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Abstract

Consider an evolutionary context where a given number of quantity-
setting oligopolists tend to mimic successful behavior, ocassionally ex-
perimenting with some small probability. In this context, it is shown
that the unique long-run outcome of the process has all firms play-
ing Walrasian, i.e., choosing an output that maximizes profits when

taking the market-clearing price as given.
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1 Introduction

Walrasian Theory builds upon the central hypothesis that agents take prices
parametrically, i.e., do not consider the possibility of affecting prices through
their consumption or production decisions. In the last decades, there has
been a large body of literature whose aim has been to provide some theoretical
basis for such Walrasian hypothesis. It can be usefully organized along two
separate strands, corresponding to each of the two main areas which are
usually taken to integrate classical Game Theory.

On the one hand, there is the approach grounded on Cooperative Game
Theory which, motivated by the original work of Edgeworth, revolves around
the various so-called Equivalence Theorems. These theorems establish con-
ditions for some of the best known concepts of Cooperative Game Theory
(Core, Shapley Value, or the Bargaining Set) to coincide with — or approxi-
mate — the set of Walrasian equilibria. (See, for example, Aumann (1964) for
an early analysis of Core equivalence, or Hildenbrand (1974) for a systematic
review of this issue.)

The second approach to this issue has adopted the perspective of Non-
cooperative Game Theory. Here, the focus has been on the exploration of
conditions under which strategic behavior on the part of producers (and pos-
sibly also consumers) will lead to Walrasian behavior. (The seminal work is
Gabszewicz & Vial (1972), whereas a good general discussion of this approach
can be found in Mas-Colell (1980).)

Quite naturally, in both game-theoretic frameworks — cooperative and
noncooperative — a key (necessary) condition for the support of Walrasian
behavior is the absence of “monopoly power”, i.e., agents must not have the
power to affect prices. In turn, this idea is seen to be intimately linked to
the intuitive requirement that the number of agents involved be so large that
no particular individual represents more than an insignificant fraction of the
whole population.!

In this paper, an alternative basis is provided for Walrasian behavior
which avoids altogether any considerations related to (the absence of ) monopoly
power, or the related notion of a large enough population. The approach is
of an evolutionary nature and, unlike the literature summarized above, ex-
plicitly dynamic. In a certain (somewhat distant) sense, it is related to ideas

The work of Gabszewicz & Mertens (1971) or Shitovitz (1973) shows that this is not
strictly true since the equivalence result can still hold if there are some “atoms” with
certain characteristics living in a large world of infinitesimal agents.




discussed long ago by Alchian (1950). In contrast with Friedman (1953) —
who strongly argued that selection market forces will always prove effective
in selecting for rational behavior — Alchian supported a much more nuanced
conclusion, very much in line with our emphasis here. Specifically, he put
into question the idea that absolute optimization (or rationality) should al-
ways result from the operation of evolutionary forces, stressing instead that
it is relative rather than absolute performance which should in the end prove
decisive in the long-run.

Two recent pieces of work also related to the present paper are Schaffer
(1989) and Rhode and Stegeman (1995). Schaffer has made the following
illustrative point.? In a simple context with just two quantity-setting firms
which have identical and constant marginal costs, only Walrasian behavior
is evolutionarily stable, i.e., defines an ESS for the corresponding two-firm
population. (Walrasian behavior, of course, is identified with output choices
by both firms for which profits are maximized at the market-clearing price.)
On the other hand, Rhode and Stegeman have also arrived to a similar con-
clusion by applying an stochastic evolutionary approach to a certain two-firm
context. Specifically, they show that when two quantity-setting duopolists
with quadratic costs face a linear demand curve and imitate the currently
most successful output (as well as occasionally “mutate”) the long-run aver-
age price (and quantities) converge to their Walrasian values.?

This paper shows that the essential gist of these two specialized conclu-
sions does not just apply to their very particular scenarios but is the reflection
of a more general state of affairs which can be carried well beyond specific
two-firm contexts and a particular cost structure. Specifically, approaching
the issue within the dynamic stochastic framework proposed by recent evo-
lutionary literature, Walrasian behavior is shown to evolve in the long run
within any quantity-setting oligopoly producing an homogeneous good, pro-
vided that the so-called Law of Demand is satisfied (i.e., the market demand
curve is downward sloping).

This result seems quite in line with reported evidence on experimental
contexts. An interesting case in point is provided by a recent paper by Davis
(1995) — see also Holt (1995). Davis studies two alternative scenarios of

2See also the related work by this same author, Schaffer (1988). Another interesting
paper which, in the context of coordination games, discusses finite-population effects on
evolutionary stability is Crawford (1991).

®Rhode and Stegeman (1995) develop a general approach to the analysis of two-agent
contexts, which they then apply to a variety of duopoly contexts (e.g. Bertrand duopolists
with differentiated products).




repeated triopoly interaction. One of them is of the Bertrand type, with
the (unique) equilibrium of the stage game inducing the Walrasian outcome.
A second one is Cournotian, its stage-game equilibrium (also unique) leading
to the standard Cournot-Nash outcome (thus, in particular, prices and profits
are above the competitive ones).

The experimental conclusions obtained may be summarized as follows.
In the first scenario, play settles on the competitive outcome (i.e., the cor-
responding stage-game equilibrium) in a rather stable manner. In the sec-
ond one, however, matters are much more unstable, with the average values
observed along realized paths of play being significantly closer to the com-
petitive outcome than to the Cournot-Nash equilibrium of the stage game.*
Much in line with our emphasis here, the author tentatively interprets these
contrasting observations as resulting from players being geared by relative-
performance considerations. Whereas these considerations do not interfere
with the equilibrium in the first scenario, they significantly do so in the
second one (see below for a detailed explanation of these matters).

The model and analysis of the paper can be outlined as follows. Con-
sider a given Cournotian context where an arbitrary (finite) number of firms
choose simultaneously their outputs every period. As time proceeds, the
most successful behavior (i.e., output choice) tends to spread throughout the
market (say, by imitation). Occasionally, with some small probability € > 0,
firms also “experiment” (or are simply renewed through some stochastic pro-
cess of firm turnover). In the limit, as ¢ — 0, it is shown that the long-run
distribution of the induced stochastic process becomes concentrated in the
unique symmetric Walrasian equilibrium. This provides a clear-cut formal-
ization of the idea that, in oligopoly contexts, evolutionary forces will lead
firms to behave in a Walrasian fashion, thus behaving “as if” they confronted
parametrically the market clearing market price.

A common theme in much of recent Evolutionary Theory revolves around
the idea that evolutionary arguments represent a useful way of selecting
among different Nash equilibria. (See, for example, Foster and Young (1990),
Kandori, Mailath & Rob (1993), or Young (1993).) This has left the impres-
sion in some quarters that an evolutionary approach to economic analysis is
to be merely viewed as another equilibrium selection device, one to be put just
along other alternative approaches which can be found in the game-theoretic
literature. Even though the original focus on coordination games

4Note, in particular, that players do not take advantage of the collusive potential of
repeated-game strategies.




has naturally led recent evolutionary literature towards the analysis of
equilibrium selection issues, this paper also illustrates the point that evolu-
tionary models may go well beyond these issues. In particular, they may
produce interesting behavior which is not a Nash equilibrium.

The rest of the paper is organized as follows. Next section presents the
model, Section 3 undertakes the analysis, Section 4 discusses it.




2 The model

Consider a set of firms N = {1,2,...,n} involved in a market for an homoge-
neous product whose demand is summarized by the inverse-demand function
P : R, — IR,. For every total output Q € IR, supplied to the market,
this function, assumed decreasing, specifies the market-clearing price P(Q)
at which it is sold. All firms are taken to be ez-ante symmetric with an
identical cost function C : IR, — IR, which, for every output ¢; produced
by any firm i = 1,2, ..., n, determines its cost of production C(g;).

For technical reasons, it is assumed that firms have to choose their output
from a common finite grid I' = {0, 6,26, ..., v}, where both § > 0 and v € IV
are arbitrary. The only condition required is that the Walrasian output ¢
belongs to this grid. This output, assumed to exist,” is defined as that which
every firm will produce at a market clearing situation when it takes the
prevailing price as given, i.e., independent of its output choice. Formally, it
is given by the following condition:

P(ng)q—C(g) > P(ng)q—Clg), Vg 2 0. 1)

The evolutionary dynamics is taken to proceed in discrete time, which is
indexed by t = 0,1,2,... At each t, the state of the system may be identified
with the current output profile w(t) = (q1(t), g2(t), .., gn(t)). Thus, the state
space of the system Q is chosen equal to I, where I' is the output grid
introduced above. Associated to any such w(t), the induced profit profile
7(t) = (w1 (t), ma(t), ..., Tn(t)) prevailing at t is defined as follows:

ﬂi(t) = P(zﬁ: q](t)) Qi(t) - C(qi(t))) i=1,2,..,n (2)

At every time t, each firm i € N is assumed to enjoy a common and
independent probability p > 0 of being able to revise its former output
¢:(t — 1). In this event, it is postulated to choose its new output g;(t) among
those which achieved the highest profit in the previous period. More precisely,
it is assumed chosen from the set

5Standard assumption on costs (for example, non-decreasing marginal costs and small
fixed costs) guarantee that a symmetric Walrasian output exists. Provided it exists, the
argument used in the proof of the Theorem below ensures that it is unique




Bt—=1)={qeT:3j€ Nst.g=gq;(t—1) & Vk e N, m;(t—1) > m(t-1)},

according to a firm-independent probability distribution with full support.®

This formulation embodies the customary monotonicity considerations
contemplated by evolutionary theory: adjustment dynamics must be respon-
sive to current differential payoffs. As a model of dynamic learning, 1t may
be viewed as a stylized reflection of bounded rationality. Firms, in the real
world, live in a very complex environment, in which “imitation of success”
could well be a reasonable rule of thumb.” In this respect, it is important
to emphasize that our very simple model of the market environment does
not intend to mimic the real world but is just a tractable “metaphor” of
it. Therefore, firms’ behavioral rules should not be discarded merely on the
grounds that they are too simplistic (or suboptimal) relative to some “obvi-
ous” features of the postulated theoretical framework.

Once firms have adjusted their output as described, firms are also assumed
to “mutate,” at every t, with some common independent probability ¢ > 0. In
this event, they choose some arbitrary output in I', all of them selected with
some given positive probability. The interpretation here is that with small
probability firms either experiment with new choices or they are replaced by
some newcomer which chooses its output from tabula rasa.

The Markov process described is clearly ergodic. Specifically, it is posi-
tively irreducible since, through the mechanism of mutation, every two states
in © are directly connected with positive probability. By a standard result in
the Theory of Markov Chains, it may be ensured to have a unique invariant

8This formulation is much narrower than necessary, and is adopted here for the sake
of expositional simplicity. When B{t — 1) is not a singleton, it seems reasonable to allow
for the possibility that any revising firm whose former output ¢;(t — 1) lies in this set
might continue choosing it with very high probability. If this probability remains short
of one (although arbitrarily high), it is wholly consistent with the full-support condition
contemplated above. But even in the extreme case where such inertia is assumed complete
(ie., the probability of remaining with the previous output is postulated to be one under
those circumstances), the statement of the Theorem can be shown to remain fully valid
without modification. The argument, however, becomes somewhat more complicated, as
outlined in Footnote 9 below.

7As suggested by an anonymous referee, this rule seems intuitively appealing if the
decision makers are rewarded according to their relative performance. (For example,
managers may be promoted depending on whether they earn a profit at least as large
as that of competitors.) Along these lines, note that expression (8) below can be used
to establish that, if firms’ payoff functions are identified with relative profits (say, with
their own profit minus the average), the symmetric Walrasian equilibrium defines a Nash
equilibrium of the induced game.
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distribution which fully summarizes the long-run performance of the process
(in particular, it determines the long-run frequencies with which every state is
observed, with probability one, along any sample path). Since this invariant
distribution obviously depends on € (the mutation probability), it is denoted
by pe € A(Q2), where A(Q2) is the set of probability measures on 2.

11




3 Analysis

Intuitively, one wants to conceive of the mutation probability € as being small.
To capture this idea, the analysis will focus on the behavior of the process
as € becomes small; or more formally, on the limit invariant distribution
w1 = lime o fte. (This limit distribution is easily seen to be a well defined
element of A(Q2) — see below.)

Any state in Q which belongs to the support of p* is usually called a
stochastically stable state. Due to the ergodicity of the process, only those
states which are stochastically stable will be observed a significant fraction
of the time, a.s., along any sample path of the process if the mutation prob-
ability is small. The following result singles out the unique stochastically
stable state of the process.

Theorem Let wg = (4,4, ..,q). Then, p*(wq) = 1.

Proof.  As customary in recent evolutionary literature, the proof shall rely

on the graph-theoretic techniques developed by Freidlin & Wentzel (1984)

and first applied to in the evolutionary literature by Foster & Young (1990).

Particularized to our context, they may be briefly summarized as follows.
For each w € Q, define a w-tree H as a collection of ordered pairs — “ai-

rows” — (w',w") such that:

(i) every o' € Q\ {w} is the first element of exactly one pair, and

(ii) from every w' € Q\{w} there exists a path {(w°,w?), (W', w?), -, (@ W)}

such that w® = ' and w® = w. The set of all such w-trees is denoted by H,,.
Let T, stand for the transition matrix of the postulated evolutionary

dynamics when the mutation probability is €. Define, for each w € §,

rw)= Y I 7, ") (3)

HeMw (o' w")eH

Then, as established by Freidlin & Wentzel (1984), we have:
r(w

Zw’eQ T (w )

Each r(w) is a polynomial in e. Thus, the limit invariant distribution
defined above is well-defined and, therefore, unique. To compute each r(w),
it is useful to introduce a cost function on possible transitions

Me(‘”) =

c:QxQ— NU{0},
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which for each pair (w,w') specifies the minimum number of mutations c(w,w’)

needed for the transition to occur with ensuing positive probability v1a mutation-

free dynamics. That is, if d(w,w') denotes the number of firms whose output
differs between w and ' and Ty stands for the transition matrix correspond-
ing to the mutation-free dynamics, then®
¢(w,w) = min {d(w,w") : To(w", ') > 0}.
w'eQ

The function ¢(') may extended to every path h and every tree H, by simply
adding the cost of all their constituent links. In view of (3), the order of
each 7(w), as a polynomial in €, is simply given by the minimum number of
mutations required along some w-tree, i.e., mingey, ¢(H). Thus, from (4), it
follows that the set of stochastically stable states are precisely those whose
minimum cost trees are themselves minimum across all possible states in .

As customary, a set A C Q is defined to be a limit (or absorbing ) set of
the mutation-free dynamics if this set is closed under finite chain of iterations
of Ty. That is:

() Vw e A, V' ¢ A, To(w,w') = 0.

(ii) Yw,o' € A, 3m € IN s.t. Tg™(w,0) > 0.

Let A be the collection of limit sets of the mutation-free dynamics and
denote a = |A|. Clearly, only states which belong to some limit set can be
stochastically stable. (All other states are just transitory in the mutation-free
dynamics and, therefore, very “infrequent” when the mutation probability
becomes infinitesimal.)

Given any particular output ¢ € T, let wy = (g, ¢, ..., q) represent the state
where all firms choose this output. Such states will be called monomorphic.
Since, obviously, every monomorphic state defines a singleton limit set of Ty,
the proof of the theorem follows directly from the following lemmata.®

8Note that, for the sake of formal simplicity in the argument, the cost function defined
is slightly different from that introduced by, say, Kandori, Mailath & Rob (1993).

9Lemmas 1 and 2 would still apply if (violating the full-support requirement postulated
in Section 2) the adjustment dynamics were to display full inertia when the firm’s output
was one of those formerly leading to highest profits. Under these circumstances, the main
complication in the argument derives from the fact that some limit states of the mutation-
free dynamics may be polymorphic (i.e,, not monomorphic). But even in this case, the
essential point to notice is that any {w} € A different from the symmetric Walrasian state
can still be de-stabilized with just one mutation. If w is monomorphic, the argument is
as in Lemma 1. If it is polymorphic, consider a transition to some other state w’ where
one of the firms previously choosing ¢ mutates to ¢', a different output chosen at w by
some other firm. Without relying on any further mutation, an ensuing transition to some
other stationary w” # w becomes then possible. If w' is a limit state of the mutation-
free dynamics, this is achieved trivially. Otherwise, it must happen that not all outputs

13




Lemma 1 There exisls an wg-tree He H,, such that c(ﬁ) =a—1

Lemma 2 Let A # {w;} be a limit sel of the mutation-free dynamacs Vo €
A and every &-tree H € Hy, it follows that ¢(H) > a.

Proof of Lemma 1. First, notice that a set A C {2 is a limit set of
the mutation-free dynamics if, and only if, it is a singleton consisting of a
monomorphic state. (Thus, A is isomorphic to the set I'.) The “if” part is
obvious from the specification of the process (i.e., if the state is monomorphic,
every strategy revision possibility by any firm will leave the state unchanged).
On the other hand, the “only if” follows from the fact that strategy revision
is a firm-independent phenomenon whose probability density at each t is
assumed to have full support on the respective set B(t —1). Therefore, there
is always positive probability (bounded above zero, since the state space 1s
finite) that all firms adjust their strategy towards the same output.

Consider any ¢q € I" such that g # §. It is next shown that c(wg,w;) = 1.
To verify this claim, it is enough to show that when all firms except one
produce g, the firm that produces § obtains strictly higher profits than the
rest. That is,

P((n—=1)g+q) ¢~ C(@ > P((n—1)g+ 9 q-C(a) (5)
First, it is argued that
[P(ng) — P((n—1)g+ @) ¢ < [P(nd) ~ P((n—L)g+Plg.  (6)

If g < @, [P(ng) — P((n—1)q + §)] is negative since P(-) is decreasing, and
the above inequality obviously follows. If ¢ > § instead, [P(ng) — P((n — 1)g +4)] >
0 but (6) is still preserved.

Now, rewrite (6) as follows:

P(ng)g+ P((n—1)g+q§) g < P(ng)g+P((n—1)g+ ¢4

Substracting the term [C(q) + C(§)] from both sides of the above expression
we obtain:

[P(ng) g — C@)]+[P((n—1)g+q¢)q—Cg)] < (7
[P(ng)q — C(q)] + [P((n— 1)g+4) 4 — C(q)]

chosen at w’ lead to the same profit. Thus, with positive probability, some output choice
present at w will fully disappear from the population. If this happens, the stationary
point eventually attained by the process (without mutation) must be different from w.
Combining this idea with the fact that the Walrasian state still needs two mutations to
become “irreversibly de-stabilized” (cf. Lemma 2), an analogous line of proof can be used
to complete the argument.

~J
~—
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From (1), the first term in the LHS of (7) is no smaller than the first term
in its RHS. Therefore, one must have that the second term in the LHS of
this expression is strictly smaller than its second term in the RHS. But this
is just what (5) expresses, which confirms the desired claim.

It is now verified that there is wy-tree H whose cost ¢(H) =a—1 =,
where recall that v+ 1 is the (arbitrary) cardinality of the set I' To construct
such a tree consider first the v links {(w,,wy) : ¢ # ¢}. The aggregate cost
of these links is v. But then, since monomorphic states are the only limit
sets of the mutation-free dynamics (recall above), the remaining states can
be linked to them in a costless manner to complete a full ws-tree whose total

cost is v. This completes the proof of the Lemma.

Proof of Lemma 2. Let {wg}, ¢ # ¢, be some limit state of the mutation-
free dynamics. Every @-tree H must incur a cost ¢(H) > v, since at least
one mutation is needed to escape every one of the v limit sets {w, : ¢ # ¢}
But in fact this lower bound can be chosen equal to v + 1 since, as presently
shown, at least two mutations are necessary to escape the limit set {w;}. To
show this, it must be confirmed that with just one mutation from state wyg,
Walrasian firms still earn a profit higher than the non-Walrasian firm. That
is, for all ¢ # g,

P((n—1)4+q)¢—C(g) > P((n—-1)d+q)q— C(q). (8)

Again, the fact that P(-) is decreasing implies that:

[P(ng) — P((n—1)§+q)] 4 < [P(ng) = P((n—1)§ +9)] ¢-

Hence substracting the term [C(q) + C(§)] from both sides and re-arranging
terms one obtains:

[P(ng) ¢ — C(]+[P((n—1)d+q)g—C(g)] <
[P(ng)q — C(g)] + [P((n—1)§+q) ¢ — C(4)]

which, relying on (1), implies (8), as claimed.
Combining Lemmas 1 and 2, the proof of the theorem is complete. B

Remark 1 As explained in Lemma 1, only one (suitable) mutation is re-
quired to trigger a transition to the Walrasian monomorphic state w; from
any other stationary state. This implies that the rate at which the stochastic
process will converge to the long-run outcome will be relatively fast (i.e., of
order €, the mutation rate). In particular, it is independent of population
size, in contrast with what is often the case in recent evolutionary models.
(Ellison (1998) is a well-known exception. However, notice that, unlike in
his case, fast convergence here does not depend on interaction being local.)
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4 Discussion

The above result starkly reflects the essential differences between the evolu-
tionary and classical approaches to the analysis of game-theoretic situations.
In the classical approach, a (Nash) equilibrium is defined as a strategic con-
figuration where no player can unilaterally deviate and become better off in
absolute terms, i.e., without any concern for its ensuing relative standing vis
a vis the other players. In contrast, evolutionary models rely exclusively on
relative payoff magnitudes to define equilibrium (or stationary) situations. In
any such situation, the evolutionary approach requires that no player obtains
a payoff lower than some of its opponents. In other words, in the logic of
evolutionary theory, differential payoffs is all what matters in order to evalu-
ate the long-run feasibility of a given configuration. In Biology, this is rooted
in the Darwinian theme of individuals with differential reproduction rates
struggling to prevail in a finite-capacity environment. In the social contexts,
it could also reflect ideas of differential survival stricto sensu, but in general
it is best viewed as responding to forces of learning and imitation.

This “concern” for relative payoffs is what some biologists (see Hamilton
(1970)) have called evolutionary spite. Due to these considerations, it may
be “evolutionarily sound” to undertake deviations from the status quo which
will worsen one’s own payoff if they also decrease even further that of the
opponents. This is precisely what underlies Lemma 1 above. When a firm
deviates from a monomorphic non-Walrasian configuration to producing the
Walrasian output, it may well decrease its payoff in absolute terms (for ex-
ample, if the original state was the Cournot-Nash equilibrium). However, it
will always hurt its competitors even further. Reciprocally, Lemma 2 builds
upon the idea that from a monomorphic Walrasian configuration, no single
firm can ever deviate and become relatively better off.

Of course, for these considerations to be at all relevant the market must
involve a finite number of firms (no matter how large). However, if each given
firm was truly insignificant relative to the market, spiteful behavior would
be pointless. In the limit, as one approaches a context with a progressively
larger number of firms, the room for spiteful considerations also shrinks and,
consequently, it is easy to see that the long-run outcome would approximate
the Cournot-Nash equilibria of the game. This is just a manifestation of
the well-know result that, as the number of firms expands in an oligopolistic
context, the Cournot-Nash equilibria converge to the Walrasian outcome. In
our case, however, this outcome is achieved for any finite number of firms.

Even though the number of active firms is a given parameter which does
not affect our qualitative conclusions, it would be a natural and interesting
extension to have the population size become an endogenous variable of the

16




model. In general, firm survival, entry, and exit, must represent important
ingredients of any evolutionary approach to the study of industrial dynamics.
Such population adjustments should also be instrumental in having firms’
characteristics (e.g., their costs) become endogenously determined by the
evolutionary process. In a sense, the simple model analyzed here may be
viewed as singling out some of the considerations which would be likely to
play a significant role in the “quantity dimension” of such a richer framework.

Let us conclude with a brief re-consideration of one the questions which
initiated the paper: Is it true that, as Friedman (1953) claimed, evolution-
ary forces lead to as-if rational agents 7 In our context, the answer has to
be in the negative if rationality is identified with behaving optimally in the
short-run, given full knowledge of the underlying circumstances. In a finite
oligopoly, Walrasian behavior is not optimal if firms are aware of the char-
acteristics of the game and attempt to maximize their instantaneous payoff.
However, if firms’ objective function is taken to include survival as a primary
consideration (for example, if their intertemporal discount rate is close to
one) and their survival is linked to relative payoffs (e.g., the larger is the
accumulated profit relative to that of the competitors, the stronger the firm
is to launch and/or repel a predatory campaign), it may well be that the ra-
tionality of Walrasian behavior could be recovered. A detailed exploration of
these issues in the context of bankruptcy games (see, for example, Rosenthal
& Rubinstein (1984)) is a task left for future research
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