison (Adler et al. 2000). The
cause for this overestimation was the very low freezing
level prescribed by the climatological data at high lat-
itudes during winter conditions. Comparisons between
radar-derived freezing levels and those prescribed by
climatological data were used to verify that freezing
levels within raining systems were often significantly
higher than that prescribed by climatological data. The
freezing-level height determined from the microwave
sensor itself, as described by Wilheit et al. (1991), and
subsequently validated (Bellows 1999) was therefore
implemented. The modified algorithm reduced the ar-
tificially high rainfall at high latitudes to values that
were comparable to both the emission algorithm de-
scribed earlier as well as available climatological da-
tasets of rainfall.

b. Convective–stratiform discrimination

The most significant improvement of GPROF, as men-
tioned at the outset, is an improved treatment of the
convective–stratiform separation by the algorithm. This
classification is done prior to the inversion. The area
fraction of convection within the TMI footprint, derived
from the brightness temperature data, is then treated as
an additional parameter that needs to be matched in the
Bayesian solution. The method used to calculate the area
fraction of convection within a TMI footprint draws
upon measures of the local horizontal gradients (or tex-
ture) of brightness temperatures as well as the polari-
zation of 85.5-GHz scattering signatures; see Olson et
al. (2001b). To date, the convective–stratiform discrim-
ination is applied only over oceans where the true
Bayesian scheme can be applied. There is some evidence
that it is also a useful parameter over land, but studies
are still ongoing.
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1) TEXTURE-BASED ESTIMATES OF CONVECTIVE

FRACTION

The basis of this technique is the common observation
that, in convective regions, which are characterized by
locally strong updrafts and downdrafts, the horizontal
variations of liquid and ice-phase precipitation are rel-
atively large. In contrast, stratiform regions are char-
acterized by relatively weak and horizontally uniform
updrafts and downdrafts, and these are associated with
fairly uniform distributions of precipitation.

The difference of the horizontal texture of convective
and stratiform precipitation fields was first exploited by
Churchill and Houze (1984), who identified convective
centers in horizontal radar scans using the local maxi-
mum of reflectivity as an indicator. Similarly, Hong et
al. (1999) related local maxima of emission and scat-
tering in SSM/I brightness temperature imagery (asso-
ciated with local maxima of liquid and ice-phase pre-
cipitation, respectively) to the areal fraction of convec-
tion within a footprint. The method was calibrated using
collocated observations from the TOGA COARE ship-
board radars. The relationships between emission and
scattering texture and convective fraction were gener-
alized to observations of the TMI by synthesizing TMI
radiances using the radar data in combination with
cloud-resolving model simulations.

2) POLARIZATION-BASED ESTIMATES OF

CONVECTIVE FRACTION

A second method for estimating convective fraction
from passive microwave data was spurred by analyses
of SSM/I observations by Spencer et al. (1989) and
Heymsfield and Fulton (1994a,b). These authors found
significant differences, on the order of 5 K or greater,
between the vertically and horizontally polarized 85.5-
GHz brightness temperatures in stratiform rain regions
over land, whereas regions of strong convection were
nearly unpolarized at 85.5 GHz. Although the physical
basis of these polarization differences has not been ver-
ified, the aforementioned authors hypothesized that pre-
cipitation-sized ice particles such as snow or aggregates
would tend to become oriented as they fall through the
relatively weak updrafts or downdrafts of stratiform rain
regions, resulting in preferential scattering in the hori-
zontal polarization. The more turbulent, vigorous up-
drafts of convective regions would cause ice hydro-
meteors to lose any preferred orientation, leading to
similar scattering signatures in both polarizations. This
hypothesis is supported by recent radiative modeling
studies by Petty and Turk (1996), Schols et al. (1997),
and Haferman (1999).

Polarization signatures in SSM/I observations were
related to the areal fraction of convection within a foot-
print by Olson et al. (1999), who used these to constrain
GPROF retrievals of precipitation and latent heating.
The method was later refined to account for the increase

of polarization with scattering at 85.5 GHz in stratiform
areas (Olson et al. 2001b).

3) MERGER OF TECHNIQUES

The texture and polarization-based estimates of con-
vective area fraction within a TMI footprint are merged
by taking a weighted average of the estimates. The
weighting is specified as the inverse of the error variance
of each of the estimates, which allows for an optimal
combined estimate (Daley 1991). An estimate of the
error variance of the texture-based convective fraction
is based upon previous intercomparisons of TMI-based
convective fractions and coincident ground-based radar
observations. The authors of this study found greater
uncertainty in convective fraction estimates when there
was a mixture of convective and stratiform precipitation
within the radiometer footprint, while in the middle of
largely convective or stratiform regions the uncertainty
was reduced. From theoretical considerations, the error
of the polarization-based convective fraction estimate is
inversely proportional to the 85.5-GHz scattering de-
pression. Formulas for the convective fraction estimates,
error variances, and the combined estimate of convec-
tive area fraction may be found in Olson et al. (2001b).

4) ADDITION OF THE ‘‘CONVECTIVE PROFILE’’ TO

THE SEARCH CRITERIA

One shortcoming of earlier versions of GPROF that
became apparent immediately after the launch of the
TRMM satellite was the artificially large extent of heavy
precipitation surrounding convective cells. This is ap-
parent in Fig. 1. In contrast, radar observations of or-
ganized precipitation systems typically show a strong
gradient of rain intensity, with the highest rain rates
associated with convection but falling off quickly in the
transition and ‘‘purely’’ stratiform regions.

The apparent positive bias of early GPROF rain rates
in regions surrounding convection was attributed to two
factors. First, theoretical studies indicate greater micro-
wave emission from horizontally uniform precipitation
fields than from horizontally inhomogeneous fields, for
a given footprint-averaged rain rate. This is known as
the ‘‘beamfilling’’ problem and has been discussed in
the literature (Wilheit et al. 1991). Because of the al-
iasing caused by the inhomogeneity of rainfall within a
satellite footprint, the mean rain rate associated with a
given set of brightness temperatures in the GPROF
cloud model database tends to be much lower for the
subset of simulated stratiform footprints relative to the
mean rain rate associated with the subset of convective
footprints. Since the database contains a mixture of sim-
ulated convective and stratiform footprints, a search
based upon brightness temperature data alone would
tend to yield a positive bias of rain estimates in strat-
iform regions and a negative bias of rain estimates in
convection.
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FIG. 2. Comparison of 30-min mean mesonet estimates with estimates from a corresponding
TMI overpass around 0815 UTC 12 Mar 1999. Rainfall rates are in millimeters per hour.

A second factor is related to the statistical distribution
of rain rates in the GPROF database. Most of the cloud
model simulations in the current database favor con-
vection; that is, horizontally extensive stratiform rain
regions are not represented in proportion to their oc-
currence in nature. This means that stratiform rain
events represented in the cloud model database typically
occur in close proximity to convection. The reasons for
this ‘‘convective bias’’ may be due to deficiencies in
the current cloud model microphysical schemes or to

the fact that the environmental forcing prescribed in the
model simulations (e.g., vertical wind shear and the na-
ture of the dynamic forcing) is not favorable for the
development of extended stratiform regions. The net
effect of this statistical bias is that even if the search
routine in GPROF is constrained to consider only sim-
ulated stratiform footprints in the database, these will
likely come from regions in close proximity to convec-
tion where rain rates are typically far less homogeneous
than those at greater distances from convection.



NOVEMBER 2001 1809K U M M E R O W E T A L .

To help to reduce the aforementioned biases associ-
ated with stratiform rain, a filter is applied to derive the
horizontal profile of maximum convective area fraction
within three scan lines (about 40 km) of the footprint
being analyzed by GPROF (see Olson et al. 1999). The
search method in GPROF is also modified to identify
simulated footprints in the cloud model database that
match not only the observed radiance data but also the
observed profile of maximum convective fraction.
Therefore, if a stratiform footprint is analyzed by
GPROF, and the nearest ‘‘convective’’ footprint in the
TMI swath is 30 km distant, then the search routine in
GPROF is modified to look for a similar stratiform foot-
print in the cloud model database. Mathematically, the
additional search criteria take the form of an additional
constraint term in the arguments of the exponentials in
Eqs. (11) and (12).

The result of this modification to GPROF is a sig-
nificant decrease of precipitation in stratiform areas, es-
pecially in those areas far from convection. The result-
ing vertical hydrometeor profiles also show the correct
behavior, with a general absence of cloud liquid water
and evidence of rain evaporation below the freezing
level in stratiform regions.

c. Use of emission and scattering indices

The Bayesian methodology requires that each channel
be weighted by the inverse of the variance or uncertainty
in that channel. The uncertainty is the sum of the un-
certainty in the measurement (sensor noise, NEDT) plus
the uncertainty in the forward model. The latter is not
well defined at this time, as it depends upon errors in
the cloud dynamical model, the radiative transfer meth-
ods, or linkages between them (e.g., the spherical drop
assumption). Version 4 of GPROF assigned equal
weights to all sensor channels. Version 5 uses the po-
larization-based emission and scattering indices as de-
fined by Petty (1994). The indices have the advantage
in that they isolate the signal coming from the rain cloud
itself from the background variability and they are
monotonic functions of the rainfall emission or ice scat-
tering intensity. They also decouple the effects of scat-
tering from emission–attenuation effects, thus facilitat-
ing the discrimination of frozen hydrometeor from liq-
uid precipitation and cloud. As such, they are better
related to the uncertainties needed by the inversion
method that should lead to improvements in the future.
At present, however, little progress has been made in
defining the uncertainties. The emission indices and the
convective–stratiform (C–S) classification vary between
0 and 1 and are given equal weight. Scattering indices
measure the net scattering signal coming from the cloud
and vary between zero, no scattering, and ;150 K in
very strong thunderstorms. Scattering indices are nor-
malized by a factor of 100, so that scattering indices
have approximately the same magnitude as the other
indices. The covariance matrix [O 1 S in Eq. (11)] in

this formulation is therefore replaced by a diagonal 7
3 7 matrix for the four emissions, two scattering and
the convective–stratiform index. Because cross corre-
lations among indices are not well understood, partic-
ularly from the modeling perspective, they are currently
ignored. The value of the matrix elements representing
the brightness temperature uncertainties is currently set
at an equivalent of approximately 8 K for all elements.
Work is under way to improve upon this initial frame-
work, but the value of 8 K was chosen empirically as
the smallest value before the algorithm begins to find
no matches between observations and database simu-
lations and thus becomes artificially noisy.

d. Use of the NESDIS operational rainfall
relationship over land

The TMI GPROF land rainfall algorithm was merged
with the National Environmental Satellite, Data, and
Information Service (NESDIS) operational algorithm.
While version 4 routines are still used to quality control
data, the NESDIS operational rainfall relations were im-
plemented in version 5. Since rainfall over land depends
upon the scattering signature only, not enough radio-
metric information exists to justify the physical inver-
sion carried out over oceans. As such, rainfall relations
over land need to be calibrated using independent mea-
sures of precipitation. In addition, a great deal of care
must be used to screen a multitude of cold surfaces,
which, under the right conditions, can be easily mis-
interpreted as rainfall. Implementing the broadly used
NESDIS algorithm over land was intended to reduce
the number of parallel algorithms in order to concentrate
the improvement efforts. Incorporating the algorithm
into the GPROF structure was done in order to facilitate
access to rainfall products for users needing rainfall over
both land and ocean.

1) RAINFALL RELATION

GPROF was modified to produce rainfall rates similar
to those of the NESDIS operational rainfall algorithm
(Ferraro 1997). The basis of the NESDIS algorithm
comes from the work of Grody (1991), who developed
a global, empirical, scattering index (SI) using the 19-,
22-, and 85-GHz vertically polarized SSM/I channels.
Ferraro and Marks (1995) calibrated the SI with ground-
based radar rainfall estimates to produce instantaneous
rain rates. The form of the rainfall rate estimation equa-
tion is

1.9468RR 5 (0.005 13) 3 (SI) , (13)

where RR is in millimeters per hour, and SI is defined
by:

SI 5 (451.9 2 0.044Tb 2 1.775Tb19V 22V

21 0.005 75Tb ) 2 Tb , (14)22V 85V
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where Tb denotes the brightness temperature and the
subscript refers to the appropriate channel.

The NESDIS algorithm was reconstructed within the
GPROF framework by restricting the models in the a
priori database to only those that fit the predetermined
regression line established in Eqs. (13) and (14). An
advantage of this procedure is that once the regression
is established, it can easily be applied to other sensors.
The relations of Eqs. (13) and (14) were derived for the
SSM/I sensor. The appropriate TMI database was then
computed using the radiative transfer simulations with
the same cloud model output as for the SSM/I database,
accounting for the changes in frequency and resolution
between the two sensors. Because the differences be-
tween the brightness temperatures at 21 and 22 GHz
over land are very small, these can be interchanged
when adopting the NESDIS algorithm for use with the
TMI.

The difference between the 21V and the 85V bright-
ness temperatures is used to compare the satellite bright-
ness temperatures with those of the vertical hydrometeor
profile database. In GPROF version 4, the only criterion
used to select profiles was the horizontally polarized 85
GHz. While it is generally not beneficial to use low-
frequency channels over land because of the variable
emissivity of the land surface, it is possible to take the
temperature of the land surface into account by using
a combination of low-frequency channels to determine
the background temperature field. The NESDIS algo-
rithm uses a combination of the 19- and 21-GHz chan-
nels to accomplish this goal as seen in Eq. (14). The
vertical polarization is used to reduce the sensitivity to
emissivity changes over land areas (Grody 1991).

2) IMPROVED COLD SURFACE SCREENING

In addition to modifying the estimated rainfall rates,
however, a new procedure was developed to better clas-
sify (‘‘screen’’) each land pixel as ‘‘raining,’’ ‘‘non-
raining,’’ or unclassifiable (‘‘indeterminate’’). GPROF
version 4 used the screening methodology of the God-
dard scattering algorithm GSCAT2 (Adler et al. 1994).
As shown in Ferraro et al. (1998), there are many viable
screening techniques available for use with the SSM/I.
The new algorithm incorporates the best features of the
NESDIS and GSCAT2 screening methodologies.

SSM/I data were used for a comparison of the NES-
DIS and GSCAT2 screening procedures. The conclu-
sions from this comparison should apply to both the
SSM/I and TMI algorithms, because both simulated and
actual data were used to show that the slight differences
in frequency do not result in significantly different
brightness temperatures for the SSM/I and TMI. The
GSCAT2 screening procedure appears to be more glob-
ally robust, because there are regions and times when
the NESDIS algorithm incorrectly classifies melting
snow as rain, while the GSCAT2 screening results in
an indeterminate classification. Thus, the GSCAT2

methodology with a new postprocessing procedure is
used in version 5.

Visual inspection of estimated rainfall fields shows
that GSCAT2 often makes indeterminate classifications
next to legitimate rainfall areas, which suggests that
pixels with rain are classified as indeterminate. Some-
times the indeterminate pixels are even surrounded by
rain. To help to resolve these situations, a postprocessing
step that uses spatial information to reclassify indeter-
minate pixels was added. This postprocessing consists
of searching the vicinity of the indeterminate pixels and
if there is a consensus of either rain or no-rain classi-
fications in the vicinity, the indeterminate pixels are
reclassified to match the surrounding pixels.

Figure 2 illustrates the benefit of using spatial infor-
mation to reclassify indeterminate pixels. The figure
clearly shows that large areas that were previously clas-
sified as indeterminate are now classified as raining.
This agrees qualitatively with the Oklahoma Mesonet
data (Brock et al. 1995). The mesonet consists of 113
rain gauges throughout Oklahoma. The rain gauge data
within each 0.58 are averaged to produce the means
shown in the figure. No estimates were made in four
grid boxes because of the lack of rain gauges at these
locations. The mesonet data support the version-5 non-
zero rain estimates that are not made using the GSCAT2
screen because of indeterminate classifications.

A sample comparison of instantaneous rainfall esti-
mates from SSM/I and TMI overpasses occurring at
approximately the same time on 8 January 1999 is
shown in Fig. 3. As with other days tested, there is very
close correspondence between the NESDIS SSM/I
(SSM/I SI) algorithm estimates produced from Eqs. (13)
and (14) (top panel), the SSM/I GPROF rainfall esti-
mates (middle panel), and the TMI GPROF (version 5)
estimates (bottom panel). In addition, the screens de-
veloped using SSM/I data show even better performance
with the TMI data, because there are fewer indetermi-
nate classifications. This is due to the reduced inho-
mogeneity within the smaller TMI fields-of-view.

3. Comparisons with independent rainfall data

Because of the difference in the underlying physics
of the GPROF algorithm over oceans and land, com-
parisons with other data sources are carried out inde-
pendently for the two background types. The compar-
isons, as will be seen, yield mixed results, with no clear
indication that there is, or is not, any systematic problem
with the rainfall products.

a. Rain gauge data

1) PACIFIC ATOLL DATA

Rain gauges located on Pacific atolls are used for
comparisons with GPROF version-5 results. The area
covered by the atolls extends from approximately 258S
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FIG. 3. Instantaneous rainfall estimates (mm h21) from SSM/I and
TMI overpasses occurring at nearly the same time on 8 Jan 1999.
The estimates are from the following algorithms: (top) NESDIS SSM/
I, (middle) the new SSM/I GPROF, and (bottom) the new TMI
GPROF.

to 158N and from 1308E to 1308W. While the number
of quality-controlled gauges varies from month to
month, the numbers vary between 20 and 40. Only 3–
4 grid boxes (depending upon the number of gauges)
typically contain more than one gauge in any given 2.58
grid box. Details of the gauge network and the quality
control procedures can be found in Morrissey et al.
(1995). The sources of error are multiple. From the sat-
ellite side, the algorithm errors depend both on the sam-
pling errors as well as the retrieval errors. Sampling
errors for satellite platforms are primarily a function of
the revisit times and rainfall frequency, which is well
related to rainfall accumulation in the Tropics. As such,
locations with higher rainfall amounts should have
smaller relative errors. Fortunately, this error is random
and for the time interval considered here should produce

no overall bias. From the rain gauge perspective, one
must allow for three possible error sources: 1) rainfall
may not be homogeneous over the 2.58 grid box the
rain gauge is supposed to represent—while this may
sound like a simple assumption, the movement of the
ITCZ may at times make this assumption less than ideal
for individual gauges; 2) the rain gauges may, at times,
operate improperly—with few rain gauges, it can be
difficult to apply perfect quality control procedures—
and thus, while great care is taken of these gauges, there
is no guarantee that they are all estimating properly,
which could lead to an underestimate by the gauge net-
work; and 3) the atolls themselves are assumed not to
be enhancing convection and thus providing higher-
than-average rainfall relative to the surrounding grid
box.

Figure 4a shows a scatter plot of the satellite accu-
mulation over 30-day, 2.58 grids, versus the 30-day rain
gauge average when all atoll gauges are considered.
Figure 4b shows the same results, but considering only
those 2.58 grid boxes that contain at least two atoll gaug-
es. The scatter of points is due primarily to the sampling
difference between the two data sources. Biases would
indicate fundamental problems with one dataset or the
other. In this case, biases are small (29%, GPROF un-
derestimates) when all gauges are used, and reversing
to 16% (GPROF overestimates) when only grid boxes
with two gauges are considered. Correlations are high
in both cases, namely, 0.85 for all gauges and 0.91 for
grid boxes with two or more rain gauges.

2) GPCC RAIN GAUGES

Figure 5 shows a scatterplot of the GPROF version-
5 rainfall in comparison with rain gauge data collected
and analyzed by the Global Precipitation Climatology
Centre (GPCC) of the Deutscher Wetterdienst. The
GPCC begins by interpolating available rain gauge data
into a 0.58 latitude–longitude grid. These points are then
averaged over a 2.58 grid. Rudolph et al. (1996) give a
detailed description of the procedure. The rain gauge
product incorporates approximately 6700 rain gauges,
but the quality of the estimate varies depending upon
the number available in any given grid box. The num-
bers vary from less than 1 gauge per 2.58 grid in some
tropical locations to as many as 50 in the highly pop-
ulated industrial countries.

Rain gauge data represent the continuous accumu-
lation over a few square centimeters as compared with
the large area averages from approximately 30 instan-
taneous overpasses by the TRMM satellite. A large
amount of scatter is therefore expected. Bell et al. (2001)
present details of the expected sampling errors from a
TRMM-like orbit. Results indicate that random sam-
pling errors may be approximated by s/R (%) 5
0.26R20.27 (R: mm21), which leads to a sampling error
of approximately 30% for accumulations of 500 mm
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FIG. 4. Comparison of monthly (2.58) GPROF version-5 oceanic rain estimates with rain gauge data from low-lying atoll sites: (a) all grid
boxes having at least one atoll gauge; (b) grid boxes having at least two rain gauges.

FIG. 5. Comparison of monthly (2.58) GPROF version-5 land rain
estimates with rain gauge data from the GPCC project.

month21. Sparse rain gauges in a number of grid boxes
contribute to an additional source of uncertainty.

Despite significant random errors, biases should be
small when 6700 gauges are considered. Overall, the
GPROF version-5 algorithm is seen to have a positive
bias (117%) and a correlation of 0.80 with the analyzed
gauge product. While it appears that significant numbers

of gauges are available over land, it must be recognized
that most of these gauges are concentrated over indus-
trialized nations and do not necessarily represent a true
global mean.

b. Kwajalein Atoll radar data

GPROF ocean rain estimates are compared with rain-
fall derived from the ground-based radar operated at the
Kwajalein Atoll. This S-band polarized (WSR-93D) ra-
dar has been operated at Kwajalein Atoll, Republic of
the Marshall Islands, since the launch of TRMM as part
of the TRMM validation effort. The radar is located at
8.728N, 167.738W. It has been operated continuously
except for a 3-month period (mechanical difficulties)
and maintenance periods. (Details on the radar and its
operation can be found at http://trmm.gsfc.nasa.gov.)
Two groups, using separate techniques, make rainfall
estimates from this radar. The first is the TRMM official
algorithm.

The official algorithm recognized that radar calibra-
tion would always be a large source of error in making
quantitative rainfall estimates. To overcome this prob-
lem, a bulk-adjustment approach was adopted to force
the radar data into agreement with collocated rain gaug-
es. Rain maps are generated by interpolating the raw
polar radar data onto Cartesian coordinates with a hor-
izontal resolution of 2 km. Rainfall is classified into
convective and stratiform rain according to the hori-
zontal radar reflectivity structure developed by Steiner
et al. (1995). For each type of rainfall, the monthly
accumulation of the radar pixels [derived using a default
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FIG. 6. Comparison of instantaneous GPROF version-5 oceanic
rainfall estimated with operational TRMM estimates made from the
Kwajalein radar. The size of the open circles indicates the percentage
of the radar covered during a given satellite overpass. FIG. 7. Surface classification used by GPROF in the Kwajalein

vicinity. Shaded areas correspond to coastal grid boxes, while white
areas are deemed oceanic.

relationship of Z 5 300R1.4, Fulton et al. (1998)] directly
above each gauge location is compared with the 7-min
rain gauge accumulation for the corresponding gauge.
A final, gauge-adjusted relationship between radar re-
flectivity (Z) and rainfall rate (R) is derived for each
site and for each month using

1.4 1.4Z 5 300(R /G ) R ,i i i i (15)

where R is the total rainfall accumulated by the radar
over the locations of the gauges that passed a quality
control procedure, G is the rainfall accumulated from
tipping-bucket rain gauge data, and the subscript i refers
to either convective or stratiform rainfall. Rain rates
from gauge and radar data were both accumulated over
7-min intervals, but tests showed that results do not
change much for different time intervals. This bulk ad-
justment is applied to one month of data from each site,
with separate Z–R relationships derived for convective
and stratiform rainfall. If the total rainfall accumulated
over all of the gauges for a month is less than 250 mm,
then the bulk adjustment procedure is applied to con-
secutive months of data.

Comparisons between the GPROF product and the
rainfall products generated by the above algorithm for
all overpasses in 1998 are presented in Fig. 6. The ab-
sence of points on either axis points out that over areas
of 18 or so, discrimination between rain and no rain is
nearly perfect over oceans. Of the 283 overpasses hav-
ing data in 1998, 144 were classified as having no rain
in both the satellite and radar; 126 were classified as
having at least 0.01 mm h21 in both satellite and radar,
and only 13 cases were recorded in which either the
satellite or radar recorded greater than 0.01 mm h21,
while the other one recorded no rain. This represents

less than 4.5% misclassification, and it is always with
light rain. At a resolution of 25 km commensurate with
the TMI low-resolution channels, approximately 22 300
coincident grid boxes were observed. Of these, 20 240
were classified as nonraining by both the TMI and the
Kwajalein radar, while 1606 grid boxes were correctly
classified as raining by both instruments, and 474 were
misclassified as raining (R . 0.5 mm h21) by either the
TMI or the radar but not the other. The number of mis-
classified pixels reduces to 234 if a threshold of 1 mm
h21 is used to define rainfall.

The results shown in Fig. 6 correspond to accumu-
lations over the radar coverage that is deemed to be
‘‘ocean’’ by the retrieval algorithm. While Kwajalein
can be thought of as a pure oceanic environment, the
GPROF surface-type mask has sufficient spatial reso-
lution (0.258) that it recognizes the atoll as being a mix-
ture of land and ocean. As such, it classifies some of
the pixels as coastline. Figure 7 shows the classification
of the area surrounding Kwajalein. The dark areas are
considered to be ‘‘coast.’’ In the operational version of
the algorithm, coastline is treated as ‘‘land’’ and these
pixels are therefore excluded from the comparison. The
comparisons are for instantaneous rainfall averaged over
the entire area of overlap between the satellite and the
ground-based radar. The different size circles are used
to indicate the percent coverage of the domain, with
100% signifying the entire ocean area. Given the mix-
ture of ocean and coast areas, as well as an often in-
complete coverage of the entire radar FOV, the mean
area of overlap is approximately 18 3 18 but varies from
overpass to overpass. The correlation between the two
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FIG. 8. Mean zonal profiles of precipitation from selected TRMM
products over (a) ocean and (b) land. Numbers indicate the product
referenced to the TRMM Data and Information System, where
‘‘2A12’’ is the current GPROF-V5 algorithm, ‘‘2A25’’ refers to the
PR rainfall products, and ‘‘3A11’’ refers to the microwave emission
algorithm described in the introduction.

TABLE 1. Major sources of uncertainty in three TRMM algorithms.

Algorithm Freezing-level height Rain inhomogeneity DSD

TMI–Emission (3A11) Error in freezing level linearly
related to error in surface rain

Constant factor Not a significant source of
error

GPROF-V5 (2A12) Same procedure as 3A11 Factor varies with C/S ra-
tio

Not a significant source of
error

Precipitation radar (2A25) Not a significant source of error Small effect A priori assumption sensi-
tive to errors

estimates is quite high, with r 5 0.95 for the entire year
of 1998. Biases, however, are significant, with the
GPROF estimate being 32% lower than the ground-
based radar. This result would imply that GPROF, de-
spite being positively biased relative to the other TRMM
products, is still too low when compared with the Kwa-
jalein radar data.

An independent estimate of rainfall over Kwajalein
is made by the University of Washington TRMM group
(http://www.atmos.washington.edu/gcg/MG/KWAJ). In
their estimate, the overall calibration of the Kwajalein
radar is first adjusted to match the TRMM precipitation
radar, which is known to be quite stable and thought to
be calibrated to 61 dBZ (Kummerow et al. 2000). Un-
like the bulk adjustment method, this technique uses
climatological drop size distributions measured by
Mueller and Sims (1967) and recently confirmed during
the TRMM field experiment at Kwajalein. While results
were not yet available for all of 1998 from this tech-
nique, monthly accumulations during the three most
rainy months (accounting for over 80% of the total ob-
served rain in 1998) tend to be significantly lower than
the ‘‘official’’ products described above. Rainfall totals
for the three months of overlap show this technique
yields only 57% of the rainfall produced by the bulk
adjustment technique. When compared with this tech-
nique, GPROF would therefore overestimate rainfall by
approximately 17% (instead of underestimating by
32%). In short, even ‘‘calibrated’’ radar rainfall esti-
mates are still uncertain to at least 625%.

c. Other TRMM estimates

1) SURFACE RAIN-RATE COMPARISONS

Figure 8 compares zonal mean rainfall estimates from
the GPROF algorithm with other TRMM products. The
top panel of Fig. 8 corresponds to oceanic estimates
where GPROF is compared with the TMI emission al-
gorithm described in the introductory section and the
TRMM precipitation radar (PR) algorithms. The PR al-
gorithm is described in detail by Iguchi et al. (2000).
Of greatest importance to this paper may be the fact
that, for light and moderate rainfall rates (,10 mm h21),
the PR algorithm must use an a priori drop size distri-
bution, while for heavy rainfall the PR must correct for
attenuation of the radar beam. Both factors can introduce
errors into the PR products. Table 1 presents a short
synopsis of the main uncertainties of the three algo-
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FIG. 9. Histograms of rainfall rates derived from GPROF (2A12)
vs PR (2A25) for (top) individual footprints and (bottom) rainfall
averaged over 0.58 grid boxes.

rithms compared in Fig. 8. The double peak in the Trop-
ics occurs from the preferred location of the intertropical
convergence zone (ITCZ) during the course of one year
at these two locations. Comparisons with the emission
algorithm at the 58 monthly gridbox level reveals a very
small bias (16% for GPROF) and a correlation of 0.97.
The zonal means are generally in good agreement out-
side the Tropics, but the emission algorithm displays a
markedly smaller amplitude in the ITCZ. The cause for
the emission algorithm’s smaller dynamic range across
the ITCZ is speculative at this time but is consistent
with the fixed beamfilling correction applied by the
emission algorithm as opposed to the dynamic assign-
ment made by the convective–stratiform partitioning.
Convective fractions are higher in the ITCZ as deter-
mined by both the GPROF algorithm and the PR al-
gorithms and would therefore lead to larger dynamic
range than if the rain type (and hence horizontal in-
homogeneity) were held constant. This argument is sup-
ported by the precipitation radar, which is less sensitive
to the beamfilling errors. It shows lower overall accu-
mulations but similar trends in the zonal means. The
bias, with respect to the PR, is 123% over oceans, and
the correlation with GPROF on a monthly 58 grid box
is 0.94. The reason for the 23% bias remains an area
of active research. The somewhat smaller correlation
(despite the greater similarity in the shapes of the zonal
means) is likely due, at least in part, to the different
sampling of the two instruments.

Over land (Fig. 8, bottom panel), comparisons of the
GPROF version-5 rain estimates also appear higher than
the PR. The bias in this case is 120% and the correlation
for monthly 58 grids is 0.90. This bias is consistent with
the GPCC gauges examined in the previous section. The
biggest differences in magnitude, however, are present
in the ITCZ where there are very few gauges. The GPCC
gauges are concentrated in the 208–308 latitude belt
where both sensors agree quite well. As such, the two
results are not yet fully consistent.

The top panel of Fig. 9 presents histograms of rainfall
rates at the individual pixel level for GPROF version-
5 results in comparison with the precipitation radar.
While there are differences at the very light rainfall rates
where both sensors lose sensitivity, the overall shape of
the histograms is seen to agree quite well except for
secondary peaks in the GPROF products. These peaks
are the result of incomplete databases that tend to cluster
results around some preferred values. More profiles in
future releases will solve this problem. Histograms
shown in the bottom panel of Fig. 9 correspond to 0.58
average rainfall rates. These histograms are nearly in-
distinguishable.

2) VERTICAL STRUCTURE COMPARISONS

The vertical structure from the TMI and PR algo-
rithms is compared in Fig. 10. Comparisons are made
from the surface to 8 km with an interval of 1 km. Direct

comparisons, however, cannot be made because the TMI
generates liquid–ice water concentrations above the sur-
face while the PR derives an equivalent rainfall rate. An
equivalent rainfall rate is obtained for the TMI products
by applying the technique described by Yang and Smith
(1999, 2000). This rain profile is further scaled to the
original TMI estimate in order not to introduce any ad-
ditional biases from the conversion algorithm. TMI and
PR rain profiles are first grouped into monthly means
at 58 3 58. Their monthly mean rainfall structures are
then compared over ocean and land separately.

Figure 10 presents comparison results of rain vertical
structure for February 1998, which has been used as a
benchmark month for TRMM product intercomparisons.
The ratio of the average rainfall rates is shown in the



1816 VOLUME 40J O U R N A L O F A P P L I E D M E T E O R O L O G Y

FIG. 10. Comparison of GPROF and PR vertical profiles of hy-
drometeor profiles converted to an equivalent rainfall rate: (top) the
bias in equivalent rainfall rates, (middle) the bias between the two
estimates, and (bottom) the correlation.

upper panel. TMI oceanic rainfall is about 20% greater
than PR rainfall near surface (consistent with the pre-
vious results), but the TMI rainfall rate continues to
increase relative to PR with increasing height above the
surface. Differences in the oceanic ratios become ex-
treme at the 6-km level, but an examination of the bias
reveals that the bias has gone to nearly zero at this
altitude. This is due to the loss of meaningful signal by
the PR at this height. The explanation for the increasing
discrepancy with height lies in the inability of the pas-
sive microwave sensor to properly observe the vertical
extent of shallow clouds. Because the entire a priori
database consists of cloud profiles that extend above the
freezing level, the resulting profiles therefore also ex-
tend to at least the freezing level. The precipitation radar,
on the other hand, observes these shallow systems but
will underestimate the small liquid water contents aloft
when these fall below the sensitivity of the sensor. These
two conditions add to produce the apparent large dis-
crepancy shown in Fig. 10 at top. While the mean ratio
of TMI–PR reaches almost a factor of 2, the bias over
oceans remains a comparatively small 40% as indicated
in Fig. 10 at middle. This indicates that the large dis-
crepancies occur primarily at the light rainfall rates
(which dominate the average ratio) but contribute less
to the overall rainfall accumulations than do the heavy
rainfall cases that dominate the overall bias (Fig. 10,
middle). The correlation coefficient remains nearly con-
stant below the freezing level. This is an indication that
some systematic differences are being observed. The
drop in correlation above the freezing level is to be
expected because ice hydrometeors are more difficult to
interpret—particularly any conversions from ice scat-
tering signatures to an effective rainfall rate. Results are
nearly identical for land precipitation below the freezing
level. This further lends credence to the hypothesis that
the cloud model profiles, which in the case of land pre-
cipitation simply relate the amount of ice scattering to
the surface rainfall, do not properly match the vertical
hydrometeor structure seen by the PR. Above the freez-
ing level, the TMI land profiles become much smaller
than the PR profiles. This is likely due to the different
assumptions about ice densities (and hence scattering
efficiency) between the two algorithms.

Monthly rainfall bias over ocean and land is shown
in the middle panel. It can be seen that TMI rain over-
estimates as much as 42 (58) mm around 3–4 km, while
only about 19 (10) mm near the surface over ocean
(land).

Their correlation coefficient below 4 km is about 0.91
for ocean and 0.90 for land. Over ocean, the correlation
coefficient is always greater than 0.6 above 4 km. How-
ever, it decreases dramatically above 4 km over land.
Since the two algorithms assume somewhat different ice
characteristics, this implies that oceanic precipitation is
less variable when it comes to ice characteristics than
continental convection. A completed comparison anal-
ysis of TRMM version-4 rain products can be found in
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FIG. 11. Scatter plot for 58 3 58 monthly rainfall accumulations
from GPROF and PR. Correlation is 0.91 over oceans and 0.90 over
land. Some of the noise is due to the larger sampling volume observed
by the TMI.

FIG. 12. Comparison of mean monthly rainfall (Apr–May 1999)
over land for 58 latitude bands. The two GPROF TMI versions are
compared with the GPCP satellite-gauge product and the NESDIS
SSM/I product.

a technical report by Smith and Yang (1998). Compar-
ison of that report with the current progress report shows
improvements in the correlation coefficients from 0.6
to 0.9 for TRMM version-5 products. The scatterplot of
58 monthly mean surface rainfall for TMI and PR is
shown in Fig. 11. Much of the scatter is due to the
differences in the sampling of the two sensors.

d. Comparisons with the NESDIS operational
products

As mentioned at the outset of this paper, the NESDIS
operational algorithm was adopted over land. This was
done in part because neither algorithm was demonstra-
bly superior to the other. In addition, a lot of effort was
being put into improving rainfall estimates in idealized
situations and not enough attention was being placed
on difficult operational issues such as screening of snow
covered surfaces or the careful validation over different
climatic regimes. The first comparison is therefore be-
tween the TMI version-5 algorithm and the NESDIS
SSM/I rainfall products. These should, by design, be
very similar if not identical. Figure 12 shows the com-
parisons of the zonal means and indeed verifies that the
TMI version 5 and the SSM/I SI are nearly identical.
Both are also very similar to the GPCP product [al-
though somewhat higher (;12%)], while version 4 of
the TRMM algorithm is seen to have had some problems
that were primarily due to poor screening routines.

4. Known issues and concluding remarks

The GPROF algorithm is continuously evolving as
new sensors [e.g., advanced microwave scanning radi-
ometer (AMSR) and AMSR-E] become available, new
cloud model databases are generated, or our understand-
ing of clouds and precipitation processes improves.
Based upon available ground-based data, GPROF ap-
pears to be performing within the uncertainties of these
measurements. There are, nonetheless, a number of open
issues that must still be addressed in order to put the
algorithm on a theoretically firmer ground and to pave
the way for physically derived uncertainty estimates.
These are discussed next.

a. Improvements in database and radiative transfer
modeling

As a result of the TRMM field campaign, cloud-re-
solving models are undergoing significant changes in
their treatment of ice microphysics. This, coupled with
continuous improvements in the formulation of these
cloud models, will result in even more sophisticated
models that are available for the a priori database. New
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model simulations will be incorporated into GPROF as
they become available. Uniformly computed latent heat-
ing profiles are given as a requirement for the next ver-
sion of the GPROF algorithm.

In addition to the improved models, the next version
of GPROF will also replace the simplified one-dimen-
sional radiative transfer computation with a fully three-
dimensional Monte Carlo code as developed by Roberti
et al. (1994), as well as explicit antenna gain function
to convolve the model brightness temperature field to
observed resolution. These changes are not believed to
have a large impact upon the results but do represent a
more exact treatment of the problem. The new models
and radiative transfer codes are explicitly accounted for
melting particles. Including the melting layer is ex-
pected to reduce the stratiform rainfall by 5% to 10%.

b. Physical inconsistency between PR and TMI

The GPROF and TRMM radar differences need to be
resolved through a physically consistent model of pre-
cipitation physics, backed by in-cloud observations.
Early work by Viltard et al. (2000) has shown that the
current PR-retrieved rainfall amounts, when combined
with a cloud model to fill in the unknown cloud water
amounts, do not yield the observed radiometer bright-
ness temperatures. A number of factors or combination
of these can be responsible for the current lack of agree-
ment. Smaller drops in the PR-assumed rain profile
would yield consistency, as would a slight reclassifi-
cation of PR convective and stratiform rainfall cate-
gories [(because these have intrinsically different drop
size distributions (DSD)]. A third issue could be the
lack of a melting level in the radiometer algorithm. Each
of these three issues has the correct effect of bringing
the radar and radiometer closer to a physically consistent
set of observations. The TRMM field experiments mea-
sured all three of the phenomena. While the experiments
have been completed, the data analysis has just begun.
It is therefore too early to draw conclusions.

c. High-latitude precipitation

It should be noted that all the model simulations cur-
rently used in the GPROF database are tropical in na-
ture. This is a reasonably good assumption for TRMM
but is not adequate outside the Tropics. To retrieve rain-
fall outside the Tropics, the current database is adjusted
by removing the lowest levels of the cloud model sim-
ulations until the appropriate surface temperature is
reached. This is a poor representation of the actual cloud
systems in extratropical zones. Work is under way to
incorporate realistic simulations corresponding to a va-
riety of extratropical environments.

Because integrated liquid water is directly related to
the brightness temperatures, one can assume that the
rainfall rates in the Tropics should appear reasonable.
The same cannot be said for latent heating. Latent heat-

ing derived from GPROF depends strongly upon the
realism of the cloud model simulations and is therefore
not retrieved in extratropical zones at this time. Details
of the vertical hydrometeor profiles are retrieved but
should be viewed with suspicion.

d. Improvements over land

Based upon a consistent bias from the GPCC rain
gauge as well as the TRMM PR comparisons, GPROF
version-5 data will be carefully compared with addi-
tional TRMM sources as well as other ground validation
data. If a consistent bias can be identified with additional
data sources, the GPROF land algorithm (as well as the
NESDIS SSM/I) algorithms will be modified to match
the existing validation data. This is justifiable because
land retrievals are by their very nature empirical. The
only useful radiometric signature comes from precipi-
tation-size ice scattering, which is not physically related
to the rainfall itself. Oceans, in contrast, offer a strong
physical basis for both the radar and radiometer algo-
rithms, and no tuning is planned unless there is phys-
ically direct evidence to indicate that a change in the
current assumptions is warranted.

Despite a number of areas in which improvements
are being sought, GPROF appears to be performing at
least at the level at which ground-based validation is
possible. Over the atoll rain gauge network, GPROF is
essentially unbiased (29% or 16% depending on the
atoll selection criterion). Over the Kwajalein radar, cor-
relations were quite high, but the magnitude is different.
The magnitude was brought into question because of
inherent uncertainties in ground-based radar rainfall es-
timates. The consistent bias between TMI and PR, how-
ever, offers hope that the two estimates can be brought
within a few percent once the underlying causes of the
differences are understood. This problem will therefore
receive the greatest attention, using the field experiment
data to test all the assumptions that could lead to the
current differences. Over land, a more consistent picture
is beginning to emerge. Some additional comparisons
will be undertaken to verify the GPROF positive bias.
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