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Abstract. We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions, centred at two

photospheric flux concentrations, using the compressible zero-beta ideal MHD equations. A twisted flux tube is formed, sur-

rounded by much less twisted and sheared outer flux. Under the action of continuous slow driving, the flux tube starts to evolve

quasi-statically along a sequence of force-free equilibria, which rise slowly with increasing twist and possess helical shape. The

flux bundle that extends from the location of peak photospheric current density (slightly displaced from the vortex centre) shows

a sigmoidal shape in agreement with observations of sigmoidal soft X-ray loops. There exists a critical twist, above which no

equilibrium can be found in the simulation and the flux tube ascends rapidly. Then either stable equilibrium ceases to exist or the

character of the sequence changes such that neighbouring stable equilibria rise by enormous amounts for only modest additions

of twist. A comparison with the scalings of the rise of flux in axisymmetric geometry by Sturrock et al. (1995) suggests the

former. Both cases would be observed as an eruption. The critical end-to-end twist, for a particular set of parameters describing

the initial potential field, is found to lie in the range 2.5π < Φc < 2.75π. There are some indications for the growth of helical

perturbations at supercritical twist. Depending on the radial profiles of the photospheric flux concentration and vortex velocity,

the outer part or all of the twisted flux expands from the central field line of the flux tube. This effect is particularly efficient

in the dynamic phase, provided the density is modeled realistically, falling off sufficiently rapidly with height. It is expected to

lead to the formation of a cavity in which the twisted flux tube is embedded, analogous to the typical structure of coronal mass

ejections.
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1. Introduction

The slow evolution of magnetic flux in the solar corona is gov-

erned by the condition of frozen-in plasma (Lundquist number

S ≫ 1), by the strong variation of the plasma beta (the ratio of

thermal pressure to magnetic pressure) from β > 1 in the dense

convection zone to β ∼ 10−3 . . . 10−2 in the inner corona, and by

the related huge difference between the sound and Alfvén ve-

locities in the convection zone on the one hand and the coronal

Alfvén velocity on the other. Together these conditions imply

that, to a good approximation, the coronal field evolves in a

quasi-static manner through a series of nearly force-free equi-

libria while it is slowly driven by motions in a bottom layer

in which the change of the magnitude of β occurs; the latter is

often simply taken to nearly coincide with the photosphere.

Departures from equilibrium at large spatial scales and the

development of dynamics at the corresponding temporal scales

characteristic of the corona occur sporadically in coronal mass

ejections (CMEs), eruptive prominences, and flares. Many of

these events lead to the opening of a closed magnetic con-

figuration into interplanetary space. One way to model the

occurrence of such eruptive events is to consider sequences

of stable, magnetically closed, ideal MHD equilibria for

continuously varying photospheric boundary conditions,
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searching for conditions that lead to a magnetically open equi-

librium, an unstable equilibrium, or to complete absence of

a neighbouring equilibrium at some point in the sequence.

Dipolar or arcade-like potential magnetic fields are typically

chosen as initial configurations, and shearing, twisting, or

converging motions in the area of flux concentrations have

been considered as driving photospheric motions (e.g., Sakurai

1979; for recent reviews see, e.g., Forbes 2000; Klimchuk

2001).

This paper presents a numerical study of loop-shaped flux

tube evolution and stability within the framework of the ideal

MHD equations in the limit β = 0. The simulations are di-

rected at the question whether a flux tube experiences a tran-

sition to eruptive behaviour if a sufficient amount of twist is

accumulated by vortex motions at its photospheric footpoints.

Observationally, this is motivated by two properties of CMEs

(Hundhausen 1999). First, they appear to be ejected from parts

of the atmosphere that are dominated by closed magnetic struc-

tures. Second, many CMEs include an eruptive prominence

which often has the appearance of a strongly twisted, filamen-

tary flux bundle. Theoretical investigations have also stimu-

lated interest in single twisted flux tubes, since their eruption

can be energetically favourable compared to the eruption of a

whole sheared magnetic arcade. The eruption of a whole ar-

cade requires the lifting of the whole overlying flux, which is

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20030692

http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20030692


1044 T. Török and B. Kliem: Twisting coronal magnetic flux tubes

energetically unfavourable (Aly 1991; Sturrock 1991) and re-

quires an unrealistically large amount of shear (e.g., Mikić &

Linker 1994; Amari et al. 1996a), or a special magnetic con-

figuration, which enables the energetically favourable so-called

magnetic breakout of the arcade by removing the overlying flux

through magnetic reconnection (Antiochos et al. 1999). In the

case of a single flux tube, part of the overlying flux may bend

sidewards when twist is imposed at the footpoint area of the

flux tube causing it to ascend (Amari et al. 1996b). The latter

process requires less energy input than the lifting of the flux

overlying an arcade of magnetic loops. It is not clear whether

such loop twisting may lead to a real instability in the sense

that magnetic energy is liberated; nevertheless, it is of inter-

est as a building block for more sophisticated models of solar

eruptions.

In our simulations twisting motions are applied at the pho-

tospheric footpoints of an initially potential coronal magnetic

flux bundle. These motions serve both to create a twisted

flux tube and to push it into the region of possible instabil-

ity. Observational evidence for twisting photospheric motions

can be found, e.g., in Kempf (1910), Hofmann et al. (1987),

Brandt et al. (1988), Nightingale et al. (2002). Such observa-

tions are not very numerous, and a direct relationship between

twisting photospheric motions and eruptive events is difficult

to establish observationally. Part of this problem is clearly due

to the difficulty in detecting such motions in observations of

the photosphere, part is due to the fact that magnetic flux may

generally emerge in an already twisted state (e.g., Lites et al.

1995; Leka et al. 1996) so that only moderate additional twist

is required after emergence to destabilize it. There is also the

possibility that eruptions arise from the creation of unstable

twisted flux by magnetic reconnection (Pevtsov et al. 1996;

van Driel-Gesztelyi et al. 2000; Moore et al. 2001) rather than

from continuous photospheric twisting. Again, we regard our

model as a building block and reference system for more so-

phisticated models of solar eruptions.

Continuous twisting of a flux tube of finite length inevitably

leads to kink instability. The threshold for instability depends

on the ratio of the azimuthal and axial field components of the

flux tube, Bϕ/Bz, the length-to-width ratio of the tube, L/r, and

on the radial profile of the flux tube. It is usually expressed in

terms of the flux tube twist

Φ =
LBϕ(r0)

r0Bz(r0)
, (1)

where r0 is a characteristic radius, typically one at which the

current density has fallen significantly compared with its peak

value within the flux tube, or in terms of a radially averaged

flux tube twist. For a straight, cylindrically symmetric flux tube

with fixed (line-tied) ends and uniform twist (the Gold-Hoyle

force-free equilibrium), the threshold was numerically found to

be ΦGH ≈ 2.49π (Hood & Priest 1981; Einaudi & van Hoven

1983). For force-free equilibria having other radial profiles,

similar values for the critical average twist are found if the ax-

ial field component does not change sign (see, e.g., reviews by

Einaudi 1990; Hood 1992 and references therein). Other val-

ues of the critical average twist are found for equilibria that in-

clude pressure gradients or a reversal of B z at some radius, but

these cases are not relevant to our study. For loop-shaped flux

tubes with fixed ends, a threshold value is not known. It is not

even clear whether an instability exists at all or whether the flux

tube avoids the instability by expansion (in length and width)

to ever larger equilibrium configurations as more twist is ap-

plied at its footpoints. There are, however, several indications

that a critical amount of twist, above which a qualitative change

of behaviour occurs, exists in this system as well (Amari et al.

1996b; Klimchuk et al. 2000). The nature of the change of be-

haviour has not yet been systematically investigated. Either a

true instability is then reached, or successive equilibrium con-

figurations have very rapidly increasing loop size for small ad-

ditions of twist above this value. It is difficult to distinguish

between these cases with finite-size simulation boxes. Also, on

the Sun both cases would appear as an eruption of the flux tube

if the apex height of successive equilibria quickly reaches the

solar wind acceleration region.

Previous treatments of slow (quasi-static) twisting of a

loop-shaped flux tube may be categorized according to whether

stable force-free equilibria were calculated (Van Hoven et al.

1995; Klimchuk et al. 2000) or whether the twisting was en-

forced well into a region where the system became dynamic

(Amari et al. 1996b; Tokman & Bellan 2002), which was then

followed. In all investigations the twisted flux tube was found

to inflate, to develop an S shape (though not necessarily of

the sense suggested by the observations), and to remain stable

for twists Φ ≤ 2π. Van Hoven et al. (1995) obtained a stable

equilibrium for an applied end-to-end twist of 2.82π, a value

which presumably reflects the stabilizing influence of an over-

lying current-free magnetic arcade. Klimchuk et al. (2000) cal-

culated stable equilibria for Φ = π and 2π, noting that “the

relaxation becomes prohibitively slow for twists much larger

than 2π”. This might indicate a qualitative change of behaviour

above a critical twist. In view of the typical size relations be-

tween coronal magnetic loops and sunspots, they applied the

twist only to a sub-area of the photospheric flux concentration,

displaced from the peak, which presumably leads to a more sta-

ble flux tube than the twisting of the whole centre of the flux

concentration that was used in all other papers. Amari et al.

(1996b) followed the evolution of a continuously and relatively

slowly twisted flux tube using a reduced set of zero-beta ideal

MHD equations. The density was determined from the pre-

scribed condition of uniform Alfvén velocity, implying a sub-

stantial decrease of the density with height as is characteristic

of the corona. These authors found a strong indication for erup-

tive behaviour above a critical twist, beyond which the quasi-

static evolution of the system ceased and an accelerated rise of

the flux tube commenced with up to near-Alfvénic velocities.

Also, relaxed states could not be found for twists exceeding

the critical value which was on the order of 2.5π (Amari, per-

sonal communication 2002). An analogous system was studied

by Tokman & Bellan (2002). They included resistivity but pre-

scribed uniform density. Dynamical behaviour was also found

but only after magnetic reconnection between different parts of

the twisted flux commenced. At this point, a twist of “a few

turns” up to a “highly twisted” field was reached, depending

on the vortex velocity (quantitative measures of the twist were

not given). These findings, indicative of ideal MHD stability up
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to substantial amounts of twist, may be markedly influenced by

the high inertia of the simulation plasma in the upper parts of

the box.

Twists in the range (3–15)π were estimated in a sample of

prominences with helical patterns near the point of their erup-

tion (Vršnak et al. 1991).

In the present paper we study a system that is similar to the

one in Amari et al. (1996b) in several respects and we obtain

similar indications for eruptive behaviour. We check for the ex-

istence of a critical twist beyond which no stable equilibrium

exists by attempting to relax the system for different values of

applied twist. Deviations from a force-free configuration are

monitored as the twist is increased. We also investigate the in-

fluence of the inertia and the driving velocity on the dynam-

ics by studying several initial density profiles, by including the

continuity equation in the integration, and by reducing the driv-

ing velocity below commonly used values. Finally, by varying

the vortex distance, we confirm that a low-lying highly sheared

volume between the two vortices has negligible influence on

the results.

We leave a study of the stabilizing influence of overlying

current-free closed flux and the tendency of coronal loops to

approach a constant coronal cross section for a subsequent in-

vestigation.

Following a description of the numerical method in Sect. 2,

we study the quasi-static and dynamic phases of the evolution

of a twisted flux tube, including the influence of the footpoint

distance, initial density profile, and vortex velocity, in Sect. 3.

The relaxation runs are presented in Sect. 4, the relationship

to sigmoidal soft X-ray loops is discussed in Sect. 5, and our

conclusions are given in Sect. 6.

2. Numerical model

2.1. Basic equations

We integrate the compressible ideal MHD equations employing

the simplifying assumption of vanishing plasma beta:

∂tρ = −∇ · (ρu), (2)

ρ ∂tu = −ρ ( u · ∇) u + j×B + ∇ · T, (3)

∂t B = ∇×( u×B), (4)

where B, u, and ρ are the magnetic field, the velocity, and the

mass density, respectively. The current density is given by j =

µ−1
0
∇×B. The last term in Eq. (3) is the viscous force, where T

denotes the viscous stress tensor

Ti j = ρ ν

(

∂ui

∂x j

+
∂u j

∂xi

−
2

3
δi j ∇ · u

)

and ν is the kinematic viscosity. The bulk viscosity is neglected

(since the viscous term is included only to facilitate relaxation

toward equilibrium states and to improve numerical stability).

Since the plasma-beta is very small in the inner solar

corona, we use the assumption β = 0, which decouples the

energy equation from the system. This guarantees that relaxed

states, if found, are indeed force free, but on the other hand the

dynamics is of course not fully described and our correspond-

ing results must be interpreted with some caution. In particu-

lar, super-Alfvénic velocities are possible because the restor-

ing force, −∇p, is not present if the fluid is accelerated by the

Lorentz force j×B. Nevertheless, the direction of dynamic evo-

lutions that start from (near) force-free equilibrium states is de-

termined by the Lorentz force and hence correctly described by

our reduced system of equations.

It is also clear that force-free equilibria are independent of

the density, which does not enter the force-free equation

∇×B = α(x)B. (5)

If more than one equilibrium exists for the boundary condi-

tions at t > 0, then the evolutionary path, which depends on the

distribution of density, determines which equilibrium is found.

We do not expect this to be the case, because the initial po-

tential field is uniquely determined by the boundary conditions

and the applied vortex motions do not introduce knots or null

points into the frozen-in field. This is supported by the simu-

lations, which did not yield any indication for the existence of

multiple equlibria at the same boundary condition. However,

since the dynamics depends strongly on the inertia, we include

the continuity equation as a step toward a more realistic de-

scription of the dynamics of arched flux tubes.

The equations are normalized by quantities which are de-

rived from a characteristic length, ld, of the initial configu-

ration, B̃0zmax
(the maximum normal component of the initial

magnetic field in the bottom plane {z = 0}), ρ̃0, and ṽa0 =

B̃0zmax
/(µ0ρ̃0)1/2 (the density and Alfvén velocity at the posi-

tion of B̃0zmax
). These are ld, ṽa0, τa = ld/ṽa0, ρ̃0, B̃0zmax

, and

B̃0zmax
/µ0ld for x, u, t, ρ, B, and j, respectively. The normal-

ization does not change the form of Eqs. (2)–(4), and Ampere’s

law becomes

j = ∇×B (6)

after normalization. The normalized variables will be used

henceforth.

2.2. Initial configuration

As initial condition we use a potential magnetic field created by

two dipoles with vertical and oppositely directed moments n ẑ

and −n ẑ, located at (0, y0,−z0) and (0,−y0,−z0), respectively,

with the plasma at rest:

B0 = B0+ + B0−, (7)

B0± =
±n

[(x2 + (y ∓ y0)2 + (z + z0)2]5/2

×





















3x(z + z0)

3(y ∓ y0)(z + z0)

−x2 − (y ∓ y0)2 + 2(z + z0)2





















,

u0 = 0. (8)

The dipole depth is set to z0 = 1.5 throughout this paper. The

value of n follows from the condition B0zmax
= 1.

This field permits variation of the distance between the

vortices without changing their profiles much, which will be
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Fig. 1. Field lines starting in the outer vortex area for a) the double-

dipole field used in the present paper with dipole position y0 = 1

and b) the single-dipole field used by Amari et al. (1996b). The plot

shows field lines that start on the y axis in the range between the vortex

centre and the outer point where the velocity has fallen to 0.1 of the

peak value.

used below to separate the influence of the shear that oc-

curs for small dipole distances from the influence of the twist.

Normalized dipole half distances y0 = 0.5, 1, and 2 will be

used. The field also yields a stronger concentration of the flux

in the photosphere than the often used horizontal subphoto-

spheric dipole. It is therefore probably a better model of the

flux distribution in a sunspot group, but on the other hand,

all of the overlying closed flux extends from the area of the

flux concentration and becomes influenced by the photospheric

vortices (Fig. 1). Although high overlying flux becomes only

weakly twisted, there is, strictly speaking, no overlying flux

that stays current-free. The stabilizing influence of such flux

must be rather small or completely absent in our system, mak-

ing it a useful reference case. We also note that the outer sign

reversal of Bz on the bottom plane of the simulation is located

sufficiently far from the vortex centres so that the velocities are

nearly vanishing, and no current enhancements are induced, at

these locations.

Three different initial density distributions are considered

in this paper:

ρ0 =



















B2
0

|B0|

1



















. (9)

The first distribution is equivalent to uniform Alfvén velocity,

va = 1, at the beginning of the calculation. This condition was

also used by Amari et al. (1996b), but here it implies a lower

density in the outer parts of the box, since the far field of a pair

of antiparallel dipoles decays more rapidly with distance than

that of a single dipole. Uniform density was used by Van Hoven

et al. (1995) and Tokman & Bellan (2002). The distribution

ρ0 = |B0| is an arbitrarily chosen intermediate case.

We use different ρ0 profiles for two reasons. First, they pro-

vide us with a check of the numerically obtained force-free

equilibria, which are expected to be independent of the den-

sity. Second, the dynamics is strongly influenced by the inertia,

with the low densities in the case ρ0 = B2
0

enabling us to study

the expansion of the flux from the flux tube axis, which may be

relevant for the formation of a cavity in CMEs.

The calculations are started with a preparation phase in or-

der to reduce the small spurious Lorentz forces that result from

the discretization errors in the calculation of the initial current

density. A relaxation of the initial configuration is performed

with the vortices switched off. It is terminated when the maxi-

mum Lorentz force densities are <∼10−6. The time is then reset

to zero.

2.3. Imposed vortex motions

A twisting velocity field is prescribed in the base plane

throughout the driving phase of the simulation (actually it is

applied in the first layer of grid points below {z = 0}). It is

chosen such that the velocity always points along the contours

of B0z(x, y, 0), which leaves Bz invariant in this layer. This is

achieved by

ux,y(x, y,−∆z, t) = v0 f (t)∇⊥ {ζ[B0z(x, y, 0, 0)]}, (10)

uz(x, y,−∆z, t) = 0 (11)

with ∇⊥ := (∂y,−∂x). A smooth function

ζ = B2
0z exp((B2

0z − B2
0zmax

)/δB2),

chosen as in Amari et al. (1996b), determines the vortex pro-

file. It is normalized such that the maximum of ∇⊥ζ equals

unity. Its width is fixed by δB = 1 in this paper, a value which

yields a vortex width comparable to the width of the flux con-

centration. The velocities decrease rapidly for larger distances.

These two vortices of the same sense are approximately cen-

tred at the dipole axes; their centre locations are at ±y1 with

y1 = 0.69, 1.03, 2.0 for y0 = 0.5, 1.0, 2.0, respectively (Fig. 2).

In order to simulate a quasi-static evolution, the peak veloc-

ity, v0, must be chosen much smaller than the normalized peak

Alfvén velocity of the initial equilibrium (which is unity, or

very close to unity, for all density profiles specified in Eq. (9)).

Values v0 = 10−2 and 10−3 are employed (the former was most

often used in the literature).

The function f (t) describes the temporal profile of the im-

posed twisting. The driving phase starts with a linear ramp

(0 ≤ t ≤ tr1 = 10) to a value f (tr1) = 1, which is then held

fixed. If a final relaxation phase is added, f (t) is linearly re-

duced to zero in an interval tr2 = 1–5, after which it is again

held fixed.

2.4. Numerical implementation

As the physical domain we consider a finite cube of

size [−Lx, Lx]×[−Ly, Ly]×[0, Lz]. Since both the initial con-

figuration, Eqs. (7)–(9), and the twisting velocity field,

Eqs. (10)–(11), possess line symmetry with respect to the z axis

and since this symmetry is preserved throughout the evolu-

tion, the simulation domain can be restricted to the “half cube”

[−Lx, Lx]× [0, Ly]× [0, Lz]. Inside this area, the Eqs. (2)–(4)

are discretized on a nonuniform Cartesian grid. We take

Lx=Ly=100 and Lz = 200. The grid spacing increases expo-

nentially from a minimum ∆xmin = ∆ymin = ∆zmin = 0.03 in the

vicinity of the origin to maximum values ∆xmax=∆ymax=9 and

∆zmax = 12 at the outer boundaries. In order to implement the
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Fig. 2. a) Imposed velocity field for y0 = 1. b) Paths of fluid elements in the upper vortex for v0 = 10−2 after 75τa. The vortex centre is located

at (0, 1.03,−∆z). The thick arrows indicate the positions where two of the magnetic field line bundles in Fig. 3 start from. c) Profiles of the

vortex ux(0, y,−∆z) (thick line) and of the normal field component B0z(0, y, 0) (thin line).

boundary conditions, two layers of “ghost points” are added

to the box in each direction1. Including these, the grid size is

195 × 165 × 150.

Equations (2)–(4) are rewritten in a flux conserving form,

∂tU + ∂xF(U) + ∂yG(U) + ∂zH(U) = 0, (12)

where U = (ρ, ρ ux, ρ uy, ρ uz, Bx, By, Bz) is the vector of the in-

tegration variables and F, G, and H are nonlinear flux terms

(e.g., Ugai & Tsuda 1977). A modified two-step Lax-Wendroff-

method is employed for the numerical integration. It was

adapted from that used by Ugai & Tsuda (1977) to our problem

(see Appendix A). A variable time step is used according to the

CFL criterion.

At the bottom boundary, the velocity is given by

Eqs. (10)–(11). The tangential components of the magnetic

field, Bx,y, are obtained by extrapolation (accurate to second-

order). The normal component, B z, is determined from∇·B(z=

0) = 0; it stays very close to Bz(t = 0) throughout the simula-

tion. For simplicity, the density is kept fixed at its initial value,

ρ(x, y,−∆z, t) = ρ0. Since the velocity points along the con-

tours of Bz, while ρ0 = const. at the contours of |B|, this choice

introduces an error for ρ in the bottom plane if those contours

disagree. This error is tiny for y0 ≥ 1 and still relatively small

for y0 = 0.5, and it is irrelevant as long as the evolution stays

quasi-static (see Sect. 2.1). We expect its influence on the dy-

namical evolution to be smaller than the effect of neglecting the

pressure gradient force for all considered values of y 0. Closed

upper and lateral outer boundaries are implemented by spec-

ifying ρ = ρ0, u = 0, and B = B0 (with u = 0 set also at

the first layer of grid points inside these boundaries). The line-

symmetric boundary conditions at the front plane {y = 0} are

realized by even mirroring of ρ, u z, Bx, and By at the z axis

(i.e., f (x,−y, z) = f (−x, y, z)) and by odd mirroring of u x, uy,

and Bz (i.e., f (x,−y, z) = − f (−x, y, z)).

The huge variation of the density for the initial conditions

ρ0 = B2
0

and ρ0 = |B0| in the chosen large box presents a

1 For an ideal MHD simulation, as presented here, one layer in each

direction would suffice to implement the chosen boundary conditions.

However, since our code is written to allow also resistive MHD simu-

lations, two layers are used.

challenge for any numerical scheme. Good stability properties

of the scheme are also required by the stresses that develop be-

tween the twisted and the surrounding flux (especially if the

latter is rigid by itself or embedded in fluid with high iner-

tia) and by the strong dynamics that develop for strong twist.

Although the Lax-Wendroff scheme is rather diffusive and al-

though viscosity is included, further stabilization is needed for

many runs. This is achieved by applying “artificial smoothing”

as introduced by Sato & Hayashi (1979) to ρ and ρu after each

integration step in addition to the stabilization by viscosity (see

Appendix B for details). Both viscosity and artificial smooth-

ing can be prescribed nonuniformly. We adopted the philoso-

phy of supplying as much numerical diffusion as required by

the different runs, while at the same time trying to keep

identical numerical diffusion for runs that have similar initial

conditions and are directly compared with each other in subse-

quent sections. There are two groups. Most runs with contin-

uous driving in the base plane have a large ellipsoidal “inner

region” with uniform viscosity and smoothing and outward in-

creasing numerical diffusion in the remainder of the box (where

the densities are very low) and at the bottom plane (where the

stresses are applied). All other runs have uniform viscosity and

smoothing parameters in the whole box. Details are given in

Appendix B and Tables B.1 and B.2. All analysis presented in

this paper refers to states with the twisted flux tube completely

inside the inner region or to states obtained with uniform vis-

cosity and smoothing in the whole box.

The numerical diffusion gradually reduces the strong den-

sity gradients of ρ0 = B2
0

and ρ0 = |B0|, leading to a slow

increase of the density in the outer part of the box during the

calculations. The Alfvén velocity then starts to decrease with

growing distance from the dipoles also for ρ0 = B2
0
, but the

drop of its height profile remains similar in magnitude to the

conditions in the corona (e.g., Dulk & McLean 1978) for sev-

eral 102τa, i.e., during the whole driving phase of the runs pre-

sented in this paper as well as during short (successful) relax-

ations. This modified density distribution appears to be closer

to coronal conditions than the initial ρ0 = B2
0
. The decline of the

Alfvén velocity becomes less realistic during relaxation runs
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of ∼103τa duration, which are considered unsuccessful anyway

(Sect. 4).

3. Quasi-static and dynamic evolution of twisting

flux tubes

In this section we describe and analyse the evolution of a con-

tinuously twisted system. First a typical set of parameters y0,

ρ0(x), and v0 is chosen and characteristics of the rise of the

twisted flux, the evolution of the magnetic energy and current

density during the rise, and the deviation from a force-free con-

figuration are discussed. We then proceed to a parametric study.

Varying y0 enables us to separate the influence of twist and

shear, using different assumptions for ρ0(x) permits studying

the influence of inertia on the evolution of twisted low-density

coronal flux, and a smaller v0 keeps the system closer to a force-

free configuration. The effect of lowering the inertia is found to

be particularly significant; it points to a possible explanation of

the typical three-part structure of CMEs. See Table B.1 for an

overview of the parameters used in the various runs.

3.1. Flux tube expansion

We choose a simulation with y0 = 1, ρ0 = B2
0
, and v0 = 10−2

as our reference case. It is described in the following two sub-

sections. All field lines of the initial potential field are symmet-

rical with respect to the {y = 0} plane. Most of the field lines

that start in the region where the twisting velocity field is im-

posed are closed and connect the half planes {x, y > 0, 0} and

{x, y < 0, 0}. The central field line connecting the vortex cen-

tres has an initial apex height h0 = 1.22 and length L0 = 3.50.

A flux-normalized volume can be assigned to each field line by

the expression

F(x, y, t) =

∫

C

|B|−1ds,

where the integral is to be evaluated along the field line C start-

ing at (x, y, 0). It is a useful diagnostic of the central field line

(Amari et al. 1996b). Its initial value in our reference run is

F0 = F(0, y1, 0) = 14.5.

As the vortices are switched on, the volume permeated by

field lines rooted in the area of the vortices starts to expand in

all three spatial directions (as can be expected from the anal-

ogous behaviour of a twisted cylindrically symmetric config-

uration, in which the growing axial component of the field

acts like additional plasma pressure, Sturrok 1994). These field

lines now assume helical shapes and can be divided into three

groups which evolve differently (Fig. 3; see also Tokman &

Bellan 2002). Field lines starting in the vicinity of the vortex

centres (central field lines) experience the strongest twist at

the bottom plane (Fig. 2) while their footpoints do not move

significantly. They form a central twisted flux tube which as-

cends and also expands laterally. Field lines initially starting

in the region between the vortex centres (inner field lines) be-

come sheared. They do not show a strong height expansion;

instead they are streched, since their footpoint distance is ini-

tially increasing. Their projection onto the bottom plane shows

a distinct inverse S shape, which is a direct consequence of the

Fig. 3. Different evolution of the three groups of magnetic field lines

that are directly influenced by the vortex motions: “central field lines”

(starting in the vicinity of a vortex centre) form the rising and expand-

ing twisted flux tube; “inner field lines” (initially starting between the

vortex centres) form a weakly expanding inverse-S-shaped structure;

and “outer field lines” (initially starting beyond a vortex centre) show

the strongest rise and expansion and a forward S shape. The reference

run (y0 = 1, ρ0 = B2
0
, and v0 = 10−2) is shown at a) t = 0 and b) t = 75.

The start regions of the selected inner and outer field lines are marked

by the heavy arrows in Fig. 2b.

enforced motion of their footpoints. Finally, field lines initially

starting beyond the vortex centres (outer field lines) exhibit the

most rapid rise and lateral expansion while their footpoint dis-

tance is initially decreasing. The S-shaped projection of the

outer field lines has a bending opposite to that of the inner field

lines, due to the opposite displacement of the footpoints. The

central flux tube starts to develop a weak inverse S shape (as the

inner field lines), but reverses this early in the evolution (which
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Fig. 4. Evolution of height, length, volume, and apex rise velocity of

the central field line of the twisted flux tube for the run shown in Fig. 3.

is then still quasi-static) to show the same bending as the outer

flux during the rest of the simulation. It should be noted that

there is no sharp transition between these flux systems; it is

not possible to find a clear boundary between the central flux

tube and the outer or inner flux. The sigmoidal (S- or inverse-S)

shape of the twisted flux is discussed further in Sect. 5.

The evolution of the central twisted flux tube can be divided

into two markedly different phases, a quasi-static phase and a

strongly dynamic phase. This can clearly be seen in the plots of

its geometrical parameters and rise velocity in Fig. 4. The ve-

locity of the flux tube, although permanently increasing, stays

small (|u| ≪ va) up to t ≈ 75. The relaxation runs discussed

in Sect. 4 show that the flux tube indeed stays nearly force free

and, hence, runs through a sequence of near-equilibrium states

in this phase. During t ≈ 75–130 the flux tube is rapidly ac-

celerated to near Alfvén velocity, after which the expansion

proceeds nearly linearly in length and width, i.e., nearly self-

similarly (we find approximately F ∝ L2.2 in the quasi-static

phase and F ∝ L2.9 in the dynamic phase). The rapid acceler-

ation and the subsequent fast expansion both indicate that the

system cannot settle to a new equilibrium after t ≈ 75. These

findings are completely similar to those obtained by Amari

et al. (1996b) for a different model of the initial magnetic field

and density and support their conclusion that flux tubes erupt

for sufficiently strong twist.

Figure 5 shows the temporal evolution of the velocity pro-

file along the z axis (where ux and uy vanish). During the whole

simulation, the outer flux expands even more rapidly than the

central flux tube. (Super-Alfvénic velocities are reached be-

cause the pressure gradient is not included in the momen-

tum equation; see Sect. 2.1. The expansion of the outer flux

is slowed down only as it runs into the region of enhanced

numerical diffusion; this was confirmed by a comparison run

Fig. 5. Velocity along the z axis at different times for the run shown in

Fig. 3. The times correspond to the datapoints in Figs. 4a–c. Plus signs

indicate the position of the respective apex heights of the central field

line.

with a larger inner region of uniform numerical diffusion.)

Obviously, the outer flux is not pushed upwards by the cen-

tral flux tube in the present simulation but moves away from

the central flux tube, primarily in response to its own footpoint

twisting. This expansion of the outer flux is present already in

the sequence of near-equilibria in the quasi-static phase. The

main expansion occurs in the dynamic phase, provided the

density decreases sufficiently rapidly with distance from the

dipoles so that the effect of the inertia remains weak (partic-

ularly in our runs with ρ0 = B2
0
). The expansion includes the

central flux in this run – opposite to the pinching expected from

the nearly uniform twisting of the central flux. To see the origin

of this apparent discrepancy, we consider the radial component

of the Lorentz force density f = j×B in a cylindrically sym-

metric (straight) flux tube, B = (0, Bϕ(r), Bz(r)), taken here as

an approximation to our loop-shaped twisted flux tube:

fr = −

(

1

r
B2
ϕ +

1

2
∂rB2

)

. (13)

The first term in this expression always points inwards, but the

second term may have either sign; it causes expansion of

the flux if B2 decreases sufficiently rapidly with distance from

the axis. We have verified this to be the case in the bottom plane

of our system and also in the cross-sectional plane at the apex

of the central field line.

A pinching of the central flux towards the axis occurs for

flatter functions B2(r) (e.g., Mikić et al. 1990). However, for a

finite radial range of twist (Bϕ � 0), the second term always

leads to expansion of the flux at greater radii (B2(r→∞)→ 0).

In an ideal plasma, a volume of reduced density surround-

ing twisted core flux is necessarily formed. Pileup of flux and

plasma must occur at the boundary to the unperturbed flux

rooted beyond the photospheric vortex (although the result-

ing density profile may remain monotonously decreasing out-

wards if the initial profile is very steep and the vortex profile

is smooth, as in our reference run). The resulting configuration

bears striking resemblance to the three-part structure observed

in many CMEs, which consists of a highly twisted prominence

embedded in a cavity and a denser arc at the outer edge of the
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Fig. 6. Evolution of a) magnetic energy; b) current through the half

plane {x, y > 0, 0} (plus signs: main current, asterisks: return current,

diamonds: total current); c) and d) peak current density and peak

Lorentz force density, respectively, in the whole box for the run shown

in Fig. 3.

cavity (e.g., Hundhausen 1999). Further simulations including

the pressure gradient term and initial magnetic field and den-

sity models that are better tuned to the conditions expected in

the corona will be required to check for quantitative agreement

of this effect with CME observations.

We note that the effects of pinching and expansion of flux

may roughly cancel out if photospheric vortex motions are ap-

plied to a subarea of a photospheric flux concentration that

is displaced from the point of maximum field strength, as in

Klimchuk et al. (2000). The second term in Eq. (13) is then ex-

pected to change sign twice along all vortex revolutions closer

to the centre than the point of maximum field strength. This

may underlie the approximate constancy of the cross section of

the flux tube for different amounts of twist found by Klimchuk

et al. (2000).

3.2. Evolution of energy, currents, Lorentz forces,

and twist

As the magnetic field is changed due to the applied vortex mo-

tions, it becomes nonpotential, the total magnetic energy in-

creases, and high current densities develop. The relative mag-

netic energy W(t)/W0, where W0 is the magnetic energy of the

initial potential field, increases monotonously during the whole

simulation (Fig. 6a). Only a weak tendency to saturate is seen

after the onset of the dynamic phase. The energy, which is in-

jected into the system by the vortex motions at its base, is then

not only converted to magnetic energy but an increasing frac-

tion is converted to kinetic energy of the plasma. At the end

of the simulation, the kinetic energy amounts to about seven

percent of the total energy increase of the system.

Fig. 7. Isosurfaces | j| = 0.2 jmax (left) and | j| = 0.5 jmax (right) for the

run shown in Fig. 3 at t = 75.

Fig. 8. | j × B|/| j||B| along the central field line at t = 54 (solid), t =

75 (dotted), and t = 102 (dashed) for the run shown in Fig. 3.

The strongest current concentration forms in the vicinity of

the vortex centres due to the twist, however, also the shear be-

tween the vortices leads to buildup of currents in a central sheet

that is formed cospatial with the inner field lines (Fig. 7). The

shear and the resulting current increase with decreasing vor-

tex distance y0 (Sect. 3.3). The total current through the bot-

tom plane of our physical domain (|x| ≤ L x, |y| ≤ Ly) must

vanish, since the applied vortices are compact (their velocities

at the lateral boundaries are negligibly small). A net current

through the bottom plane of the simulation domain (|x| ≤ L x,

0 ≤ y ≤ Ly) remains in our reference run, due to the shearing

motions near the origin (Fig. 6b). This current nearly vanishes

for larger vortex distance (it did not exceed 0.026 for y 0 = 2).

Despite the buildup of strong current densities, the Lorentz

force densities remain rather small. Figures 6c, d show that the

peak Lorentz force density on the grid is more than one or-

der of magnitude smaller than the peak current density on

the grid during the whole simulation. This is expected for the

quasi-static phase but may be surprising for the dynamic phase,

where it reflects the fact that the twisted flux can expand easily

due to small inertia. These plots do not provide a quantitative

measure of the deviation from a force-free state, since | j| and

| f | do not necessarily peak at identical grid points. In Fig. 8

we plot | j × B|/| j||B|, a measure of the angle between j and

B, along the central field line for various times. This shows

clearly that a deviation from a force-free state develops at the

flux tube apex at the beginnig of the dynamic phase (t >∼ 75).

The deviation continues to grow during the dynamic phase. Of

course, during the whole driving phase, there must be Lorentz

forces near the footpoints of the flux tube where the twisting
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Fig. 9. Twist of the central flux tube for the

run shown in Fig. 3. a) Injected global (end-

to-end) twist as a function of footpoint ra-

dius rfoot at t = 75. b) Evolution of the twist

at the apex of the flux tube with rfoot = 0.01

(asterisks) and rfoot = 0.1 (diamonds). Also

shown are the global twist (dashed), αL/Φa

at the apex (triangles), and the (scaled) apex

height, 0.1h/h0 (solid line).

is imposed, but these are hardly reflected in Fig. 8 because

| j| and |B| are much larger at the footpoints so that a much

smaller angle is sufficient to support the necessary Lorentz

forces. Another measure of the deviation from a force-free con-

figuration is given by the variation of the force-free parameter

α = j · B/B2 along the field lines, which is shown in Sect. 4.

The global twist of the central flux tube,Φg, or 2π times the

number of enforced windings that the field lines make about

its axis, is calculated from the imposed vortex velocity at the

bottom boundary as

Φg =
2

rfoot

ū(rfoot) t, (14)

where ū(rfoot)is the average vortex velocity at a circle with

radius rfoot centred at (0, y1,−∆z). This quantity is plotted in

Fig. 9a. It is seen that the inner part of the flux tube (r foot <∼ 0.1)

is nearly uniformly twisted (as is already clear from Fig. 2c). In

addition we monitored the local twist at the apex of the central

flux tube, Φa, which we define analogously to Eq. (1) as

Φa =
L |Bϕ(rapex)|

rapexBẑ(rapex)
, (15)

using local cylindrical coordinates r, ϕ, and ẑ, oriented at the

flux tube axis at the apex, and the length L of the central

field line. Here rapex is determined for every rfoot from the

condition of flux conservation; it is found to obey r apex ≈

(B0zmax
/Bapex)1/2rfoot. The implied assumption of circular cross

section at both the feet and the apex of the flux tube is satisfied

to a good approximation for all runs with ρ0 = B2
0

and during

the quasi-static phase of all other runs. The value of Φ a is ac-

tually obtained as an average along the circle of radius r apex at

the loop apex. Figure 9b shows that also Φa is nearly uniform

for rfoot <∼ 0.1. In the following, the twist will always be deter-

mined for rfoot = 0.03.

Since the simulation indicates nearly uniform twist for radii

rapex(rfoot ≤ 0.1)≪ L, and rather small Lorentz forces, it is ap-

propriate to compare the inner part of the twisted flux tube with

the known solution for a uniformly twisted force-free cylindri-

cal eqilibrium by Gold & Hoyle (1960). We plot the quantity

αL/Φa, with the force-free parameter α taken at the apex of the

central field line, in Fig. 9b. There is a close agreement with

the exact value αL/Φ = 2 at the axis of the Gold-Hoyle equi-

librium during the whole simulation, which indicates that the

configuration stays relatively close to a force-free state in the

vicinity of the apex of the central field line.

Figure 9b shows the temporal evolution ofΦg andΦa. They

nearly agree during the quasi-static phase, indicating that the

injected twist is then distributed nearly uniformly along the

central flux tube. The onset of the dynamic phase occurs at

Φg ∼ 2.6π and Φa ∼ 2.1π – values relatively close to the criti-

cal twist for onset of instability in the Gold-Hoyle equilibrium,

ΦGH ≈ 2.49π (Hood & Priest 1981). A characteristic of the fast

expansion of the central flux tube in the dynamic phase of the

simulation is nearly constant apex twist, which stays close to

the value at the onset of the dynamic phase while the global

twist is linearly rising. The implied scaling α ∝ L−1 is consis-

tent with the nearly self-similar expansion noted above.

3.3. Influence of the central shear

As a first step of our parametric study, we investigate to which

extent the main properties of the dynamical evolution discussed

above depend on the presence of shear motions between the

vortices. Varying y0 influences mainly the amount of shear

while the amount of twist stays nearly unchanged. The shear-

driven current densities are negligibly small for y0 = 2 and

increase for decreasing y0, reaching ≈60 percent of the peak

current density induced by the twist for y0 = 0.5 (see Fig. 7 for

the case y0 = 1).

Studies of sheared magnetic arcades which are translation-

ally invariant in the direction of shear have shown a rapid rise of

the arcade in the sequence of ideal MHD equilibria if the foot-

points on either side of the arcade axis are displaced from the

initial potential configuration by more than about 2.5 footpoint

distances (e.g., Mikić & Linker 1994; Amari et al. 1996a). Such

displacements appear to be much larger than observed displace-

ments in the photosphere but they do occur near the origin in

our system for sufficiently long duration of the imposed vortex

motions. (A similar situation existed in the previous investiga-

tions of flux tube twisting by Amari et al. 1996b and Tokman

& Bellan 2002.) Although Fig. 5 does not contain indications

that the rise of the central flux tube is driven from the region

of the inner field lines, the question remains how strongly the

general evolution is influenced by the shear. Amari et al. (1997)

found that the eruption of the twisted flux tube occurred also for
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Fig. 10. Evolution of apex height and rise

velocity of the central field line for ρ0 = B2
0
,

v0 = 10−2, and different dipole half dis-

tances: y0 = 0.5 (plus signs); y0 = 1 (dia-

monds); y0 = 2 (asterisks). h0 = 0.67, 1.22,

3.24 for y0 = 0.5, 1, 2, respectively.

Fig. 11. Evolution of apex height and rise

velocity of the central field line for y0 = 1,

v0 = 10−3, and different initial density pro-

files: ρ0 = |B0| (plus signs); ρ0 = B2
0

(aster-

isks).

smaller shear than in Amari et al. (1996b), but they did provide

neither an information on how the shear was varied nor quanti-

tative relations between the characteristics of the shear and the

eruption.

Figure 10 shows that the evolution of the twisted flux tube is

qualitatively similar for all three values of y0. A quasi-static and

a dynamic phase can be distinguished in all cases, in agreement

with the expectation (from Fig. 5 and Amari et al. 1997) that a

sufficiently twisted flux tube erupts also in the absence of shear.

It is also seen that the system with the smallest amount of

shear (and hence with the smallest total induced current in the

box), y0 = 2, becomes dynamic at the smallest amount of twist

and reaches the highest expansion velocities. This surprising

trend results from a secondary effect associated with the varia-

tion of y0 in our initial field: the amount of outer flux that closes

in our box decreases and its average driving velocity increases

for increasing y0.

3.4. Influence of the initial density distribution

and the driving velocity

The distribution of density should have no influence on the evo-

lution of our system in the quasi-static phase if this phase is

indeed a non-bifurcating succession of neighbouring force-free

equilibria and the driving velocity is small enough so that the

inertia does not prevent reaching the neighbouring equilibria. It

is, however, expected to have a strong influence on the expan-

sion of the system in the dynamic phase, where an acceleration

to near-Alfvénic velocities was observed in our reference run.

The initial density distributions in Eq. (9) differ by several or-

ders of magnitude at heights reached by the central and outer

flux in the dynamic phase.

We have started this part of the parametric study using

y0 = 1, v0 = 10−2, and the three distributions ρ0(x) as given in

Eq. (9) and found that the rise of the central flux tube differs by

a small but noticable amount between the three cases already

in the time interval in which our reference run was quasi-static.

The rise shows a systematic lag, increasing with higher den-

sity, which indicates that those cases require a smaller v0. (This

is confirmed by the relaxation runs discussed in Sect. 4.) Huge

differences occur for times 80 <∼ t <∼ 200 (the dynamic phase of

the reference run), in which the rise velocity of the central flux

tube reaches only ≈0.2 for ρ0 = |B0| and ≈0.02 for ρ0 = 1.

In Fig. 11 we compare the cases ρ0 = B2
0

and ρ0 = |B0| for

v0 = 10−3. In the quasi-static phase, the evolution of the central

flux tube is now indeed nearly independent of the chosen ρ 0.

In the dynamic phase, the rise velocities and the corresponding

accelerations again show a strong dependence on the density,

but the overall dynamic evolution is nevertheless qualitatively

similar.

It is possible to create very strongly twisted flux tubes by

choosing high densities in the outer parts of the box, e.g.,

ρ0 = 1, and high driving velocities, v0 > 10−2 (Tokman &

Bellan 2002). Such states are only seemingly quasi-static (the

velocities are kept low by the inertia so that |u| ≪ va, but the

flows continue to rise for several 102 τa) and cannot be taken
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Fig. 12. Velocity along the z axis at different times for the run with

y0 = 1, v0 = 10−3, and ρ0 = |B0|. The plus signs indicate the position

of the respective apex heights of the central field line.

as indication for ideal MHD stability of highly twisted flux

tubes. Both of the above conditions cannot be met by the ma-

jority of coronal flux if it is twisted by photospheric motions.

Prominences may be an exception, however. Strong overlying

flux is expected to provide the prime contribution to the stabil-

ity of twisted flux tubes in the corona.

Figure 12 shows that the outer flux for ρ0 = |B0| evolves

similarly to the reference case (Fig. 5) but with a much weaker

expansion. This difference is clearly due to the inertia, since it

occurs only in the dynamic phase. Modeling the formation of

a cavity around an erupting twisted flux tube thus requires a

careful treatment of the density.

The comparison of the runs with y0 = 1, ρ0 = B2
0
, and dif-

ferent driving velocity in Figs. 4a, d and 11 (and also in Fig. 17

below) shows that the overall evolution is qualitatively identi-

cal and that the quasi-static phase and the point of transition

to dynamic behaviour are also quantitatively very similar if

the elapsed time is transformed to accumulated twist (equiv-

alent to roughly a scale factor of 10 between the time axes).

In the dynamic phase, far greater apex heights are reached by

the slowlyer driven system, which has more time to evolve than

the faster driven system for the same Φg. This substantiates the

interpretation in Amari et al. (1996b) and in Sect. 3.1 that the

flux tube erupts if its twist exceeds a critical value.

4. Relaxation

The relaxation runs serve two purposes: first, to confirm that

the twisted flux tube in our system evolves closely along a se-

quence of force-free equilibria in the quasi-static phase and

second, to substantiate our interpretation that there is a criti-

cal amount of twist above which the flux tube cannot find a

new equilibrium within the simulation box. To start a relax-

ation, all velocities in the bottom layer were reduced to zero

within 1–5 Alfvén times and then kept at zero. The flux tube is

assumed to have reached a relaxed force-free state if all of the

following conditions are satisfied: (a) velocity of flux tube apex

continuously falling for at least 120τa to values below 3×10−5;

(b) integrated Lorentz force density in box continuously falling

in the same time interval; and (c) α ≈ const. along the central

Fig. 13. Apex heights of the continuously twisted or relaxed flux tube

during the quasi-static phase of the runs with y0 = 1. Plus signs:

continuously twisted, ρ0 = |B0|, v0 = 10−2; diamonds: continu-

ously twisted, ρ0 = B2
0
, v0 = 10−2; asterisks: continuously twisted,

ρ0 = B2
0
, v0 = 10−3; squares: relaxed states obtained from the run

with ρ0 = |B0|, v0 = 10−2; and triangles: relaxed states from the run

with ρ0 = B2
0
, v0 = 10−3. (The uppermost triangle does not represent a

relaxed state, see text for details.)

field line. Table B.2 gives an overview of the parameters used

in the various relaxation runs.

Figure 13 shows that the twisted flux tube in our runs with

ρ0 = B2
0

or |B0| and v0 = 10−3 or 10−2 indeed evolves closely

along a sequence of force-free equilibria as long as the system

remains quasi-static. The agreement improves for smaller den-

sities in the outer part of the box (ρ0 = B2
0
), which permit the

central and outer flux to move more easily in response to the

footpoint motions, and, of course, for smaller driving veloc-

ity. The apex heights of the relaxed states are nearly indistin-

guishable from the apex heights of the continuously twisted run

with ρ0 = B2
0

and v0 = 10−3 up to a global (end-to-end) twist

Φg ≈ 2.5π. This is true for both the relaxations started from

this same run (triangles in Fig. 13) and the relaxations started

from the run with ρ0 = |B0| and v0 = 10−2 (squares in Fig. 13).

Hence, the obtained equilibria are independent of the density

distribution and vortex velocity, as expected.

A sensitive diagnostic of the approach to a force-free state

is given by the variation of the force-free parameter α along

the field lines. In force-free states it is constant along each field

line. In Fig. 14 we plot α along the central field line for the

three runs shown in Fig. 13 and a relaxed state, all at nearly the

same twist, Φg ≈ 2.5π. Small deviations from a force-free state

due to the driving at the footpoints are obvious for the two runs

with v0 = 10−2, while the run with v0 = 10−3 and the relaxed

state are nearly perfectly force free.

The following four figures illustrate our attempts to relax

configurations with higher global twist, which have already en-

tered the dynamic phase. In Fig. 15 we plot the apex height of
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Fig. 14. Force-free parameter α along the central field line in the runs

with y0 = 1 at a global twist of Φg ≈ 2.5π. Dot-dashed: continuously

twisted, ρ0 = |B0|, v0 = 10−2; solid: continuously twisted, ρ0 = B2
0
,

v0 = 10−2; dotted: continuously twisted, ρ0 = B2
0
, v0 = 10−3; dashed:

after relaxation from ρ0 = B2
0
, v0 = 10−3.

Fig. 15. Relaxation runs near the critical twist, started from a system

with y0 = 1 that was twisted using ρ0 = B2
0

and v0 = 10−3. a) Apex

height of twisted flux tube and b) total Lorentz force in the box dur-

ing relaxation at Φg = 2.53π (triangles), 2.75π (squares), and 2.95π

(asterisks). The apex height for Φg = 2.95π is scaled to fit into the

figure.

the twisted flux tube and the Lorentz force density integrated

over the box during three representative relaxation runs. These

were started from that continuously twisted run with y0 = 1

which remained closest to equilibrium during the quasi-static

phase (ρ0 = B2
0

and v0 = 10−3) at global twists of Φg = 2.53π,

2.75π, and 2.95π. The Lorentz force densities at the z axis are

shown in Fig. 16 for Φg = 2.53π and 2.95π. At Φg = 2.53π,

the flux tube reaches an equilibrium easily and quickly. At

Φg = 2.95π, it is impossible to relax the system. The apex

height continues to rise and the total Lorentz force (which is

dominated by the contributions from the loop footpoint areas)

does not decay for more than 103τa. The Lorentz forces at the

z axis even increase during the relaxation attempt, primarily

at the position of the flux tube. This shows that the gradual de-

crease of the rise velocity, apparent in Fig. 15a, is caused by the

continuous slow rise of the density in the outer parts of the box,

which is due to the numerical diffusion acting on the strong

density gradient during the long integration. The relaxation run

was terminated as the still ascending flux tube reached a height

of ≈50 h0. The relaxation at Φg = 2.75π is also considered un-

successful. Using the diffusion parameters given in Table B.2,

a continuous slow rise of the flux tube is found, while the to-

tal Lorentz force in the box stops decreasing at a value more

than three times higher than the one reached in the relaxation

Fig. 16. Lorentz force density at the z axis for relaxation runs with

y0 = 1, ρ0 = B2
0
, v0 = 10−3. Thin lines are used for the run at

Φg = 2.53π (t = 721, 801, 1041), thick lines are used for the run

at Φg = 2.95π (t = 841, 1004, 1935). Solid lines show the system

at the start of the relaxation, dotted lines show intermediate states,

and dashed lines show the end of the runs. The Lorentz force density

changes sign along the z axis during the relaxation at Φg = 2.53π, so

| fz(z)| is plotted in this case for t ≥ 801. Crosses mark the respective

apex heights of the twisted flux tube.

at Φg = 2.53π (Fig. 15). The Lorentz forces at the z axis first

decrease and then start to increase, again primarily at the po-

sition of the flux tube. If the numerical diffusion is reduced to

values applied during the twisting phase, the run becomes nu-

merically unstable (as does the run at Φg = 2.95π). We have

therefore repeated the relaxation, applying an artificial gradual

reduction of the density (up to a factor 50), to counteract the

density increase due to the numerical diffusion. The flux tube

then continues its rise to far greater heights than those shown

in Figs. 15 and 13. This run was terminated at t = 1350 and

h/h0 = 17. In contrast, the relaxed flux tube atΦg = 2.53π stays

at its equilibrium position if a similar artificial density reduc-

tion is applied. Finally, an intermediate state of the system at

Φg = 2.75π during the relaxation at a relatively low level of the

Lorentz forces (t = 900) was twisted further up to Φ g = 2.95π.

The relaxation started from this stage gave the same results as

the previous attempt at this amount of global twist.

Similar results were obtained from relaxation attempts us-

ing the system with ρ0 = |B0| and v0 = 10−2 at twists Φg >

2.5π. These runs begin with smaller velocities, due to the higher

inertia, but again, the system did not relax at Φg = 2.91π dur-

ing more than 103 Alfvén times. At Φg = 2.65π a very slow

evolution was found, in which the Lorentz forces at the z axis

first decreased but started to increase again slowly after several

102 Alfvén times.

Figure 17 shows the apex height as a function of global

twist for our reference run and the otherwise similar run with

v0 = 10−3 in the full range of global twists covered by the

simulations. Apex heights at the termination of relaxation runs
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Fig. 17. Apex height as a function of global twist for the runs with

y0 = 1, ρ0 = B2
0
, and v0 = 10−2 (dashed) and v0 = 10−3 (solid).

Triangles show apex heights at the end of relaxation runs for states

calculated from the run with v0 = 10−3; the final two datapoints show

still rising states, which were not relaxed at termination of the runs.

(which represent only lower limits for Φg ≥ 2.75π) are added.

The sharp transition above 2.5π is obvious and leads us to con-

clude that there is a critical twist, Φc, in our system above

which either a stable equilibrium ceases to exist, or a sequence

of stable equilibria exists but is characterized by huge increase

of height for small increase of twist. The critical twist of the

considered configuration lies in the range

2.5π < Φc < 2.75π.

Our numerical simulations cannot yield a final decision be-

tween the two possibilities, due to the finite box size. However,

a strong indication is obtained from a comparison with related

analytical results for the asymptotic behaviour of axially sym-

metric twisted force-free fields, which also show a rapid ex-

pansion for sufficiently large twist (or shear) angle. Sturrock

et al. (1995) found that the flux rises exponentially with the

square of the angle of footpoint displacement, which implies

that a closed-field equilibrium exists for any finite angle. On the

other hand, Uzdensky (2002) argued in favour of opening (loss

of closed-field equilibrium) at a finite angle. The expression by

Sturrock et al. (1995) fits the simulation data very well (Fig. 18)

– but only for twists smaller than the above critical value. This

indicates that loss of stable equilibrium and dynamic opening

of the field occur in the loop-shaped configuration at Φ g = Φc.

For practical purposes, the decision between the two pos-

sibilities is of limited importance anyway, since the final apex

height of the relaxation run at Φg = 2.95π implies the rise of

the flux tube by at least a factor of 50, probably at a speed

comparable to the Alfvén velocity, which would observation-

ally appear as an eruption. If we scale the footpoint distance

in this simulation to a typical distance of the leading and the

Fig. 18. Comparison of the apex heights of the twisted flux tube after

(or at termination of) relaxation (symbols as in Figs. 13 and 17) with

the rise characteristics h ∝ exp(const. · Φ2
g) of axially symmetric con-

figurations from Sturrock et al. (1995). A least-squares fit through the

first eight datapoints is shown.

following polarity in an active region, ∼70 000 km, the mini-

mum apex height of 50h0 at Φg = 2.95π scales to 3 R⊙.

The critical twist in our system is only slightly larger than

the critical twist of the uniformly twisted Gold-Hoyle equilib-

rium, ΦGH ≈ 2.49π. This appears reasonable for the following

two reasons. First, the inner part of our twisted flux tube is

nearly uniformly twisted and, hence, similar to the Gold-Hoyle

equilibrium, except for the curvature, which is relatively weak

(rcurvature/rapex(rfoot = 0.03,Φg = 2.53π) ≈ 5). Second, the sur-

rounding untwisted flux and possibly also the less twisted outer

flux in our system are expected to have a weak stabilizing ef-

fect. On the other hand, our system is less stable than the one

studied by Van Hoven et al. (1995). We suppose that this differ-

ence is mainly due to the action of overlying arcade-like nearly

potential flux in their system. An investigation of the stabilizing

effect of such flux is left for future work.

We suppose that there is no complete loss of equilibrium

as the twist is raised beyond Φc, but simply a loss of stabil-

ity. The long-wavelength ideal kink mode is a probable can-

didate for the destabilization. If the twisted flux tube becomes

kink-unstable, helical perturbations are expected to grow. Such

perturbations are difficult to diagnose, since the flux tube de-

velops a helical shape already in the quasi-static phase. Some

indications for the growth of a kink perturbation can, however,

be found. Projections of the twisted flux tube onto the bottom

plane, plotted in Fig. 19 for the run with y0 = 1, ρ0 = B2
0
, and

v0 = 10−3, show two of them. First, the rotation of its upper

part about the z axis, a measure of the helical distortion from

the initially planar shape, accelerates at the onset of the dy-

namic phase and continues to increase during the relaxation at

Φg = 2.95π. Second, the angle between j and B increases in the

upper part of the flux tube all through the relaxation run (as in-

dicated already in Fig. 8). A similar, slightly weaker growth of

the helical distortion of the flux tube occurred in the two-step

relaxation run at Φg = 2.95π described above. The magnetic

energy in the box was found to decrease during these relax-

ation runs but only by a small amount (∼0.1 percent), which is
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Fig. 19. Field lines of the magnetic field (solid) and current density

(dotted) in the central flux tube projected onto the bottom plane for

y0 = 1, ρ0 = B2
0
, and v0 = 10−3. a) Driven phase,Φg = 2.53π (t = 721).

b) Driven phase, Φg = 2.95π (t = 841; start of relaxation). c, d) Two

states in relaxation run at Φg = 2.95π (t = 1065 and t = 1785).

Fig. 20. Contours of | j(z = 0)| for the run with y0 = 1, ρ0 = B2
0
,

v0 = 10−3 after relaxation at Φg = 2.06π. Contours with α > 0 ( jz > 0)

are shown solid, contours with α < 0 ( jz < 0) are shown dotted. (The

contours of α in the bottom plane are similar to the contours of | j|, see

Fig. 3 in Török & Kliem 2002.) Bz > 0 in the whole area shown. The

vortex centre is marked by a plus sign, the location of peak current

density is marked by an asterisk. These are the start points of the two

flux tubes shown in Fig. 21.

due to the low densities in the upper parts of the box and the

only slightly supercritical value of the twist.

5. Sigmoidal shape

As mentioned in Sect. 3.1 and apparent from Fig. 19, the pro-

jection of the central flux tube onto the bottom plane is forward-

S shaped during most of the evolution. Since the force-free pa-

rameter α is negative in the central flux tube for our chosen

sense of twist, this shape is opposite to the typical bending of

sigmoidal soft X-ray loops in the solar corona (Pevtsov et al.

1997; Nightingale et al. 2002). It has been suggested by Magara

& Longcope (2001) that such loops are distinguished from the

neighbouring flux by a higher current density (supposing that

the heating is related to the current density). Figure 20 shows

that the highest current density in our system does not occur on

the central field line. Although the displacement of the current

density peak from the vortex centre is rather small, its effect

on the shape of the associated flux bundle is significant. This

flux bundle has an inverse S shape (Fig. 21), before and after

relaxation, in agreement with the tendency of soft X-ray sig-

moids that are rooted in α < 0 regions. It rises with increas-

ing twist in a manner similar to the central flux tube but with

a somewhat smaller apex height (typically by a factor ≈0.8).

Figure 21 also shows that the type of the sigmoidal shape (for-

ward or inverse S) of force-free fields is in general not only

related to the sign of α. Our simulations, which use a differ-

ent method of twist injection into the corona than Magara &

Longcope (2001), support their conjecture that current-related
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Fig. 21. Projection onto the bottom plane of the flux tubes that extend

from the vortex centre and from the area of maximum current density;

their apex heights are 2.6 and 2.2, respectively. Field lines of B (solid)

and j (dotted) are shown. Parameters are as in Fig. 20. The contours

α = 0 (dashed) are included.

heating distinguishes sigmoidal soft X-ray loops from the sur-

rounding coronal fields.

6. Conclusions

Our conclusions can be summarized as follows.

(1) A twisted magnetic flux tube that is created from a po-

tential field and continuously driven by slow vortex motions

at its footpoints starts to evolve quasi-statically through a se-

quence of stable force-free ideal-MHD equilibria to a very

good approximation. The sequence of equilibria is character-

ized by a weak expansion with increasing twist, which agrees

with the scaling obtained by Sturrock et al. (1995) for axisym-

metric configurations, and is found to be independent of the

distribution of density and the driving velocity.

The field lines become helical, with forward and inverse

S shapes coexisting closely. The S shape of the flux tube that

extends from the vortex centre is opposite to the S shape of

the flux tube that extends from the (slightly displaced) region

of maximum current density; the latter is consistent with the

typically observed bending of S-shaped soft X-ray loops.

(2) There is a critical end-to-end twist, Φc, above which

the flux tube does not find a new equilibrium in the simulation

box but enters a dynamic phase, developing expansion veloci-

ties no longer negligible in comparison to the Alfvén velocity.

Then there is either no stable equilibrium, or stable equilibria

are characterized by huge increase of apex height for small in-

crease of twist beyond Φc. A comparison of the simulation re-

sults with the scaling of flux expansion given by Sturrock et al.

(1995) suggests that there is no stable equilibrium for Φ > Φ c.

Both cases have the appearance of an eruption if the simula-

tion is scaled to parameter values characteristic of the solar

corona. This supports similar conclusions reached by Amari

et al. (1996b) for a different initial potential field.

The quantitative properties in the dynamic phase depend

strongly on the density, ρ(x), and on the driving velocity in

the base plane. There are indications that helical perturbations

grow during this dynamic phase and also during relaxation runs

started at supercritical twist.

(3) All these properties remain unchanged if the vortices

are so close to each other that shear is created between them

in addition to the twist, at least as long as the current density

induced by the shear remains smaller than the current density

induced by the twist.

(4) The critical twist in our system (with normalized foot-

point half-distance y0=1) lies in the range 2.5π < Φc < 2.75π.

(5) The outer flux that surrounds the twisted flux tube and is

also rooted in the area of the vortices experiences an expansion

from the central field line of the flux tube as the twist rises. The

inner part of the flux tube may experience a pinching or an ex-

pansion, depending on the structure of the initial field, B 0(x),

and vortex, ux,y(x, y, 0). The expansion can be discerned in a

simulation only if the density is modeled sufficiently realisti-

cally such that the Alfvén velocity is not too rapidly decreasing

with height. It leads to a volume of reduced density surround-

ing the twisted flux tube. In a more realistic model than the one

studied here, it is expected to lead also to pileup of magnetic

flux and density at the boundary to the untwisted and unsheared

flux further out. Such a configuration is similar to the three-part

structure, consisting of a prominence, a cavity, and an outer arc,

which is often observed in CMEs.
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Appendix A: The modified two-step Lax-Wendroff

method

Starting from Eq. (12) the two-step Lax-Wendroff method is

derived using a second order Taylor expansion of U in time,

where the time derivatives of U are replaced by spatial deriva-

tives of F, G, and H (e.g., Richtmyer & Morton 1967). One

iteration of the scheme consists of two steps. We have used

a modified version of the first step, which calculates auxiliary

values at t = (2n + 1)∆t from the values at t = 2n∆t,

Un+1
i, j,k = Un

i, j,k

−
∆t

2∆x

(

Fn
i+1, j,k − Fn

i−1, j,k

)

−
∆t

2∆y

(

Gn
i, j+1,k −Gn

i, j−1,k

)

−
∆t

2∆z

(

Hn
i, j,k+1 − Hn

i, j,k−1

)

(A.1)
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and a standard version of the second step, which calculates the

physical values at t = (2n + 2)∆t,

Un+2
i, j,k = Un

i, j,k

−
∆t

∆x

(

Fn+1
i+1, j,k − Fn+1

i−1, j,k

)

−
∆t

∆y

(

Gn+1
i, j+1,k −Gn+1

i, j−1,k

)

−
∆t

∆z

(

Hn+1
i, j,k+1 − Hn+1

i, j,k−1

)

. (A.2)

In standard versions of the Lax-Wendroff scheme, an averaging

term

1

6

(

Un
i−1, j,k + Un

i+1, j,k + Un
i, j−1,k + Un

i, j+1,k + Un
i, j,k−1 + Un

i, j,k+1

)

is used in place of the first term on the r.h.s. of Eq. (A.1). This

has the consequence that the effective first order spatial deriva-

tives at the grid point (i, j, k) are calculated by averaging the

derivatives obtained at the six nearest neighbours [(i − 1, j, k),

(i + 1, j, k), (i, j − 1, k), (i, j + 1, k), (i, j, k − 1), and (i, j, k + 1)],

thus enhancing the diffusion and improving the numerical sta-

bility, but it is not advantageous if one requires derivatives of

quantities which exhibit a strong spatial variation, as for ex-

ample the magnetic field components in our model in the re-

gions of strong field. This is true even for good grid resolution.

Therefore, we modified the scheme by replacing the averaging

term with Un
i, j,k

. Now the spatial derivatives are calculated di-

rectly at the grid points and the numerical diffusion as well as

the discretization errors of the current density are reduced. We

performed test runs with both versions of the scheme and found

similar dynamical evolution of our model systems.

The stability of the Lax-Wendroff scheme requires also that

the viscous term be included in the second step of the iteration

only (e.g., Roache 1972).

Appendix B: Treatment of the numerical

parameters

Artificial smoothing is applied to selected integration variables

ψ = (ρ, ρ ux, ρ uy, ρ uz) after each full time step by the replace-

ment (Sato & Hayashi 1979)

ψn
i, j,k −→ σψ

n
i, j,k +

1 − σ

6

×
(

ψn
i−1, j,k + ψ

n
i+1, j,k

+ ψn
i, j−1,k + ψ

n
i, j+1,k

+ ψn
i, j,k−1 + ψ

n
i, j,k+1

)

.

The smoothing is not applied to B to avoid unphysical currents

and Lorentz forces. It would have been desirable to smooth the

velocities only, but numerical stability required to smooth also

the density.

In particular the very low densities in the case ρ0 = B2
0

re-

quired a high numerical diffusion in the outer regions of the

simulation domain. Therefore, we implemented both the arti-

ficial smoothing of the density and the viscosity (Eq. (2.1))

such that they could be prescribed nonuniformly. In an “in-

ner region”, including about one third of the box size in each

Table B.1. Main parameters of the simulations with continuously ap-

plied twisting. σu and σρ are the smoothing parameters of the vari-

ables ρ ux,y,z and ρ, respectively. The subscripts “in” and “out” refer to

the “inner region” of the simulation domain with uniform ν and σ and

to the rest of the box, respectively. νin = 0.1 in all runs.

v0 ρ0 y0 νout 1−σu 1−σρ,in 1−σρ,out

0.01 B2
0

0.5 0.1–1 0.0005 0.0005 0.0005–0.1

0.01 B2
0

1.0 0.1–1 0.0005 0.0005 0.0005–0.1

0.01 B2
0

2.0 0.1–1 0.0005 0.0005 0.0005–0.1

0.01 |B0| 1.0 0.1–1 0.0005 0.0005 0.0005–0.1

0.01 1 1.0 0.1–1 0.0005 0.0005 0.0005–0.1

0.001 B2
0

1.0 0.1 0.0005 0.0005 0.0005–0.01

0.001 |B0| 1.0 0.1 0.0001 0.0001 0.0001

Table B.2. Main parameters of the relaxation runs. These runs had

uniform ν = 0.1 and σ (as given in the table). trelax is the duration of

the runs. tr2 = 1 for the runs with ρ0 = B2
0
, and tr2 = 5 for the runs with

ρ0 = |B0| (except the one at Φg = 2.50 π, in which also an artificial

reduction of ρ was applied).

y0 ρ0 v0 (1 − σ) Φg trelax

1.0 B2
0

0.001 0.0004 2.06 π 120

0.0004 2.30 π 120

0.001 2.53 π 280

0.002 2.75 π 753

0.005 2.95 π 1095

1.0 |B0| 0.01 0.0001 0.39 π 120

0.0001 0.86 π 200

0.0001 1.33 π 200

0.0001 2.28 π 600

0.0005 2.50 π

0.0001 2.65 π 1120

0.0001 2.91 π 1358

direction (
√

x2 + y2 + (0.5z)2 ≤ 30), but excluding a bottom

layer described below, the parameters determining the diffu-

sion, ν and (1 − σ), were prescribed uniformly. Outside this

region, the viscosity and the density smoothing were either

continued uniformly or permitted to increase exponentially to-

wards the outer boundaries, as the stability of the individual

runs required. The bottom layer, where the highest gradients

and Lorentz forces occur, also required higher diffusion than

the rest of the inner region for stability. Nonuniform smoothing

of density and velocity, increasing from the values in the inner

region to (1 − σ) = 0.05 in a layer between {z= z1} and {z= 0}

was applied, with z1 = 1.2 in the driving phase and z1 = 0.3

during relaxation. The chosen values of the numerical parame-

ters are compiled in Table B.1 for the continuously driven runs

and in Table B.2 for the relaxation runs.
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Mikić, Z., & Linker, J. A. 1994, ApJ, 430, 898
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