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Abstract This review bridges functional and evolution-

ary aspects of plastid chromosome architecture in land

plants and their putative ancestors. We provide an over-

view on the structure and composition of the plastid gen-

ome of land plants as well as the functions of its genes in

an explicit phylogenetic and evolutionary context. We will

discuss the architecture of land plant plastid chromosomes,

including gene content and synteny across land plants.

Moreover, we will explore the functions and roles of

plastid encoded genes in metabolism and their evolutionary

importance regarding gene retention and conservation. We

suggest that the slow mode at which the plastome typically

evolves is likely to be influenced by a combination of

different molecular mechanisms. These include the orga-

nization of plastid genes in operons, the usually uniparental

mode of plastid inheritance, the activity of highly effective

repair mechanisms as well as the rarity of plastid fusion.

Nevertheless, structurally rearranged plastomes can be

found in several unrelated lineages (e.g. ferns, Pinaceae,

multiple angiosperm families). Rearrangements and gene

losses seem to correlate with an unusual mode of plastid

transmission, abundance of repeats, or a heterotrophic

lifestyle (parasites or myco-heterotrophs). While only a

few functional gene gains and more frequent gene losses

have been inferred for land plants, the plastid Ndh complex

is one example of multiple independent gene losses and

will be discussed in detail. Patterns of ndh-gene loss and

functional analyses indicate that these losses are usually

found in plant groups with a certain degree of heterotrophy,

might rendering plastid encoded Ndh1 subunits

dispensable.
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Abbreviations

gII(A) Group II(A) intron

IR Inverted repeat

LSC Large single copy region

NEP Nuclear encoded polymerase

ORF Open reading frame

Ori Origin of replication

PEP Plastid encoded polymerase

PSI Photosystem I

PSII Photosystem II

PSRP Nuclear-encoded plastid ribosome specific

proteins

SC Single copy

SDR Small dispersed repeat

SSC Small single copy region
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Introduction

Plastids are one of the main distinguishing characteristics

of the plant cell. The central function of the plastid is to

carry out photosynthesis, but other major cellular functions

also take place in plastids, including synthesis of starch,

fatty acids, pigments and amino acids (reviewed by Neu-

haus and Emes 2010). As early as 1905, Konstantin S.

Mereschkowski hypothesized that plant ‘‘chromatophores’’

are the result of the uptake of a cyanobacterium by a

eukaryotic organism (English translation available by

Martin and Kowallik 1999). It is now generally accepted

that the plastid originated via incorporation of a free-living

cyanobacterial-like prokaryote into a eukaryotic cell (pri-

mary endosymbiosis), thereby enabling the transition from

heterotrophy to autotrophy by gaining the ability of uti-

lizing photoenergy. Recent phylogenetic analyses of plastid

genes from major plant lineages have converged on the

hypothesis that plastids of the plant kingdom, i.e. the clade

including Glaucophytes, Rhodophytes, Chlorophytes, and

Streptophytes (Fig. 1; Keeling 2004), are derived from a

single origin (Palmer 2000; McFadden and van Dooren

2004; Keeling 2010). This is also supported by several

biochemical features, such as the composition of light

harvesting complexes and their components, structural

RNAs, membrane structure, and the protein import/target-

ing machinery (Weeden 1981; Bölter et al. 1998; Keeling

2004; Yang and Cheng 2004; Koziol et al. 2007; Vesteg

et al. 2009).

Over evolutionary time, genetic information was func-

tionally or more often non-functionally transferred from

the endosymbiont’s genetic system to the host nuclear

genome, genetically intertwining the two genomes. Except

for genes involved in photometabolic processes, most other

genes have been incorporated into the nuclear genome.

This has resulted in a highly reduced plastid genome in

Streptophytes (land plants plus their closest algal relatives),

comprising less than 5–10% of the genes hypothesized for

the ancestral cyanobacterial genome (ca. 2000 to 3000

genes; Martin et al. 2002). A corollary of this process is

that the plastid genome (plastome) became subjected to

nuclear regulation (Timmis et al. 2004), locking in their

symbiotic relationship. The transfer of sequences and both

functional and non-functional genes from the plastid gen-

ome to both the nuclear and the mitochondrial genome

remains an ongoing process (Stern and Lonsdale 1982;

Stern and Astwood 1986; Nakazono and Hira 1993; Albus

et al. 2010, 1998; Shahmuradov et al. 2003; Matsuo et al.

2005; Guo et al. 2008; Sheppard and Timmis 2009). This

intracellular gene transfer is considered ‘‘frequent and [to

occur] in big chunks’’ (Martin 2003:1; Stegemann et al.

2003; Noutsos et al. 2005). The question of how many

genes can eventually be transferred to the nuclear genome

(and whether the plastome could eventually be lost) has

been discussed for some time (Barbrook et al. 2006).

Massive gene loss has been observed in several parasitic

plants (e.g. Orobanchaceae: Wolfe et al. 1992; Cuscuta:

Funk et al. 2007, McNeal et al. 2007). In these plants, gene

loss is not restricted to genes that are primarily involved in

photosynthesis and related pathways (Wolfe et al. 1992;

Krause 2008); additional losses or pseudogenization is seen

in genes encoding subunits of the genetic apparatus (e.g.,

plastid-encoded RNA polymerase, some tRNAs, some

ribosomal proteins; dePamphilis and Palmer 1990; Wolfe

et al. 1992; Lohan and Wolfe 1998).

Four decades of genetic, genomic and physiological

research have contributed substantially to assign genes and

gene functions to land plant plastid encoded proteins.

Plastid genes have been grouped into functionally defined

classes, including (i) those involved in primary and sec-

ondary photosynthesis pathways (photosynthetic light and

dark reactions), (ii) genes not involved in photosynthetic

pathways, such as sulfate transport and lipid acid synthesis,

(iii) genes involved in transcription and translation, and (iv)

a number of structural RNA genes (Palmer 1991; Sugiura

1992; Bock 2007). Subsequent studies have identified the
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Fig. 1 Evolution of plastid gene content in land plants. Events of

gene losses in Embryophytes, as well as gains and duplication of

protein coding genes in green plant lineages are depicted along the

branches/nodes of the Plant Tree of Life (Palmer et al. 2004; Qiu et al.

2006; Zhong et al. 2010). The putatively ancestral gene content, as

reflected in Marchantia and derived from parsimony analysis after

Maul et al. (2002), is given at the first land plant node. Gene losses

during the evolution of land plants are indicated by red arrows (those

occurring before the emergence of Embryophytes are not considered

here); a green arrow indicates the evolution of a novel gene prior to

the transition to land; blue arrows refer to gene duplications. Changes

in the content of transfer RNAs are not considered here (refer to Gao

et al. 2010 for review). A detailed summary of gene losses during the

evolution of angiosperms is provided by Jansen et al. (2007) and

Magee et al. (2010). Although chl-subunits are still present in some

gymnosperm plastomes, multiple losses and pseudogenizations indi-

cate a functional transfer to the nuclear genome. As chl genes have

been lost entirely from angiosperm plastomes, functional chl-gene

transfer might have already occurred in a common ancestor
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roles of additional genes not falling into any of these genes

classes, including genes involved in post-transcriptional

modification (matK, Liere and Link 1995), protein turnover

or protein complex assemblies (Peltier et al. 2004). Cur-

rently, only two genes remain, ycf1 and ycf2, whose met-

abolic or genetic roles have not yet been unambiguously

defined (Bock 2007).

In this review, we will discuss functional and evolu-

tionary insights from research on land plant plastid chro-

mosomes, providing a synthesis of our knowledge of their

evolution and conservation. Accordingly, particular

emphasis will be placed on genetics of plastomes in the

context of land plant diversification, with special attention

to the roles of plastid-encoded proteins in photosynthesis

and other principal genetic pathways.

Plastid genetics and synteny of land plant plastid

chromosomes

Plastid inheritance

The transmission (inheritance) of plastids has been dis-

puted for many years. For seed plants, mechanisms and

occurrences of plastid inheritance have been studied in a

great number of species (reviewed in Hagemann 2004;

Bock 2007; Zhang and Sodmergen 2010). However, little is

known about plastid transmission in earlier land plant lin-

eages, probably due to methodological difficulties. Ultra-

structural studies of functional sperm cells of bryophytes,

lycophytes, horsetails and water ferns (heterosporous ferns)

reported the presence of proplastids (reviewed in Sears

1980). In liverworts and mosses, the sperm cell’s prop-

lastids are ‘‘discarded’’ before fertilization (Sears 1980, and

references therein). Maternal plastid transmission was

subsequently demonstrated for the liverwort Pellia (Pacak

and Szweykowska-Kulińska 2002) and several moss rep-

resentatives (Rhizomnium: Jankowiak et al. 2005; Sphag-

num: Natcheva and Cronberg 2007; Plagiomnium:

Jankowiak-Siuda et al. 2008). Maternal inheritance of

plastids was shown for the horsetail Equisetum variegatum

(Guillon and Raquin 2000), but nothing is known about the

fate of the sperm cell’s proplastid. Most, though probably

not all, plastid-like structures are lost from the spermato-

zoids of lycophytes, and it seems as if there was a strong

bias towards predominantly maternal plastid transmission

caused by degradation prior or immediately after fertil-

ization (Sears 1980). The absence of a plastid-like structure

in sperm cells was shown in representatives of leptospo-

rangiate ferns (Pteridium: Bell et al. 1966; Thelypteris:

Sears 1980). This suggested maternal plastid transmission,

which was later confirmed using molecular biological

methods for Cheilanthes (Gastony and Yatskievych 1992)

and Asplenium (Vogel et al. 1998). In gymnosperms and

angiosperms, uniparental inheritance is more frequent than

biparental transmission (Hagemann 2004). Maternal

inheritance is typical for angiosperms and the gymnosperm

groups cycads and gnetophytes. In the majority of gym-

nosperms (conifers) paternal transmission is the dominant

mode (Hagemann 2004; Zhang and Sodmergen 2010).

However, biparental inheritance has evolved multiple times

in seed plants, in particular in eudicot angiosperms such as

Geraniaceae (e.g. Tilney-Bassett and Almouslem 1989),

Campanulaceae (Corriveau and Coleman 1988) and Faba-

ceae (Corriveau and Coleman 1988). In gymnosperms,

biparental inheritance is much less frequent (Hagemann

2004).

Architecture of plastid chromosomes

In vivo structure and molecular conformation of the plastid

chromosome has long been thought to be exclusively cir-

cular. However, several studies employing in situ hybrid-

ization techniques demonstrated that often only a minor

proportion of the molecules occur in a circular and cova-

lently closed form. Instead, the majority of plastid chro-

mosomes are arranged in concatemers of two or more

molecules in either circularized or linear form (Deng et al.

1989; Bendich and Smith 1990; Bendich 1991, 2004;

Harada et al. 1997; Lilly et al. 2001). It is still unknown

how these concatemeric molecules are formed, and how

linkage and breakage is carried out in vivo. It is speculated

that the formation of these supermolecules might facilitate

maintenance of gene organization and genome integrity

(Day and Madesis 2007; Maréchal and Brisson 2010).

However, the formation of supermolecules as a primary

stabilizing factor needs to be evaluated carefully. Mito-

chondrial DNA forms concatemeric molecules as well, but

exhibits a great variety of genome size and structure among

land plants (Palmer and Herbon 1988; Bendich 2007).

The size of photosynthetic land plant plastid chromo-

somes ranges from 120 kb to 160 kb. The plastome in

photosynthetic plants comprises 70 (gymnosperms) to 88

(liverworts) protein coding genes and 33 (most eudicots) to

35 (liverworts) structural RNA genes (Wakasugi et al.

1994; Ohyama 1996; Bock 2007), totaling 100–120 unique

genes (Fig. 1). The vast majority of these genes are

arranged in operons (or operon-like structures) and tran-

scribed as polycistronic precursor molecules that are sub-

jected to splicing and nucleolytic cleavage in order to

produce mature and translatable mRNAs (Stern et al.

2010). Functional gene classes (translation/transcription,

electron transfer, and photosystems) are often arranged in

close vicinity to one another (Fig. 2; Cui et al. 2006).

Using a parametric bootstrap-approach, Cui et al. (2006)

showed that the genomic rearrangements of some

Plant Mol Biol (2011) 76:273–297 275
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chlorophytic algae (e.g. Chlamydomonas) relative to others

are not random. Results indicated that the physical clus-

tering of genes belonging to a similar functional class is

positively selected. Furthermore, expression analysis indi-

cated that some of these newly formed cluster are

co-transcribed which led the authors to speculate that these

could represent new regulons (Cui et al. 2006).

The plastid chromosome displays a quadripartite struc-

ture, i.e. it is divided into four major segments (Fig. 2).

Two of those contain only single copy (SC) genes and are

referred to as Single Copy regions. The Large Single Copy

region (LSC) harbors the majority of plastid genes; its

smaller counterpart is known as the Small Single Copy

region (SSC). The third segment is duplicated and exists in

two nearly identical copies separating the SC regions

(Kolodner and Tewari 1979). These copies are inverted

and, therefore, termed large Inverted Repeats A and B

(IRA, IRB). An IR is between 20 and 30 kb in size in

angiosperms compared to only 10–15 kb in most non-seed

plant lineages (Kolodner and Tewari 1979; Palmer 1991;

Raubeson and Jansen 2005; Wu et al. 2009; Wolf et al.

2010a). However, several lineages deviate strongly from

the average, such as Cycas (25 kb, Wu et al. 2007), the

cypress Cryptomeria (114 bp, Hirao et al. 2008) or the

eudicot Geraniaceae (Monsonia: 7 kb, Guisinger et al.

2010; Pelargonium: 76 kb, Chumley et al. 2006). As the

Fig. 2 Synteny of land plant plastid chromosomes. The plastid

chromosomes are shown in linearized form illustrating relative gene

synteny. Genes are depicted by boxes colored according to their

relevant functional class (see legend). Genes encoded by the leading

strand (? strand) or by the lagging strand (- strand) are shown above

or below the grey chromosome bar, respectively. Lengths of boxes do

not reflect lengths of genes, but are artificially increased to aid

legibility (consequently, overlapping genes on ± strand do not

indicate overlapping reading frames). Lines from selected genes/

gene-regions mentioned above the first chromosome bar roughly

indicate genes clusters that have been reorganizated during land plant

evolution. Not all regions that underwent genomic relocations prior or

during land plant evolution are depicted here. The chromosome bars

are colored gray to highlight the positions of the two large Inverted

Repeat regions (IRA/IRB) and are connected by gray lines between the

different lineages. Gray lines are discontinued once to indicate loss of

the large inverted repeat in Pinus. Drawn with GenomePixelizer
(Kozik et al. 2002) using genome annotations deposited in public

sequence databases. Refer to the text for genome references and

original publications.]
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IRs are essentially identical, one might describe the plastid

genome structure also as tripartite (as in Bock 2007), since

the IRs share molecular evolutionary patterns that clearly

differ from those observed in the SC regions. This quad-

ripartite (or tripartite) architecture is already present in

algal lineages including the closest relatives of land plants

(e.g. Chaetosphaeridium, Chara; Turmel et al. 2002,

2006), implying a pre-land plant origin for this important

conserved structural feature.

The plastid chromosomes of charophyte algae, the

closest relatives of land plants (Qiu et al. 2006), are larger

than those of land plants. They contain several genes that

have either been lost or functionally transferred to the

nuclear genome in Embryophytes (Turmel et al. 1999;

2006). Parsimony analyses reconstructing unambiguous

changes in gene content among plants revealed that the

gene ycf1 was gained in a common ancestor of several

green algae and land plants (Maul et al. 2002). The gain of

an intron in the trnKUUU coding regions, including an

intact open reading frame (ORF; matK), is shared by

Charophytes and Embryophytes (Maul et al. 2002; Lewis

and McCourt 2004; McNeal et al. 2009). Comparative

analysis revealed that the plastome structure and gene

content in Chaetosphaeridium, a unicellular freshwater

charophyte alga, is most similar to that of early land plants

(Turmel et al. 2002): Large blocks of co-linear groups of

genes are already present in this genus. Yet, in order to

obtain the structural organization of early land plant

plastomes, several functional gene transfers to the nuclear

genome (e.g. tufA, ftsH, odpB, rpl5), one gene gain (ycf2),

and a minimum of eight inversions are necessary (Turmel

et al. 2006; Gao et al. 2010). One of those inversions

involves a region of the LSC approximately 30 kb in length

(Raubeson and Jansen 1992). A huge inversion of the

complete matK—atpA-I—rpoB-C1/2-region is shared

between ferns and seed plants (Fig. 2), whereas liverworts

(Ohyama et al. 1988; Wickett et al. 2008a), mosses

(Sugiura et al. 2003; Oliver et al. 2010), hornworts (Kugita

et al. 2003), and lycophytes (Wolf et al. 2005; Tsuji et al.

2007; Karol et al. 2010) show a more ancestral organiza-

tion similar to that of Chaetosphaeridium (Quandt et al.

2003; Turmel et al. 2002). Generally, the presence of such

rearrangements implies that additional transitional forms

probably existed and might still be observable in lineages

that have remained unstudied so far.

Synteny and structural rearrangements

Plastome rearrangements

Hotspots for structural rearrangements within plastid gen-

omes include the IRs, which are frequently subject to

expansion, contraction or even complete loss. Such

changes occurred several times independently during the

evolution of land plants and often are specific for single

orders and families, sometimes even for just one or a few

species within a genus (Downie and Bewley 1992; Goul-

ding et al. 1996; Plunkett and Downie 2000; Daniell et al.

2006; Guisinger et al. 2010; Wolf et al. 2010a). Further-

more, extensive changes within the IRs appear to have an

effect on the structural integrity of the entire plastid

chromosome beyond the IRs and their immediate neigh-

borhood. This is likely due to their role as putatively

important players in the stabilization of the plastid chro-

mosome via homologous recombination-induced repair

mechanisms (Maréchal et al. 2009; Rowan et al. 2010;

reviewed in detail by Maréchal and Brisson 2010).

Early branching gymnosperms (McCoy et al. 2008; Wu

et al. 2009), angiosperms (Goremykin et al. 2003; Cai et al.

2006) and derived leptosporangiate ferns possess much

larger IRs than the remaining land plant lineages (Waka-

sugi et al. 1998; Roper et al. 2007; Karol et al. 2010). Thus,

large scale expansions of the IRs most likely occurred at

least twice independently over the evolution of major land

plant groups, including once in the common ancestor of

seed plants. Additional large- (Guisinger et al. 2010) and

small-scale (Goulding et al. 1996) expansions have

occurred within angiosperms. As a result of the re-location

into the IR, several previously SC genes became dupli-

cated, including the largest plastid gene, ycf2 (Wolf et al.

2010a). A duplication of the ycf2 gene occurs indepen-

dently in derived leptosporangiate ferns (tree and polypod

ferns) and might be functionally relevant for plant devel-

opment. In angiosperms, ycf2 expression is highest in fruits

(Drescher et al. 2000), but comparable data for leptospo-

rangiate ferns (or other land plant lineages) are lacking so

far. Interestingly, plastome re-structuring in ferns is cor-

related with an expansion of the IR (Thompson et al. 1986;

Stein et al. 1992; Raubeson and Stein 1995; Wolf et al.

2010a).

Contraction of the large inverted repeats involves only

few (tens to hundreds of) base pairs up to and including

complete IR loss. The positions of the LSC-IR junctions

vary slightly within groups, but usually this has only neg-

ligible effects on plastome size (Goulding et al. 1996;

Daniell et al. 2006; Wang et al. 2008). It has been sug-

gested that such positional changes of IR-junctions among

species are the result of gene conversion (Goulding et al.

1996). In several groups, one of the IR-region has been

completely lost, for instance in several legumes (Palmer

et al. 1987b; Cai et al. 2008; Jansen et al. 2008; Tang-

phatsornruang et al. 2010), members of Geraniaceae

(Guisinger et al. 2010), and some representatives of

Orobanchaceae (Downie and Bewley 1992; S. Wicke, C.

W. dePamphilis, D. Quandt and G. M. Schneeweiss,

unpublished data). So far, no properties have been
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identified that are shared between these rather distantly

related angiosperms and might provide an explanation for

these IR losses. In legumes, the loss apparently affects

overall structural stability, leading to mutational hotspots

(Palmer et al. 1987b; Milligan et al. 1989; Cai et al. 2008;

Magee et al. 2010) and an overall increase of nucleotide

substitution rates (Perry and Wolfe 2002). The changes in

gene order of a Vigna angularis cultivar relative to other

members of Fabaceae have been proposed to either be

caused by a large inversion or mediated by a two-step

model including IR expansion and contraction (Perry et al.

2002).

Small dispersed repeats

Reorganizations are in many cases associated with small

dispersed repeats (SDR), which are hypothesized to con-

tribute to the double-strand break induced repair mecha-

nism (Milligan et al. 1989; Maul et al. 2002; Odom et al.

2008). SDRs often contribute significantly to repeat space

in genomes with highly rearranged gene order and add to

structural polymorphism in even closely related lineages

(Maul et al. 2002). SDRs mainly occur in non-coding DNA

fractions (spacer, introns; Raubeson et al. 2007), where

they are often associated with small hairpin structures

(Quandt et al. 2003; Kim and Lee 2005). The greatest

concentrations of SDRs have so far been reported in green

algal plastid genomes (ca. 20% of the Chlamydomonas

plastome), although this seems to be highly lineage specific

(Maul et al. 2002). Large repeats are assumed to be sup-

pressed (or selectively eliminated) in plastid DNA because

of their ability to cause recombination that may destabilize

genome structure (Gray et al. 2009; Maréchal and Brisson

2010). Among angiosperms, the most abundant sizes of

SDRs are on average smaller than 50 bp with direct repeats

being more frequent than inverted repeats (Raubeson et al.

2007). A significant increase of repeats larger than the

average has been reported in highly rearranged genomes

such as Geraniaceae (Guisinger et al. 2010), Campanula-

ceae (Haberle et al. 2008), and Fabaceae (Cai et al. 2008),

supporting the notion that repeats and genomic rearrange-

ment are causally related. Possibly, tRNA genes might be

recognized as repeated elements causing rearrangements

by intramolecular or non-homologous recombination

(Ogihara et al. 1988; Hiratsuka et al. 1989). In many cases,

breakpoints of inversions are flanked by tRNA genes and

short repetitive sequences (Hiratsuka et al. 1989; Haberle

et al. 2008; Guisinger et al. 2010).

A unique switch in IR orientation (inversion) has

occurred along the branch separating early diverging fern

lineages (Psilotum, Angiopteris: Wakasugi et al. 1998;

Roper et al. 2007; Karol et al. 2010) from derived lep-

tosporangiate ferns (Adiantum, Alsophila: Wolf et al. 2003;

Gao et al. 2009). This might be an outcome of the flip-flop

recombination process proposed by Palmer (1983). Two

smaller rearrangements occur at the breakpoint of the large

inversion that is synapomorphic to all vascular plants

except lycophytes (Raubeson and Jansen 1992; Wolf et al.

2003). The inversions reported in derived leptosporangiates

are likely to be caused by two overlapping inversions

during the evolution of leptosporangiate ferns (Wolf et al.

2003, 2010).

Several small and large inversions that are not accom-

panied by expansion and contraction of an IR have been

reported for diverse angiosperm lineages (Asteraceae:

Jansen and Palmer 1987; Kim et al. 2005; Spinacia: Sch-

mitz-Linneweber et al. 2001; some Oleaceae: Lee et al.

2007; Mariotti et al. 2010; grasses: Hiratsuka et al. 1989;

Bortiri et al. 2008), but seem to be less frequent in early

land plants lineages. However, one large inversion (71 kb),

affecting nearly the entire LSC, is found in the model moss

Physcomitrella patens (Sugiura et al. 2003). This inversion

was shown to be autapomorphic to Physcomitrella and

Funariales, but absent in other mosses (Goffinet et al.

2007). Due to the small number of plastid genomes

sequenced from early land plant lineages, little is known

about other structural rearrangements in bryophytes. As of

this writing, no structural changes (inversions) have been

identified in liverworts (L. L. Forrest and B. Goffinet,

Ecology and Evolutionary Biology, University of Con-

necticut/USA, personal communication). Some of the

largest inversions observed may be attributable to flip-flop

recombination due to the existence of the large inverted

repeats (Palmer 1983). In the flowering plants studied so

far, it has been shown that flip-flop recombination and

inversions predominantly occur around the origin of rep-

lication (ori). In some angiosperms, the oriB maps to the

rDNA-ycf1 region within the IR, which is located more

closely to the IR-SSC-boundary than to the IR-LSC

junction (Thompson et al. 1986; Lu et al. 1996;

Kunnimalaiyaan and Nielsen 1997; Eisen et al. 2000;

Mackiewicz et al. 2001).

Genome size reduction, gene transfer, and gene gains

Genome size reduction is another major aspect of non-

canonical structural evolution. The most dramatic changes

in genome size and gene content have been reported for

non-photosynthetic parasitic plants. The plastome of Epif-

agus (Wolfe et al. 1992) measures only about half the size

of an average eudicot plastome (Bock 2007). This is

mainly due to non-functionalization of most photosynthe-

sis-related genes (dePamphilis and Palmer 1990) and some

genes for transcription and translation (Morden et al.

1991). Although there is a general trend of (functional)

plastid genome reduction in parasitic plants, the size and
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gene content seem to vary widely among different lineages

because some highly heterotrophic species retain photo-

synthetic ability (Revill et al. 2005; Funk et al. 2007;

McNeal et al. 2007; Nickrent and Garcı́a 2009). Indepen-

dent of parasitism, genome reduction was observed in

Pinaceae and Gnetophytes (McCoy et al. 2008; Wu et al.

2009), due in large part to the loss of ndh genes. The

plastomes of Gnetum and Welwitschia are also more

compact than in other seed plant lineages due to the

reduction of intron and spacer regions (McCoy et al. 2008;

Wu et al. 2009). This genome reduction is speculated to be

the result of a low-cost strategy that could facilitate rapid

genome replication under disadvantageous environmental

conditions (McCoy et al. 2008; Wu et al. 2009).

Translocation of single genes is rare in plastid genomes,

and this is likely a reflection of the overall rarity of inserted

(vs. lost or rearranged) sequences in plastid genomes.

Reports of foreign DNA being naturally inserted into the

plastid DNA are rare (Maul et al. 2002; Haberle et al. 2008;

Guisinger et al. 2010); perhaps in part because of the dif-

ficulty of detecting insertions in poorly conserved inter-

genic regions. Many of the repetitive elements found in

highly rearranged genomes seem to be derived from plastid

sequences (Cai et al. 2008; Haberle et al. 2008; Guisinger

et al. 2010). However, some are unique which might sug-

gest either rapid divergence or a non-plastid origin (Gui-

singer et al. 2010). As already mentioned by Park et al.

(2007), the putatively horizontally acquired rbcL gene

copies found in several Phelipanche species (Orobancha-

ceae) are most likely located in the nuclear or mitochon-

drial genome, and are not plastid encoded. RbcL appears to

be generally absent from Phelipanche plastid genomes

(S. Wicke, D. Quandt, C. W. dePamphilis, G. M. Schnee-

weiss, unpublished data).

Gene gains, too, are exceptional during plant evolution

(e.g. matK, ycf1/2; Fig 1). The organization and regulation

of genes in operons might be one stabilizing factor. Most

often, localized changes of gene order are caused by the

loss of single genes to the nuclear genome, or due to non-

functionalization in parasitic or mycotrophic plants.

Functional transfer of genes and subsequent loss of the

plastid gene copy has been reported for some rosids (Jan-

sen et al. 2010), some monocots (e.g. Hiratsuka et al. 1989;

Masood et al. 2004; Saski et al. 2007) and the spikemoss

Selaginella uncinata (Tsuji et al. 2007).

Contrasting with the overall high degree of conservation

of plastome structure and gene content in land plants,

massive structural changes are occasionally found in sev-

eral unrelated lineages. These include derived angiosperm

families such as Geraniaceae (Palmer et al. 1987a;

Chumley et al. 2006; Guisinger et al. 2010), Fabaceae

Palmer et al. (1987b); Milligan et al. 1989; Cai et al. 2008;

Tangphatsornruang et al. 2010), members of Onagraceae

(Oenothera: Hupfer et al. 2000; Greiner et al. 2008),

Campanulaceae (Knox and Palmer 1999; Cosner et al.

1997, Cosner et al. 2004; Haberle et al. 2008), but also

leptosporangiate ferns (Wolf et al. 2003, 2010; Gao et al.

2009). Because some of the extensively re-shuffled

angiosperm plastomes occur in lineages with biparental

plastid inheritance (Corriveau and Coleman 1988), it is

tempting to speculate that the nature of plastid inheritance

may affect plastid genome stability. Biparental inheritance

combined with fusion of paternal and maternal plastids

(although rare; Wellburn and Wellburn 1979) would likely

result in homologous recombination between putatively

divergent plastome copies (experimentally shown by Fejes

et al. 1990), eventually leading to alteration of the genome

structure. In other plants, major rearrangements, in partic-

ular gene losses, are obviously connected to a change in

lifestyle from autotrophy to parasitism or myco-heterotro-

phy (Aneura: Wickett et al. 2008a; Orobanchaceae:

dePamphilis and Palmer 1990; Wolfe et al. 1992; Con-

volvulaceae: Funk et al. 2007; McNeal et al. 2007, 2009;

Viscaceae: Nickrent and Garcı́a 2009; and Lennoaceae:

Y. Zhang and C.W. dePamphilis, unpublished data).

The precise mechanisms underlying structural changes

are as yet unknown, but they are often associated with the

presence of nearby repeat sequences, including small

repeated sequences that are dispersed through the genome

(Maul et al. 2002; Cui et al. 2006; Omar et al. 2008; Cai

et al. 2008; Gray et al. 2009; Maréchal and Brisson 2010).

Similarly to the plastid genome, in both the nuclear and

mitochondrial genomes, structural reorganizations often

are observed in proximity to structural RNA genes and

short repetitive flanking sequence motifs (Grewe et al.

2009). In the nuclear genome, the latter is often associated

with transposon activity (Woodhouse et al. 2010). In

mitochondrial genomes, transposons are restricted to

angiosperms (Knoop et al. 1996; Kubo et al. 2000; Notsu

et al. 2002), but are absent in early land plant lineages

(Ohyama 1996; Knoop 2004; Grewe et al. 2009). No (retro-)

transposons, or traces thereof, have ever been reported from

land plant plastomes. Yet, the plastid chromosome of the

model green algae Chlamydomonas harbors two copies of

the non-functional transposable element Wendy (Fan et al.

1995, Maul et al. 2002). Consequently, mechanisms sug-

gested for nuclear and mitochondrial genomes are less likely

for plastid genomes given the current knowledge on their

evolution (reviewed in Palmer 1991; Raubeson and Jansen

2005; Bock 2007).

Other possible candidates for causing restructuring of

plastid genomes are relaxed repair mechanisms and/or

recombination processes. Recently, several nuclear enco-

ded genes and gene families have been identified that

mediate stabilization, repair and maintenance of the plastid

chromosome (Day and Madesis 2007; Maréchal and
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Brisson 2010). It might be possible that mutations in these

proteins could lead to impaired maintenance of the plastid

genome structure (Guisinger et al. 2010).

Gene content and function of the plastid genome

The central function of the chloroplast is to carry out

photosynthesis and carbon fixation. Besides genes encod-

ing elements for the genetic apparatus, such as structural

and transfer RNAs, the plastome encodes numerous pro-

teins for photometabolic pathways (Palmer 1991; Sugiura

1992; Raubeson and Jansen 2005; Bock 2007). The fol-

lowing functional protein categories can be distinguished

(Table 1): proteins for the genetic apparatus, for non-

photosynthesis related metabolic pathways, for primary

(light-dependent) photosynthetic reactions, and for sec-

ondary (light-independent) photosynthesis pathways. In

most cases, fully functional protein complexes are assem-

bled from plastid encoded gene products and nuclear

encoded subunits that are imported into the plastid

organelle.

Plastid encoded elements for the plastid genetic

apparatus

Many genes that encode pathways for the plastid genetic

apparatus have been transferred to the nucleus and are now

imported into the plastid. However, genes for transcription

and protein biosynthesis are retained in the plastome. These

comprise structural RNAs (rRNA, tRNA), some ribosomal

proteins, and genes for a DNA-dependent RNA polymerase

as well as few genes coding for DNA and protein pro-

cessing enzymes.

Genes for DNA/RNA processing enzymes

Plastid genetics is sometimes described as ‘‘chimeric’’ in

that eukaryotic cytosolic (e.g. poly-A-binding proteins) and

eubacterial components (e.g. Shine-Dalgarno interactions)

are combined with novelties such as regulating stem loops

in the 50- and 30- untranslated regions of plastid mRNAs

(Zerges 2000). Transcription of plastid genes is carried out

by a set of DNA-dependent RNA polymerases: nuclear

encoded (phage-type) polymerase (NEP) and plastid-

encoded (eubacterial-type) polymerase (PEP). Both tran-

scribe distinct groups of genes (Hajdukiewicz et al. 1997;

Cahoon and Stern 2001; Shiina et al. 2005) and require

different transcription promoting signals (Weihe and Bör-

ner 1999). Promoter signals of PEP-transcribed genes are

highly similar to those of eubacterial r70-promoters with

AT-rich sequences in the -35 promoter element (consensus

50-TTGACA-30) and the -10 TATA-box (consensus

50-TATAAT-30) upstream of the transcription initiation site

(Briat et al. 1986). Promoter elements of NEP-transcribed

genes are less conservative and share only short elements

(Weihe and Börner 1999). Three different types are known.

Two are characterized by a common core promoter YRT-

element (i.e. purine-pyrimidine-thymidine stretch) that is

highly conserved among flowering plants. This motif is

localized in close proximity to the start codon (less than

10 bp away), where it can be preceded by a GAA-box. The

different classes of promoters are recognized by two phage

type polymerases. In Arabidopsis, the existence of at least

two plastid targeted NEPs has been experimentally cor-

roborated (Swiatecka-Hagenbruch et al. 2008), but evi-

dence for differential usage or affinity to particular

promoters is currently lacking. In eudicots, one of these

NEPs is targeted to mitochondria and plastids (Kobayashi

et al. 2001), which is reflected in partially shared promoter

architectures between both organelles (Kühn et al. 2005).

However, this dual-targeted phage type polymerase

appears to be absent from other land plants including

monocots and early diverging angiosperms (Yin et al.

2010).

PEP is lost or pseudogenized in some parasitic plants

with minimal or no photosynthetic activity such as Cuscuta

(Funk et al. 2007; McNeal et al. 2007) and Orobanchaceae

(Wolfe et al. 1992; Delavault et al. 1996). The loss of PEP

subunits renders its promoters dispensable, potentially

allowing them to be lost from the plastome (Krause et al.

2003). However, NEP seems to be able to take over at least

some of PEP’s transcriptional functions as suggested by the

frequent presence of both NEP and PEP promoters

upstream of several plastid transcription units, for instance

in the rrn16-trnV region (Krause et al. 2003). In both

Cuscuta (Berg et al. 2004) and Lathraea (Lusson et al.

1998) expression of the rbcL gene is accomplished by NEP

after the loss of PEP.

MatK—a general group IIA intron maturase?

Protein coding genes that are related to (post-) transcrip-

tional activity include the matK gene. The matK-gene

product is thought to act as a splicing factor for plastid

group IIA (gIIA) introns (Liere and Link 1995). It is

commonly referred to as a ‘general’ maturase associated

with several different intron-containing plastid mRNAs

(Zoschke et al. 2010). MatK is transcribed from the sole

intact plastid gII intron ORF localized between the exons

coding for the lysine-tRNA (trnKUUU). In contrast to other

gII ORFs, MatK has lost domains assigned to a reverse

transcriptase and endonuclease function. Similarity to

typical gII ORF maturases is only retained in the DNA-

binding domain (Mohr et al. 1993; San Filippo and

Lambowitz 2002; Mohr and Lambowitz 2003; Lambowitz

and Zimmerly 2004; Pyle and Lambowitz 2006; Hausner
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ü
ll

er
,

u
n

p
u

b
li

sh
ed

.d
at

a.
;

l T
su

ji
et

al
.

(2
0

0
7

);
m

C
h

u
m

le
y

et
al

.
(2

0
0

6
);

n
R

ef
er

s
to

eu
b

ac
te

ri
al

-t
y

p
e

ri
b

o
so

m
es

,
se

e
G

ro
n

d
ek

an
d

C
u

lv
er

2
0

0
4

fo
r

as
se

m
b

ly
m

ap
s.

N
o

as
se

m
b

ly
m

ap
s

ar
e

cu
rr

en
tl

y
av

ai
la

b
le

fo
r

b
in

d
in

g
o

f
p

la
st

id
ri

b
o

so
m

al
p

ro
te

in
s

to
1

6
S

rR
N

A
o

r
2

3
S

rR
N

A
,

re
sp

ec
ti

v
el

y
.

P
S

R
P

d
o

n
o

t
h

ar
b

o
u

r
h

o
m

o
lo

g
u

es
in

E
.

co
li

ri
b

o
so

m
es

.
E

.c
o

li
ri

b
o

so
m

al
p

ro
te

in
s

L
7

,
L

8
,

L
3

0
,

L
2

5
,

an
d

L
2

6
h

av
e

n
o

t
b

ee
n

d
et

ec
te

d
in

ch
lo

ro
p

la
st

ri
b

o
so

m
es

b
y

Y
am

ag
u

ch
i

an
d

S
u

b
ra

m
an

ia
n

(2
0

0
0

);
o
L

is
t

m
ay

b
e

in
co

m
p

le
te

d
u

e
to

ad
d

it
io

n
al

ch
an

g
es

/m
u

ta
ti

o
n

s
o

r
R

N
A

-e
d

it
in

g
o

f

an
ti

co
d

o
n

se
q

u
en

ce
s

as
re

p
o

rt
ed

fr
o

m
A

d
ia

n
tu

m
b

y
W

o
lf

et
al

.
2

0
0

4
.

A
m

o
re

th
o

ro
u

g
h

o
v

er
v

ie
w

o
f

tR
N

A
ch

an
g

es
am

o
n

g
la

n
d

p
la

n
ts

is
p

ro
v

id
ed

b
y

G
ao

et
al

.
2

0
1

0
.

T
h

e
se

t
o

f
tR

N
A

s
sh

o
w

n

h
er

e
re

fe
rs

to
th

e
re

fe
re

n
ce

p
la

st
o

m
e

N
ic

o
ti

a
n

a
ta

b
a

cu
m

(S
h

in
o

za
k

i
et

al
.

1
9

8
6

)

284 Plant Mol Biol (2011) 76:273–297

123



et al. 2006). The molecular evolution of the matK coding

region is unusual compared to other plastid genes in that all

three codon positions evolve at nearly equal rates (Hilu and

Liang 1997). This feature makes it particularly useful for

phylogenetic reconstruction (Müller et al. 2006; Wicke and

Quandt 2009). Equal substitution rates at all codon posi-

tions, however, are indicative of relaxed purifying selection

(Müller et al. 2006; Duffy et al. 2009), which led several

authors to question its function or functionality in land

plants (Hausner et al. 2006). Substitution rate analysis,

however, demonstrated purifying selection for matK in

parasitic lineages including Orobanchaceae (Young and

dePamphilis 2000) and some Cuscuta species (McNeal

et al. 2009), providing evidence for sustained functionality.

In Cuscuta, however, matK is absent from species (Funk

et al. 2007; McNeal et al. 2007) that have lost all of the

seven gIIA introns that likely depend upon the matK

maturase for splicing (McNeal et al. 2009; Zoschke et al.

2010), which lends further support to the hypothesis of a

more general demand for the matK-encoded maturase

function.

Structural RNAs

Reflecting their localization within the IR region, two sets of

structural ribosomal RNA species (rrn23, rrn16, rrn5,

rrn4.5) are encoded in most plastid genomes of green plants

studied so far. The few exceptions with only one set occur in

lineages that have lost one copy of the IR. The ancient

duplication of the plastid ribosomal DNA operon and its

conservation throughout plant evolution might be attributed

to generally high quantities of rRNA required for ribosome

synthesis during early developmental stages (Bendich

1987). The large ribosomal subunit (rrn23, cpLSU) is

arranged upstream of the smallest ribosomal subunits of

4.5S (rrn4.5) and 5S RNA (rrn5), which might facilitate

expression and delivery of either subunit at equal ratios.

Moreover, the existence of two copies facilitates the main-

tenance of these genes by, e.g., gene conversion (Lemieux

and Lee 1987). The small ribosomal subunit (rrn16, cpSSU)

is separated from the remainder rRNAs by two tRNA genes.

Functional domains of either rRNA species are highly

conserved and show 65–80% similarity to eubacterial

(cyanobacterial) ribosomal RNAs (Palmer 1985; Harris

et al. 1994; Stoebe and Kowallik 1999; Zerges 2000).

30 different tRNAs are encoded in a typical angiosperm

plastid genome. Recognition of all 61 codons is possible by

superwobbling (‘‘two out of three’’-mechanism; Lagerkvist

1978; Pfitzinger et al. 1990; Rogalski et al. 2008). Super-

wobbling allows reading of all possible codons even if there

is only one tRNA encoded as in the case of alanine, arginine,

asparagine, aspartic acid, cysteine, glutamic acid, histidine,

lysine, phenylalanine, proline, tryptophan, and tyrosine

(Palmer 1991; Sugiura 1992; Bock 2007). In addition to

protein biosynthesis, glutamyl tRNA (encoded by the plastid

trnE gene) plays a prominent role during activation of heme

biosynthesis (Smith 1988; Howe and Smith 1991; Jahn et al.

1992). This and the low rates of tRNA import into cell

organelles (Dietrich et al. 1992, Dietrich et al. 1996; Lohan

and Wolfe 1998) led Barbrook et al. (2006) to suggest that a

minimal plastid genome would at least contain the trnE

gene. However, experimental data concerning the import

machinery for small structural RNAs are rare and evidence

for general tRNA import into plastids is lacking. Therefore,

it remains speculative to what extent the plastid genome

could eventually be reduced.

Nonphotosynthetic and minimally photosynthetic

angiosperms typically retain only a fraction of tRNAs

(Morden et al. 1991; Lohan and Wolfe 1998; Funk et al.

2007; McNeal et al. 2007, 2009; Nickrent and Garcı́a

2009). In Orobanchaceae, the loss of some tRNA-genes,

e.g. trnC, seems to be correlated with the loss of photo-

synthesis (Taylor et al. 1991). Because expression analyses

of retained genes in the highly reduced plastomes of

Epifagus (Wolfe et al. 1992) and Conopholis (Wimpee

et al. 1991, Wimpee et al. 1992) suggest an intact trans-

lation apparatus, the loss of tRNAs from their genomes

might be indicative of tRNA import into plastid organelles.

Pseudogenization of tRNAs has been reported for the

mistletoe Arceuthobium (Nickrent and Garcı́a 2009) and

for Cuscuta (Funk et al. 2007; McNeal et al. 2007). In non-

parasitic plants, the loss of e.g. trnKUUU has occurred

independently multiple times (Selaginella: Tsuji et al.

2007; leptosporangiate ferns: Duffy et al. 2009; Wolf et al.

2010; Gao et al. 2010; Geraniaceae: Guisinger et al. 2010).

Plastid ribosomal proteins and ribosomes

Plastid protein biosynthesis is carried out at eubacterial-

like 70S ribosomes (Zerges 2000). These are assembled

from the small 30S ribosomal subunit and the large 50S

subunit. The 16S ribosomal RNA builds the backbone of

the 30S ribosome subunit, which additionally includes 25

ribosomal proteins (Yamaguchi et al. 2000). The remaining

three plastid rRNA species together with 33 ribosomal

proteins constitute the 50S ribosome subunit (Yamaguchi

and Subramanian 2000). Most genes coding for ribosomal

subunit proteins have been transferred to the nuclear gen-

ome. However, land plant plastomes commonly encode

twelve proteins for the small ribosomal subunits (rps

genes) and nine large ribosomal subunit proteins (rpl

genes). Loss of rps and rpl genes from plastomes is rare,

but has been detected in rosids (e.g. rpl22, rpl23, rps16; see

Jansen et al. 2007; Jansen et al. 2010; Magee et al. 2010 for

an overview) and a variety of non-photosynthetic or min-

imally photosynthetic angiosperms (Epifagus: dePamphilis
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and Palmer 1990; Conopholis: Y. Zhang and C. W.

dePamphilis, unpublished data; Cuscuta: Funk et al. 2007;

McNeal et al. 2007; Arceuthobium: Nickrent and Garcı́a

2009). Whether parasitic angiosperms are able to translate

proteins with a reduced set of ribosomal proteins or import

missing components is still unknown.

Other proteins associated with plastid ribosomes are a

nuclear encoded ribosome recycling factor and several

plastid ribosome specific proteins (PSRPs) that are unique

to plants and show no similarities to bacterial homologs

(Yamaguchi et al. 2000, Yamaguchi et al. 2003; Yamag-

uchi and Subramanian 2000; Sharma et al. 2010). The

assembly of the eubacterial-type ribosomes has been

studied intensively (reviewed in Moore 1998), but so far no

such studies are available for plastid ribosomes. Given the

high similarity of ribosomal RNA and most ribosomal

proteins between eubacteria and plastids, it can be assumed

that plastid ribosome assembly is similar to that of

eubacteria. Most of the ribosomal proteins of the 30S

ribosome subunit bind to the so-called S7-branch or are

dependent on other (plastid encoded) proteins for binding

(Grondek and Culver 2004). Thus, through analogy with

eubacterial ribosomal proteins, plastid encoded ones might

be divided into primary, secondary and tertiary binding

components of the 30S and the 50S (Table 1) ribosome

subunit according to their rRNA binding features.

Four proteins that are bound to the 30S ribosome sub-

units have no homologs in the eubacterial (i.e. E. coli-type)

ribosome and are nuclear-encoded PSRPs. Two additional

PSRP-proteins are bound to the 50S ribosome subunit

(Yamaguchi et al. 2000; Yamaguchi and Subramanian

2000). It remains unknown how PSRPs are assembled into

functional ribosome complexes. Recent analyses of PSRPs

suggest that they play a role in light-dependent regulation

of transcription/translation processes (Sharma et al. 2010).

One translation initiation factor assisting in the assembly

of the translation initiation complex is encoded by the plastid

gene infA (translation initiation factor; a total of three are

known from eubacterial translation mechanisms). InfA has

been lost multiple times independently during land plant

evolution. Although present in all bryophyte and fern lin-

eages, it is pseudogenized in the lycophyte Isoëtes (Karol

et al. 2010), but appears to be functional in other lycophytes

(Selaginella: Tsuji et al. 2007; Huperzia: Wolf et al. 2005).

In angiosperms, multiple losses have been reported (sum-

marized in Jansen et al. 2007; Magee et al. 2010), accumu-

lating in lineages known for their non-canonical plastid

genome evolution (e.g. legumes; Millen et al. 2001).

clpP—a protein-modifying enzyme

High levels of photosynthetic gene expression coincide

with an enormous protein turn-over in plastids. Both

maturation and protein degradation involve ATP-depen-

dent synthase/protease complexes that act as molecular

chaperones restoring or degrading damaged proteins

according to the severity of protein denaturation

(Wawrzynow et al. 1996; Adam et al. 2001; Adam and

Clarke 2002). In plastids, three different protease com-

plexes have been identified: Fts (filamentation temperature

sensitive protease), DegP/HtrA (high temperature require-

ment protease A) and Clp (Caseinolytic protease). Whereas

all subunits of the first two complexes are encoded by the

nuclear genome, ClpP is plastid encoded.

Plastid genes coding for protein subunits involved

in photosynthetic dark reactions and biogenesis

Genes for protochlorophyllide reductase subunits, proteins

for CO2 uptake and cytochrome C biogenesis

Bryophytes, lycophytes, ferns and most gymnosperms

harbor genes for three subunits of a light-independent

protochlorophyllide reductase (chlB, chlL, chlN) in their

plastomes. This enzyme is involved in porphyrin and

chlorophyll metabolism (Reinbothe and Reinbothe 1996;

Karpinska et al. 1997). In gnetophytes, an aberrant gym-

nosperm group with still controversial phylogenetic posi-

tion (e.g. Zhong et al. 2010), chlB, chlL and chlN are lost

to different extents (McCoy et al. 2008; Wu et al. 2009). In

Ephedra, sister group to the remaining Gnetales (Zhong

et al. 2010), all three genes are present and intact, whereas

Gnetum and Welwitschia possess pseudogenes of two

subunits and have lost the third (McCoy et al. 2008; Wu

et al. 2009). Different patterns in pseudogenization and chl-

gene loss in both genera might indicate relaxation of evo-

lutionary constraints to maintain functional copies, perhaps

due to import of as yet unidentified nuclear substitutes.

The gene ccsA (ycf5) encodes a protein mediating the

attachment of heme to c-type cytochromes during cyto-

chrome biogenesis (Xie and Merchant 1996; Saint-Mar-

coux et al. 2009). The gene is localized in the plastid SSC

region, and widely conserved among photosynthetic plants.

However, ccsA is lost from Epifagus (Wolfe et al. 1992),

and pseudogenized in Aneura mirabilis (Wickett et al.

2008a) The reading frame is, however, retained in all

Cuscuta species sequenced so far (McNeal et al. 2007;

Funk et al. 2007).

Land plant plastomes also encode a protein localized in

the inner envelope membrane (inner-envelope protein,

cemA/ycf10; Sasaki et al. 1993b). Knockouts of the gene

cemA in Chlamydomonas severely affected the uptake of

CO2, while not affecting photosynthetic reactions (Rolland

et al. 1997). CemA is lost from the plastid genome of

Epifagus (Wolfe et al. 1992) and other Orobanchaceae

(S. Wicke et al., unpublished data), but present in Cuscuta
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(Funk et al. 2007; McNeal et al. 2007), and Aneura

(Wickett et al. 2008a).

rbcL

The rbcL gene encodes the large subunit of the ribu-

lose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO).

RuBisCO is estimated to be the most abundant protein on

earth (Ellis 1979). With the assistance of chaperones, it is

assembled from eight large subunits (RbcL) and eight

small subunits (RbcS). In contrast to red algae and Glau-

cophytes, Chlorophytes and Streptophytes do not possess a

functional gene copy for the small RuBisCO subunit (rbcS

gene) in the plastid genome. Instead, RbcS is encoded as a

nuclear gene family and targeted to the plastid (Clegg et al.

1997). In contrast to many other photosynthesis related

genes, rbcL is often retained in non-photosynthetic plants.

Putatively functional copies of rbcL are retained in several

representatives of Orobanchaceae, such as Lathraea (Del-

avault et al. 1996; Lusson et al. 1998), Orobanche cor-

ymbosa, O. fasciculata (Wolfe and dePamphilis 1997;

Leebens-Mack and dePamphilis 2002), most species of

Harveya (Leebens-Mack and dePamphilis 2002; Randle

and Wolfe 2005), and the non-photosynthetic liverwort

Aneura mirabilis (Wickett et al. 2008a). In other broom-

rape species, rbcL is only found as a pseudogene (as in

Epifagus: Wolfe et al. 1992, O. cernua: Wolfe and

dePamphilis 1997; Hyobanche, Randle and Wolfe 2005),

or has been completely lost (S. Wicke et al., unpublished

data). Retention, expression, and evidence for strong

purifying selection in hemiparasitic and some holoparasitic

plants have led to the speculation that rbcL is involved in

another, yet photosynthesis unrelated pathway (Leebens-

Mack and dePamphilis 2002; Randle and Wolfe 2005;

McNeal et al. 2007; see section ‘‘Plastid encoded genes for

photosynthesis unrelated pathways’’).

Plastid genes for thylakoid complexes involved

in photosynthetic light reactions

Oxygenic photosynthesis requires efficient light harvesting

systems as well as an electron transport chain. The inner

(thylakoid) membrane of the plastid contains at least five

major protein complexes: photosystem I (PSI), photosys-

tem II (PSII), cytochrome b6/f complex, ATP synthase and

an NAD(P)H-plastoquinone oxidoreductase-complex

(summarized in Table 1; Gounaris et al. 1986; Nixon et al.

1989).

Photosystem I and II (psa and psb genes)

In plants, light is harvested by two photosynthetic reaction

centers, PSI and PSII. These are localized in the thylakoid

membrane and form supercomplexes, each with its own light

harvesting complex that absorbs light via antenna molecules

(chlorophyll a/b, and carotenoids). The exact number of

proteins and cofactors associated with PSI and PSII super-

complexes is not known. PSII contains at least 17 subunits,

15 of which are encoded by the plastid genome (psbA, B, C,

D, E, F, H, I, J, K, L, M, N, T, Z). These genes are scattered

across the LSC region. All plastid psb-gene products form

transmembrane helices (Nelson and Yocum 2006) and bind

to the subunits PsbA (syn. D1), B, C, and D (syn. D2; Ec-

kardt 2001). The gene products of psbN and psbZ (syn. ycf9)

supposedly interact with the chlorophyll-bound subunit

PsbC that reaches into the thylakoid lumen (Nelson and

Yocum 2006). The structure of PSI is less complex than that

of PSII, because it contains fewer polypeptides in its reaction

center. The genes encoding for its plastid encoded subunits

(psa genes) are found in the LSC region with the exception

of psaC, which is embedded in an operon of ndh-genes in the

plastome SSC region. Five subunits of plastid encoded PSI

(A, B, C, I, J) are transmembrane proteins. The structurally

highly similar apoproteins PsaA and PsaB bind to the iron-

sulfur reaction center that mediates the transfer of excitated

electrons from plastoquinone to ferrodoxin (Nelson and

Yocum 2006). PsaC codes for a peripheral subunit on the

stromal side of PSI, which is directly involved in ferrodoxin

reduction by binding the terminal electron acceptor mole-

cules and linking them to the PSI iron-sulfur center (Fischer

et al. 1998). Subunits I and J are not essential for PSI

function (Bock 2007).

Photosystem assembly factors (ycf3, ycf4)

Both photosystems have been shown to be assembled with

the help of chaperones (Nelson and Yocum 2006). The

products of two plastid genes, ycf3 (orf62) and ycf4

(orf184), function as assembly factors for the photosystem

I complex (Boudreau et al. 1997a; Ruf et al. 1997; Naver

et al. 2001; Ozawa et al. 2009). Mutations in certain amino

acid residues that mediate protein–protein interactions led

to decreasing levels of PSI accumulation in the thylakoid

membrane, as did gene disruption experiments (Boudreau

et al. 1997a). Recently, it has been shown that Ycf3

interacts with at least one nuclear encoded protein during

the assembly of PSI (Albus et al. 2010). The naming of

both genes is somewhat misleading as it implies that their

function is still unknown. However, the transcripts of both

ORFs are obviously translated and the resulting polypep-

tides assist during the assembly of the photosystem I. We

therefore suggest renaming both genes to PSI assembly

factor I (pafI, the former ycf3) and II (pafII, the former

ycf4). The specifications I and II refer to the timing at

which they are thought to interact with PSI following the

model proposed by Ozawa et al. (2009).
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Cytochrome b6f complex (pet-genes) and ATP-Synthase

complex (atp-genes)

PSII and PSI are electrochemically connected in series by

the cytochrome b6/f complex. This is a functional complex

composed of nine different subunits plus several inorganic

cofactors, such as chlorophyll a, heme, b-carotene and an

iron-sulfur cluster (Baniulis et al. 2008).

Six subunits are plastid-encoded (petA, B, D, G, L, N).

These participate in electron transfer, generating a proton

gradient across the thylakoid membrane (Stroebel et al.

2003). Together with the nuclear encoded Rieske protein

(PetC), the gene products of petA (cytochrome f), petB

(cytochrome b6) and petD (subunit IV) form the core

complex that acts in the linear electron transport (Kurisu

et al. 2003). The remaining subunits (PetN, PetG, PetL plus

nuclear encoded PetM, PetH) are hydrophobic molecules

and are arranged peripherally around the core (Cramer

et al. 2006).

Plastid ATP Synthase is a multi-subunit complex com-

posed of nine different proteins generating ATP using the

proton gradient. These constitute an integral membrane

domain (F0-domain) and an extrinsic catalytic domain (F1-

domain) reaching into the stroma (Mccarty 1992). The F1-

subunit consists of five different polypeptides (a–e), three

of which are encoded by the plastome (atpA, B, E). The F0-

domain involved in proton translocation is built from three

different polypeptides (a–c) that are exclusively plastid

encoded (atpF, I, H; Vollmar et al. 2009).

All plastid-encoded genes for the photosynthetic appa-

ratus are highly conserved in land plant plastomes (with the

exception of ndhA–K, see below). Loss or pseudogeniza-

tion have only been reported in non-photosynthetic para-

sitic (Krause 2008) or myco-heterotrophic (Wickett et al.

2008a, b) plants.

Plastid NAD(P)H-complex (ndh-genes)

Electrons are recycled around PSI in different pathways.

One of which is carried out by a plastid NAD(P)H-dehy-

drogenase complex (Ndh1-complex) incorporated in the

thylakoid membrane (Casano et al. 2000; Nixon 2000).

This complex might also be involved in chlororespiration,

i.e. the process of respiratory electron transport in addition

to and/or in interaction with the photosynthetic electron

transport. The plastid Ndh1-complex non-photochemically

reduces and oxidizes plastoquinones. Furthermore, it may

also mediate the transport of electrons from PSI-ferro-

doxins back to PSII (reverse electron transport; Peltier and

Cournac 2002). Subunit composition appear to be highly

divergent between cyanobacteria and derived land plants

(reviewed in Suorsa et al. 2009). Together with several

partly uncharacterized subunits, Ndh1 consists of distinct

subcomplexes ranging from ca. 500 to over 1,000 kDa

(Suorsa et al. 2009).

Eleven subunits of the Ndh1-complex are encoded by

the plastid genome (ndhA, B, C, D, E, F, G, H, I, J, K).

Plastid subunits A-D as well as H–K are homologous to the

eubacterial (mitochondrial) proton pumping complex I

(Friedrich et al. 1995). Experimental studies have shown

that plastid encoded Ndh1-subunits might not be essential

for plant survival in tobacco, although ndh-gene knockouts

did cause phenotypic alterations (Peltier and Cournac 2002

and references therein).

The plastid encoded genes of the Ndh1 are pseudogenized

or entirely lost several times during land plant evolution.

Given current data, these losses seem to be predominantly

connected to a heterotrophic lifestyle in land plants (para-

sitism, some forms of myco-heterotrophy). This includes the

myco-heterotrophic and non-photosynthetic liverwort Ane-

ura mirabilis (Wickett et al. 2008a), the photosynthetic or

partially non-photosynthetic parasitic Cuscuta (McNeal

et al. 2007; Funk et al. 2007), the non-photosynthetic para-

site Epifagus (dePamphilis and Palmer 1990), orchid species

(Chang et al. 2006; Wu et al. 2010), and some gymnosperms

(Wu et al. 2009) as well as some representatives of carniv-

orous Lentibulariaceae (B. Schäferhoff, S. Wicke, C. W.

dePamphilis and K. Müller, unpublished data), and some

species of Geraniaceae (Blazier et al. 2011). Ndh genes are

also absent from several chlorophyte algae genomes (incl.

Chlamydomonas), but they are present in plastomes of the

closest relatives of land plants (Turmel et al. 2006; see also

Martı́n and Sabater 2010).

The Ndh1 complex may also be associated with other

pathways, and might play an important role in adaptation to

environmental stress (reviewed in Suorsa et al. 2009).

Abiotic stress, such as nutrient starvation (in particular

nitrogen starvation), affected and up-regulated ndh-gene

expression indicating a putative regulating function of

Ndh1 for the photosynthetic electron flow (Peltier and

Schmidt 1991). Due to the presence of nuclear genes of

Arabidopsis with strong similarities to ndh complexes and

plastid transit peptide sequences (Peltier and Cournac

2002), the existence of a second, nuclear encoded plastid

ndh complex (Nda2) has long been suspected. Recently, an

alternative form of an plastid localized Ndh-complex

involved in non-photochemical plastoquinone reduction

was identified (Sirpiö et al. 2009; Takabayashi et al. 2009;

Ishida et al. 2009; Suorsa et al. 2009, 2010). The existence

of a second form might explain the multiple losses of Ndh1

genes from land plant plastomes. It may be that the func-

tion of an alternative Ndh-complex, or of fewer or

incompletely assembled Ndh1-subcomplexes is sufficient

for photosynthetic and related pathways in some, yet not

all, plants—in particular, if they exhibit a certain degree

of heterotrophy (e.g. myco-heterotrophy, parasitism,
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carnivory). It might be that nutrient supplies could affect

the activity of the Ndh1 complex in a way that renders it

dispensable. In the light of expression analyses under

nitrogen starvation (Peltier and Schmidt 1991), the

responsible factor may include the type of nitrogen source

(nitrate vs. ammonium) or the excess of nitrogen (and/or

other nutrients or even assimilates) obtained from a host

plant. It is unclear whether this also accounts for the loss of

ndh genes from the plastomes of Pinaceae, Gnetophytes

and some Geraniaceae. As with many land plants, gym-

nosperms live in close association with mycorrhizae (Wang

and Qiu 2006). Thus, it may be possible that fungal asso-

ciations, or the fungal symbiont itself contributes to the fate

of ndh-genes. On the other hand, throughout land plants,

the presence of mycorrhizae and ndh loss appear to be only

imperfectly correlated; evidently, more data is necessary

before sound conclusions can be drawn, since other reasons

such as multiple independent functional gene transfers

must be considered as well (see also Blazier et al. 2011).

Plastid encoded genes for photosynthesis unrelated

pathways

Plastid genes for metabolic pathways unrelated to photo-

synthesis include proteins for fatty acid synthesis, and

sulfur metabolism.

AccD and the RuBisCO ‘‘shunt’’

Acetyl-CoA carboxylase is another key enzyme in plastids

mediating the irreversible conversion of acetyl-CoA to

malonyl-CoA during the biosynthesis of fatty acids (Neu-

haus and Emes 2010). The beta subunit of this multimeric

enzyme (accD) is encoded in the LSC of the plastome in

Streptophytes (Sasaki et al. 1993a) and is considered to be

crucial for leaf development (Kode et al. 2005). The accD

gene has been lost from the plastid genome several times in

angiosperms (Jansen et al. 2007) where its function is

fulfilled by nuclear copies (Nakkaew et al. 2008).

Recently, RuBisCO has been found to be involved in a

previously unrecognized glycolysis bypassing reaction that

converts carbohydrates to fatty acids at low carbon cost in

oily seeds of white turnip (Brassica rapa, Schwender et al.

2004). This has been proposed as a likely reason for the

retention of a photosynthetic pathway in parasitic species

of Cuscuta that are fully heterotrophic, yet nonetheless

would benefit from the RuBisCO ‘‘shunt’’ to enable rapid

and efficient lipid synthesis (McNeal et al. 2009).

Genes related to sulfur metabolism

Liverworts contain at least two more protein coding genes

absent from most other land plants, cysA and cysT. CysA

(designated mbpX in the Marchantia polymorpha plas-

tome) shows functional domains similar to inner membrane

sulfate ABC (ATP binding cassette) transporters. Although

conservation of amino acid composition drops dramatically

towards the N-terminus, similarity searches suggest that

both genes might belong to sulfate related transport com-

plexes or sulfate permeases and thus may have a function

related to sulfate metabolism (Laudenbach and Grossman

1991). However, both subunits are lacking from most other

land plant plastid genomes (mosses, ferns, seed plants) and

the green algae Chlamydomonas (Sugiura 1992; Maul et al.

2002; Melis and Chen 2005; Lindberg and Melis 2008). In

hornworts, a cysA-like gene is present in the plastid gen-

ome, but it appears to be non-functional (Kugita et al.

2003).

Plastid genes of unknown function

ycf1 and ycf2

Green algae, including the closest relatives of Embryo-

phytes, possess an ftsH reading frame, which encodes a

metalloprotease. Predominantly at the carboxyl-terminus,

ftsH exhibits similarities to the largest, yet functionally

uncharacterized ORF (ycf2) in land plants (Wolfe 1994).

Nucleotide sequence similarity among land plant ycf2 is

extraordinarily low compared to other plastid-encoded

genes, being less than 50% across bryophytes, ferns, and

seed plants. Ycf2 harbors nucleotide binding sites typical

for green algal and eubacterial ftsH and CDC48 gene

families, which are involved in cell division processes,

proteolysis, and protein transport (Wolfe 1994). Further-

more, a ‘‘DPAL’’-motif, shared by CDC48 and ycf2, is

highly conserved. In several angiosperm plastomes, a

smaller ORF, ycf15, is present directly downstream of the

ycf2 gene (Raubeson et al. 2007 and references therein). So

far, an exact function has not been assigned to the ycf15

gene product. Expression studies in spinach suggested that

ycf15 might act as a regulator for Ycf2 on the RNA level,

but might not function on protein level (Schmitz-Linne-

weber et al. 2001). Consistent with an RNA-level function,

Raubeson et al. (2007) showed that ycf15 is not under

purifying selection as expected for most protein coding

sequences. A non-protein function might also account for

the conservation of the cryptic reading frame ycf68 found

in the IRs of several angiosperms (Raubeson et al. 2007)

and Aneura mirabilis (Wickett et al. 2008a). The persis-

tence of both ycf15 and ycf68 ORFs might be attributable to

their localization in the slowly evolving IR region.

Ycf1, the second largest gene in plastid genomes, codes

for a protein of approximately 1800 amino acids, yet its

precise function remains to be determined. Experimental
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data and comparisons of Chlamydomonas and angiosperm

ycf1 homologs revealed conserved nucleotide binding sites

(Boudreau et al. 1997b). Based on these data, functions of

ycf1 and ycf2 have been hypothesized to involve ATPase-

related activities, chaperone-function, activity in cell divi-

sions (depicted from similarities with ftsH) and structural

remodeling and/or linkage of plastid chromosomes to

protein and/or membrane structures (Wolfe 1994; Boud-

reau et al. 1997b). Available data on gene expression in

tobacco show that, similar to ycf2, ycf1 is expressed in

fruits (Drescher et al. 2000). Products of both genes are

essential for plant cell survival (Drescher et al. 2000;

Boudreau et al. 1997b). In most land plant lineages, ycf1

and ycf2 genes have elevated substitution rates and may

have undergone pseudogenization (Oliver et al. 2010; Wolf

et al. 2010a). For the most part, however, the 50 end of both

genes are are relatively conserved, whereas other parts

seem to evolve more freely. In the case of ycf1, this might

be due to the co-localization of a replication origin (oriB) in

this region (Kunnimalaiyaan and Nielsen 1997). This

implies that both genes seem to undergo at least weak

selective constraints. Analyses regarding differences in

dn/ds ratios and mutational hotspots within the genic region

might corroborate the assignment of a function to both

these genes. The losses observed in several photosynthetic

lineages, however, raise the question whether they really

carry out essential functions in all plants. Complete loss of

both ycf1 and ycf2 from the plastomes of some (but not all)

derived monocot lineages and putative pseudogenization in

other plants (Downie et al. 1994) are in contrast to the high

structural conservation in parasites (dePamphilis and Pal-

mer 1990; Wolfe et al. 1992; McNeal et al. 2007). This

might in fact point towards a function decoupled from

photosynthesis. Nuclear encoded and plastid targeted pro-

teins similar to Ycf1/Ycf2 were not found in lineages

where both genes have been lost from the plastid genome,

such as Poaceae (Downie et al. 1994).

Conclusions

In terms of structure, land plant plastid chromosomes

evolve much more slowly than their mitochondrial or

nuclear counterparts. This structural conservatism might be

a result of the common organization of genes in operons

that are conserved features between cyanobacteria, green

algae and land plants. Other relevant factors include the

mode of plastid transmission, the activity of highly effec-

tive repair mechanisms, as well as the rarity of plastid

fusion and fission. The latter property is one of the major

differences relative to mitochondrial genomes that have

been shown to frequently fuse, and in doing so, provide

opportunities for exchanging divergent genome copies.

Most plastome rearrangements appear to be restricted to

lineages that show one or more of the following charac-

teristics: (i) aberrant behavior of the inverted repeat region

(expansion, contraction, loss), (ii) biparental plastid

transmission; (iii) a high frequency of small dispersed

repeat sequences, (iv) heterotrophic lifestyle (parasites,

myco-heterotrophs). Among land plants, angiosperms

show the greatest variation in plastome structure, although

distortion of gene synteny by rearrangements and gene

loss is still rare compared to the genomes of other cell

compartments. Interestingly, plastid chromosome restruc-

turing appears to occur most commonly in the more

derived clades of a given lineage (leptosporangiate ferns,

Funariales within mosses, Pinaceae and Gnetophytes

within gymnosperms, eudicots and Poales within angio-

sperms). It will be interesting to see whether similar pat-

terns occur in liverwort plastome evolution. The gene

content of land plants does not appear to have dramatically

changed, and only few gene losses or putative functional

transfers (chl, cys) might have taken place in the course of

land plant evolution. The retention of photosynthetically

relevant genes might be attributable to several factors. On

the one hand, functional gene transfer is a complex issue

since it involves the transfer itself and the evolution of

transit peptides; thus, it is expected to be rare. On the

other hand, most protein subunits encoded by the plastome

(in particular photosynthesis relevant proteins) harbor

trans-membrane proteins, and might therefore be difficult

to import (as known from mitochondria). Finally, many

gene products are required at high expression levels and at

early developmental stages (e.g. translation/transcription

apparatus, photosynthesis genes) and their retention might

be selected for.
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Jahn D, Verkamp E, Söll D (1992) Glutamyl-transfer RNA: a

precursor of heme and chlorophyll biosynthesis. Trends Biochem

Sci 17:215–218

292 Plant Mol Biol (2011) 76:273–297

123

http://dx.doi.org/10.1093/molbev/msq229


Jankowiak K, Rybarczyk A, Wyatt R, Odrzykoski I, Pacak A,

Szweykowska-Kulinska Z (2005) Organellar inheritance in the

allopolyploid moss Rhizomnium pseudopunctatum. Taxon

54:383–388

Jankowiak-Siuda K, Pacak A, Odrzykoski I, Wyatt R, Szweykowska-
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