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The propagation of short-pulse lasers through underdense plasmas at ultra-high intensi- 

ties ( I  3 101gW/cm) is examined. The pulse evolution is found to be significantly differ- 

ent than it is for moderate intensities. Rather than beam breakup from self-modulation, 

Raman forward scattering and laser hose instabilities the behavior is dominated by lead- 

ing edge erosion. A differential equation which describes local pump depletion is derived 

and used to analyze the formation and evolution of the erosion. This pulse erosion is 

demonstrated with one dimensional particle in cell (PIC) simulations. In addition, two 

dimensional simulations are presented which show pulse erosion along with other effects 

such as channeling and diffraction. 
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I. INTRODUCTION 

Recently, there has been several theoreticalll, 2, 3, 5,4, 61 and experimental[7] inves- 

tigations to determine the possibility of propagating short-pulse high-intensity lasers over 

extended distances through underdense plasmas. Throughout these studies it was shown 

that laser pulses of moderately high intensity (I 5 10l8 W/cm) are susceptible to a vari- 

ety of instabilities which cause the laser pulse to be absorbed and scattered in distances on 

the order of a Rayleigh length. These instabilities include Raman Backward, Forward[3] 

and Side Scattering[3, 8, 11, whole beam envelope self-modulation[5],laser hosing[6], rela- 

tivistic self-phase modulation and relativistic self-focusing/fiIamentation[9]. It has been 

found[lO] that a good indication of the nonlinear losses associated with these instabilities 

is the amount of Raman forward scattering within a Rayleigh length. 

However, at ultra-high intensities(1 2 10’’ W/cm) the laser pulse evolution is both 

quantitatively and’qualitatively different than it is for moderate intensities. Due to rela- 

tivistic effects, the growth rates for the the above instabilities actually decreases at higher 

intensities. Therefore, these instabilities only disrupt the leading edge and have little ef- 

fect on the main body of the pulse. This causes leading edge erosion. Another mechanism 

which can modify the front of the pulse is group velocity steepening. Regions of the pulse 

with larger amplitude have a larger group velocity[ll] and overtake neighboring regions 

of lesser amplitude with slower group velocity. In either case, an ultra-intense laser pulse 

always forms a steepened front. Once this steeped front has developed, it ponderomo- 

tively excites a large amplitude plasma wave wake which leads to further erosion. The 

laser pulse quickly evolves to a state in which the leading edge excites large amplitude 

plasma waves and density perturbations while continuously eroding backwards. 

In this paper, we consider in detail the mechanisms that cause the formation and 

evolution of the steepened front. In the first section, we examine Raman scattering for 
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arbitrary pump strength. We derive a dispersion relation from which temporal growth 

rates can be found. Using these growth rates we show that the whole beam instabilities 

mentioned above are ineffective at breaking up or modifying the pulse significantly. In 

the next section, we turn our attention to the localized pump depletion caused by a 

sharp front. We present a Lagrangian density function from which we can derive local 

conservation laws. Using these conservation laws we derive an expression for the local 

depletion of laser energy. From this local pump depletion equation we can identify the 

terms responsible for energy transport and energy loss. The rate at which the pulse erodes 

once the sharp front has formed is estimated from this equation and the conditions for 

100 percent local pump depletion are given. In order to quantify the formation of the 

front we next examine &man scattering at ultra-high intensities and use the growth rates 

to estimate the formation time. Next, we present one dimensional( 1-D) PIC simulations 

which demonstrate this leading edge erosion and two dimensional(2-D) simulations which 

show additional effects such as ponderomotive electron expulsion, local diffraction and 

laser pulse bullet formation. Lastly, the consequences and possible application of this 

behavior are briefly discussed 
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III. RAMAN SCATTERING AT ULTRA-HIGH INTENSI- 

TIES 

Recently, it has been shown[lO] that Raman forward scattering at forward and near 

forward angles is one of the most disruptive instabilities at moderately high intensities. 

In addition, it has also been shown[l2] that self-modulation[5] and laser hosing[6] are 

related to Raman scattering in the same way that self-focusing is related to filamentation. 

That is, self-modulation and laser hosing are whole beam analogs of plane wave Raman 

scattering at forward and near forward angles. Therefore, examining Raman scattering 

at the ultra-high intensities is important for determining beam stability. In this section 

we extend the analysis for one dimensional Raman scattering to include arbitrarily large 

pump intensities.. We do this by perturbing a nonlinear equilibrium solution with a small 

amplitude plasma wave and small amplitude stokes and anti-stokes waves. We start with 

the fully nonlinear wave equation for the radiation in slab geometry 

the continuity equation 

and the electron momentum equation 

a P  2 d7 - = -el311 - mc - 
at d X  

(3) 

where a‘ = ei/mc2 is the normalized vector potential, n is the electron density, p is the 

electron momentum in the x direction and r2 = l+a2+p2/m2c2. Unlike the case of a small 

amplitude pump, the polarization of the pump is very important for finite amplitude. 

The only exact transverse solution is for circular polarization. Linearly polarized waves 

have odd harmonics of the vector potential and even harmonics of the density which can 
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couple to the plasma wave. Therefore, the nonlinear solution is not purely transverse. 

For simplicity we first consider circularly polarized light. We note that we have carried 

out the analysis[l3] for linear polarization and the results are unchanged in so far as the 

growth rates are concerned. 

The equilibrium solution for a circularly polarized electromagnetic wave is of the form 

-6 

+ C.C. 
-6 a, ie, up = -e 

2 (4) 

Where 9, = koa: - u,t and a', = ao(2 + @). The nonlinear dispersion relationship is well 

known[l4] w,2 = c2k: + $ where 7; = 1 + a:, wp" = 4*n0e2 and no is the unperturbed 
WZ 

m 

electron density. We note that this dispersion relation is exact for circularly polarized 

light. There is no longitudinal momentum associated with.this wave and the density 

is constant. Circular polarization implies a', a', = i$ - 
polarization does not generate second harmonic density perturbation. 

= 0 and this is why circular 

We perturb this equilibrium with a plasma wave described by the amplitude Sn and 

an associated longitudinal momentum Sp which are of the form 

nl ie Sn = -e +c.c. 
2 

and 

- P l  if7 

2 
Sp - -e +c.c. 

( 5 )  

where 9 = ka: - ut. This plasma wave beats with the pump generating electromagnetic 

sidebands of the form 

where 9* = 9 f 9,. 

In order to evaluate the current source term g?i we first expand 7. The total relativistic 

7 factor of the pump and the perturbation is given by 

r2 = 1 + a; + 2iip - 6ii+ Sa2 + 6p2 
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Likewise the total density is n = no + Sn. Here we make the usual assumption that 

alI perturbed quantities are on the order of some small parameter e. In particular, we 

assume Sn , Sp and Sa' are all O(e). We expand f to lowest order in to get 

1 1  iip Sii  

7 70 
(9) 

Likewise, to lowest order in e, the current source term can now be written as 

12, no 

7 70 n0 
-a = - (sLI'+ -ap - 

We first look for the terms of Eq. (10) that drive the stokes(O-) wave. Therefore, we 

substitute Eqs.(4),(5) and (6) into Eq. (10) and collect all terms that are proportional 

to e;'-. The result is 

Therefore, the stokes wave has the polarization of a:*, and it can be shown that the 

anti-stokes has the polarization of 6. Therefore, the stokes wave can then be written as 

Si_ = a-(?-i$) and the anti-stokes wave can be written as a'- = a-(;+i$). This implies 

that a'- - .= 7;+ - a', = 0. Furthermore, without loss of generality, we can set the phase 

of the pump so that a, = a:. 

The wave equation for the stokes wave is then given by 

and likewise the equation for the anti-stokes(O+) is then 

Next, we turn our attention to the plasma wave. We expand the second term on the 

right hand side of Eq. (2) to obtain 
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;-sa' a- .p f  

and to lowest order, Eq. (2) becomes 

Differentiating Eq. (15) with time and using Eq. (3) along with Gauss's law, gives 

We look for terms in Eq. (16) that are proportional to e" Keeping terms at 8, we 

find an equation for the evolution of the plasma wave 

Eqs.(l2), (13) and (17) completely describe Raman scattering for arbitrarily large 

pump amplitude. They not only describe describe Raman back and forward scattering, 

but also the relativistic modulational instability[l5]. These regimes can easily be identi- 

fied by deriving a dispersion relationship and evaluating the temporal growth rates. Here 

we assume that the amplitudes of the perturbations nl,p1 and ah are constant but the 

frequency w and wave number K are complex. After Fourier analyzing, Eqs. (12),(13) 

and (17) become respectively, 

noc2 k2 
(m2 - 2) nl = - 27: (a-+ - Zo + a-+ * a"0) 
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Substituting Eq. (20) into Eqs. (18) and (19) gives 

d-a, = d ( a ,  + a+) 

and 

d = P a 2  W2 ( 'c2 k2 ro -1) . 

47: w 2 - 5  

From Eq. (22) we find a+ = -a, and we substitute this into Eq. (21) to obtain a 

dispersion relation for arbitrary pump amplitude 
' 

We note that we recover the well known small pump Raman dispersion relation[l5] 

if we let 7, = 1. From Eq. (25) we can examine the temporal growth rate of Raman 

Backscattering[lG], Raman forward scattering and relativistic self modulation[9]. Using 

the pump dispersion w: = c2k: + $ we can write d* = w2 f 2(w,w - c2kk,) - c2k2. By 

comparing Eq. (25) with the small pump Raman dispersion relationship it is obvious 

that we can obtain the large pump amplitude growth rates from the well known small 

amplitude growth rates[l6, 151 by simply rescaling a: + 2 and w;5 + 2. 

WZ 

First we examine the temporal growth rate for Raman backscattering which is a 3- 

wave process in which the stokes wave propagates anti-parallel to the pump. The growth 

rate for small pump amplitude is well know[l6] and given by given by v,,, = ?JG&. 

Therefore, rescaling a, and wp immediately gives the large pump Raman backscattering 
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growth rate 

We note that as a, -+ 00 the growth rate rrbs N Ifrrbs > wp/clO then the instability 

is in a strongly-coupled backscatter[16] regime. The small pump this growth rate is given 

by us& = &(%)‘I3 while, the large pump growth rate for strongly coupled raman 

backscatter is given by 

The strongly-coupled growth rate was obtained previously by others[l7,5]. We note that 

as a, --+ 00 v,d N and has a maximum at a, = 2. The asymptotic reduction 

in the Raman backscattering growth rate is due to the difficulty in causing relativistic 

electrons to oscillate. 

The small pump growth rate for Raman forward scattering is given by u, = 2. 
Rescaling this growth rate we obtain the large pump growth rate 

We note that as a, --+ 00 the growth rate vrjs  - aZ1. The physical reason can be 

attributed to the relativistic mass increase of the quivering electrons. The ponderomotive 

force is proportional to $Vaz = I k a z .  Since the phase velocity is close to c k = w and 

w = w,2/7,, then as a result of the relativistic mass increase there is a reduction in the 

70 

ponderomotive force. 
.I 

The relativistic modulational instability differs from Raman forward scattering in that 

the low frequency modes, Le., the idler is not a plasma wave. For this case w M k << + 
70 

It is dominant when c2k2 << w2 - 2. The weakly 

be[9] urmi = e. The large amplitude extension is 
a’,d 

9 

relativistic growth rate is known to 

therefore 



So far we have derived temporal growth rates for Raman back and forward scattering. 

For short pulse interactions the instability is in a spatial-temporal regime[3]. However, the 

spatial-temporal solutions[l2] always involve the temporal growth rates. In particular, 

the amount of exponetiation (number of e-foldings) for Raman forward scattering at a 

given position in the pulse after a time r is given by[3] 

For example, we consider a [/c = 100 fsec pulse propagating through a 4 x 1019W/cm2 

plasma. We use Eq. (30) to determine the number of e-foldings after a pulse has propa- 

gated a Rayleigh length. We take a typical spot size of 20 microns ~ which gives a Raleigh 

time of r = 4.2 psec. For an intensity of 1020W/cm the number of e-foldins is just 1.74 

which too small to see any beam break up or other effects of Raman forward scattering[4]. 
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11. LOCAL PUMP DEPLETION EQUATIONS 

Since pulse erosion is a localized phenomena, we need to derived localized pump 

depletion equations. In order to derive pump depletion equations we make use of the 

quasi-static approximation. The quasi-static equations [18] are a fully nonlinear set 

of coupled equations for the scalar potential @ and the vector potential 2. They are 

derived from the fully nonlinear fluid equations and the nonlinear wave equation for 2. 

The quasi-static approximation consists of neglecting & in the continuity equation and 

in the longitudinal equation of motion after a mathematical transformation has been 

made from the ( q t )  to the (e = z - c t , r  = t )  coordinates. The quasi-static equations 

for the normalized potentials 4 = e@/mc2 and a' = ei /mc2 are given by 

and 

1 +a2 1 a 2  

at2 (1 + 4)2 
-4 = ( - 1) 

where k,, = w p / c  

Eqs. (31) and (32) completely describe the nonlinear laser plasma interaction and 

predict leading edge erosion. However, Eqs. (31) and (32) can be derived form the 

following Lagrangian density function 

where the subscripts t and r denote 6 and & respectively. Verifying that this is the 

a t  a a t  a a t  and a t  a a t  a a t .  
Lagrangian density is easily done by showing that x-saa,-Raa, a+ ara+, a m c  

recovers Eqs. (31) and (32). A Lagrangian density is useful because differential, i.e., local, 

rather than integral conservation equations can be easily derived. 
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The conservation equations are obtained by taking the divergence of the stress-energy 

tensor of the system [19]. The resulting conservation equations are 

and 

C 
(35) 

Eq. (35) is the most useful because the left hand term of Eq. (35) is the rate of 

/n,rnc2. To verify this, we change in the transverse electromagnetic energy, €1 

use the relationships E1 = -:g and BL = along with = - c- and = - to 

show that 

+BL 
L8T 

a a  a a a  
a€ a€ 

4 4 

2, 4 

- -aT C - at + 2a, 

In the quasi-static approximation, it is assumed that 

l3q. (36) and Eq. (35) can be rewritten as 

<< E,  so a: can be neglected in 

1 1 + a 2  
- - (EL) I d  ar - - a (Lx; 2k; + 5 [- X +x-11) = o  (37) 

where x = 1 + 4. 

Eq. (37) is of the form $€L + 65' = 0 and describes the evolution of perpendicu- 

lar(1aser) energy. The local value of €1 can change by energy convecting out of (or into) 

the local region or it can change by conversion to longitudinal energy (pump depletion). 

We note that when pump depletion is absent, i.e. s s-, = 0, there is only energy 

transport and Eq.(37) can be used to define a local energy transport velocity or group 

velocity[ll] vg = where <> represents averaging over the fast oscillations of the 

laser. 

a -  

We want to separate the terms responsible for energy transport and the terms respon- 

sible for energy loss. If there is a contribution 5'1 to the energy flux S = SI + Sz such 
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that J-", 

the 

in the form 

= 0 then Sl does not contribute to pump depletion. It can be shown that 

+ x - 1 term in Eq. (37) satisfies this criteria. Therefore, if we write Eq. (37) 

where the normalized group velocity[ll] in this frame is vg = -$ (F + x - 1) / E l  

and the normalized longitudinal electric field is Ell = -$$. The importance of Eq. 

(38) is that we can identify &E? as the pump depletion term. We note that using Eqs. 

(31) and (32), Eq. (38) can be written as = &%. An integral form of this has 

been derived by others[l7]. However, integral equations are not useful when analyzing 

localized erosion. 

We see that if S E i  is localized then the pump depletion will also be localized. For 

short intense laser pulses the plasma wave wake becomes nonlinear and wave steepen- 

ing results in &Ei becoming localized. For pulses with durations longer than a plasma 

period no substantial wake is formed. However, Raman backscattering and Raman for- 

ward scattering, which grow from the front of the pulse to the back, can saturate in 

very short distances. We find that Raman back and forward scattering depletes energy 

locally creating a small notch in the laser pulse. This notch ponderomotively excites a 

wake further depleting the pulse's energy. Eventually the term &Ei becomes even more 

localized until a sharp front is formed. 

To determine under what conditions pump depletion is localized, we examine the 

-E a 2  term. It is useful to rewrite it as &&El; = -E116n where Sn is the perturbed 
a€ II 

electron density normalized. to no. We restrict the analysis to square shaped leading 

edges because, as we will show in the simulations, this is the eventual state of the laser 

pulse. In addition, we consider circular polarization because exact solutions to Eq. (32) 

can be found[20]. Using Eq. (32) we can find Sn = -- k; at - For a given value of a at the 
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head of the pulse the maximal values of Sn and Ell are given by[20] 

-2 

The full width half maximum of the density spike, AL, can be estimated from Gauss’s 

law 

This width is narrow if a >> 1. That is why local pump depletion only occurs for 

I X 2  2 1019W/cm2 - ,urn. We can estimate the etching velocity by dividing AL by the 

time is takes to completely deplete the laser energy within the density spike. 

However, the velocity of the leading edge is the linear group velocity minus vetch so the 

hont velocity is 

This agrees reasonably well with the simulation results presented in the next section. 

We comment that in Ref.[21] the formation of shocks was analyzed and they obtained 

a shock velocity similar to Eq. (44) except that the coefficient was 1.22 instead of 3/2. 

However, they made assumptions which are not consistent with the observations in the 

simulations. The etching of the front also prevents the diffraction of the leading edge 

as described by Sprangle et al.[lS]. To lowest order, the front c/wp of a pulse diffracts 

in a Raleigh length. Therefore, the local depletion of the front dominates diffraction if 

14 



u2 > 2gq w c 2  where u2 is the Gaussian spot size. This criteria can easily be satisfied for 

near-term lasers 

Since the etch velocity is less than the group velocity, the pulse can entirely erode 

after propagating some finite distance. This time is determined form the condition (vg - 

v,tch)t = L where L is the pulse length of the laser. For example, a 100 fsec pulse 

propagating through a 4 x 1019cm-3 plasma completely erodes after propagating just 

0.75 m. 
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IV. SIMULATIONS 

Pump depletion was investigated using the electromagnetic particle-in-cell codes WAvE[22] 

and PEGASUS[7]. WAVE is used because is solves for the vector and scalar potentials 

which prove to be useful whereas PEGASUS is used because it runs on parallel corn- 

puters, and therefore, can simulate large systems. These simulations are done in the x-y 

plane with linear polarization in the z direction. Radiation is launched from the left hand 

boundary and propagates in the x direction into the plasma. 

We first present a 1-d WAVE simulation to demonstrate the formation and evolution of 

the sharp front. The parameters chosen were a, = 10.0, w,/wp = 5.0 and a FWHM pulse 

length of I, = 125c/w, which for a lpm laser correspond to an 1.4~ 1020W/m3, 60fs pulse 

propagating through a no = 4 x 1019cm-3 plasma. The system size is xmaz = 500c/w0. 

In Fig. 1 we plot the transverse electric field associated with the laser for ct = 0.08, 0.16, 

0.24 and 0.32 mm. To illustrate the details of the pulse erosion we only plot the region 

around the pulse as it propagates through the simulation box, i.e., a moving window. We 

see that after only propagating 0.08 mm the front of the laser pulse has started to deplete. 

Analysis of the backscattered radiation indicates that the erosion was primarily due to 

Raman backscattering. The backscattered radiation grew very rapidly and its Fourier 

spectrum was appropriately downshifted. We note that group velocity steepening may 

have also played a role in the initial formation of the steep front. However, it is not 

as easy to diagnose as Raman backscattering. Once the sharp front is formed the pulse 

continuously etches backward. The velocity of the front from this simulation is found to 

be (1 - vj)$ = 1.3 which agrees reasonably well with Eq. (44). Fig 1. shows that after 

prupagating ct = 0.32 mm nearly half of the laser pulse has eroded away. 

In order to understand where the depleted energy has gone we plot the transverse 

electric field, longitudinal electric field, plasma density and the transverse vector potential 

16 



in Figs. 2a,b,c and d respectively over the entire simulation box. The sharp front of the 

laser excites a large plasma wake and large density spike as discussed earlier. However, not 

all of the depeleted energy is accounted for in this wakefield. By close examination of Fig. 

2a and d, we see that there is low frequency radiation left behind the pulse. The origin 

of this low frequency radiation can be explained as follows. The density spike is caused 

by the ponderomotive force of the front of the laser. This density spike is continually 

pushed in front of the laser pulse. As a result the front of the laser pulse resides in a 

density gradient. This density gradient causes radiation to frequency downshift (photon 

deceleration[23]) which falls behind due to a lower group velocity. In Fig. 3a we plot the 

k spectrum of the transverse electric field(so1id line) and the k spectrum of the transverse 

vector potential(dashed line) after propagating 0.32 mm. For comparison we also plot 

the initial laser pulse spectrum(dotted line). As expected, we see a continuum of lowered 

radiation resulting from photon deceleration. It is interesting to note that the low k (low 

frequency) spectrum of the vector potential is much higher than that of the electric field. 

This indicates photon conservation[l7] is taking place. We can define the photon number 

as the field energy E2/27r divided by the photon energy fiw. If photons are conserved 

than E2/w  = wa(w) must be conserved and as w decreases the vector potential increases. 

The huge longitudinal wakefields involved in this process accelerate electrons to high 

energies. In Fig. 3b we plot the longitudinal electron momentum p,/mc of the particles 

versus x after the pulse has propagated 0.32 mm. We see that the electrons have been 

accelerated up to p ,  = 800rnc2(400 Mev.) The accelerating wakefield show in Fig. 2b 

is found to be roughly 5 = -0.3. The energy gains shown in Fig. 3b are in good 

agreement with the product of the accelerating field times this accelerating distance 

of lOOOc/w,. We note that the first peak in the wakefield of = +2 is from the 

space charge of the bunched electrons. This field accelerates electrons in the negative 

,- 

. 
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x direction and is responsible for the return current seen in Fig. 3c. Finally, we plot 

the transverse electron momentum pz/mc versus x in Fig. 3d which shows that the low 

frequency radiation generated results in low frequency transverse currents left behind the 

pulse. 

We comment that local pump depletion of the leading edge of the pulse is probably 

an important element for the explanation of the 1-D soliton solution of Kaw et al.[24]. 

In their solution the radiation consisted of a high frequency mode and a low frequency 

mode and the pulse length is equal to the wakes nonlinear wavelength. In Fig. 6.2h the 

eventual generation of a low frequency peak is apparent. The low frequency component 

is generated by the local pump depletion which immediately transforms high frequency 

photons to low frequency photons with photon number being conserved. In the soliton 

solutions the low frequency photons must then be upshifted via photon acceleration by 

a density spike at the back of the pulse. Determining whether 1-D solitons can be self- 

consistently generated in PIC simulations is obviously an area for future research. 

We next present Results from a 2-D simulation. The system size is x,, = 500c/w0 

and y,= = 500c/w0 and the laser parameters are identical to the one dimensional simu- 

lation with a gaussian spot size of o = 25c/w0 which for a l pm laser correspond to 4pm 

spot. We chose such a narrow beam in order to examine the most dramatic 2-D effects 

such as diffraction and ponderomotive blowout (electron expulsion). 

We plot the transverse electric field associated with the laser, the longitudinal electric 

field and the electron density versus 2 for y = 250c/wp and ct = 0.32 rnm in Figs. 4a,b 

and c respectively. We see that pulse ‘erosion, similar to the 1-d case, has occurred 

and has generated density compression Fig. 4b. The velocity of the front from this 2-D 

simulation is also found to be (1 - v f ) a  = 1.3. However, comparison of Fig. 4b with Fig. 

2b indicates that the density compressions are different. The magnitude of the density 

wz 
3 
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compression is less for the 2-D case than it is for the 1-D case. This is due to the fact 

that the ponderomotive force has a y component at the front which can push electrons 

sidewise. This sideways ponderomotive force leads to complete electron expulsion for the 

main body of the pulse. The expelled electrons rush in behind the pulse which results in 

the additional density spikes shown in Fig. 4c. This will become more evident when we 

show 2-D tdensity contours. Since the electron compression is less the resulting wakefield 

is less in 2-D than it is for 1-D. 

To fully illustrate the 2-d evolution, we plot contours of lErl and the electron density 

at various times in Figs. 5 and 6 respectively. We note that for the given spot size the 

Rayleigh length is 0.05 mm and the ratio of the power to the critical power[9] for self 

focusing is PIP, > 78. The maximal values of lEzl at the various times indicate that 

self focusing is 0ccurring.h addition, Fig. 5 shows that the laser pulse has developed a 

square shaped front from leading edge erosion. At lower intensities, the leading c/wp of 

the pulse always diffracts[l8] even if PIP, > 1. Fig. 5 indicates that the leading edge 

erosion occurs faster than the leading edge diffraction. The main body of the laser pulse 

is self focused and has propagated over 6 Rayleigh lengths. However, Figs. 5b and c 

show that the pulse has broken up. Unlike the low intensity , this break up is not from 

Raman forward scattering but from enhanced diffraction as a result of the non-linear 

plasma wave wake. When a plasma wave gets very nonlinear, the density compression 

acts like a diverging lens and causes diffraction. This localized diffraction breaks the 

pulse into bullet-like structures spaced at the nonlinear plasma wavelength. The density 

contours show total ponderomotive blow out(e1ectron expulsion) with very complicated 

structures. In Fig. 6. we see that the "bullet" resides in a completely self-generated 

density hole. Once this bullet hole structure develops the pulse continues to propagate 

until the pulse completely erodes. 
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In Fig. 7 we plot the Fourier spectrum of lEzl at ct = 0.32 and 0.G4 mm. We do not 

see any of the spectral cascading at the lower intensities described Ref. [4, 7, 101. There 

are some indications of sidescattering. However, this scattering is coming from regions 

in the pulse which are not in the density depression and therefore the side scattering is 

a very small fraction of the total light. As in the one dimensional case, low frequency 

radiation is generated. 

VI. CONCLUSIONS 

In this paper we have shown that the evolution of ultra-intense laser pulses is dom- 

inated by leading edge erosion. Associated with this erosion is the excitation of large 

amplitude plasma waves and large amplitude density perturbations (spikes). The effects 

of Raman forward scattering (and related instabilities) are shown to be drastically re- 

duced. We presented one dimensional simulation results which demonstrated this leading 

edge erosion. We presented results from two dimensional simulations which also show 

this behavior with additional effects such as plasma blow out and refraction. 

We note that this behavior can be used to generate short wavelength radiation by 

reflecting counter propagating light off the large amplitude density spikes. These density 

spikes have been shown to move at relativistic speeds and can serve as moving mirrors. 

In addition, the resulting plasma waves can accelerate electrons to multi-Mev ener- 

gies. Simulations show that the electric fields of the plasma waves may be 4-5 times 

wavebreaking amplitude. Assuming a density of n = 4 x l O ’ ’ ~ m - ~  gives an accelerat- 

ing gradient of 10TeVlm. This mechanism may be useful as a very compact low beam 

quality particle accelerator. 
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Figure Captions 

Figure 1: Results from a 1-D simulation with a, = 10.0, w,/wp = 5.0 and Z, = 125c/w,. 

Transverse electric field 2 versus x - ct at d = 0.08, 0.16, 0.24 and 0.32 mm. 

Figure 2: a) Transverse electric field b) longitudinal electric field & c) electron 

density and c) vector potential a versus z for ct=0.32 mm from 1-D simulation 

Figure 3: a) K-spectrum of transverse electric field e (solid line) and transverse 

vector potential &(dashed line) for ct = 0.32 mm from 1-D simulation. For compar- 

ison we also plot the initial laser pulse spectrum(dotted line). b) Longitudinal electron 

momentum pz/rnc2 and c) transverse electron momentum pz/mc2 versus z - ct. 

Figure 4: 2-D simulation results with a, = 10.0, w,/wp = 5.0, Z, = 125c/w, and 

b) electron density 5 for y = 250c/omega, r, = 25c/w0. a) Transverse electric field 

and ct=0.32mm. 

Figure 5: Contours of lEzl from 2-D simulation at a) ct=O.Omm, b) ct=O.l(i mm c) 

ckO.32 mm and d) ct=0.64 mm. Peak values of 1&1 are given in lower right hand 

corner of each plot. 

Figure 6: Contours of electron density from 2-D simulation at a) ct=0.32 mm and b) 

ct=0.64 111111. 

Figure 7: 2-D k-spectrum from 2-D simulation for a) ct=0.32 mm and b) ct=0.64 

mm 
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