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Abstract

The atom-bond connectivity (ABC) index is a degree-based molecular descriptor that found
diverse chemical applications. Characterizing trees with minimum ABC-index remained an
elusive open problem even after serious attempts and is considered by some as one of the most
intriguing open problems in mathematical chemistry. In this paper, we describe the exact
structure of the extremal trees with sufficiently many vertices and we show how their structure
evolves when the number of vertices grows. An interesting fact is that their radius is at most 5
and that all vertices except for one have degree at most 54. In fact, all but at most O(1) vertices
have degree 1, 2, 4, or 53. Let γn = min{ABC(T ) : T is a tree of order n}. It is shown that

γn = 1
365

√
1
53

(
1 + 26

√
55 + 156

√
106
)
n+O(1) ≈ 0.67737178n+O(1).

1 Introduction

Molecular descriptors [33] are mathematical quantities that describe the structure or shape of
molecules, helping to predict the activity and properties of molecules in complex experiments. In the
last few years a number of new molecular structure descriptors has been conceived [20, 28, 29, 31].
Molecular descriptors play a significant role in chemistry, pharmacology, etc. Among molecular
structure descriptors, topological indices have a prominent place. They are useful tools for modeling
physical and chemical properties of molecules, for design of pharmacologically active compounds,
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for recognizing environmentally hazardous materials, etc., see [18]. One of the most important
topological indices is the Atom Bond Connectivity index, also known as the ABC index. It was
introduced by Estrada [21] with relation to the energy of formation of alkanes. It was quickly
recognized that this index reflects important structural properties of graphs in general. The ABC
index was extensively studied in the last few years, from the point of view of chemical graph
theory [22, 34], and in general graphs [10]. Additionally, the physico-chemical applicability of
the ABC index and its mathematical properties was confirmed and extended in several studies
[5, 9, 11, 23, 27, 32, 35]. Some novel results about ABC index can be found in [14, 15, 16] and in
the references cited therein.

Let G be a simple graph on n vertices, and let its vertex-set be V (G) and edge-set E(G). By
uv we denote the edge connecting the vertices u and v. The degree of a vertex v is denoted by dv.
For an edge uv in G, we consider the quantity

f(du, dv) =

√
du + dv − 2

dudv
.

The Atom-Bond Connectivity index (shortly ABC index ) of G is defined as

ABC(G) =
∑

uv∈E(G)

f(du, dv).

When the mathematical properties of a graph-based structure descriptor are investigated, one of
the first questions is for which graph (with a given order n) is this descriptor minimal or maximal.
It is known that adding an edge in a graph strictly increases its ABC index [12] and deleting an
edge in a graph strictly decreases its ABC index [8]. According to this fact, among all connected
graphs with n vertices, the complete graph Kn has the maximum ABC index and graphs with
minimum ABC index are trees. A tree is said to be ABC-minimal if no other tree on the same
number of vertices has smaller ABC index.

Although it is easy to show that the star graph Sn has maximum ABC index among all trees
of the same order [22], despite many attempts in the last years, it is still an open problem to
characterize trees with minimum ABC-index (ABC-minimal trees). Eventually, a computer-aided
study [24] gave rise to a conjecture on the actual structure of the ABC-minimal trees. Later results
[2, 3] revealed that the conjecture was false, and that the true structure of the ABC-minimal trees
is more complex than the computer-aided results have indicated. In [10], the author presents lower
and upper bounds on the ABC index of general graphs and trees, and characterizes graphs for
which these bounds are best possible.

In this work we finally resolve the question on giving a precise description of ABC-minimal
trees. For small values of n, this structure is as observed in previous works (see [6] for n ≤ 1100).
However, with number of vertices growing, a new structure, called the C52-branch, emerges. When
n is very large, any ABC-minimal tree just slightly deviates from being composed of one vertex of
large degree to which the C52-branches are attached. See the last section for more details.

An interesting fact is that the radius of ABC-minimal trees is at most 5 (usually just 4) and
that all vertices except for one have degree at most 54. In fact, all but at most O(1) vertices
have degree 1, 2, 4, or 53. Let γn = min{ABC(T ) : T is a tree of order n}. It is shown that

γn = 1
365

√
1
53

(
1 + 26

√
55 + 156

√
106
)
n+O(1) ≈ 0.67737178n+O(1).
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The proofs are simplified by introducing a natural equivalence relation, called similarity, on the
set of all ABC-minimal trees and considering only those elements in each similarity class that are
maximal in certain total order on all rooted trees. They are said to be ABC-extremal. The main
structure results that are proved along the way towards the structural description of ABC-minimal
trees are the following. For each ABC-extremal tree we let R be its vertex having maximum degree.
It is proved that all edges uv have different vertex degrees, du 6= dv, with a possible exception of
having one edge incident with R, whose ends both have maximum degree, and having one edge
whose ends are both of degree 2. It also has been proved that for n ≥ 415, a 2-2 edge (known
as a pendent path of length three) cannot happen in an ABC-minimal tree, see [17]. Every path
starting from the root R has strictly decreasing degrees, with the only possible exception when
it contains an exceptional edge mentioned above (see Theorem 3.1 and Corollary 3.3). The next
major step is to prove that vertices at distance 2 from R have degree at most 5 (Theorem 4.1).
Vertices of degree 1 are always adjacent to vertices of degree 2, and it is shown that the root cannot
be incident with vertices of degree 2 (when n ≥ 40), and that the subtree of any vertex of degree
at least 3 that is adjacent to a vertex of degree 2 has very specific structure (see Corollary 4.6).
It is shown, as a consequence, that extremal trees are mainly composed of so called B3-branches,
which are grouped together into C-branches (see Section 2 for definitions). Earlier works have
not expected C-branches, and it was conjectured in [24] and [13] that B3-branches are the main
structural component. It was found in [1] that C-branches will play a prominent role. A new
surprise coming from our work is that for large n only C52-branches occur, see Theorem 5.3. An
interesting final outcome is that the radius of ABC-extremal trees is at most 5 and that all vertices
except for one have degree at most 54. In fact, all but at most O(1) vertices have degree 1, 2, 4, or
53.

2 Basic ingredients

The following known facts will be used in the paper.

Theorem 2.1 ([30]). In every ABC-minimal tree of order at least 3, each vertex of degree 1 is
adjacent to a vertex of degree 2.

Proposition 2.2 ([14]). Let x, y ≥ 2 be real numbers and let a ≥ 0 and b, 0 ≤ b < y − 1 be
constants. Let

g(x, y) = f(x+ a, y − b)− f(x, y).

Then, g(x, y) is increasing in x and decreasing in y.

Theorem 2.3 ([25]). If an ABC-minimal tree has distinct vertices v1, v2, v3 such that dv1 ≥ dv2 >
dv3, then v3 cannot be adjacent to both v1 and v2.

Let T be an ABC-minimal tree of order n and let ∆ be the maximum degree of T . Let us pick
one of the vertices of degree ∆ and call it a root of T . We will denote the root by R and from now
on consider any tree as a rooted tree. Thus, we can speak about descendants, predecessors, the
sons of a vertex (immediate successors), etc. We also define the height function h : V (T ) → N by
taking h(v) to be the distance of v from the root R in T .

3



For each vertex v, we denote by Tv the subtree of T consisting of v and all of its descendants.
If Tv ∩ Tv′ = ∅, then we define another tree, T (v, v′), that is obtained from T by exchanging Tv
and Tv′ . Under certain conditions, this exchange operation reduces the ABC-index, meaning that
such conditions cannot occur in ABC-minimal trees. The following result was proved by Lin et al.
in [7].

Lemma 2.4 ([7]). Let uv and u′v′ be edges of a tree T . Suppose that v is a son of u, v′ is a son
of u′ and that Tv ∩ Tv′ = ∅.

(a) If du > du′ and dv < dv′, then ABC(T ) > ABC(T (v, v′)). In particular, T is not ABC-
minimal.

(b) If du = du′ or dv = dv′, then ABC(T ) = ABC(T (v, v′)).

Proof. Equality in (b) is obvious since both trees have edges with same degrees. To prove (a), we
apply Proposition 2.2 with y = dv′ , a = 0 and b = dv′ − dv. Observe that:

ABC(T )−ABC(T (v, v′)) = f(du, dv) + f(du′ , dv′)− f(du, dv′)− f(du′ , dv)

= (f(du, dv)− f(du, dv′))− (f(du′ , dv)− f(du′ , dv′))

= g(du, dv′)− g(du′ , dv′),

which is positive by the proposition.

Part (b) of the lemma motivates the following definitions. First of all, if the assumptions of
the lemma hold and du = du′ or dv = dv′ , then we say that T (v, v′) is obtained from T by a
similarity exchange. Further, we say that two trees T and T ′ are similar (or ABC-similar) if T ′

can be obtained from T by a series of similarity exchange operations. When we treat ABC-minimal
trees as rooted trees whose root is a vertex of maximum degree, we also treat any tree obtained
by taking a different vertex of maximum degree as the root as being similar. Note that similarity
is an equivalence relation that preserves the ABC-index. In order to characterize ABC-minimal
trees, it suffices to describe one tree in each similarity class. Below we will introduce some special
properties of ABC-minimal trees that will define a subclass called ABC-extremal trees.

For our next definition we will need a special linear ordering � among the isomorphism classes
of all rooted trees (with at most n vertices). For two such trees T and T ′, we first compare their
roots. If the root of T has larger degree than the root of T ′, then we set T � T ′ (and we set
T ′ � T if the root of T ′ has larger degree). If the degrees are the same, both equal to d ≥ 0, we
lexicographically compare their subtrees T1, . . . , Td and T ′1, . . . , T

′
d rooted by the sons of their roots,

and we set T � T ′ if the subtrees of T are lexicographically larger. Note that these subtrees are
lexicographically the same if and only if T and T ′ are isomorphic. (This can be easily proved by
induction.) We write T � T ′ if either T � T ′ or T and T ′ are isomorphic as rooted trees.

An ABC-minimal tree T is said to be ABC-extremal if it is �-largest in its similarity class
which is the same as greedy tree for a given degree sequence. Note that this also included the best
choice of the root among the vertices of maximum degree.1 The ABC-extremal trees have some
additional properties that will be useful for us. Let us summarize some of them.

Let T be an ABC-extremal tree. Then T has the following properties:

1It will be shown later that there are at most two such vertices in any ABC-minimal tree.
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(P1) Let u, v ∈ V (T ). Suppose that h(u) < h(v) and if u is not the root then v /∈ Tu. Then
Tu � Tv and, in particular, du ≥ dv.

(P2) Let h2 = min{h(v) | dv = 2}. If T contains an edge uu′ such that du = du′ = 2, then either
h(u) = h2 or h(u′) = h2.

(P3) Suppose that u, v are non-root vertices with the same degree, du = dv, and let r = du − 1.
Let u1, . . . , ur be the sons of u and let v1, . . . , vr be the sons of v. Suppose that Tu1 � Tu2 �
· · · � Tur and Tv1 � Tv2 � · · · � Tvr . If h(u) < h(v), then Tur � Tv1 . If h(u) = h(v), then
either Tur � Tv1 or Tvr � Tu1 . Assuming that Tur � Tv1 , then we have, in particular, that
du1 ≥ du2 ≥ · · · ≥ dur ≥ dv1 ≥ dv2 ≥ · · · ≥ dvr .

Proof. (P1) The proof is by induction on h(u). If u is the root, then the property is clear by the
definition of similarity which includes exchanging the root with another vertex of maximum degree
if that rooted tree is �-larger. Therefore we may assume that u is not the root. Let û and v̂ be the
predecessors of u and v, respectively. By the induction hypothesis, we have that dû ≥ dv̂. Suppose,
for a contradiction, that Tu ≺ Tv. In particular, du ≤ dv. Since v /∈ Tu, we have Tu ∩ Tv = ∅. By
Lemma 2.4(a), we conclude that either dû = dv̂ or du = dv. Therefore, T (u, v) is obtained from
T by a similarity exchange. Since Tv � Tu, we conclude that T (u, v) � T , which contradicts the
assumption that T is ABC-extremal.

(P2) As proved in [26] (see Lemma 2.5), there is at most one such 2-2 edge in T . Suppose that
h(u) < h(u′), and let v be a degree-2 vertex with h(v) = h2. If h(u) > h2, then (P1) implies that
Tv � Tu. By Theorem 2.3 we see that the son of v has degree 1 and since the son u′ of u has degree
2, we have that Tu � Tv, a contradiction.

(P3) If Tur ≺ Tv1 and either h(u) < h(v) or Tvr ≺ Tu1 , then one of the similarity exchanges
T (ur, v1) or T (vr, u1) would yield a �-larger tree. This contradiction shows that (P3) holds.

ABC-extremal trees and their properties (P1)–(P3) have been used frequently in previous works
and were sometimes called “greedy trees”.

At the end of the next section, we will show that (P1) holds also when v is a successor of u.

︸ ︷︷ ︸
k

. . .

BkB2 B∗
2B1B−

1

Figure 1: Definition of Bk-branches.

Suppose that all sons of a vertex v ∈ V (T ) are of degree 2 and all second descendants are of
degree 1. Then the subtree Tv is said to be a Bk-branch

2 with root v, where k is the number of sons

2In some earlier papers, B−1 -branches are called B1-branches.
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of v (which is dv − 1 if v 6= R). See Figure 1. In our later figures, we will represent each Bk-branch
by a triangle with the number k next to it. If k = 3, the number may be omitted.

Simulations and existing results [14, 15, 16] show that ABC-minimal trees have lots of B3-
branches and only a small number of Bk-branches for k 6= 3; see also our Corollary 4.6.

If Tv can be obtained from a Bk-branch by adding a new vertex and joining it to one of vertices
of degree 1, then we say that this is a B∗k-branch. This kind of subtrees may appear in ABC-minimal
trees, but cannot occur more than once (see [26]). The reason is the following result about 2-2
edges (edges whose both ends have degree 2, also known as pendent path of length three).

Lemma 2.5 ([26, 17]). Any ABC-minimal tree has at most one 2-2 edge and, if there is one, it is
part of a B1-branch. Furthermore, ABC-minimal trees of order ≥ 415 contain no 2-2 edges.

For a tree T , let B(T ) be the set of those vertices different from the root that are of degree
at least 3 that have a son of degree 2, whose son is of degree 1. Note that for every k ≥ 1, B(T )
contains all roots of Bk-branches and B∗k-branches (k ≥ 2). If a vertex u ∈ B(T ) is not a root of
some Bk-branch, then it is referred to as an exceptional vertex in B(T ) and its subtree Tu is called
B-exceptional branch. Note that the root of any B∗k-branch with k ≥ 2 is an exceptional vertex.
Our next result shows that any ABC-extremal tree has at most one exceptional vertex in B(T ).

Lemma 2.6. Any ABC-extremal tree T has at most one exceptional vertex in B(T ). Moreover, if
v is exceptional, then dv = max{du | u ∈ B(T )}.

Proof. Theorem 2.1 implies that a vertex in B(T ) cannot have a son of degree 1. Thus, an excep-
tional vertex either has a son of degree at least 3, or it has a son of degree 2 that is not incident to
a vertex of degree 1.

Suppose that there are two exceptional vertices, v1 and v2, where vi has a son v′i of degree
2 (whose son is a degree-1 vertex) and also has a son ui that is not the father of a vertex of
degree 1 (i = 1, 2). We select ui to be of degree more than 2 if possible. Suppose that dv1 ≥ dv2 .
Lemma 2.4 shows that ABC(T (v′1, u2)) ≤ ABC(T ), where the inequality is strict unless dv1 = dv2 or
du2 = dv′1 = 2. Since T is ABC-minimal, we have one of the two equalities. In either case, replacing
T with the tree T (v′1, u2) is a similarity exchange. If dv1 > dv2 , then this exchange gives a �-larger
tree, contradicting extremality of T . The same may give a contradiction if dv1 = dv2 ; but if it does
not, then we consider T (v′2, u1), and it is easy to see that this yields a �-larger tree. This shows
that there is at most one exceptional vertex.

Suppose now that T has precisely one exceptional vertex v ∈ B(T ). If dv is not the largest in
{du | u ∈ B(T )}, doing a similar exchange with the vertex u in B(T ) of maximum degree gives us
a contradiction to the extremality of T .

We will show in Lemma 4.5 that in addition to B∗k (k ≥ 2) only one type of B-exceptional
branches may exist in any ABC-minimal tree.

Our next goal is to show that Bk-branches may occur only for k ≤ 5.

Lemma 2.7 ([14, 19]). If an ABC-minimal tree contains a Bk-branch, then k ≤ 5. If it contains
a B∗k-branch, then k ≤ 3.
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The first claim in the lemma was essentially proved in [14] with a different approach, but the
proof uses some additional assumptions that we do not have. The second claim about B∗k-branches
can be found in [19]. We include a sketch of our own proof, some of whose easier details are left to
the reader.

Proof. Let u be the root of a Bk-branch (B∗k-branch) considered. We may assume that u is not the
root. Let û be the father of u. For Bk (k ≥ 6), we replace Tu with Bk−4 and B∗3 , both attached to
û. Note that the degree of û increases by one. Let T ′ be the resulting tree. Now it is easy to see
that ABC(T )−ABC(T ′) > 0, which is a contradiction.

Similarly, for B∗k (k ≥ 5), we replace Tu with Bk−3 and B3 attached to û. And for B∗4 , we
replace Tu with the tree B∗∗3 shown in Figure 12. Details are omitted.

Dimitrov [14] also proved that B5-branches can be excluded under the assumption that there
is a B2 or B3-branch as a sibling3. Below we give a slightly stronger result.

Lemma 2.8. Let T be an ABC-minimal tree. If a Bk-branch and a Bl-branch are siblings, then
|k − l| ≤ 1.

Proof. Suppose that k ≥ l and let t = k − l. Let us assume that a Bk-branch and a Bk−t-branch
exist as siblings in T . Let the parent of Bk and Bk−t be a vertex of degree d. Theorem 2.3 implies
that for every path starting at the root, the vertex-degrees along the path never increase, thus we
have d ≥ k+ 1. By detaching one vertex of degree 2 from Bk and attaching it to Bk−t we obtain a
tree T ′ in which Bk is replaced by Bk−1 and Bl with Bl+1. Since f(2, x) =

√
2/2 is independent of

x, we have

ABC(T )−ABC(T ′) = f(d, k + 1) + f(d, k − t+ 1)− f(d, k)− f(d, k − t+ 2).

For fixed d and k, this difference is decreasing in terms of k− t+ 1 (by Proposition 2.2 used on the
second and the last term with a = 0, b = 1 and y = k − t + 2). This means that the difference is
(strictly) increasing in terms of t. Since ABC(T )−ABC(T ′) = 0 when t = 1, we conclude that for
t ≥ 2 the difference is positive and we can apply the suggested change to obtain a contradiction to
ABC-minimality of T .

As in the above proof, we will frequently compare the ABC-index of a tree T with that of a
modified tree T ′. To make the notation shorter we will write

∆(T, T ′) = ABC(T )−ABC(T ′).

We define a Ck-branch as a subtree Tv, in which v has precisely k sons v1, . . . , vk, and their
subtrees Tv1 , . . . , Tvk are all B3-branches. In our figures, we will represent a Ck-branch as a square
with k written inside the square.

Lemma 2.9 ([17]). Let T be an ABC-minimal tree. If there are Ck-branch and Cl-branch as
siblings, then |k − l| ≤ 1.

Lemma 2.10. No ABC-minimal tree contains a Ck-branch with k ≥ 143.

3For example, the case where the root has only Ck branches and one B5 as its children is not considered in [14].
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Proof. Assume that T is an ABC-minimal tree with a Ck-branch, where k ≥ 143. We will assume
that k is odd. For the even case only some small modifications are needed. We can replace the
Ck-branch with two Ck′-branches, where k′ = k−1

2 , see Figure 2. More precisely, the B3-branches
within Ck are divided evenly between the two Ck′-branches, and the remaining B3 is replaced by
three paths attached to three B3 branches (which turns them into B4) as indicated in Figure 2.
Let T ′ be the resulting tree. We have:

R

zdR−1. . .

. . .

z1 zdR−1. . .z1

. . . . . .

︸ ︷︷ ︸
k−1
2

︸ ︷︷ ︸
k−1
2 −3

︸ ︷︷ ︸
k

R′

Figure 2: Suggested change when there exists a Ck branch with odd k ≥ 143.

∆(T, T ′) = f(dR, k + 1) + kf(k + 1, 4) +

dR−1∑

i=1

f(dR, dzi)− 2f(dR + 1, k+1
2 )

−(k − 4)f(k+1
2 , 4)− 3f(k+1

2 , 5)−
dR−1∑

i=1

f(dR + 1, dzi).

Using Proposition 2.2 we can see that f(dR, dzi) − f(dR + 1, dzi) is increasing in dzi . Thus, to
have the worst case we may consider the lowest possible values for the degrees dzi . Note that there
are B3-branches in Ck and since k < dR, Lemma 2.4 shows that dzi ≥ 4. So:

∆(T, T ′) ≥ f(dR, k + 1) + kf(k + 1, 4) + (dR − 1)f(dR, 4)− 2f(dR + 1, k+1
2 )

−(k − 4)f(k+1
2 , 4)− 3f(k+1

2 , 5)− (dR − 1)f(dR + 1, 4).

Now, let us rewrite this inequality as follows:

∆(T, T ′) ≥ f(dR, k + 1)− f(dR + 1, k+1
2 ) +

(dR − 1)(f(dR, 4)− f(dR + 1, 4)) +

k(f(k + 1, 4)− f(k+1
2 , 4)) +

3(f(k+1
2 , 4)− f(k+1

2 , 5)) +

f(k+1
2 , 4)− f(k+1

2 , dR + 1).

Again, using Proposition 2.2 we can see that the value in each line except the first one is
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increasing in k. Regarding the first line, observe the following:

f(dR, k + 1)− f(dR + 1, k+1
2 ) = f(dR, k + 1)− f(dR + 1, k + 1)

+ f(dR + 1, k + 1)− f(dR + 1, k)

+ f(dR + 1, k)− f(dR + 1, k − 1)

+ . . .

+ f(dR + 1, k+3
2 )− f(dR + 1, k+1

2 ).

Here, each line is increasing in k, therefore f(dR, k+1)−f(dR+1, k+1
2 ) is also increasing in k. If we

substitute k by 143, then the above lower bound only depends on one variable, dR, and it is easy to
check that ∆(T, T ′) > 0 for any value of dR ≥ k. Therefore, ∆(T, T ′) > 0 for any dR ≥ k ≥ 143.

Note that the above proof has some room for improvement, since we have considered exclusive
extreme configurations, in one assuming that dzi = 4 and also considered only one copy of a Ck

branch.

. . . . . .

R

u1 ur v2 vs

k1 k2 kr

u2 v1

Figure 3: The basic structure (after deletion of a small number of vertices). When n is small,
we have only B3-branches (r = 0). As n grows, a combination of both occurs and when n is
sufficiently large, only Cki-branches remain (s = 0), eventually with all ki being equal to 52 and
r = n/365−O(1).

In this paper it will be proved that ABC-minimal trees have the structure close to that shown
in Figure 3 in the sense that there is a small number of vertices whose deletion gives us this form.
Moreover, the following transition occurs. Let us denote by r the number of Ck-branches (whose
roots u1, . . . , ur are adjacent to the root R) and by s the number of B3-branches, whose roots
v1, . . . , vs are adjacent to R. When n is relatively small, we have no Cki-branches (r = 0). In the
intermediate range between around a 1000 and several thousands, we have a combination of both
extremes, depending on the remainder of n divided by 365. When n is sufficiently large, it turns
out that B3-branches disappear (s = 0) and all values ki stabilize at 52, with a few exceptions (for
which ki = 51 or 53; see Lemma 2.9).

3 Degrees strictly decrease away from the root

Let T be an ABC-minimal tree of order n and let ∆ be the maximum degree of T . Theorem 2.3
implies that for every path starting at the root, the vertex-degrees along the path never increase.
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The goal of this section is to prove that the degrees are strictly decreasing, with two sporadic
exceptions.

Theorem 3.1. Let T be an ABC-minimal tree of order greater than 9 and maximum degree ∆.
For every k ≥ 2, T contains at most one edge, whose end vertices both have degree k. Moreover, if
such an edge exists, then k is either 2 or ∆.

Proof. ABC-minimal trees of order ≤ 1100 are known (see [6]) and they satisfy Theorem 3.1. It is
also known that for trees of order ≥ 415 there are no 2-2 edges in ABC-minimal trees (see Lemma
2.5). Since Theorem 3.1 holds for trees of smaller order we may assume that k > 2 and that there
exist an edge uv whose end vertices have the same degree, du = dv = k. Suppose that u is closer
to the root than v. If there is more than one such edge, consider the one with the highest value of
k and if there is more than one such k-k edge, consider one which is farthest from the root. Then
all descendants of v have degree smaller than k. Detach the child x of v with the largest degree
(together with its subtree Tx) and connect it to u as shown in Figure 4. (The subtree Tx is not
shown in the figure.) Let T ′ be the resulting tree. Note that by selection of the edge uv, we know
that dx < k. We have two cases. If u is the root, then if uv is the only edge whose end vertices
have degree k, then Theorem 3.1 holds for k = ∆. If there is another vertex w with dw = k, then
it should be adjacent to u and we can consider w to play the role of R in Figure 4, so we have
dR ≥ du. If u is not the root, then let R be the parent of u and therefore dR ≥ du.

R

z

yx

R

z

y

x

(a) (b)

u

v

u′

v′

Figure 4: Changing the tree when 2 < du = dv ≤ ∆.

Let y1, . . . , yk−2 be the children of v different from x and let z1, . . . , zk−2 be the children of u
different from v. We have selected x so that dx ≥ dyj . Note that if there exist i such that dx ≥ dzi
then we can exchange the branch rooted at zi with the branch rooted at x without changing
the ABC index of the tree. So without loss of generality we can assume that dzi ≥ dx ≥ dyj
(1 ≤ i, j ≤ k − 2). Figure 4 only shows edges whose degrees have changed. Let α(T ) and α(T ′) be
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the contribution of all these adges to ABC(T ) and ABC(T ′), respectively. Clearly,

α(T ) = f(dR, du) + f(du, dv) +
k−2∑

i=1

f(du, dzi) +
k−2∑

j=1

f(dv, dyj ) + f(dv, dx)

= f(dR, k) + f(k, k) +
k−2∑

i=1

f(k, dzi) +
k−2∑

j=1

f(k, dyj ) + f(k, dx).

Similarly,

α(T ′) = f(dR, k + 1) + f(k + 1, k − 1) +
k−2∑

i=1

f(k + 1, dzi) +

k−2∑

j=1

f(k − 1, dyj ) + f(k + 1, dx).

Note that there exists z ∈ {z1, . . . , zk−2} such that f(k, dzi)−f(k+1, dzi) ≥ f(k, dz)−f(k+1, dz)
for all i = 1, . . . , k − 2. Considering a similar inequality for y ∈ {y1, . . . , yk−2}, we have:

α(T )− α(T ′) ≥ f(dR, k)− f(dR, k + 1) + f(k, k)− f(k + 1, k − 1) +

f(k, dx)− f(k + 1, dx) + (k − 2)f(k, dz)− (k − 2)f(k + 1, dz) +

(k − 2)f(k, dy)− (k − 2)f(k − 1, dy).

We have discussed that dR ≥ k ≥ dz ≥ dx ≥ dy and we would like to show that α(T )−α(T ′) > 0,
i.e., this change improves the ABC-index. By Proposition 2.2, f(dR, k)− f(dR, k+ 1) is increasing
in dR. Since dR ≥ k, this implies that

f(dR, k)− f(dR, k + 1) ≥ f(k, k)− f(k, k + 1).

Similarly, we have: f(k, dx)−f(k+ 1, dx) is increasing in dx, f(k, dz)−f(k+ 1, dz) is increasing
in dz, and f(k, dy) − f(k − 1, dy) is decreasing in dy. Therefore we may replace dz and dy by
dx =: m < k, so we have:

α(T )− α(T ′) ≥ f(k, k)− f(k, k + 1) + f(k, k)− f(k + 1, k − 1) +

f(k,m)− f(k + 1,m) + (k − 2)f(k,m)− (k − 2)f(k + 1,m) +

(k − 2)f(k,m)− (k − 2)f(k − 1,m). (1)

If m = 1, then it follows by Theorem 2.1 that k = 2 and we have settled this case before. So
we may assume that m ≥ 2. Therefore 1 < m < k. Using computer, we have calculated the values
of the right-hand side of (1) for all pairs (m, k), where 1 < m < k ≤ 105, and k ≥ 5. The same was
checked for k = 4 when m = 2. In all cases the computation confirms that ∆(T, T ′) > 0.

Suppose now that k > 105. Let m = ck where 1
k < c < 1. Using Taylor series we can expand

the right-hand side of (1) in terms of k (factor out 1/
√

8k3 and then use Taylor series of order 5 to

11



R

R

R

R

R

R′

R′

R′

R′

R′

v

u

x

Figure 5: Changing the tree when k = 4 and m 6= 2.

expand).4 We also made the substitution A =
√

c
c+1 and have obtained the following:

α(T )− α(T ′) ≥ 1√
8k3

(
1−
√

2A+

√
2

2
A3

)
+

3

2
√
k5

(
2

3

A

c
− 35

24
+A− 1

4
A3 − A

c+ 1
+

3

2

A3

c+ 1

)
+O(k−7/2). (2)

4The expansion was produced with the help of the software platform Maple, version 18.
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Note that A is bounded, 0 < A < 1.
First, we need to show that the coefficient of k−

3
2 is positive. When 1

k < c < 1 we have
1

k+1 <
c

c+1 <
1
2 . This implies that 1−

√
2A+

√
2
2 A

3 > 1−
√

2/2 > 0. By rewriting (2), we obtain:

k3/2(α(T )− α(T ′)) >

√
8− 2

8
+
A

m
+O( 1k ). (3)

The order of the middle term in (3) is O(k−1/2) and is positive. Note that c+1 and c
c+1 are bounded

and the only case that can cause problem is when c is in the denominator and c ∼ 1
k , which means

m = O(1). For k ≥ 105, the terms are negligible in comparison with the constant value of the first
term. This shows that α(T )− α(T ′) > 0 for k > 105 and any value of m < k.

There are some remaining cases for small values of k (k = 4 and k = 3). When k = 4 and
m = 2 it is easy to check that (1) is positive. So we may assume that k = 4 and m 6= 2, or k = 3.
For these cases note that since equation (1) is not positive, we cannot only consider the worst case
and need to discuss all possible values of dzi , dx and dyi . Figure 5 deals with the case when k = 4.
One can check that using the suggested change of the tree, the ABC-index becomes smaller. Note
that since u has a neighbor of degree 3 (m 6= 2), all neighbors of R have degree ≥ 3, otherwise we
can exchange them and get a tree with smaller ABC-index (dR ≥ du).

As a case in point we will discuss the first case shown in Figure 5 and leave the rest to the
reader. As before, we let α(T ) be the contribution to ABC(T ) of all edges that are shown in the
figure. We have:

α(T ) = f(dR, 4) + 5f(4, 3) + f(4, 4) + 10f(3, 2) + 10f(2, 1) and

α(T ′) = 3f(dR + 2, 5) + 12f(5, 2) + 12f(2, 1).

The change in ABC-index when passing from T to T ′ is equal to α(T )− α(T ′) plus all differences
f(dR, dx)− f(dR + 2, dx) for each neighbor x of R different from u. By Proposition 2.2, and since
dx ≥ 3, we have

f(dR, dx)− f(dR + 2, dx) ≥ f(dR, 3)− f(dR + 2, 3).

Consequently,

∆(T, T ′) ≥ α(T )− α(T ′) + (dR − 1) (f(dR, 3)− f(dR + 2, 3)) . (4)

Using (4), it is easy to check that ∆(T, T ′) > 0 for dR ≥ 4.
The second case which needs specific treatment is when k = 3. In this case dy = dx = 2

and dz = 2 or 3. To solve this case we will first show that a vertex of degree 3 cannot have two
descendants of degree 3. For a contradiction assume u has two degree-3 descendants. Since the
edge uv is taken farthest from the root, the descendants of these degree-3 vertices have degree 2,
and all further descendants have degree 2 or 1. Having additional descendants of degree 2 does not
affect the computation in the sequel, thus we may assume that the situation is as shown in Figure
6. Note that if u has only one descendent of degree three (and one descendent of degree two) and
there is another 3-3 edge in the graph, then we have two cases. If dR = 3, then another descendent
of R is either of degree two or three and in both of these cases by an exchange we will get the
structure shown in Figure 6. If there is another disjoint 3-3 edge in the graph, then one of those
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degree three vertices will be the root of a B2 that can be exchanged with z (without changing the
ABC-index), and we can then make the change shown in Figure 6. Also note that dR ≥ 3; otherwise
we would get a small tree and small trees are known to satisfy our theorem [6]. Now it is easy to
check that the suggested structure will have smaller ABC-index, thus yielding a contradiction.

R R′

Figure 6: Changing the tree when two sons of u have degree 3.

R R

Figure 7: Changing the tree when dR ≥ 5.

R

w w′

Figure 8: Changing the tree when dR = 4.

The only remaining case is when the only degree-3 neighbor of u is v and there is no other 3-3
edge in the graph. Then the second descendant of u has degree two (by Theorem 2.1) and we have
the situation that is depicted in Figure 7. The suggested change improves the ABC-index when
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dR ≥ 5. We showed above that we cannot have two 3-3 edges, therefore dR 6= 3 and we may assume
that dR = 4. If R is the root, then again we have a small tree and, as mentioned before, small
trees are known to satisfy our theorem (see [6]). We may assume that there is a vertex w with
degree > 4 (if dw = 4, then we should have selected the edge wR for our process). Since dR > du,
descendants of R should have degree at least 3, otherwise we could have changed them with the
B2 branch and get a smaller ABC-index. Figure 8 presents this case and the suggested structure
improves the ABC-index for dw ≥ 5. This completes the proof.

Combining Theorems 2.3 and 3.1, we get the following corollaries.

Corollary 3.2. In any ABC-minimal tree with maximum vertex degree ∆, there are at most two
vertices whose degrees are equal to ∆, and if there are two, they are adjacent.

Corollary 3.3. In any ABC-minimal tree with maximum vertex degree ∆, the degree sequence
on any path starting from a vertex of maximum degree is strictly decreasing with the following
exceptions:

• When two consecutive vertices on the path have degree 2 and the tree is less than 415 vertices.

• When the path starts with two vertices whose degrees are equal to ∆.

Another consequence of these results is that the property (P1) holds also when v is a successor
of u.

(P1’) Let T be an ABC-extremal tree. Suppose that u, v ∈ V (T ) and h(u) < h(v). Then Tu � Tv
and, in particular, du ≥ dv.

Proof. If v is not a successor of u or when u is the root, the property is just (P1). Therefore we
may assume that u is not the root and Tv ⊂ Tu. By Corollary 3.3, we have that du ≥ dv. Suppose,
for a contradiction, that Tu ≺ Tv. Then we have du ≤ dv, which implies that du = dv. Applying
Corollary 3.3 again, we conclude that v must be a son of u and that their degree is either 2 or ∆.
Clearly, du = dv = 2 gives that Tu � Tv; in the other case, u must be the root, a contradiction.

4 Vertices at distance 2 from the root

In this section we will show that vertices at distance at least 2 from the root have degree at most
5. Combining this with the results in the previous section, we will be able to conclude that the
diameter of ABC-minimal trees is bounded. Along the way we will prove several other properties
of ABC-extremal trees.

Theorem 4.1. In any ABC-extremal tree, every vertex of degree at least 6 is either the root or is
adjacent to the root.

The proof of Theorem 4.1 consists of two parts. First, we prove a weaker statement (Lemma
4.2 below) which has a possible exception when the result may not hold. In the rest of the section
we shall then prove that such an anomaly does not occur (Lemma 4.9).
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4.1 Exceptional branches

To evolve terminology, let us say that a son u of the root is a U -exceptional vertex if it has a son
of degree at least 6; its subtree Tu is said to be a U -exceptional branch.

Lemma 4.2. Let T be an ABC-extremal tree. Then T has at most one U -exceptional vertex, and
if u is such a vertex, then u has largest degree among the sons of the root and u also has a neighbor
of degree at most 5.

Proof. Let R be the root of T and u be the neighbor of R with the �-largest subtree Tu. Note
that this implies that u is a son of R with maximum degree. We may assume that du > 2. We will
contract the edge Ru and add a neighbor to some vertex w of degree one instead. By Theorem
2.1, the neighbor of w has degree 2 and is thus different from u. The change is shown in Figure 9,
where yi (i = 1, . . . , du− 1) are sons of u and zj (j = 1, . . . , dR− 1) are the neighbors of R different
from u.

yi

yi

R

u

w

R′

zj zj

w

Figure 9: Suggested change for the proof of Lemma 4.2.

Note that dR ≥ du, dzj ≥ dyi (j = 1, . . . , dR − 1; i = 1, . . . , du − 1). As in our earlier proofs, let
α(T ) (α(T ′)) be the sum of f -values of those edges in T (T ′) whose contribution to the ABC-index
has changed:

α(T ) = f(2, 1) + f(dR, du) +

dR−1∑

j=1

f(dR, dzj ) +

du−1∑

i=1

f(du, dyi)

and

α(T ′) = f(2, 1) + f(2, 2) +

dR−1∑

j=1

f(dR + du − 2, dzj ) +

du−1∑

i=1

f(dR + du − 2, dyi).

We consider a vertex z ∈ {zj | j = 1, . . . , dR − 1} such that f(dR, dzj ) − f(dR + du − 2, dzj ) ≥
f(dR, dz)− f(dR +du− 2, dz) for all j = 1, . . . , dR− 1. Considering a similar inequality for the sons
of u (and denoting by y the corresponding vertex where the minimum is attained), we have:

α(T )− α(T ′) ≥ f(dR, du)− f(2, 2) + (dR − 1)(f(dR, dz)− f(dR + du − 2, dz))+

(du − 1)(f(du, dy)− f(dR + du − 2, dy)). (5)
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Proposition 2.2 shows that the two differences within the parentheses in (5) are increasing in
terms of parameters dz and dy. Because it suffices to consider the worst case, we may consider their
smallest value. If dz, dy ≥ 6, we take the value 6. Then (5) changes to:

α(T )− α(T ′) ≥f(dR, du)− f(2, 2) + (dR − 1)(f(dR, 6)− f(dR + du − 2, 6))+

(du − 1)(f(du, 6)− f(dR + du − 2, 6)). (6)

For every dR ≥ 100, the value on the right-hand side of (6) is decreasing and its smallest value is
when du = dR.5 By considering the values when du = dR, we see that the values decrease when dR
grows and that the values are always positive.6 This gives a contradiction when dR ≥ 100. On the
other hand, we have calculated the lower bound in (6) for all values du ≤ dR ≤ 100 by computer
and it turns out that we always have ∆(T, T ′) > 0. We conclude that ABC(T ) > ABC(T ′) for all
values of dR. This contradiction completes the proof when dz, dy ≥ 6.

Now, let us consider the case where the degrees of some of yi or zj are less than 6 and degrees
of some of them are ≥ 6. By property (P1) of ABC-extremal trees, we see that dzj ≥ dyi for all
j ∈ {1, . . . , dR − 1} and i ∈ {1, . . . , du − 1}.

Suppose first that dz1 < 6. Then dyi < 6 for all i ∈ {1, . . . , du − 1}. Next, consider any other
neighbor zj of R. Recall that Tu � Tzj . If du = dzj , property (P3) implies that all sons of zj have
degree at most 5. If du > dzj , the same conclusion follows by Lemma 2.4(a). This shows that all
vertices at distance 2 or more from R have degree at most 5.

We may now assume that dzj ≥ 6 for all j ∈ {1, . . . , dR − 1} and that y1 has degree less than
6. In the same way as above, we see that all sons of z1, . . . , zdR−1 have degree ≤ 5. Hence, at most
one neighbor of the root, namely u, may have sons of degree ≥ 6 and of degree ≤ 5.

Since du > dyi (by Theorem 3.1) and u has a descendant of degree ≤ 5, the degrees of all
descendants of yi are less than 6 by (P1). This completes the proof.

In the remainder of this section we will show that U -exceptional branches do not exist in ABC-
extremal trees, see Lemma 4.9. This will make the proof of Theorem 4.1 complete.

Lemma 4.3. Every ABC-minimal tree has at most eleven vertices of degree 3 and at most four
vertices of degree 5. Moreover, there is at most one B5-branch.

Proof. Theorem 3.1 shows that the only way to have a vertex v of degree 3 is when Tv is a B2 or
a B∗2-branch. Note that the 2-2 edge of a possible B∗2-branch can be moved to other branches by a
similarity exchange, so we may assume that there is no B∗2 in our ABC-extremal tree T (unless all
vertices of degree 1 are within B2-branches and one B∗2-branch). It is shown in [12, 15, 16] that in
any ABC-minimal tree there are at most 11 B2- or B∗2-branches, so there are at most 11 vertices
of degree 3.

Let us assume for a contradiction that we have at least 5 vertices of degree 5 and let v be one
of them with ui (i = 1, 2, 3, 4) as its descendants. Corollary 3.3 indicates that 2 ≤ dui < 5. If all of
them have degree 2 it means that we have a B4 (since B∗4 does not exist by Lemma 2.7) and it is
known that at most four B4-branches can exist [14]. If every ui has degree 4, the change indicated
in Figure 10 gives us an ABC-smaller tree, and if all ui have degree 3 the change shown in Figure

5The same holds when dR < 100, although the function is not always decreasing.
6The lower bound becomes

√
6/3−

√
2/2 > 0 in the limit when dR →∞.
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11 gives us an ABC-smaller tree. Note that the sons of different degree-5 vertices can be reshuffled
by similarity exchanges (without changing the value of the ABC-index). Thus we could group their
sons of degree 4 or 3 together. This implies that the vertices of degree 5 cannot have more than
three sons of degree 3 all together, and at most three sons of degree 4 all together. Therefore we
have at least 13 sons of degree 2, which gives us 3 copies of B4. If we have more than one vertex
of degree 3 or 4 as children of vertices of degree 5, then by similarity exchanges we can get at least
6 copies of B−1 (sons of degree 2 that are not part of a Bk branches) which is not possible in any
ABC-minimal tree (see [15]). And if we have at most one vertex of degree > 2 among the children
of vertices of degree 5, then simply detach it from its parent and attach it to the grandparent. It
is easy to check that this improves the ABC-index. This completes the proof and shows that we
have at most 4 vertices of degree 5.

Suppose now that T contains two copies of B5. We replace one of them with a B∗3 and the other
one with two copies of B3 (so the degree of the father of one of B5-branches increases by 1). It is
easy to see that this decreases the ABC index. This completes the proof.

u u′

w w

Figure 10: The change of a tree when a 5-vertex has four sons of degree 4.

u u′

Figure 11: The change of a tree when a 5-vertex has four sons of degree 3.

Lemma 4.4. If T is an ABC-extremal tree with at least 40 vertices, then no neighbor of the root
can have degree 2.

Proof. As mentioned before, all ABC-minimal trees with at most 1100 vertices are known [6]. It
turns out that the largest one among them having a degree-2 neighbor of the root has 39 vertices.
Thus, we may assume that n > 1100.
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Suppose that R has a neighbor u of degree 2. By (P1), all vertices at distance 2 from R have
degree 2 or 1. If T has a 2-2 edge, then we may assume that it is incident with u by (P2). Thus,
all neighbors of the root form B−1 -branches and Bk-branches, where 1 ≤ k ≤ 5 (Lemma 2.7) which
means that we will have a so called Kragujevac tree, see [4]. Every Bk (1 ≤ k ≤ 5) has at most 11
vertices. Therefore dR ≥ d110011 e = 100.

If there are four B−1 -branches, we replace them by one B∗3-branch. Let x1, . . . , xdR−4 be the
other neighbors of R. Then we have

∆(T, T ′) ≥ f(2, 2)− f(4, dR − 3) +

dR−4∑

i=1

(f(dxi , dR)− f(dxi , dR − 3))

≥ f(2, 2)− f(4, dR − 3) + (dR − 4)(f(6, dR)− f(6, dR − 3))

which is positive for dR ≥ 12, a contradiction.
So we have at most three B−1 -branches. We may have up to four B4 and one B5. Thus, there

must exist a Bk for k ∈ {2, 3}. Now we replace Bk and B−1 with a Bk+1. Again, it is easy to see
that for dR ≥ 17, this change decreases the ABC-index, a contradiction.

Recall that a vertex u is in B(T ) if there exist vertices v and w such u is the parent of v, v
is the parent of w, dv = 2 and dw = 1; and Tu is a B-exceptional branch if u also has a son of
degree more than 2 or a son of degree 2 that is incident with a 2-2 edge. In the following lemma
we will show that in addition to B∗k-branches only one type of B-exceptional branches can exist in
ABC-minimal trees.

Lemma 4.5. Each ABC-extremal tree either contains no B-exceptional branches, or contains a
single B-exceptional branch which is isomorphic to B∗2 , B

∗
3 , or to the tree B∗∗3 depicted in Figure

12.

B∗∗
3

Figure 12: The only possibility for a B-exceptional branch different from B∗k-branches.

Proof. Suppose first that there is a B-exceptional branch that is different from B∗k (k ≥ 2), and
let u be its root. Let x be the child of u with the smallest degree, subject to the condition that
dx ≥ 3. By the definition of B(T ) we know that u also has a child of degree 2. Let y1, . . . , ydu−3
be the remaining sons of u. By definition of B(T ), u is not the root, and thus it has a predecessor
r. Consider the change shown in Figure 13.

Since u has a child of degree 2, (P1) implies that all children of x and all children of yi are of
degree ≤ 2. And since vertices of degree one are adjacent only to vertices of degree 2, Tx and each
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u

yi

x x

yi

u

r

Figure 13: Changing the tree having a B-exceptional branch.

of Tyi is a B−1 or Bk-branch for some 2 ≤ k ≤ 4 (it is easy to see that B5 and B−1 cannot happen
at the same time; replace them with one B2 and one B∗3). Note that for this conclusion we also use
(P2). We will assume that there are no 2-2 edges. If there is one, we first contract it and make the
same changes as in the continuation of this proof. After the changes, we uncontract the 2-2 edge.
The fact is that the difference ∆(T, T ′) will be exactly the same as when there are no 2-2 edges.
We will return to this at the end of the proof.

Since the edges incident to vertices of degree 2 have their f -value constant, we have:

∆(T, T ′) = f(dr, du) + f(du, dx) +

du−3∑

i=1

f(du, dyi)

−f(dr, du − 1)− f(du − 1, dx + 1)−
du−3∑

i=1

f(du − 1, dyi).

Using Proposition 2.2 we see that the above difference is decreasing in dr, dx and dyi . Therefore
it suffices to show that the difference is positive when replacing dr, dx and dyi by largest values
that are allowed for these degrees. We can replace f(dr, du) − f(dr, du − 1) with the limit when
dr tends to infinity, which is equal to

√
1/du −

√
1/(du − 1). If dx = 5, then u has at most three

descendants yi whose degree is more than 2, since they would all be of degree 5 by our choice of x.
In this case we would have:

∆(T, T ′) >
1√
du

+ 4f(du, 5)− 1√
du − 1

− 3f(du − 1, 5)− f(du − 1, 6)

which is positive for every du ≥ 13.
On the other hand, if dx ≤ 4, then we similarly have:

∆(T, T ′) >
1√
du

+ 4f(du, 5) + (du − 6)f(du, 4)− 1√
du − 1

− 5f(du − 1, 5)− (du − 7)f(du − 1, 4)

which is easily seen to be positive for every du ≥ 15. Thus, we may assume from now on that
du ≤ 14.

As mentioned above, the children of u are copies of B−1 and Bi-branches for i = 2, 3, 4. Let ki
be the number of children whose subtrees are isomorphic to Bi (for i = 2, 3, 4) or B−1 (for i = 1).
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We know that 4 ≤ du ≤ 14, 1 ≤ k1 ≤ du − 2, 0 ≤ k2 ≤ min{du − 2, 11}, 0 ≤ k3 ≤ du − 2
and 0 ≤ k4 ≤ min{du − 2, 4}. Also, either k2 or k4 is zero; moreover, k2, k3 and k4 cannot
all be zero.7 Let K be the set of all 4-tuples (k1, k2, k3, k4) satisfying all these conditions with
du = k1 + k2 + k3 + k4, and let

k = 1 + 2k1 + 5k2 + 7k3 + 9k4

be the number of vertices in the B-exceptional branch. Note that we will have at least one B−1 and
at least one Bi branch and therefore k ≥ 8. Also k = 8 cannot happen in the ABC-minimal tree
because we will have a 3-3 edge. The only way to get k = 10 (without contradicting the previously
mentioned properties) is the B∗∗3 branch which we are claiming to be the only B-exceptional branch
in the absence of a 2-2 edge. Observe that k = 9 or 11 is not possible, thus we have k ≥ 12. For
every possible (k1, k2, k3, k4) ∈ K, we replace the k vertices in the B-exceptional branch with copies
of B3-branches attached to R as follows:

. . .. . . . . . . . .

u

R

︸ ︷︷ ︸
k4

︸ ︷︷ ︸
k3

︸ ︷︷ ︸
k2

︸ ︷︷ ︸
k1

zi

Figure 14: A tree having a B-exceptional branch when du ≤ 14.

• If k ≡ 0 mod 7, replace them with k
7 copies of B3.

• If k ≡ 1 mod 7, replace them with k−1
7 − 1 copies of B3 and one copy of B∗3 .

• If k ≡ 2 mod 7, replace them with k−2
7 − 1 copies of B3 and one copy of B4.

• If k ≡ 3 mod 7, replace them with k−3
7 − 1 copies of B3 and one copy of B∗∗3 .

• If k ≡ 4 mod 7, replace them with k−4
7 − 2 copies of B3 and two copies of B4.

• If k ≡ 5 mod 7, replace them with k−5
7 copies of B3 and one copy of B2.

• If k ≡ 6 mod 7: For all cases except the one depicted in Figure 15 replace them with k−6
7

copies of B3 and one copy of B∗2 . For the remaining case, when dR ≤ 94 we can again replace
them with two copies of B3 and one copy of B∗2 , but for larger dR we replace them with one
copy of B4 and one copy of B5.
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Figure 15: The B-exceptional branch that needs special treatment for dR ≥ 95.

A simple verification using computer shows that in all cases, where k ≥ 12 and (k1, k2, k3, k4) ∈
K, the degree of R increases and therefore the change in the ABC-index is increasing in term of
dzi . Thus, to consider the worst case, we let dzi = 3 (for i = 1, . . . , dR − 1). Now the change only
depend on one variable (dR) and it is easy to check by computer that the change is possible and
it improves the ABC-index. Therefore the only B-exceptional branch different from B∗k for k ≥ 2
that can occur in ABC-extremal trees is B∗∗3 .

Let us now return to the case when we had a 2-2 edge. As mentioned above, the same proof
works and we conclude that all ending branches (those based at vertices in B(T )) are B2, B3, B4,
B5, and B∗∗3 . Now we put the 2-2 edge back. It can be added to any degree-2 vertex. By Lemma
2.7, there are no B∗k for k = 4, 5. If there is no B∗∗3 , then we obtain a single B∗2 or B∗3 , as claimed.
On the other hand, if B∗∗3 (with its root u) is present, then we uncontract the 2-2 edge within this
branch and then replace the whole branch with a B5. It is easy to see that this change decreases
the ABC-index (which is a contradiction) if the degree of the father r of u is at least 9. Thus, we
may assume that 5 ≤ dr ≤ 8. In this case we can replace B∗∗3 together with the expanded 2-2 edge
by B2 and B∗2 attached to r. Then we have

∆(T, T ′) ≥ f(3, 4) + f(4, dR)− 2f(3, dR + 1) +

dR−1∑

i=1

(f(dxi , dR)− f(dxi , dR + 1))

≥ f(3, 4) + f(4, dR)− 2f(3, dR + 1) + (dR − 1)(f(3, dR)− f(3, dR + 1))

which is positive for dr ∈ {5, 6, 7, 8}.

Let us observe that B∗∗3 cannot be excluded in all cases. In fact, the tree in Figure 16 with
k = 43 B3-branches and one B∗∗3 is an ABC-minimal tree that contains B∗∗3 . It has n = 312
vertices. This is the smallest ABC-minimal tree containing a B∗∗3 , see [2]. However, we believe that
B∗∗3 cannot occur when n is sufficiently large.

By Lemmas 2.6 and 4.5 the following corollary is immediate.

Corollary 4.6. Let T be an ABC-extremal tree and u be a non-root vertex with du ≥ 3 and with
a son of degree 2. Then Tu is isomorphic to one of the following: B2, B

∗
2 , B3, B

∗
3 , B

∗∗
3 , B4, or

B5. Any B-exceptional branch can occur at most once, B2 can occur at most eleven times, B4 can
occur up to four times, and B5 can occur at most once.

7There are additional restrictions that follow from (P1), but they are not needed for the proof.
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. . .

︸ ︷︷ ︸
k

Figure 16: An ABC-minimal tree containing a B∗∗3 -branch.

Note that if there is B∗2 or B∗3 , then it is just one of them and there cannot be any of B4, or
B5, because in that case the 2-2 edge could be used to make a B∗4 or B∗5 , contrary to Lemma 2.7.
Also, we cannot have a copy of B∗∗3 together with a B4 or a B5 since this would contradict (P1)
(B∗∗3 contains a 4-3 edge and B4 and B5 have a 5-2 and 6-2 edge, respectively).

4.2 Ck-branches

Lemma 4.7. If T is an ABC-minimal tree with a vertex u adjacent to (at least) 365 roots of
Ck-branches, then k ≤ 52.

Proof. Suppose that there are 365 = 7 × 52 + 1 copies of Ck adjacent to u. Let us consider the
remaining neighbors of u, and if there are any, let R be one of them that has the highest degree. (If
u is not the root then R is the parent of u). We can apply the change shown in Figure 17 to obtain
a tree T ′. Note that the two trees have the same number of vertices and that du′ = du + 7k − 364.

. . . . . .︸ ︷︷ ︸
365

︸ ︷︷ ︸
7k+1

R

u

52 52 52k k k

u′

R

Figure 17: Suggested change when there are 365 copies of Ck.

Let d = du − 366 and if d 6= −1, let a1, . . . , ad be the degrees of the sons of u in the shaded
part. If k > 52, we have du < du′ and by Proposition 2.2, the differences f(R, u) − f(R, u′) and
f(u, ai)− f(u′, ai) are increasing in terms of dR and each ai. Suppose first that R exists. Then it
suffices to consider the case when u is the root and dR = 4 and each ai = 4 (since du > k + 1).
Then we have:

∆(T, T ′) ≥ 365
(
f(du, k + 1) + k

(
f(k + 1, 4) + 6

√
2
2

))
+ (d+ 1) f(du, 4)

−(7k + 1)
(
f(du′ , 53) + 52

(
f(53, 4) + 6

√
2
2

))
− (d+ 1) f(du′ , 4). (7)
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Note that by Lemma 2.10, k < 143. For a fixed value of k the equation only depends on
du and it is easy check by computer that the suggested change decreases the ABC-index for all
53 ≥ k ≥ 142 and du ≥ 365.

If R does not exist, then d = −1 and ∆(T, T ′) has the same lower bound (7). From this we
obtain the same conclusion. This completes the proof.

Lemma 4.8. Let u be a vertex in an ABC-minimal tree and let k be a positive integer. If k ≤ 48,
then there are at most 7k + 7 copies of Ck-branches whose roots are the sons of u. If du is greater
than 474 (874 and 3273, respectively), then there are at most 7k+7 copies of Ck for k = 49 (k = 50
and k = 51, respectively).

Proof. Let u be a vertex that has 7k+ 8 copies of Ck as his children. Let x1, . . . , xm be the sons of
u that are not in the considered Ck-branches. First we will discuss the degree of the vertices xi. Let
I = {i : dxi > k + 2}. As discussed at the end of Lemma 4.2 when u is not the root, the degree of
all grandchildren of u is at most 5. Since dxi > k+ 2 for i ∈ I and there are B3-branches attached
to vertices of degree k + 1, then xi cannot have children of degree less than 4 (by Lemma 2.4(a).
Therefore each xi (i ∈ I) has children of degree 4 or 5 only. Recall that (by Lemma 4.3) we have
at most 4 vertices of degree 5, and therefore all but at most one of the xi are roots of Ck′-branches
(after possible similarity exchanges). Lemma 2.9 shows that k′ ≤ k + 1 and therefore |I| ≤ 1.

Also note that when u is the root, there is at most one U -exceptional branch (we can assume
that it is R) and using the same argument as above, the degree of all but at most one of xi’s is at
most k + 2.

k k k

R

u

xi︸ ︷︷ ︸
7k+8

R

u

xi
k + 1 k + 1

︸ ︷︷ ︸
7k+1

. . . . . .

Figure 18: Compactifying Ck-branches when k ≤ 51.

Consider the change depicted in Figure 18. The difference between the ABC-indices of the two
trees is:

∆(T, T ′) = f(dR, du)− f(dR, du − 7) + (7k + 8)f(du, k + 1)− (7k + 1)f(du − 7, k + 2)

+

du−7k−9∑

i=1

f(du, dxi)−
du−7k−9∑

i=1

f(du − 7, dxi)

+k(7k + 8)f(k + 1, 4)− (7k + 1)(k + 1)f(k + 2, 4)− 6f(2, 1).

By Proposition 2.2 this difference is decreasing in dR and dxi .
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Therefore it suffices to consider the limit when dR →∞ and to let dx1 = du− 1 and dxi = k+ 2
for i = 2, . . . , du − 7k − 9 (when u is the root the worst possible case for dR is du − 1 but since the
equation is decreasing in dR, considering dR → ∞ is enough and covers other cases as well). We
have:

∆(T, T ′) ≥ 1√
du
− 1√

du − 7
+ (7k + 8)f(du, k + 1)− (7k + 1)f(du − 7, k + 2)

+(du − 7k − 10) (f(du, k + 2)− f(du − 7, k + 2)) + f(du, du − 1)− f(du − 7, du − 1)

+k(7k + 8)f(k + 1, 4)− (7k + 1)(k + 1)f(k + 2, 4)− 6f(2, 1).

Since for a fixed value of k (≤ 48) the right hand side of this inequality only depends on du
(≥ 7k + 8), one can check that ∆(T, T ′) > 0 for all values of du and for all k ≤ 48.

Note that this change also works for k = 49, 50 and 51 if du is at least 474, 874 and 3273,
respectively.

4.3 There are no U-exceptional branches

Lemma 4.9. ABC-extremal trees have no U -exceptional branches.

Proof. Let u be the root of a U -exceptional branch and let w be the child of u with the highest
degree (dw ≥ 6). Let xl (l = 1, . . . ,m) be the other children of u with dxl

≥ 6 and let yj be children
of u with dyj ≤ 5 (j = 1, . . . , du −m− 2). Consider the change outlined in Figure 19.

R R′

u
zi zi

yj yj

w

w

u′

xl xl

Figure 19: Suggested change when there is a U -exceptional branch.

First note that since dyj ≤ 5 and du ≥ dzi ≥ dxl
, all children of w, of each xl and of each zi have

degree at most 5 and since we have at most 4 vertices of degree 5 and 11 vertices of degree 3 and at
most one B-exceptional branch, all but at most two subtrees of xl and at most two subtrees of zi
are Ck-branches. To see this, observe that vertices of degree 3 are roots of B2 or B∗2 branches and
to have a vertex of degree 4 (which is not B3, B

∗
3 or B∗∗3 ) we should use B2 branches as children

of a vertex of degree 4. Since we have at most 11 B2 branches, all but at most 4 vertices of degree
4 are roots of B3 branches (this can be improved to 1, see Lemma 4.11). Therefore at most two zi
branch will contain vertices of degree 5 (that are not among yj ’s) and vertices of degree 4 that are
not B3 branches. Also at most two xl branches will contain any remaining B2 branches.
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The difference between the ABC-indices of trees in Figure 19 is:

∆(T, T ′) = f(dR, du) +

dR−1∑

i=1

f(dR, dzi) + f(du, dw) +

du−m−2∑

j=1

f(du, dyj ) +

m∑

l=1

f(du, dxl
)

−f(dR + 1, du − 1)−
dR−1∑

i=1

f(dR + 1, dzi)− f(dR + 1, dw) (8)

−
du−m−2∑

j=1

f(du − 1, dyj )−
m∑

l=1

f(du − 1, dxl
).

Using Proposition 2.2 we can see that this difference is increasing in dzi and dw and decreasing in
dyj and dxl

. In order to verify that the difference is positive, it suffices to prove it when dyj = 5
and dzi = dxl

= dw =: d′ for i = 1, . . . , dR − 1, j = 1, . . . , du −m− 2 and l = 1, . . . ,m. We have:

∆(T, T ′) ≥ f(dR, du)− f(dR + 1, du − 1) + (dR − 1)
(
f(dR, d

′)− f(dR + 1, d′)
)

+f(du, d
′)− f(dR + 1, d′) + (du − 2) (f(du, 5)− f(du − 1, 5))

+m
(
f(du, d

′)− f(du − 1, d′)− f(du, 5) + f(du − 1, 5)
)
.

Note that the coefficient of m is a negative number by Proposition 2.2 and therefore the right-
hand-side of this inequality is decreasing in m. Therefore to consider the worst case, we will let
m = du− 3 (the highest possible value of m by the definition of U -exceptional branches). We have:

∆(T, T ′) ≥ f(dR, du)− f(dR + 1, du − 1) + (dR − 1)
(
f(dR, d

′)− f(dR + 1, d′)
)

+f(du, d
′)− f(dR + 1, d′) + (f(du, 5)− f(du − 1, 5))

+(du − 3)
(
f(du, d

′)− f(du − 1, d′)
)
.

Let g be the value of the right-hand side of this inequality. Lemmas 2.8, 4.8 and 4.7 show that
when dR ≥ 3273, then the Ck-branches adjacent to R are C52, with at most 364 exceptions of C51

or C53 (if we have du ≥ 3273, then the same holds for the branches rooted at the vertices xl). Note
that if we have some vertices of degree 54, then by Lemma 2.4 they are among zi and since the
right-side value in (8) is increasing in each dzi , the worst case occurs when we have no vertices of
degree 54. Also if we have vertices of degree 52, then they are among xl and since g is decreasing
in terms of dxl

, the worst case happens when we have no vertices of degree 52. Observe that even
if m or du is small and we do not have enough Ck branches as children of u, since the worst case
for the degree of each zi is 53 and because dxl

≤ dzi and the equation is decreasing in terms of dxl
,

the worst case for the degree of each xl is 53.
A simple computer search shows that when d′ ≤ du < dR < 3272, g is positive. So the only

remaining case to be considered is when dR ≥ 3272 and therefore d′ = 53 (i.e. when each xl and
each zi is the root of a C52-branch). The Taylor expansion (in terms of dR) of ∂g

∂du
shows that for

large values of dR, g is decreasing in du and therefore it suffices to show that g > 0 when du = dR
(the highest possible value). By substituting du with dR, the function will only depend on dR and
it is easy to check that g > 0. By a simple computer verification we have also checked that g > 0
for small values of du ≤ dR ≤ 10000 and d′ = 53.
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To summarize, in all cases we have g > 0. This gives a contradiction and completes the
proof.

Corollary 4.10. In every ABC-extremal tree the vertices of degree one are at distance at most 5
from the root.

Proof. We will use the main results proved above. First of all, every path from the root has
decreasing degrees with possible exception of the first edge on the path, or when the path contains
a 2-2 edge. Recall that there is at most one 2-2 edge in T (Lemma 2.5). By Theorem 4.1, we
may assume that vertices at distance 2 from the root have degree 5 or less. Suppose that a path
starting at the root has length 6 or more. Consider degrees of vertices on the path starting at the
vertex at distance 2 from R. The only possible cases are the following degree sequences: 4-3-2-2-1,
5-4-3-2-2-1, 5-4-3-2-1, 5-4-2-2-1, 5-3-2-2-1.

We will first prove that h2 = min{h(v) | dv = 2} ≤ 3, i.e. there is a degree-2 vertex at distance
at most 3 from R. If there is no vertex of degree 5 at distance 2 from the root (a bad 5-vertex),
this is easy to see (similar arguments as in the more complicated case below), and we omit details.
So let us suppose that there is a bad 5-vertex v. By (P1), all sons of the root have degree at least
5 in this case. Since there are at most 4 vertices of degree 5 (Lemma 4.3), it follows that there
are more than 11 vertices at distance 2 from the root that are not of degree 5. Thus one of them
leads to a leaf without including a vertex of degree 3 (Lemma 4.3). The predecessor of this leaf is
a degree-2 vertex at distance at most 3 from R. Therefore h2 ≤ 3.

By (P2), if there is a 2-2 edge in the ABC-minimal tree, then the height of one of its vertices
should be h2, which is a contradiction to the existence of 4-3-2-2-1, 5-4-3-2-2-1, 5-4-2-2-1 and
5-3-2-2-1.

Now observe that since h2 ≤ 3, then 5-4-3-2-1 cannot also happen because it has a vertex of
degree 3 at distant 4 from the root, which is a contradiction.

In fact, distance 5 from the root in the last corollary can be reduced to 4 (if there are no B∗2 ,
B∗3 and B∗∗3 ). As this is not important for the main structure results, we do not intend to deal with
this improvement here.

4.4 Vertices of intermediate degree

Lemma 4.11. Suppose that T is an ABC-minimal tree.

(a) The only non-root vertices of degrees 3, 4 or 5 are roots of B2, B
∗
2 , B3, B

∗
3 , B

∗∗
3 or B4

branches.

(b) There are no non-root vertices of degree k for 6 ≤ k ≤ 15.

Proof. First note that ABC-minimal trees of order ≤ 1100 have been determined [13] and this
lemma holds for all of them. So we can assume that n ≥ 1100 and dR ≥ 5. We will use Corollary
4.6 throughout.

Let v be a non-root vertex of degree k. If k = 3 then Tv is either B2 or B∗2 . If k = 4 and
Tv is not B3, B

∗
3 or B∗∗3 , then all children of v are B2 or B∗2 branches (Tv will have 16 or 17

vertices). It is easy to check that by exchanging Tv with one B3 and one B4 (16 vertices) or one
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B3 and two B2 branches (17 vertices) will improve the ABC-index. If k = 5 and Tv is not a B4,
by Lemmas 4.5 and 2.7 all children of v have degrees 3 or 4. So in this case all subtrees of Tv are
B2, B

∗
2 , B3, B

∗
3 or B∗∗3 . Let k2, k

∗
2, k3, k

∗
3 and k∗∗3 represent the number of each of these branches,

respectively. Therefore, k2 + k∗2 + k3 + k∗3 + k∗∗3 = 4. From previous arguments we know that some
of these branches cannot occur at the same time and also we know that k∗2 + k∗3 + k∗∗3 ≤ 1. Let
nv = 1 + 5k2 + 6k∗2 + 7k3 + 8k∗3 + 10k∗∗3 be the number of vertices in Tv (21 ≤ nv ≤ 32). We will
replace Tv by the subtrees used in the proof of Lemma 4.5 (treating seven different cases of the
value of k modulo 7). As an example, when nv = 21 (nv ≡ 0 mod 7) we will replace Tv by 3 copies
of B3. Note that there are several cases but in all of them the degree of the parent of v, say R,
increases and therefore the difference between ABC-indices of these two trees (in the worst case)
only depends on dR. It is easy to check by computer that the difference is positive for all values of
dR ≥ 5. This completes the proof of part (a).

When k = 6, similar arguments as in part (a) can be used to show that every vertex of degree
6 is a root of B5. We will prove later that B5 can be excluded as well.

For k ≥ 7, we give a proof iteratively starting with k = 7, 8, etc. Then we may assume that
children of v have degrees 3, 4, 5 or 6 and all subtrees of Tv are B2, B

∗
2 , B3, B

∗
3 , B∗∗3 , B4 or

B5 branches. Let k2, k
∗
2, k3, k

∗
3, k∗∗3 , k4 and k5 represent the number of each of these branches,

respectively. Therefore, k2 + k∗2 + k3 + k∗3 + k∗∗3 + k4 + k5 = k − 1. We also know that some of
these branches cannot occur at the same time and also we know that k2 ≤ 11, k∗2 + k∗3 + k∗∗3 ≤ 1
and k4 ≤ 4. Let nv = 1 + 5k2 + 6k∗2 + 7k3 + 8k∗3 + 10k∗∗3 + 9k4 + 11k5 be the number of vertices in
Tv. Again, we will replace Tv by the subtrees used in the proof of Lemma 4.5 (with seven different
cases for the value of k modulo 7). The difference between ABC-indecies of these two trees (in the
worst case) only depends on dR and it is easy to check8 that the difference is positive for all values
of dR ≥ k which completes the proof of part (b) when k 6= 6.

Let v be the root of a B5 branch and let w be its father. By the above, dw ≥ 16. If there is at
least one B2 or B3 attached to w, Lemma 2.8 applies and we are done. Since we can have up to 4
vertices of degree 5 (and v has more than 4 siblings), there is a sibling u of v of degree at least 16
(by the previous paragraph). It is easy to see that there is a B2 (or B3) as a child of u. Now apply
the following change: detach a B−1 from B5 (thus changing it to B4) and attach it to this B2 (or
B3). The change of ABC-index is increasing in du and decreasing in dw. So the worst case is when
the degree of w goes to infinity and du = 16 for which it is easy to check that the change of the
index is positive. This contradiction shows that there is no B5 and thus completes the proof.

Corollary 4.12. In any ABC-extermal tree, all B4 branches (if any) are attached to the root.

Proof. Let u be a non-root vertex which has 1,2,3 or 4 B4 branches as its children. By Lemma
4.11, the degree of u is at least 16 and by Theorem 4.1, it is adjacent to the root. We will first
prove an upper bound on the degree of u when the degree of the root is large enough. Consider
a change similar to Figure 2 in Lemma 2.10 (we have 1, 2, 3 or 4 copies of B4 as well). One can
check that in all of these four cases, degree of u is bounded above by 107 when degree of the root
is at least 952.

Now that we have the desired upper bound, consider the following change. Detach all B4

branches from u and attach them to the root. Degree of the root increases and therefore the

8This was checked by computer. The program and its output are available from the authors.
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difference in the ABC-index is increasing in the degree of children of R (except u). Therefore for
the worst case we can only consider their smallest possible degree (some of them can have degree
5 and the rest will have degree 4). A simple computer search shows that in different cases of small
values of dR ≤ 951 (and all du ≤ dR) the suggested change improves the ABC index. Hence we can
assume that dR ≥ 952 and therefore du ≤ 107. Now for every fixed value of du the worst case of the
equation only depends of dR and it is easy to check that this change decreases the ABC-index.

Corollary 4.13. Any ABC-minimal tree is similar to a tree where at most one non-root vertex of
degree ≥ 6 exists that is not a root of a Ck-branch.

Proof. We may assume T is an ABC-extremal tree. Let u be a non-root vertex which is not the
root of a Ck branch and has du ≥ 6. Since there are no such vertices of degree 6, . . . , 15 we have
du ≥ 16 and therefore u is a son of the root. Since du ≥ 16, u has some B3 branches as subtrees
(see Corollary 4.6) and by (P1), (P2) and (P3), either Tu contains all B2 branches (and possibly a
B∗2) or Tu contains B∗3 or B∗∗3 branches. If there is a B2 (or B∗2) and also one B∗3 or B∗∗3 in the tree,
then by a similarity exchange we can move them and make all of them sons of u. Therefore, all
other vertices at distance two from the root will be B3 branches and all children of the root (with
degree at least 6) except u are Ck branches.

Corollary 4.14. In any ABC-minimal tree of order at least 111, the degree of the root is at least
16.

Proof. If the root has a child u that is none of B2, B
∗
2 , B3, B

∗
3 , B∗∗3 or B4, then by Lemma 4.11

du ≥ 16 and therefore the degree of the root is also at least 16 and we are done. So we may assume
that all children of the root are B2, B

∗
2 , B3, B

∗
3 , B∗∗3 or B4. In [6], all ABC-minimal trees of order

up to 1100 have been determined and the largest one where the degree of the root is less than 16
is a tree with 110 vertices (contains 2 B4 and 13 B3 branches).

Lemma 4.15. Any ABC-minimal tree is similar to a tree T in which one can remove a set of at
most 63 vertices so that the resulting tree has no vertices of degree 3 or 5 and all ending branches
are B3. The removed vertices are all from at most four B4-branches adjacent to the root and from
at most one subtree corresponding to a son of the root.

Proof. We may assume T is ABC-minimal. By removing at most one vertex, we eliminate possible
2-2 edge. By removing 3 vertices, B∗∗3 can be changed into a B3. Similarly, by removing 2 vertices,
a B4 can be changed into a B3. These operations do not change degrees of vertices except for the
roots of newly formed B3-branches. Since a 2-2 edge or B∗∗3 cannot coexist with a B4, this step
removes at most 8 vertices all together.

By Lemma 4.11 (a), any vertex of degree 4 is a B3-branch (or B∗3 or B∗∗3 ) and any non-root
vertex of degree 5 is a B4 adjacent to the root. Thus, all remaining vertices of degree 3 have fathers
of degree at least 16 (by Lemma 4.11 and Corollary 4.14). Each such father w has only B3 and B2

as subtrees. By (P1)–(P3), all B2-branches are descendants of a single such vertex w. By removing
all (≤ 11) B2-branches, all ending branches are B3. By Corollary 4.13 we may assume that possible
2-2 edge or B∗∗3 is also a subtree of Tw. this complete the proof.

29



5 The main structure

Lemma 5.1. Let T be an ABC-extremal tree whose root R has degree dR ≥ 2888. Then there are
at least dR − 327 Ck- and Ck+1-branches attached to the root for some k ∈ {50, 51, 52}.

Proof. Let x1, . . . , xdR be the sons of R and Ti = Txi their subtrees (i = 1, . . . , dR). By removing
one of these subtrees and at most four B4-branches (Lemma 4.15), all the remaining subtrees are
copies of B3 and copies of Cki . Lemma 2.10 shows that each such ki is at most 142.

Suppose first that there are at most 322 B3-branches among them. Then we have at least
dR − 327 > 2561 Cki-branches. By Lemma 2.9, the values ki take only two consecutive values. By
Lemmas 4.7 and 4.8, all but at most 364 of these C-branches are C51 or C52.

Suppose now that there are at least 323 B3-branches adjacent to R. Now consider s = 323
copies of these B3 branches and apply the change outlined in Figure 20, where we replace these
B3-branches with seven C(s−1)/7-branches (there may be more B3 branches attached to the root in
the shaded part).

. . .

︸ ︷︷ ︸
s

R R′

s−1
7

s−1
7

s−1
7

. . .

︸ ︷︷ ︸
7

Figure 20: Improving ABC-index if there are s B3-branches, where s ≡ 1 (mod 7).

Let zi (i = 1, . . . , dR − s) be neighbors of R of in the shaded part of Figure 20. Then the
change of ABC-contribution of the corresponding edge is f(dR, dzi) − f(dR − s + 7, dzi), which is
decreasing in dzi by Proposition 2.2. We know that dzi ≤ 143 but it is not possible to have the
degree of all of them equal to 143. So we have two extreme cases here. If we have at most 2× 364
Ck branches, then we can have 364 of zi’s to be the root of C142 and the rest to be the root of
C141 branches. Note that in this case the other children of the root will be (at most 4) B4 and B3

branches. Therefore the change in the ABC-index will be bounded below as follows:

∆(T, T ′) ≥ 364f(dR, 143) + 364f(dR, 142) + 4f(dR, 5) + (dR − 2× 364− 4)f(dR, 4) + 6
√

2/2

−364f(dR − s+ 7, 142)− 364f(dR − s+ 7, 143)− 7f(dR − s+ 7, (s+ 6)/7)

−4f(dR − s+ 7, 5)− (dR − s− 2× 364− 4)f(dR − s+ 7, 4)− (s− 1)f((s+ 6)/7, 4).

It can be shown that this is positive for s = 323 when dR ≥ 2092.
On the other hand, if we have more than 2 × 364 Ck branches, then all but 364 of them are

C52. So in the worst case the root has 364 children of degree 54 and dR − 364 − s − 4 children of
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degree 539 and 4 children of degree 5. Therefore we have:

∆(T, T ′) ≥ 364f(dR, 54) + (dR − 364− 4)f(dR, 53) + 4f(dR, 5) + s× f(dR, 4) + 6
√

2/2

−364f(dR − s+ 7, 54)− (dR − 364− 4)f(dR − s+ 7, 53)

−4f(dR − s+ 7, 5)− 7f(dR − s+ 7, (s+ 6)/7)− (s− 1)f((s+ 6)/7, 4).

It can be shown that this is positive for s = 323 when dR ≥ 2888. This completes the proof.

Lemma 5.2. Let T be an ABC-extremal tree of order n ≥ 1078940. Then there are no B3-branches
attached to the root and there are at least 1

365n− 377 C52-branches.

Proof. We start as in the previous proof. By removing at most 63 vertices, we end up with a
subtree T1 whose main subtrees are all B3 and Cki (i = 1, . . . , r), where k1 ≥ k2 ≥ · · · ≥ kr. First
we claim that T contains a C51 and C52-branch. If dR ≥ 2888, then Lemma 5.1 shows that there
is a large number of C51 or C52 among the main subtrees, so one of them is also contained in T .
Suppose now that dR < 2888. Then there are at most 2887 B3-branches adjacent to R. Removing
them, leaves at least n− 63− 7 · 2887 = n− 20272 vertices. By Lemma 4.11, all degree-5 vertices
in T are contained in at most four B4-branches and all degree-3 vertices are contained in a single
subtree Tx of some son x of R. By (P1)–(P3), x has smallest degree among all sons of R (when it
exists).

Thus Tx1 , . . . , Txr−1 are also subtrees of T . In particular, each such ki is at most 143. Thus,
dR − 1 ≥ (n− 20272− (1 + 7kr))/(1 + 7 · 143)) ≥ 873. By Lemmas 2.9 and 4.8, each ki (2 ≤ i < r)
is either 51, 52, or 53, and at least one of them is 51 or 52.

We conclude that there is a Ck-branch in T with k ∈ {51, 52}. Suppose that a B3-branch is
attached to the root. Now consider the change suggested in Figure 21.

R R′

k k + 1

Figure 21: Merging Ck and B3 attached to the root.

If a neighbor of R in the shaded part of Figure 21 has degree a, Lemmas 2.9 and 4.7 imply
that 4 ≤ a ≤ 54. Then the change of the ABC-contribution of the corresponding edge is f(dR, a)−
f(dR − 1, a), which is decreasing in a by Proposition 2.2. Therefore the worst case happens when
k = 52 and a = 54. Also note that by Lemma 4.7 there can be at most 364 copies of C53 in T . So
we have:

∆(T, T ′) ≥ 364f(dR, 54) + (dR − 365)f(dR, 53) + f(dR, 4) + 52f(53, 4)

−365f(dR − 1, 54)− (dR − 366)f(dR − 1, 53)− 53f(54, 4).

9The same can be concluded for the subtrees containing vertices of degree 3 because of (P1)–(P3).
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Since the right hand side only depends on dR it is easy to check that for dR ≥ 2948, we have
ABC(T )−ABC(T ′) > 0.

To obtain a contradiction, it remains to prove that dR ≥ 2948. First of all, we may assume
that k1 ≤ 53. By repeating the calculation from above: we first remove up to 63 vertices, next we
remove Txr which has at most 1 + 7 · 53 = 365 vertices. For possible C53-branches we remove one
of their B3-subtrees. Each of the resulting branches then contains at most 365 vertices. Thus

dR ≥ 1 + (n− 63− 365− 7 · 364)/365 >
n

365
− 8 ≥ 2948.

The last inequality combined with Lemma 4.8 also shows that most of the C-branches are C52

and that at most 364 of these are C51 or C53.
We proved that there are no B3-branches attached to the root. This means that there are at

least dR − 1− 4− 364 ≥ n
365 − 377 C52-branches.

Theorem 5.3. For every ABC-extremal tree of order n, one can delete O(1) vertices to obtain a
subtree Tr shown in Figure 22, where r = bn/365c − O(1). More precisely after deleting at most
63 + o(1) vertices we are left with a tree whose root has degree d satisfying 1

365n− (13 + o(1)) ≤ d ≤
1

365n+ (1 + o(1)), and all its sons are C52-branches together with at most 364 Ck-branches where k
is either 51 or 53 and possibly one additional Cl-branch where l ≤ 52.

Proof. The o(1) notation takes care of small values of n, so we may assume that n ≥ 1078940, when
the value o(1) will be 0. Then Lemma 5.2 applies (in which case we remove at most 36 vertices
in B4 branches and at most 365 vertices in a subtree of the root of smallest degree in which some
ending branches would be different from B3).

. . .

R

u1 ur

52 52 52

u2

Tr

Figure 22: The structure of large ABC-minimal trees after deleting O(1) vertices.

The estimates on the number of vertices of the tree used in the above theorems are very liberal.
The transition to the desired form with mostly C52-branches occurs much earlier. Let n be the
order of an ABC-minimal tree. As introduced in Figure 3, let r be the number of Ck-branches
adjacent to the root, and let s be the number of B3-branches adjacent to the root. For small values
of n the main structure is when r = 0 which gives us the structure that was conjectured by Gutman
[24]. Simulation show that for larger n we have positive values of r. To be more precise, we have
positive r when the following holds: n ≡ 0 mod 7 and n ≥ 525, n ≡ 1 mod 7 and n ≥ 939, n ≡ 2
mod 7 and n ≥ 422, n ≡ 3 mod 7 and n ≥ 864, n ≡ 4 mod 7 and n ≥ 508, n ≡ 5 mod 7 and
n ≥ 740, or n ≡ 6 mod 7 and n ≥ 664.

Also, for a very large n, Lemma 5.2 shows that s = 0, which is the structure conjectured in [1].
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Corollary 5.4. Let γn = min{ABC(T ) : |V (T )| = n} and let c0 = 1
365

√
1
53

(
1+26

√
55+156

√
106

)
.

Then

c0n− 365c0 + 51
2

√
1
53 −O(n−1) ≤ γn ≤ c0n+ 365c0 + 51

2

√
1
53 +O(n−1)

and hence
lim
n→∞

1
nγn = c0 ≈ 0.67737178.

Proof. Let us first establish the upper bound. Let r = b(n − 1)/365c, and t = n − 365r − 1.
Consider the tree Tr+1 with r+ 1 C52-branches, and let T be a tree of order n obtained from Tr+1

by removing 365− t vertices from the last C52-branch. The removal of the vertices can be done in
such a way that

ABC(Tr) ≤ ABC(T ) ≤ ABC(Tr+1). (9)

To see this, note first that deleting any subset of vertices of degree 1 from the C52-branch decreases
the ABC-index. The same holds when removing any subset of B3-branches and some degree-1
vertices. Finally, by removing the last vertex – the root of the C52-branch – a short calculation
shows that the ABC-index drops as long as r is large enough (which we may assume).

Thus, it suffices to estimate ABC(Tr+1) (and ABC(Tr)), which we do next. Clearly,

1
r+1ABC(Tr+1) = f(53, r + 1) + 52f(53, 4) + 156f(4, 2) + 156f(2, 1)

=
√

1
53

√
1 + 51

r+1 + 26
√

55
53 + 156

√
2

=
√

1
53

(
1 + 51

2(r+1) +O(r−2)
)

+ 26
√

55
53 + 156

√
2.

Since r ≤ n/365, we obtain

ABC(T ) ≤ ABC(Tr+1)

=
(√

1
53 + 26

√
55
53 + 156

√
2
)
r +

(√
1
53

51
2 +

√
1
53 + 26

√
55
53 + 156

√
2 +O(r−1)

)

≤ c0n+ 365c0 + 51
2

√
1
53 +O(n−1).

The lower bound follows from Theorem 5.3 and using the same calculation as above (for r
instead r + 1), and using the fact that r ≥ n/365− 1.
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[11] K. C. Das, N. Trinajstić, Comparison between first geometric-arithmetic index and atom-bond
connectivity index, Chem. Phys. Lett. 497 (2010) 149–151.

[12] K. C. Das, I. Gutman, B. Furtula, On atom-bond connectivity index, Chem. Phys. Lett. 511
(2011) 452–454.

[13] D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, Appl.
Math. Comput. 224 (2013) 663–670.

[14] D. Dimitrov, On structural properties of trees with minimal atom-bond connectivity index,
Discrete Applied Mathematics 172 (2014) 28–44.

[15] D. Dimitrov, On structural properties of trees with minimal atom-bond connectivity index II:
Bounds on B1- and B2-branches, Discrete Applied Mathematics 204 (2016) 90–116.

[16] D. Dimitrov, Z. Du, C.M. da Fonseca, On structural properties of trees with minimal atom-
bond connectivity index III, Applied Mathematics and Computation 282, Issue C (2016) 276–
290.

[17] D. Dimitrov, On structural properties of trees with minimal atom-bond connectivity index
IV: Solving a conjecture about the pendent paths of length three, Applied Mathematics and
Computation, Volume 313 (2017) 418–430.

34



[18] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova, Huntington, 2002.

[19] Z. Du, C. M. da Fonseca, On a family of trees with minimal atom-bond connectivity index,
Discrete Appl. Math. 202 (2016) 37–49.

[20] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000) 713–718.

[21] Ernesto Estrada. Atom-bond connectivity and the energetic of branched alkanes. Chemical
Physics Letters, 463(4–6) (2008) 422–425.
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