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ABSTRACT

Context. The dynamical escape of stars from star clusters affects the shape of the stellar mass function (MF) in these clusters, because
the escape probability of a star depends on its mass. This is found in N-body simulations and has been approximated in analytical
cluster models by fitting the evolution of the MF. Both approaches are naturally restricted to the set of boundary conditions for which
the simulations were performed.
Aims. The objective of this paper is to provide and to apply a simple physical model for the evolution of the MF in star clusters for a
large range of the parameter space. It should also offer a new perspective on the results from N-body simulations.
Methods. A simple, physically self-contained model for the evolution of the stellar MF in star clusters is derived from the basic
principles of two-body encounters and energy considerations. It is independent of the adopted mass loss rate or initial mass function
(IMF), and contains stellar evolution, stellar remnant retention, dynamical dissolution in a tidal field, and mass segregation.
Results. The MF evolution in star clusters depends on the disruption time, remnant retention fraction, initial-final stellar mass relation,
and IMF. Low-mass stars are preferentially ejected after t ∼ 400 Myr. Before that time, masses around 15–20% of the maximum stellar
mass are lost due to their rapid two-body relaxation with the massive stars that still exist at young ages. The degree of low-mass star
depletion grows for increasing disruption times, but can be quenched when the retained fraction of massive remnants is large. The
highly depleted MFs of certain Galactic globular clusters are explained by the enhanced low-mass star depletion that occurs for low
remnant retention fractions. Unless the retention fraction is exceptionally large, dynamical evolution always decreases the mass-to-
light ratio. The retention of black holes reduces the fraction of the cluster mass in remnants because white dwarfs and neutron stars
have masses that are efficiently ejected by black holes.
Conclusions. The modeled evolution of the MF is consistent with N-body simulations when adopting identical boundary conditions.
However, it is found that the results from N-body simulations only hold for their specific boundary conditions and should not be
generalised to all clusters. It is concluded that the model provides an efficient method to understand the evolution of the stellar MF in
star clusters under widely varying conditions.

Key words. stellar dynamics – stars: kinematics – Galaxy: globular clusters: general – galaxies: star clusters –
Galaxy: open clusters and associations: general – galaxies: stellar content

1. Introduction

The evaporation of star clusters is known to change the shape
of the underlying stellar mass function1 (Hénon 1969; Chernoff
& Weinberg 1990; Vesperini & Heggie 1997; Takahashi &
Portegies Zwart 2000; Portegies Zwart et al. 2001; Baumgardt
& Makino 2003). This phenomenon has been used to explain the
observed MFs in globular clusters (Richer et al. 1991; De Marchi
et al. 2007; De Marchi & Pulone 2007), which are flatter than
typical initial mass functions (IMFs, e.g. Salpeter 1955; Kroupa
2001). In addition, the effect of a changing MF on cluster pho-
tometry has been investigated (Lamers et al. 2006; Kruijssen &
Lamers 2008; Anders et al. 2009). This has been shown to ex-
plain the low mass-to-light ratios of globular clusters (Kruijssen
2008; Kruijssen & Mieske 2009) and to have a pronounced ef-
fect on the inferred globular cluster mass function (Kruijssen &
Portegies Zwart 2009).

The existing parameterised cluster models that incorporate
a description of low-mass star depletion are restricted by the

� Tables of models are only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/507/1409
1 Hereafter, “mass function” is referred to as “MF”.

physically self-contained models on which they are based. Some
studies (Lamers et al. 2006; Kruijssen & Lamers 2008) assume
an increasing lower stellar mass limit to account for the evolv-
ing MF, others (Anders et al. 2009) fit a changing MF slope to
N-body simulations. In both cases, the models are accurate for a
certain range of boundary conditions, but they do not include
a physical model and are therefore lacking flexibility. While
N-body simulations do include the appropriate physics, they are
very time-consuming. As a result, only a limited number of clus-
ters can be simulated and the applicability of the simulations
is thus restricted to the specific set of boundary conditions for
which they have been run.

It would be desirable to obtain a simple physical model for
the evolution of the MF, which would have a short runtime and
could be used independently of N-body simulations. Forty years
ago, a pioneering first approach to such a model was made by
Hénon (1969), who considered the stellar mass-dependent es-
cape rate of stars from star clusters. However, the applicability
of his model was limited due to a number of assumptions that in-
fluenced the results. First of all, Hénon (1969) assumed that the
clusters exist in isolation and neglected the tidal field. As a con-
sequence, the escape of a star could only occur by a single, close
encounter and the repeated effect of two-body relaxation was not
included. Secondly, the distribution of stars was independent of
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stellar mass, i.e. mass segregation was not included. Both mass
segregation and the influence of a tidal field are observed in real
clusters, and can be expected to affect the evolution of the MF.

The aim of this paper is to derive a physical description of
the evolution of the stellar MF in star clusters, alleviating the
assumptions that were made by Hénon (1969). This should ex-
plain the results found in N-body simulations and observations,
while providing the required flexibility to explore the properties
of star clusters with simple, physically self-contained models.
The outline of this paper is as follows. In Sect. 2, total mass
evolution of star clusters is discussed. A recipe for the evolu-
tion of the MF is derived in Sect. 3, covering stellar evolution,
the retain of stellar remnants, dynamical dissolution and mass
segregation. The model is compared to N-body simulations in
Sect. 4. In Sect. 5, the model is applied to assess the evolution
of the MF for different disruption times and remnant retention
fractions. The consequences for other cluster properties are also
considered. This paper is concluded with a discussion of the re-
sults and their implications.

2. The mass evolution of star clusters

The mass of star clusters decreases due to stellar evolution and
dynamical dissolution. This is expressed mathematically as

dM
dt
=

(
dM
dt

)
ev

+

(
dM
dt

)
dis

, (1)

with M the cluster mass, and the subscripts “ev” and “dis” de-
noting stellar evolution and dynamical dissolution. The contri-
bution of stellar evolution to the mass loss is derived from the
decrease of the maximum stellar mass with time and depends on
the adopted stellar evolution model.

The dynamical evaporation of star clusters is increasingly
well understood. Over the past years it has become clear that
clusters lose mass on a disruption timescale tdis that is pro-
portional to a combination of the half-mass relaxation time
trh and the crossing time tcr as tdis ∝ tx

rht1−x
cr (e.g. Baumgardt

2001; Baumgardt & Makino 2003; Gieles & Baumgardt 2008).
It is found that x = 0.75–0.80, depending on the concentra-
tion (c = log (rt/rc)) or King parameter (W0) of the cluster
(Baumgardt & Makino 2003). This proportionality leads to a
disruption timescale that scales with the present day mass as
(Lamers et al. 2005):

tdis = t0 Mγ, (2)

with M the cluster mass, t0 the dissolution timescale parameter
which sets the rapidity of dissolution and depends on the cluster
environment, and γ a constant related to x. Lamers et al. (2009,
in prep.) find γ = 0.62 for W0 = 5 and γ = 0.70 for W0 = 7. This
timescale implies a mass loss rate due to dissolution that can be
described with the simple relation
(

dM
dt

)
dis

= − M
tdis
= −M1−γ

t0
, (3)

which can be integrated for the mass evolution of the cluster due
to dynamical dissolution.

The above formulation of the cluster mass evolution was ex-
tended to include stellar remnants, photometric cluster evolu-
tion, and a simple description of the MF in the SPACE cluster
models (Kruijssen & Lamers 2008). Stellar remnants were ac-
counted for by assuming initial-final mass relations (similar to
Sect. 3.1 of the present paper), while the photometric evolution

was computed by integrating stellar isochrones from the Padova
group (Bertelli et al. 1994; Girardi et al. 2000). The descrip-
tion of low-mass star depletion followed the simple model from
Lamers et al. (2006) in which the minimum stellar mass of the
MF increases with time.

The present study provides a new description of the evolution
of the MF which is based on fundamental principles, and does
not depend on the above prescription for the total mass evolu-
tion. In addition, the latest Padova models (Marigo et al. 2008)
are incorporated to calculate the photometric cluster evolution.
These improvements update the SPACE cluster models.

3. The evolution of the stellar mass function

To describe the evolution of the MF, the effects of stellar evolu-
tion, stellar remnant production, and dynamical dissolution need
to be included. While the focus of this paper lies with the effects
of dissolution, a proper treatment of stellar evolution is essen-
tial. This is described first, before presenting a model for cluster
dissolution2.

3.1. Stellar evolution

The influence of stellar evolution on the MF is twofold. First of
all, the maximum stellar mass decreases, because at any time
during cluster evolution the most massive stars reach the end of
their lives. Secondly, the stellar remnants that are created upon
the death of these massive stars constitute a part of the MF that
can only be lost from the cluster by dynamical mechanisms.

The maximum stellar mass in the cluster as a function of
its age is taken from the Padova 2008 isochrones (Marigo et al.
2008) for metallicities in the range Z = 0.0001–0.03. The stellar
remnant masses msr are computed from their progenitor stellar
mass m using initial-final mass relations. Following Kruijssen &
Lamers (2008), for white dwarfs (m < 8 M�) the relation from
Kalirai et al. (2008) is adopted:

mwd = 0.109m + 0.394 M�, (4)

which holds for all ages that are covered by the Padova
isochrones. For neutron stars (8 M� ≤ m < 30 M�) the rela-
tion from Nomoto et al. (1988) is used:

mns = 0.03636(m− 8 M�) + 1.02 M�, (5)

while for black holes (m ≥ 30 M�) a simple relation is as-
sumed that is in acceptable agreement with theoretically pre-
dicted masses of stellar mass black holes (Fryer & Kalogera
2001):

mbh = 0.06(m − 30 M�) + 8.3 M�. (6)

With these relations, the remnant MF is computed from conser-
vation of numbers as

Nsr(msr) = fret,sr(M)N(m(msr))
dm

dmsr
, (7)

with sr = {wd, ns, bh} denoting the appropriate remnant type,
Nsr(msr) representing its MF, fret,sr(M) denoting the cluster mass-
dependent fraction of these remnants that is retained after ap-
plying kick velocities, and N(m(msr)) representing the progeni-
tor MF.
2 The model presented in this paper is independent of the mass loss
rate and of the form of the IMF Ni(m), but for explanatory purposes a
Kroupa (2001) IMF is adopted later on.
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For a given velocity dispersion of remnants, the retention
fraction of each remnant type depends on the local escape ve-
locity vesc, which is related to the potential ψ as vesc =

√
2ψ.

Stellar remnants are predominantly produced in the cluster cen-
tre in the case of mass segregation, which is reached most rapidly
for massive stars (see Sect. 3.2). For a Plummer (1911, also
see Eq. (9)) potential this implies that upon remnant production
vesc =

√
2GM/r0, with G the gravitational constant and r0 the

Plummer radius. Adopting a Maxwellian distribution of veloci-
ties that is truncated at vesc, it is straightforward to show that

fret,sr(x) = A

⎡⎢⎢⎢⎢⎢⎣erf

(
x√
2

)
−

√
2
π

xe−x2/2

⎤⎥⎥⎥⎥⎥⎦ , (8)

where A is a normalisation constant to account for the trun-
cation of the velocity distribution and x2 ≡ 2GM/r0σ

2
sr, with

σ2
sr = σ2

0 + σ
2
kick,sr denoting the total velocity dispersion of the

produced remnant type, which arises from the central velocity
dispersion in the cluster σ2

0 = GM/3r0 (e.g. Heggie & Hut 2003)
and the velocity dispersion of the exerted kickσkick. The normal-
isation constant then follows as A−1 = erf

√
3− 2

√
3/π exp (−3).

Typical values of the kick velocity dispersion σkick,sr are
given in literature. White dwarf kicks have recently been pro-
posed to be of order σkick,wd = 4 km s−1 (Davis et al. 2008;
Fregeau et al. 2009). For neutron stars σkick,ns = 100 km s−1

is adopted, which is a somewhat conservative estimate with re-
spect to theory, but it agrees reasonably well with observed neu-
tron star numbers in globular clusters and represents a com-
promise between single star and binary channels (for estimates
of the retention fraction and discussions of the “neutron star
retention problem” see Lyne & Lorimer 1994; Drukier 1996;
Arzoumanian et al. 2002; Pfahl et al. 2002). Gravitational wave
recoils are thought to exert black hole kicks of order σkick,bh =
80 km s−1 (Moody & Sigurdsson 2009). This value depends on
metallicity, but for simplicity I assume a single, typical value
here.

The retention fractions following from Eq. (8) are shown as
a function of cluster mass per unit Plummer radius in Fig. 1. This
quantity best reflects the retention fraction because x2 ∝ M/r0 in
Eq. (8). Open clusters (with initial masses Mi such that typically
Mi/r0 < 3×104 M� pc−1, Larsen 2004) do not retain any neutron
stars or black holes, while globular clusters (Mi/r0 ∼ 3 × 104–
3×105 M� pc−1, Harris 1996) retain 0.1–4% of the neutron stars
and 0.3–7% of the black holes. These values are in excellent
agreement with other studies (e.g. Pfahl et al. 2002; Moody &
Sigurdsson 2009), but are still lower than the large observed
number of neutron stars in a number of globular clusters (the
aforementioned “retention problem”).

3.2. Dissolution and the evolution of the mass function

Dissolution alters the shape of the stellar MF in star clusters due
to the effects of two-body relaxation and energy equipartition.
In a pioneering paper, Hénon (1969) derived the escape rate of
stars of different masses from an isolated cluster. The cluster was
represented by a Plummer (1911) gravitational potential:

ψ(r) = ψ0

⎛⎜⎜⎜⎜⎝1 +
r2

r2
0

⎞⎟⎟⎟⎟⎠
−1/2

, (9)

where r0 denotes the Plummer radius setting the concentration
of the cluster and ψ0 ≡ GM/r0 represents the central potential,
with G the gravitational constant and M the cluster mass. It was
argued by Hénon (1960) that the only way for stars to escape

Fig. 1. Retention fraction of stellar remnants as a function of cluster
mass per unit Plummer radius M/r0, for black holes (solid), neutron
stars (dashed) and white dwarfs (dotted).

Fig. 2. Hénon function F(μ), which is a measure for the escape prob-
ability of a star of mass m in a two-body interaction with mass ratio
μ ≡ m/m′. The dotted line shows the fit from Eq. (11).

such an isolated cluster is by a single, close encounter. The cor-
responding stellar mass-dependent escape rate was found to be
(Hénon 1969):

dN(m)
dt

= −|E|
3/2N(m)

GM9/2

∫ ∞

0
N(m′)F

( m
m′

)
m′2dm′, (10)

with N(m) the MF, m the stellar mass, E the total energy of the
cluster, and F(μ) a function related to the escape probability for
a star of mass m in a close encounter with a star of mass m′
and a corresponding mass ratio μ ≡ m/m′. The expression in
Eq. (10) is independent of the adopted IMF. The function F will
be referred to as the “Hénon function” and is shown in Fig. 2.
The original expression consists of several integrals that have to
be solved numerically. In Hénon (1969), a table is given for the
Hénon function, but it can also be fitted by:

F(μ) =
(
0.32 + 0.55 μ0.35 + 13.26 μ2.5

)−1
. (11)

This approaches the power law F(μ) = 0.075398 μ−5/2 for μ > 1,
as was derived explicitly by Hénon (1969).

The total mass loss rate corresponding to Eq. (10) conflicts
with N-body simulations (as was already noted by Wielen 1971)
because only ejections by single, close encounters are included.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=2
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This restriction implies that the disruption timescale tdis is pro-
portional to the half-mass relaxation time trh times the Coulomb
logarithm lnΛ (tdis,Hénon ∝ trh lnΛ), while N-body simulations
show that it scales with a combination of the half-mass re-
laxation time and the crossing time (tdis ∝ t0.75

rh t0.25
cr ) due to

two-body relaxation, i.e. the repeated effect of soft encounters
(e.g. Fukushige & Heggie 2000; Baumgardt & Makino 2003).
Nonetheless, the escape rate from Hénon (1969) does accurately
describe what happens if two stars interact and can therefore be
used as a starting point for a more complete description of the
evolution of the MF. For that purpose, it is convenient to scale
Eq. (10) to the mass loss rate found in N-body simulations and
only use the relative or ‘differential’ stellar mass dependence
from Hénon (1969). This is allowed if the ratio tdis,Hénon/tdis =
lnΛ(trh/tcr)0.25 only depends on global cluster properties. It is
straightforward to show (e.g. Spitzer 1987; Heggie & Hut 2003)
that indeed this is the case as trh/tcr ∝ N/ lnΛ. As such, one can
write

dN(m)
dt

=

(
dM
dt

)
dis

χ(m), (12)

with (dM/dt)dis the mass loss rate from Eq. (3) (Lamers et al.
2005) and χ(m) the stellar mass-dependent escape rate per unit
mass loss rate. The quantity χ(m) is completely independent
of the prescription for the total mass evolution. In order to de-
rive χ(m), I start from Eq. (10) and express χ(m) as

χ(m) =

N(m)
∫ ∞

0
N(m′)F(m/m′)λ(m,m′)m′2dm′∫ ∞

0
m′′N(m′′)

∫ ∞
0

N(m′)F(m′′/m′)λ(m′′,m′)m′2dm′dm′′
, (13)

where λ(m,m′) represents a correction factor to account for ad-
ditional physics (see below). The numerator reflects the escape
rate, while the denominator is proportional to the mass loss rate.

For mathematical simplicity3 Hénon (1969) made the fol-
lowing assumptions in the derivation of Eq. (10).

(1) The cluster exists in isolation and the tidal field is neglected.
Therefore, escape can only occur by a single, close encounter
and the repeated effect of soft encounters (two-body relax-
ation) is not accounted for. This underestimates the escape
rate of massive stars;

(2) The distribution of stars is independent of stellar mass, i.e.
mass segregation is not included. Depending on the balance
between their encounter rate and their proximity to the es-
cape energy, this over- or underestimates the escape rate of
low-mass stars from Hénon (1969). Considering the results
from Baumgardt & Makino (2003), the latter seems to be the
case.

The remainder of this section concerns the derivation of the fac-
tor λ(m,m′) in Eq. (13) that corrects for the above assumptions.

Let us assume that the distribution of stars over radius and
velocity space is initially independent of their mass. This implies
that mass segregation is dynamically created and not primordial,
which is discussed in Sect. 6. For such an initial distribution, the
separation from the escape energy ΔE is independent of mass.
As the cluster evolves, energy equipartition is reached between
the stars and the radius, velocity and proximity to the escape
energy become a function of stellar mass. I first consider this ef-
fect on the escape rate before including the timescale on which

3 And because this is the only way to obtain an analytical solution as
in Eq. (10).

two-body relaxation occurs for different stellar masses. Please
note that the formulation of Eq. (13) with λ(m,m′) appearing in
the numerator and the denominator implies that only the propor-
tionality of λ(m,m′) is important. Its exact value is determined
by constants that drop out when substituting in Eq. (13).

It is intuitive to express the dependence of the escape rate
on the energy needed for escape as dN(m)/dt ∝ [ΔE(m)]−1. The
energy that is required for escape ΔE is related to the position
and velocity of the star4. For the potential in Eq. (9) it is given by

ΔE(r, v) = ψ(r) − v
2

2
= ψ0

⎛⎜⎜⎜⎜⎝1 + r2

r2
0

⎞⎟⎟⎟⎟⎠
−1/2

− v
2

2
, (14)

with r and v the radial position and velocity of the star, and
vesc ≡

√
2ψ(r) its escape velocity. If the cluster is in “perfect”

energy equipartition and correspondingly perfect mass segrega-
tion, the radius and velocity become a monotonous function of
stellar mass (Heggie & Hut 2003, Chap. 16). Mass segregation
is strongest in the cluster centre, which for a Plummer (1911)
potential can be approximated with a harmonic potential ψ ∝ r2.
For a cluster in a tidal field the potential is truncated, and the
harmonic approximation serves as a crude but reasonable ap-
proximation for the entire cluster (Heggie & Hut 2003, Ch. 16).
Energy equipartition yields

v2(m) = 〈v〉2 〈m〉
m
, (15)

with 〈v〉2 ∝ ψ0 the mean speed of all stars squared and 〈m〉 the
mean stellar mass. For the harmonic potential, this translates to
a similar relation for the radial position:

r(m) = r0

√
〈m〉
m
, (16)

where r0 represents the typical radius of the system, in this case
the Plummer radius. This relation assumes that there is no par-
ticular stellar mass which dominates the mass spectrum. The de-
crease of radial position with stellar mass implied by Eq. (16) is a
direct consequence of the energy loss endured by massive stars5

as the system evolves towards energy equipartition. Substituting
Eqs. (15) and (16) into Eq. (14) and dividing out the proportion-
ality 〈v〉2 ∝ ψ0 gives an expression for ΔE(m):

ΔE(m) =

(
1 +
〈m〉
m

)−1/2

− c1
〈m〉
m
, (17)

with c1 = 〈v〉2/2ψ0 denoting the ratio of the mean speed squared
to the central escape velocity squared. This constant mainly de-
pends on the degree of mass segregation. Consequently, it will
depend on the IMF. By comparing the models to the N-body sim-
ulations with a mass spectrum by Baumgardt & Makino (2003)
the value is constrained to c1 = 0.020 for a Kroupa IMF, us-
ing King (1966) potentials with King parameter W0 = 5–7 (see
Sect. 4). For reference, an unevolved Plummer (1911) potential
has 〈v〉2/2ψ0 = 3π/64 = 0.147.

By comparing the models to N-body simulations (provided
by Gieles, private communication) with different IMF power law

4 The energy difference ΔE that is discussed here concerns the energy
that needs to be added to reach the escape energy. As such, it differs
from the separation from the escape energy in Fukushige & Heggie
(2000) and Baumgardt (2001), who are considering the excess energy of
stars and its relation to the escape time, resulting in the aformentioned
relation tdis ∝ t0.75

rh t0.25
cr .

5 And the energy gain experienced by low-mass stars.
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slopes α and a ratio between the maximum and minimum mass
of 10, the approximate relation log c1 ≈ α − 3.76 is found6 for
a MF ns ∝ m−α. Fitting the Kroupa IMF with a single power law
in the mass range 0.08–15 M� (as used by Baumgardt & Makino
2003) yields α = 2.06, resulting in c1 = 0.020 as mentioned ear-
lier7. The comparison with N-body simulations also showed that
a single value of c1 suffices to determine the MF evolution, even
though it does not remain constant over the full cluster lifetime.

Because dN(m)/dt ∝ [ΔE(m)]−1, Eq. (17) indicates that
the escape rate of low-mass stars is increased if a cluster is in
complete energy equipartition. However, the timescale on which
two-body relaxation occurs between different stellar masses has
not yet been considered. For a cluster starting with a stellar mass-
independent distribution of radial positions and velocities, the
equipartition timescale te scales as

te(m,m′) ∝ m−1m′−1, (18)

for equipartition between stars of masses m and m′ (Heggie &
Hut 2003). This is a modified version of the relaxation timescale,
which shows a very similar proportionality (tr ∝ m−2). It illus-
trates that two-body relaxation occurs on a shorter timescale for
massive stars than for low-mass stars, increasing their escape
rate dN(m)/dt ∝ t−1

e .
The correction factor for the escape rate λ(m,m′) that ap-

pears in the integrals of Eq. 13 now follows from Eqs. (17)
and (18) as

λ(m,m′) = t−1
e (m,m′)[ΔE(m)]−1

= mm′
⎡⎢⎢⎢⎢⎢⎣
(
1 +
〈m〉
m

)−1/2

− c1
〈m〉
m

⎤⎥⎥⎥⎥⎥⎦
−1

· (19)

It was mentioned before that the proportionalities of ΔE(m) and
te(m,m′) rather than their exact values suffice for the computa-
tion of λ(m,m′) due to the renormalisation of the total mass loss
rate that appears in Eq. (13): only the stellar mass-dependence is
important.

The influence of the tidal field is now included in two ways.
First of all, the escape of stars no longer occurs by a single, close
encounter but arises due to two-body relaxation on the equipar-
tition timescale, representing the repeated effect of soft encoun-
ters. Secondly, the above derivation of the separation from the
escape energy assumes a potential which approximates tidally
limited clusters. As a result, the escape rate of massive stars is
increased with respect to clusters in the model of Hénon (1969),
which was derived for an isolated cluster. On the other hand, the
effect of mass segregation is included by introducing a stellar
mass-dependence for the energy needed by stars to reach the es-
cape velocity. Low-mass stars are closer to the tidal radius than
massive stars, leading to a lower energy that is needed for escape
and an increased escape rate. It depends on the shape of the MF
which mechanism dominates.

The evolution of the MF of various cluster components is
obtained from Eqs. (12), (13) and (19) by writing

d log Ncomp(m)

dt
=

d log N(m)
dt

, (20)

where the MFs of stars, white dwarfs, neutron stars and black
holes are represented by Ncomp(m), with comp = {s,wd, ns, bh}.
6 This prescription for c1 implies that the condition for the stars in the
cluster to be physically bound ΔE(m) > 0 is satisfied for all α < 3.63.
7 Nonetheless, the relation for c1 should be expected to exhibit some
variation for different mass ranges.

The overall cluster evolution is computed by combining the re-
sults of this section with the prescription for stellar evolution
from Sect. 3.1.

If stellar evolution is included, the resulting mass loss causes
an expansion of the cluster, during which stars are lost indepen-
dently of their masses. This delays the onset of mass segregation
and the stellar mass-dependent mass loss that is described above.
The moment of transition to stellar mass-dependent mass loss
can be characterised by a certain fraction of the initial cluster
mass that has been lost by dissolution fdiss ≡ Mdiss/Mi. It is as-
sumed that the fraction fsmd of the mass loss for which the escape
rate depends on the stellar mass grows exponentially8 between 0
and 1 as

fsmd = C
(
e fdiss/ fdiss,seg − 1

)
, (21)

where the subscript “smd” denotes “stellar mass-dependent”,
fdiss,seg ≡ Mdiss,seg/Mi is the fraction of the initial mass that has
been lost by dissolution at which mass segregation is reached,
and C = (e − 1)−1 is a constant to normalise fsmd = 1 at the
reference value fdiss = fdiss,seg. For fdiss > fdiss,seg, per definition
fsmd = 1, indicating that all mass loss is stellar mass-dependent.
The timescale tseg on which mass segregation is reached and the
transition to stellar mass-dependent mass loss is completed is
proportional to the initial half-mass relaxation time (tseg ∝ trh,i).
It has been shown in several studies that for Roche lobe-filling
clusters the disruption timescale tdis ∝ t0.75

rh,i t0.25
cr (Vesperini &

Heggie 1997; Baumgardt & Makino 2003; Gieles & Baumgardt
2008), implying that tseg/tdis ∝ t0.33

dis . The expression for tdis in

Eq. (2) then leads to tseg/tdis ∝ t0.33
0 M0.33γ

i . Assuming that the
cluster mass evolution is close to linear, the first-order relation
fdiss,seg ∝ tseg/tdis is obtained, implying

fdiss,seg = c2

(
t0
t�0

)0.33 (
Mi

104 M�

)0.21

, (22)

for a King parameter of W0 = 5, with the dissolution timescale
parameter at the solar galactocentric radius t�0 = 21.3 Myr. For
a King parameter of W0 = 7, the exponent of the initial cluster
mass Mi becomes 0.23 and t�0 = 10.7 Myr (Kruijssen & Mieske
2009). In this relation, c2 represents a constant that is fixed by
comparing the model to the results of N-body simulations from
Baumgardt & Makino (2003), giving c2 = 0.25 for W0 = 5 and
c2 = 0.15 for W0 = 7 (see Sect. 4). The variation with King
parameter arises because two-body relaxation is faster for more
concentrated clusters. If stellar evolution were neglected, at all
ages c2 = 0 and fsmd = 1.

The modeled MF slope change Δα in the mass range m =
0.1–0.5 M� is shown in Fig. 3 for different IMFs covering
m = 0.1–1 M�. Evidently, Δα is a function of the remaining
mass fraction and is insensitive to the slope of the IMF, as long
as that the ratio between the maximum and minimum mass is
kept fixed and stellar evolution is excluded. This is an interest-
ing observation in view of the MF evolution of globular clusters,
in which m ≈ 0.1–1 M� and stellar evolution only plays a minor
role. Figure 3 shows that the slope of the MF in globular clusters
could be a possible indicator for the mass fraction that has been
lost due to dissolution, provided that the IMF does not vary and
the remnant retention fractions were not substantially dissimi-
lar during the early evolution of different globular clusters (see
Sect. 5.2 and Fig. 19).

8 This form assumes that the increase of the fraction of the mass loss
that is stellar mass-dependent scales with the total dynamical mass loss,
which is a compromise between a step function and a linear increase.
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Fig. 3. MF slope change Δα in the range m = 0.1–0.5 M� versus the
remaining mass fraction for a Kroupa IMF (solid), Salpeter IMF (dot-
ted), and a power law IMF with α = 1.35 (dashed). In all cases, the IMF
mass range is m = 0.1–1 M�. The displayed relation is valid if stellar
evolution is excluded.

Fig. 4. Relative escape rate χ(m)/N(m) as a function of stellar mass,
shown for a Kroupa MF with different maximum masses. The end
point of each curve (dot) marks its maximum mass. The quantity
χ(m)/N(m) ≡ (d log N(m)/dt)/(dM/dt) represents the escape rate per
unit mass loss rate normalised to the number of stars at each mass (also
see Eq. (13)).

For the particular example of a Kroupa MF that is truncated
at different maximum masses mmax, the relative escape rate per
unit mass loss rate χ(m)/N(m) (see Eqs. (12) and (13)) is shown
in Fig. 4. This quantity is proportional to d log N(m)/dt and re-
flects the probability that a star of a certain mass is ejected.
Figure 4 illustrates that the mass of the highest relative escape
rate is related to the maximum mass of the MF. The peak occurs
at intermediate masses if the MF is truncated at a high mass. This
implies that there is a typical mass where the stars are not too far
from the escape energy and have an equipartition timescale with
the massive stars that is short enough to eject them efficiently.
This “sweet spot” depends on the maximum mass of the MF. If
the MF is truncated at an intermediate mass, the combination of
quick two-body relaxation and proximity to the escape energy
favours the escape rate of stars at the lowest masses.

The maximum stellar mass at which the transition from
“sweet spot”-depletion to low-mass star depletion happens, is
determined by the proximity of the low-mass stars to the escape

Fig. 5. Mass of the highest relative escape rate mpeak as a function of
the maximum stellar mass of the MF mmax (solid line). The dashed line
represents the relation mpeak = 0.2 mmax, while the dotted line describes
an eyeball fit for masses mmax > 3 M� and includes an exponential
truncation at the low-mass end (see Eq. (23)).

energy. In Fig. 5, the mass of the peak relative escape rate is
shown as a function of the maximum stellar mass. At low trun-
cation masses, the peak occurs at the minimum mass, indicating
strong low-mass star depletion. Around mmax ∼ 3 M�, the rela-
tive escape rate at mpeak ∼ 0.4 M� becomes larger than its value
at the lowest masses, which causes a jump in Fig. 5. For even
higher values of mmax, the peak relative escape rate typically oc-
curs at 15–20% of the maximum mass, approximately following
the relation

mpeak = 0.2mmaxe−2 M�/mmax . (23)

Even though its quantitative properties only hold for a Kroupa
MF, the variation of the relative escape rate with the maximum
mass of the MF has several implications for star cluster evolu-
tion. The change of mmax in Figs. 4 and 5 can be interpreted as
an example of what happens when stellar evolution removes the
most massive stars in the cluster, provided that the remnants are
all ejected by their kick velocities. If dynamical evolution does
not affect the shape of the MF too much before mmax(t) ∼ 3 M�,
or t ∼ 400 Myr, the subsequent evolution of the MF will be
dominated by low-mass star depletion. If substantial dissolution
occurs earlier on, it is dominated by the ‘sweet spot’ depletion of
intermediate masses. Only the retention of massive stellar rem-
nants will make the evolution of the MF deviate from these basic
estimates, because remnant retention can provide a fixed maxi-
mum (remnant) mass of the MF. This is treated in more detail in
Sect. 5.

4. Comparison to N-body simulations

The model described in Sect. 3 can be easily verified by run-
ning it for the exact same boundary conditions as the N-body
simulations9 by Baumgardt & Makino (2003) and comparing
the results. They conducted simulations of Roche lobe-filling
clusters between 8k and 128k particles, which were evolved
in the Galactic tidal field at galactocentric radii in the range
2.833–15 kpc. The boundary conditions for the N-body runs
of Baumgardt & Makino (2003) differ from those described in
Sect. 3 by neglecting kick velocities and defining the Kroupa

9 These were performed using NBODY4 (Aarseth 1999).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=5
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Fig. 6. Comparison of the evolution of the stellar MF from the models (dashed) to the N-body runs from Baumgardt & Makino (2003, solid)
for the exact same boundary conditions. The initial number of particles and the galactocentric radius are indicated in the bottom-left corner of
each panel. From top to bottom, the subsequent MFs in each panel are shown for the times at which the remaining cluster mass fraction equals
M/Mi = {1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}.

stellar IMF between 0.1 and 15 M�, thereby excluding black
holes. For this particular comparison, the same IMF, stellar
evolution prescription, and initial-final mass relation for stel-
lar remnants are used in the model that is presented in this
paper.

In Fig. 6, the modeled evolution of the (luminous) stellar MF
is compared to the N-body runs with King parameter W0 = 5 for
a range of cluster masses and total disruption times. As time pro-
gresses, the maximum stellar mass decreases due to stellar evo-
lution and the MF is lowered due to the dynamical dissolution
of the star cluster. The slope of the MF changes due to the pref-
erential escape of low-mass stars, which have energies closer to
their escape energies, even to the extent that it dominates over
their relatively slow two-body relaxation. For both the models
and the N-body simulations, the MF develops a slight bend at
m ∼ 0.3 M� when approaching total disruption. The bend arises
as an optimum between on the one hand high energies but slow
relaxation for the lowest stellar masses, and on the other hand

quick relaxation but low energies for the highest stellar masses
(see the discussion at the end of Sect. 3).

In all cases, the resemblance of the models and the N-body
simulations is striking. The models reproduce all key aspects of
the N-body runs, such as the amount of low-mass star deple-
tion, the changing slope at m ∼ 0.3 M� for clusters close to
dissolution, the survival of the Kroupa bend at m = 0.5 M�, and
the dependence of the low-mass depletion on the total lifetime
of the cluster (compare the three 32k runs). The only difference
occurs at the high-mass end of the MF, where the maximum stel-
lar masses do not match at young ages. This is due to a minor
dissimilarity of the total mass evolution (also see Lamers et al.
2005; Kruijssen & Lamers 2008). Because the maximum stel-
lar mass only depends on the age of the cluster, this causes a
difference in maximum stellar mass when showing the MFs at
fixed remaining cluster mass fractions. The contrast is clearest at
young ages, since there the maximum stellar mass most rapidly
decreases.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=6
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Fig. 7. Comparison of the evolution of the stellar MF from the
models (dashed) to the N-body run from Baumgardt & Makino
(2003, solid) with W0 = 7 for the exact same boundary condi-
tions. From top to bottom, the subsequent MFs are shown for the
times at which the remaining cluster mass fraction equals M/Mi =
{1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}.

In the description of the model in Sect. 3, two constants have
been determined from the N-body simulations by Baumgardt &
Makino (2003). These constants are the ratio of the mean speed
squared to the central escape velocity squared (c1, see Eq. (17))
and the proportionality constant for the relation marking the
transition to stellar mass-dependent mass loss (c2, see Eq. (22)).
As mentioned in Sect. 3, for a Kroupa IMF and King parameter
W0 = 5 one obtains c1 = 0.020 and c2 = 0.25. To illustrate the
robustness of the models, in Fig. 7 they are compared to a 64k
N-body run with W0 = 7. For such a cluster with a higher con-
centration, the early mass segregation implies c2 = 0.15. Again,
the model and the simulation are in excellent agreement.

The dependence of the MF evolution on both constants is
considered in Fig. 8. For c1, the dependence of the evolution of
the MF on its value is shown in the upper panel of Fig. 8, while
for c2 it is shown in the bottom panel of Fig. 8. Both panels show
the evolution of the MF for the 64k cluster in Fig. 6 for different
values of c1 and c2.

The ratio of the mean speed squared to the central escape ve-
locity squared c1 affects the escape probability of the stars with
the lowest masses. Because these stars are closest to their escape
energies in a mass-segregated cluster, they are most strongly in-
fluenced by the value of c1. For higher c1, the MF gets more
depleted in low-mass stars due to their closer proximity to the es-
cape energy, while for lower c1 more low-mass stars are retained
as the balance between close proximity to the escape energy and
slow relaxation shifts to the latter.

The proportionality constant for the transition to stellar
mass-dependent dissolution c2 in Eq. (22) affects the MF as a
whole. For lower c2, the transition occurs earlier and more low-
mass stars are lost, while for higher c2 the onset of the depletion
is delayed and the slope of the MF remains closer to its initial
value. If one were to assume a constant fdiss,seg, which is con-
trary to the adopted relation with cluster mass in Eq. (22), this
would therefore yield a stellar MF in massive clusters that is un-
derpopulated in low-mass stars, and a MF in low-mass clusters
that is overabundant in low-mass stars.

Fig. 8. Influence of the constants c1 and c2 on the evolution of the
stellar MF. From top to bottom, the subsequent MFs in each panel
are shown for the times at which the remaining cluster mass fraction
equals M/Mi = {1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}. Top panel: the val-
ues c1 = {0.010, 0.020, 0.030} are represented by dashed, solid and dot-
ted lines, respectively. Bottom panel: the values c2 = {0, 0.25, 0.40} are
represented by dashed, solid and dotted lines, respectively. For both c1

and c2, the second (boldfaced) value is the one obtained from the com-
parison to the N-body simulations with W0 = 5 in Fig. 6.

5. Star cluster evolution

In this section, the described model is applied to compute the
evolution of clusters for a variety of boundary conditions. The
stellar content as well as integrated photometry are addressed,
using the boundary conditions from Sect. 3 instead of those that
were adopted to compare the model to N-body simulations in
Sect. 4. The most important differences are the mass range of
the IMF, the inclusion of remnant kick velocities, and the initial-
final mass relation.

The model that will be referred to as the “standard model”
uses a metallicity Z = 0.004 (which is typical of globular clus-
ters), a King parameter10 of W0 = 7 (corresponding to γ = 0.7
in Eq. (2)), a dissolution timescale parameter t0 = 1 Myr, and
a Kroupa IMF between m = 0.08 M� and the maximum stel-
lar mass given by the Padova isochrones at log t = 6.6, which
is typically m ∼ 70 M�. For the computation of the retained
remnant fraction (see Eq. (8)), the Plummer radius r0 is related
to the half-mass radius rh as rh = 1.3r0. The half-mass radius
is assumed to remain constant during the cluster lifetime (e.g.
Aarseth & Heggie 1998). For the relation between rh and initial
cluster mass Mi the expression from Larsen (2004) is adopted:

rh = 3.75 pc

(
Mi

104 M�

)0.1

· (24)

10 For W0 = 5, or γ = 0.62, the results vary only marginally.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=8
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Fig. 9. Influence of the disruption time on the evolution of the stellar MF
for a cluster with a low remnant retention fraction (log (Mi/M�) = 4.5).
From top to bottom, the subsequent MFs in each panel are shown for
the times at which the remaining cluster mass fraction equals M/Mi =
{1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}.

The models that are used in this section are computed from
107 yr to 1.65 × 1010 yr (the maximum age of the Padova
isochrones) for initial masses between 102 M� and 107 M�,
spaced by 0.25 dex intervals.

5.1. The influence of the disruption time

The disruption time of a cluster affects the evolution of the MF
and of the integrated photometric properties. To assess the in-
fluence of the disruption time on cluster evolution, clusters with
low and high remnant retention fractions should be treated sepa-
rately, because the presence of massive remnants also has a pro-
nounced effect on the results (see Sect. 5.2). As shown in Fig. 1,
for a given kick velocity dispersion the remnant retention frac-
tion is set by the cluster mass. This means that the division be-
tween low and high remnant retention fractions can be made by
making a cut in initial cluster mass.

In Fig. 9, the impact of the disruption time on the evolution
of the MF is shown for a cluster with initial mass log (Mi/M�) =
4.5, representing the evolution for low remnant retention frac-
tions11. The range of the dissolution timescale parameter t0 and
resulting total disruption times that are considered in Fig. 9 cover
two orders of magnitude. As the total lifetime increases, the
depletion of the low-mass stellar MF close to total disruption be-
comes more prominent. Conversely, the MF of short-lived clus-
ters is depleted around m ∼ 1 M�. As introduced in the last para-
graphs of Sect. 3, this difference is caused by the fixed timescale
on which stellar evolution decreases the maximum stellar mass,
implying that the masses of the most massive stars are larger
in quickly dissolving clusters than in slowly dissolving ones.
Because in short-lived clusters the massive stars are still present
when the bulk of the dissolution occurs, their rapid two-body
relaxation with intermediate-mass stars dominates over the rel-
atively close proximity to the escape energy of low-mass stars,
yielding a depletion at intermediate masses. In long-lived clus-
ters, this cannot occur because the very massive stars have disap-
peared before the mass loss by dissolution becomes important,
thus resulting in the depletion of the very low-mass end of the
MF. As a rule of thumb, for t < 400 Myr (which is the lifetime
of a 3 M� star) the depletion typically occurs around 15–20% of
the mass of the most massive star (see Sect. 3). In terms of the
total disruption time, the transition from intermediate-mass star
depletion to low-mass star depletion occurs around ttotal

dis ∼ 1 Gyr.
A quantifiable way to look at the evolution of the stellar MF

in star clusters is to consider the slope of the MF ns ∝ m−α
in certain mass intervals (Richer et al. 1991; De Marchi et al.
2007; De Marchi & Pulone 2007; Vesperini et al. 2009). For
the commonly used mass intervals 0.1 < m/M� < 0.5 (α1) and
0.3 < m/M� < 0.8 (α2), Fig. 10 shows the evolution of the slope
α for the same clusters as before. Like Fig. 9, this illustrates
that for short disruption times the slope steepens as the clus-
ter dissolves, while for long disruption times the slope flattens
with time. The presented models and other model runs indicate
that α1 increases with time for ttotal

dis < 1 Gyr and decreases for
ttotal
dis > 2 Gyr. For total disruption times in between these values,

the slope first increases and then decreases. The slope in the sec-
ond mass interval α2 shows the same behaviour. It increases for
ttotal
dis < 0.5 Gyr and decreases for ttotal

dis > 1 Gyr.
The mass-to-light (M/L) ratio evolution of star clusters is

affected by the evolution of the MF due to the large variations
in M/L ratio between stars of different masses. Massive stars
have lower M/L ratios than low-mass stars, implying that a clus-
ter with a MF that is depleted in low-mass stars will have a re-
duced M/L ratio (Baumgardt & Makino 2003; Kruijssen 2008;
Kruijssen & Lamers 2008). As such, one would also expect a
correlation between the slope of the MF and M/L ratio.

In Fig. 11, the evolution of the ratio of the V-band M/LV
to the mass-to-light ratio due to stellar evolution (M/LV)stev is
shown for the same clusters as in Figs. 9 and 10. This quantity
reflects the relative M/LV ratio change induced by dynamical
evolution with respect to evolutionary fading only. If the escape
rate would be independent of stellar mass, the evolution would
follow a horizontal line at (M/LV )/(M/LV)stev = 1. However,
when accounting for dynamical evolution, the M/L ratio is al-
ways smaller than that for stellar evolution only. Somewhat sur-
prisingly, this is also the case for clusters for which the slope of
the MF increases (see Fig. 10). This is explained by looking at
the evolution of the entire MF in Fig. 9. Even though the slope at

11 High remnant retention fractions will be treated in the discussion of
the influence of the retention fraction in Sect. 5.2.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=9


1418 J. M. D. Kruijssen: The evolution of the stellar mass function in star clusters

Fig. 10. Influence of the disruption time on the stellar MF slope α in
the range 0.1 < m/M� < 0.5 (solid) and 0.3 < m/M� < 0.8 (dashed)
for a cluster with a low remnant retention fraction (log (Mi/M�) = 4.5).
Shown is α versus the remaining cluster mass fraction. From top to
bottom, for each mass range the lines represent t0 = {0.1, 1, 10} Myr,
corresponding to ttotal

dis = {0.16, 1.42, 12.26} Gyr.

low masses increases for short disruption times due to the escape
of intermediate-mass stars, the most massive stars that dominate
the cluster light are still retained. Because stars of intermediate
masses are lost instead, the M/L ratio decreases.

Because the slope of the stellar MF either increases or de-
creases at masses m < 1 M�, the decrease of the M/L ratio im-
plies a large range of MF slopes that can occur at low M/L ratios.
This is shown in Fig. 12, where the relation between α and the
M/L ratio drop is presented. The slope of the stellar MF in a
certain mass range does not necessarily reflect the M/L ratio of
the entire cluster. Considering the aforementioned rule of thumb
stating that for total disruption times ttotal

dis < 1 Gyr the depletion
of the MF occurs around 15–20% of the mass of the most mas-
sive star mmax(t), it is useful to define the slope in a mass range
that is related to mmax(t). In Fig. 12, the relation between slope
and M/L ratio is also shown for the slope in the stellar mass
range 0.3mmax(t) < m/M� < 0.8mmax(t). In such a relative mass
range, the slope follows a much narrower relation with M/L ra-
tio. The range between 30% and 80% of mmax(t) was chosen to
maximise this effect.

For the slopes in the fixed stellar mass ranges (α1 and α2, see
above), the relation with the M/L ratio becomes better defined
for long-lived clusters. It is shown in Figs. 10–12 that both the
slope and the M/L ratio decrease for clusters with long disrup-
tion times, indicating that both quantities are more clearly related
for globular cluster-like lifetimes.

The colour of star clusters is also influenced by the evolu-
tion of the MF, due to the colour differences between stars of
different masses. The V − I magnitude difference Δ(V − I) with
respect to the V − I value that a cluster would have if dynam-
ical evolution were neglected is shown in Fig. 13. As the clus-
ters dissolve, their colours become redder due to the escape of
main sequence stars. The magnitude difference in V − I exceeds
Δ(V − I) = 0.1 mag for total disruption times ≤1.5 Gyr. In red-
der passbands (e.g. the V − K colour), the difference grows to
several tenths of magnitudes. For longer total disruption times
only stars of the lowest masses are ejected (see Fig. 9), which
hardly contribute to the cluster light and colour, implying that
the colours are only marginally affected.

Fig. 11. Influence of the disruption time on the M/LV ratio evolution
for a cluster with a low remnant retention fraction (log (Mi/M�) =
4.5). Shown is the relative M/LV ratio decrease with respect to the
value expected for stellar evolution (M/LV )stev versus the remain-
ing cluster mass fraction. The solid, dashed and dotted lines rep-
resent t0 = {0.1, 1, 10} Myr, respectively, corresponding to ttotal

dis =
{0.16, 1.42, 12.26} Gyr.

Fig. 12. Influence of the disruption time on the combined evolution
of the MF slope α and the M/LV ratio for a cluster with a low rem-
nant retention fraction (log (Mi/M�) = 4.5). Shown is α versus the
relative M/LV ratio decrease due to dynamical evolution. All clusters
start at the vertical line (M/LV)/(M/LV)stev = 1. Solid lines denote
the slope in the mass range 0.1 < m/M� < 0.5, dashed lines desig-
nate the mass range 0.3 < m/M� < 0.8, and dotted lines represent the
mass range 0.3mmax(t) < m/M� < 0.8mmax(t), with from top to bottom
t0 = {0.1, 1, 10}Myr, corresponding to ttotal

dis = {0.16, 1.42, 12.26} Gyr.

5.2. The influence of the remnant retention fraction

The formation of stellar remnants introduces massive bodies in
the MF that do not end their lives due to stellar evolution like
massive stars do. Depending on their kick velocities, stellar rem-
nants can be retained in (massive) clusters. If they are retained,
they keep affecting the evolution of the stellar MF until the clus-
ter is disrupted. Especially black holes can have a pronounced
effect on cluster evolution.

The remnant retention fraction arises from the cluster mass,
radius and the kick velocity dispersion (see Eq. (8)). In this sec-
tion, the mass-radius relation from Eq. (24) is used. Although

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913325&pdf_id=11
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Fig. 13. Influence of the disruption time on the V − I colour for a
cluster with a low remnant retention fraction (log (Mi/M�) = 4.5).
Shown is the colour offset due to dynamical evolution Δ(V − I) ver-
sus the remaining mass fraction. The solid, dashed and dotted lines
represent t0 = {0.1, 1, 10} Myr, respectively, corresponding to ttotal

dis ={0.16, 1.42, 12.26} Gyr.

the results will differ for other relations, it has been verified that
for commonly used alternatives12, the change is only marginal
and does not affect the nature of the conclusions. To separate
the effect of remnant retention from that of the disruption time,
a fixed initial cluster mass of 106 M� is assumed while inde-
pendently varying the velocity dispersion of the remnant kick
velocities and the disruption time. The corresponding evolution
of the stellar MF is shown in Fig. 14, for the standard model
(see the beginning of this section) with black hole kick veloc-
ity dispersions σkick,bh = {40, 80, 200} km s−1, equivalent to
fret,bh = {0.219, 0.041, 0.003} for a 106 M� cluster, and for dis-
solution timescale parameters t0 = {0.1, 1} Myr, which for a
106 M� cluster implies ttotal

dis = {1.66, 15.13} Gyr. Assuming an
age of 12 Gyr, the present-day mass in the case of t0 = 1 Myr
is about M ∼ 6 × 104 M�, comparable to globular clusters. The
remaining fraction of the initial mass is M/Mi ∼ 0.06.

If the velocity dispersion of black hole kicks is low and a
relatively large fraction of black holes is retained, then the es-
cape rate of massive stars is increased with respect to high kick
velocity dispersions. This arises due to the quick two-body re-
laxation between the massive stars and the black holes, which
will have masses larger than the most massive stars after a few
Myr of stellar evolution. As a result, the escape rate of low-mass
stars is largest in clusters containing only few black holes. This
happens for clusters with either long or short disruption times,
but the effect is largest for long-lived clusters (the solid lines
in Fig. 14). In these clusters the maximum stellar mass is more
strongly decreased by stellar evolution than in short-lived clus-
ters, implying that the black hole masses are larger compared
to the most massive stars in these clusters. For long disruption
times, the presence of massive remnants therefore has a more
pronounced effect on the escape rate of massive stars than for
short disruption times. If these long-lived clusters retain a suf-
ficiently large fraction of the stellar remnants, their stellar MF
may even become depleted in massive stars.

The top panel of Fig. 14 also shows that for a cluster with
a high remnant retention fraction, the impact of the disruption
time on the MF evolution is similar to that of clusters with low

12 Such as a constant radius or density.

Fig. 14. Influence of the black hole kick velocity dispersion and disrup-
tion time on the evolution of the stellar MF for an initial cluster mass
Mi = 106 M�. From top to bottom, the subsequent MFs in each panel
are shown for the times at which the remaining cluster mass fraction
equals M/Mi = {1, 0.75, 0.6, 0.5, 0.3, 0.2, 0.15, 0.1}. Solid lines denote
t0 = 1 Myr (ttotal

dis = 15.13 Gyr), while dotted lines represent t0 = 0.1 Myr
(ttotal

dis = 1.66 Gyr).

retention fractions (see Fig. 9). However, the influence of the dis-
ruption time becomes smaller when more remnants are retained.
This explains why Baumgardt & Makino (2003) only found a
very weak dependence of the evolution of the MF on the dis-
ruption time (also see Fig. 6), since they neglected remnant kick
velocities and retained all remnants in their simulations.

Analogous to Fig. 10 in Sect. 5.1, the evolution of the MF
slope in different mass ranges is shown in Fig. 15 for the clusters
with t0 = 1 Myr from Fig. 1413. The kick velocity dispersion has

13 For the clusters with relatively long disruption times that are consid-
ered in this section, the variable stellar mass range that was introduced
in Sect. 5.1 to trace the relation between MF slope and M/L ratio gives
an evolution of the slope that is comparable that for the fixed mass
ranges. It is omitted from the figures in this section to improve their
clarity.
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Fig. 15. Influence of the black hole retention fraction on the stellar MF
slope α in the range 0.1 < m/M� < 0.5 (solid) and 0.3 < m/M� < 0.8
(dashed) for an initial cluster mass Mi = 106 M�. Shown is α versus
the remaining cluster mass fraction. From top to bottom, for each mass
range the lines represent σkick,bh = {40, 80, 200} km s−1, corresponding
to fret,bh = {0.219, 0.041, 0.003} for a 106 M� cluster.

an effect on the MF that is more uniform than the consequences
of variations in the disruption time, leading to very similar slope
evolutions in the two different stellar mass ranges. Independent
of the mass range, an increase in remnant retention fraction is
reflected by an increase of α. The model that is displayed for
σkick,bh = 40 km s−1, t0 = 1 Myr, and Mi = 106 M� (the up-
per dashed and solid lines in Fig. 15) marks the transition be-
tween an increase or decrease of the MF slope by dynamical
evolution. For an initial fret,bh < 0.25, low-mass stars are pref-
erentially ejected during most of the cluster lifetime, while for
fret,bh > 0.25 mainly the massive stars escape. For shorter dis-
ruption times, the transition is located at a smaller black hole
retention fraction.

Because the black hole retention fraction affects the over-
all slope of the stellar MF, the changes in α are matched by
corresponding changes in the M/L ratio. In Fig. 16, the rela-
tive M/LV ratio change due to dynamical evolution is shown
for same clusters as in Fig. 15. Contrary to the clusters with
low remnant retention fractions in Sect. 5.1, the M/L ratio of
the clusters in Fig. 16 does not monotonously decrease. Close
to total disruption, the massive remnants are the last bodies to be
ejected. During that short phase of cluster evolution, the M/L ra-
tio is increased by dynamical evolution and exceeds the value it
would have due to stellar evolution alone.

The behaviour of M/L ratio for different black hole kick ve-
locity dispersions has interesting implications for the relation be-
tween stellar MF slope and M/L ratio, which is shown in Fig. 17.
In combination with Fig. 12 (note the different axes), it shows
possible evolutionary tracks of star clusters in this plane, indicat-
ing that nearly every location may be reached. However, when
limiting ourselves to long-lived clusters, Fig. 17 illustrates that
these clusters will follow a trend of decreasing slope with de-
creasing M/L ratio, albeit with excursions to high M/L ratios
and slightly higher α close to their total disruption. This ex-
plains the trend that was found by Kruijssen & Mieske (2009),
who considered the relation between the observed MF slopes
and M/L ratios of Galactic globular clusters.

The colour change due to dynamical evolution is only very
small for clusters with ttotal

dis > 1.5 Gyr (see Sect. 5.1). Because

Fig. 16. Influence of the black hole retention fraction on the M/LV ra-
tio evolution for an initial cluster mass Mi = 106 M�. Shown is the
relative M/LV ratio decrease with respect to the value expected for stel-
lar evolution (M/LV )stev versus the remaining cluster mass fraction. The
solid, dashed and dotted lines represent σkick,bh = {40, 80, 200} km s−1,
corresponding to fret,bh = {0.219, 0.041, 0.003} for a 106 M� cluster.

Fig. 17. Influence of the black hole retention fraction on the combined
evolution of the MF slope α and the M/LV ratio for an initial cluster
mass Mi = 106 M�. Shown is α versus the relative M/LV ratio de-
crease due to dynamical evolution. All clusters start at the vertical line
(M/LV )/(M/LV)stev = 1. Solid lines denote the slope in the mass range
0.1 < m/M� < 0.5 and the dashed lines designate the mass range 0.3 <
m/M� < 0.8, with from right to left σkick,bh = {40, 80, 200} km s−1,
corresponding to fret,bh = {0.219, 0.041, 0.003} for a 106 M� cluster.

clusters in which remnants are retained are massive, their life-
times are correspondingly long. As a result, the colour evolution
is largely unaffected for the clusters in which the remnant reten-
tion fraction could play a role (Δ(V − I) < 0.03 mag). The colour
change is even smaller if more massive remnants are retained,
because then the stellar MF more closely resembles its initial
form (see the upper panel of Fig. 14). Long-lived clusters gener-
ally appear∼0.005 mag bluer in V−I due to dynamical evolution
during the last ∼3–20% of their lifetimes and reach a similar red-
dening upon their total disruption, which is well within observa-
tional errors. The colours of old clusters are thus only marginally
affected by dynamical evolution.

The evolution of the total remnant mass fraction is shown
in Fig. 18 for different black hole kick velocity dispersions. The
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Fig. 18. Influence of the black hole retention fraction on the total
remnant mass fraction. Shown is the ratio of the total mass in stel-
lar remnants Msr to the cluster mass M versus the remaining cluster
mass fraction. The solid, dashed and dotted lines represent σkick,bh =
{40, 80, 200} km s−1, corresponding to fret,bh = {0.219, 0.041, 0.003} for
a 106 M� cluster.

seemingly counterintuitive result is that the fraction of the cluster
mass that is constituted by remnants is smaller when more black
holes are retained. As shown in Fig. 14, the retention of black
holes suppresses the depletion of the low-mass end of the MF
due to the “sweet spot” escape (see Sect. 3) of massive (∼1 M�)
stars by the black holes. After ∼1 Gyr, white dwarfs and neutron
stars have masses that are similar to those of the massive stars,
implying that their escape rate is also increased when more black
holes are retained. Because the total mass constituted by white
dwarfs and neutron stars is larger than the combined mass of
all black holes, the fraction of the total cluster mass that is con-
stituted by remnants decreases if these low-mass remnants are
ejected by the more massive black holes.

6. Discussion and applications

The results of this paper show that the stellar MFs in star clusters
differ strongly from their initial forms due to dynamical cluster
evolution. The specific kinds of these differences depend on the
properties of the star clusters and their tidal environment, most
importantly on the disruption time, remnant retention fraction,
and IMF14.

A physical model for the evolution of the stellar MF is pre-
sented in which two-body relaxation leads to a stellar mass de-
pendence of the escape rate. For any particular stellar mass, the
escape rate is determined by the typical proximity of that mass
to the escape energy and by the timescale on which the two-body
relaxation with the other stars takes place. Combined with a pre-
scription for stellar evolution, stellar remnant production, and
remnant retention using kick velocity dispersions, this provides
a description for the total evolution of the MF. This description
is independent of the adopted total mass evolution. The model
shows that the slope of the mass function is a possible indica-
tor for the mass fraction that has been lost due to dissolution,

14 Although not specifically shown in this paper (but not surprisingly),
the differences also depend on the initial-final stellar mass relation.

provided that the IMF does not vary and the remnant retention
fraction has been fairly similar for young globular clusters15.

For the exact same initial conditions, the model shows excel-
lent agreement with N-body simulations of the evolving MF by
Baumgardt & Makino (2003). However, an important advantage
of the presented model compared to the (more accurate) N-body
simulations is its short runtime and corresponding flexibility. It
can be easily applied to compute the evolution of clusters for a
large range of initial conditions. The results can then be used to
identify interesting cases for more detailed and less simplified
calculations with N-body or Monte Carlo models.

The most important simplification of the model is neglecting
the effect of binary encounters on the stellar mass dependence of
the escape rate. To incorporate binaries, a conclusive census of
the binary population in star clusters would be required, which
is not yet available. Nonetheless, it is possible to make a qual-
itative estimate for the effect of binaries. The encounter rate of
binaries would typically be higher than that of individual stars,
because the cross section of binaries is larger. This would in-
crease the relative escape rate at the stellar mass for which the
binary fraction16 peaks. This binary fraction is found to increase
with primary mass (see e.g. Kouwenhoven et al. 2009). Because
massive stars are removed by stellar evolution, this implies that
the binary fraction decreases with age, which is in agreement
with the low binary fraction observed in globular clusters (∼2%,
e.g. Richer et al. 2004). The effect of binaries on the evolution of
the mass function would thus be most notable if the majority of
the dynamical mass loss occurs at ages <50 Myr (the typical life-
time of an 8 M� star), in which case it would somewhat enhance
the relative escape rate of the most massive stars. The influence
is expected to be small, since the presence of binaries mainly
affects ejections by hard encounters and leaves the overall evap-
oration rate largely unchanged (Küpper et al. 2008). On the other
hand, neglecting binary encounters of massive remnants such as
black holes could underestimate their escape rate for times be-
yond 50 Myr. This would imply that the model overestimates the
impact of the black hole retention fraction on the evolution of the
MF.

The model is applied to investigate the influence of the dis-
ruption time and remnant retention on the evolution of the MF
and integrated photometric properties of star clusters. For to-
tal disruption times ttotal

dis < 1 Gyr, the modeled relative escape
rate is highest at a certain “sweet spot” mass that is typically
15–20% of the mass of the most massive objects in the clus-
ter. For longer lifetimes, the evolution of the MF is dominated
by low-mass star depletion, unless the retention fraction of mas-
sive stellar remnants is larger than 0.25. Only in the particular
case of such a high retention fraction, the M/L ratio is increased
by dynamical evolution when the cluster approaches total dis-
ruption. In all other scenarios, the M/L ratio decreases because
the most massive (luminous) stars are kept17. When defining the
slope of the MF in the range 30–80% of the maximum stel-
lar mass, this gives a clear relation between the MF slope and
the M/L ratio. For slopes that are defined in fixed mass ranges,
there is not necessarily a correlation between slope and M/L ra-
tio if ttotal

dis < 1 Gyr. In clusters with a longer total disruption
time, both quantities are related. Dynamical cluster evolution is

15 Any variability of the retention fraction would induce substantial
scatter, see Sect. 5.2 and Fig. 19.
16 The fraction of stars residing in binary or multiple systems.
17 This process differs from a possible variability of the proportionality
between the velocity dispersion and the cluster mass, which concerns a
much shorter timescale (e.g. Boily et al. 2009).
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Fig. 19. MF slope versus remaining lifetime (assuming a globular clus-
ter age of 12 Gyr). Diamonds represent the observed values from
De Marchi et al. (2007), with typical errors as shown by the error bar
in the lower right corner. The remaining lifetimes are taken from
Baumgardt et al. (2008). Dotted curves represent the model evolution-
ary tracks of clusters with log (Mi/M�) = {6, 6.25, 6.5, 6.75, 7} from
Sect. 5.2 with {σkick,wd, σkick,ns, σkick,bh} = {4, 100, 200} km s−1, corre-
sponding to { fret,wd, fret,ns, fret,bh} = {0.983, 0.022, 0.003} for a 106 M�
cluster. The solid line connects the present-day locations of the mod-
eled clusters in the diagram (crosses), while the dashed line represents
the same relation for σkick,bh = 40 km s−1 ( fret,bh = 0.219 for a 106 M�
cluster). The dash-dotted line shows the homologous cluster evolution
from Baumgardt & Makino (2003).

found to induce some reddening of the integrated cluster colours,
amounting up to 0.1–0.2 mag in V − I for total disruption times
ttotal
dis < 1.5 Gyr. The fraction of the cluster mass that is con-

stituted by remnants surprisingly decreases if more black holes
are retained, because the black holes preferentially eject bodies
around the masses of white dwarfs and neutron stars, which con-
tain most of the total remnant mass.

Contrary to what is suggested by other studies (e.g.
Baumgardt & Makino 2003; Anders et al. 2009), the evolution
of the MF is not homologous. The reason that these studies con-
cluded that its evolution is very similar for all clusters (also see
Figs. 6 and 7), is that they assumed that all remnants were re-
tained. It is illustrated in Fig. 14 that the differences between
clusters with dissimilar disruption times disappear when the re-
tention fraction increases. For realistic retention fractions, differ-
ences do arise. If two clusters with different initial masses have
the same total disruption time, their MF evolution will be dis-
similar due to their different remnant retention fractions and the
impact of the retained remnants on the dynamical cluster evolu-
tion. Alternatively, if two clusters have equal initial masses but
different total disruption times, for instance due to differences in
their galactic location or environment, their MF evolution will
be dissimilar due to the dynamical impact of the evolution of the
maximum stellar mass.

The larger variation of MF evolution that is found with pre-
sented model may also be able to explain observations of glob-
ular clusters in which the MF cannot be characterised by a sin-
gle power law (De Marchi et al. 2000). If the evolution of the
MF were homologous, these features would likely be primor-
dial (Baumgardt & Makino 2003), but this is not necessarily the
case when using realistic retention fractions. Most other differ-
ences between the results presented in Sect. 5 and those from

Baumgardt & Makino (2003) are also due to their assumption of
full remnant retention. For example, their M/L ratio evolution
shows a smaller decrease than in Fig. 11. This is explained in
Fig. 16, where it is shown that dynamical evolution reduces the
M/L ratio by a smaller amount if the retention fraction is larger.

Studies on the fractal nature of cluster formation show
that star clusters are initially substructured (Elmegreen 2000;
Bonnell et al. 2003). Even though this substructure is typically
erased on a crossing time, it can induce primordial mass seg-
regation in star clusters (McMillan et al. 2007; Allison et al.
2009). The influence of primordial mass segregation on the evo-
lution of the MF has recently been investigated by Baumgardt
et al. (2008) and Vesperini et al. (2009). While Baumgardt et al.
(2008) do not include stellar evolution and concentrate on two-
body relaxation, Vesperini et al. (2009) do include stellar evolu-
tion. They show that for some degrees of primordial mass segre-
gation, the mass loss by stellar evolution can induce additional
dynamical mass loss that strongly decreases the total disruption
time. For clusters that survive for a Hubble time, the MF evo-
lution in the case of primordial mass segregation is very similar
to an initially unsegregated cluster. Vesperini et al. (2009) con-
clude that the evolution of the MF is only affected by primor-
dial mass segregation for clusters in which the total disruption
time is sufficiently decreased by the induced mass loss. In that
case, the slope of the MF remains much closer to its initial value
than it would in clusters without primordial mass segregation.
Their conclusion is consistent with the model presented in this
paper, because the evolution of the MF is determined by the most
massive stars at the time when the largest mass loss occurs (see
Figs. 4 and 9). This induced mass loss enters the model in terms
of the absolute mass loss rate in Eq. (3), not in the stellar mass-
dependent escape rate per unit mass loss rate of Eq. (13).

A change in total mass loss rate is not the only consequence
of primordial mass segregation. Baumgardt et al. (2008) have
shown that low-mass star depletion is enhanced for clusters
without stellar evolution that are primordially mass-segregated.
This occurs because energy equipartition is reached on a shorter
timescale and because of their use of a fixed (mmax = 1.2 M�)
maximum stellar mass. As a result, there are no massive bodies
to increase the escape rate of intermediate mass stars (see Fig. 5),
implying that only the low-mass stars are preferentially lost. In
the present paper, mass segregation is assumed to arise dynam-
ically, but the model could in principle be adapted to cover pri-
mordial mass segregation by setting c2 = 0 and adjusting c1
to the initial velocity distribution until it is erased by dynami-
cal evolution (see Eq. (22)), after which the values from Sect. 3
can be used18. This does not necessarily yield enhanced low-
mass star depletion for clusters with a complete IMF (including
masses m > 1.2 M�) because of the presence of massive stars or
remnants.

The presented model can be applied to the MFs of Galactic
globular clusters that are observed by De Marchi et al. (2007).
These MFs are more strongly depleted than is found in the
N-body simulations by Baumgardt & Makino (2003), which has
been attributed to primordial mass segregation (Baumgardt et al.
2008). However, the observations can also very accurately be
explained with the realistic remnant retention fractions that are

18 As explained in Sect. 3, c1 represents the ratio of the mean speed
squared to the central escape velocity squared that depends on the de-
gree of mass segregation (and thus on the IMF). On the other hand, c2

is a proportionality constant in the expression for the onset of the stellar
mass-dependent escape of stars, which depends on the concentration or
King parameter.
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used in the present paper. This is shown in Fig. 19, where the ob-
served MF slopes and remaining lifetimes of the globular clus-
ters from De Marchi et al. (2007) are compared with the globular
cluster-like models from Sect. 5.2 (t0 = 1 Myr). The models are
in much better agreement with the data than the N-body runs
with complete remnant retention from Baumgardt & Makino
(2003). Deviations to other values of α can occur due to vari-
ations in disruption time and remnant retention fractions, as is
also shown in Fig. 19. For example, a variation of the remnant
kick velocity with metallicity in combination with the known
variation of the disruption time (see e.g. Kruijssen & Mieske
2009; Kruijssen & Portegies Zwart 2009) should be sufficient to
cover the observed scatter.

The above line of reasoning provides an explanation for the
the depleted MFs in Fig. 19 that is consistent with the simula-
tions by Vesperini et al. (2009), who showed that the effects of
primordial mass segregation are in fact suppressed in long-lived
clusters due to the expansion caused by stellar evolution. This in-
creases the relaxation time and yields an evolution of the MF that
is very similar to the initially unsegregated scenario, indicating
that primordial mass segregation is not a likely explanation for
strongly depleted MFs. Observations of the remnant composi-
tion of these globular clusters could reveal a definitive answer as
to whether the depleted MFs are explained by primordial mass
segregation or by dynamical evolution with a realistic remnant
retention fraction.

Dynamical cluster evolution does not appear to have a large
effect on the colours of old (globular) clusters. The only way
in which the colours could be affected beyond typical observa-
tional errors, is if globular clusters have lost substantial fractions
of their masses during the first ∼Gyr after their formation. In
that case, the dynamical evolution of the stellar MF in globular
clusters may have implications for studies of colour bimodal-
ity (e.g. Larsen et al. 2001) or the blue tilt (e.g. Harris et al.
2006). It could then also possibly explain the trend of increasing
V − K colour with decreasing M/LV ratio found by Strader et al.
(2009) for globular clusters in M 31, because quickly dissolving
clusters generally become redder and have reduced M/L ratios.
More research is needed to determine the role of the changing
MF in the above properties of globular cluster systems.

It can be concluded that the evolution of the stellar MF in star
clusters is not as similar for all clusters as previously thought. Its
precise evolution is determined by cluster characteristics like the
disruption time, the remnant retention fraction, initial-final stel-
lar mass relation, and the IMF. In order to decipher the evolution
of observed star clusters, it is essential to record these charac-
teristics and to relate them to possible scenarios for the internal
evolution of clusters. That way, observables like the slope of the
MF, the M/L ratio, the broadband colours, and the mass fraction
in remnants can be better understood.
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