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1. Introduction: General relativity and evolution

The formulation of general relativity represents a revolutionary
development in the foundations of physics, unifying geometry, inertia, and
gravitation as aspects of a single structure: a Lorentzian metric gμν on a
4-dimensional continuum M known as spacetime. Nonetheless, general rel-
ativity can be viewed as quintessentially classical, the culmination of the
field-theoretic world-view where physics is governed by a closed system of
partial differential equations with a well-posed initial value problem. The re-
markable geometric structure of the theory notwithstanding, the fundamen-
tal problem in general relativity thus remains unchanged from Newtonian
mechanics of point particles: Understand the future from initial conditions.
This is the problem of dynamics.

1.1. The Einstein equations. We review briefly the structure of the
theory. General relativity postulates a 4-dimensional Lorentzian manifold
(M, g)–space-time–which is to satisfy the Einstein equations

(1) Rμν − 1

2
gμνR = 8πTμν .

Here, Rμν , R denote the Ricci and scalar curvature of g, respectively, and
Tμν denotes a symmetric 2-tensor on M termed the stress-energy-momentum
tensor of matter. (Necessary background on Lorentzian geometry to under-
stand the above notation is given in Appendix A.) The equations (1) in of
themselves do not close, but must be coupled to “matter equations” satisfied
by a collection {Ψi} of matter fields defined on M, together with a consti-
tutive relation determining Tμν from {g, Ψi}. These equations and relations
are stipulated by the relevant continuum field theory (electromagnetism,
fluid dynamics, etc.) describing the matter.

Einstein was led to the system (1) in 1915, after a 7-year struggle to in-
corporate gravity into his earlier principle of relativity. In the field-theoretic
formulation of the “Newtonian” theory, gravity was described by the New-
tonian potential φ satisfying the Poisson equation

(2) △φ = 4πμ,

where μ denotes the mass-density of matter. It is truly remarkable that the
constraints of consistency were so rigid that encorporating gravitation re-
quired finally a complete reworking of the principle of relativity, leading to a
theory where Newtonian gravity, special relativity and Euclidean geometry
each emerge as limiting aspects of one dynamic geometrical structure–the
Lorentzian metric–naturally living on a 4-dimensional spacetime continuum.
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A second remarkable aspect of general relativity is that, in contrast to its
Newtonian predecessor, the theory is non-trivial even in the absence of mat-
ter. In that case, we set Tμν = 0 and the system (1) takes the form

(3) Rμν = 0.

The equations (3) are known as the Einstein vacuum equations. Whereas (2)
is a linear elliptic equation, (3) can be seen to form a closed system of non-
linear (but quasilinear) wave equations. Essentially all of the characteristic
features of the dynamics of the Einstein equations are already present in
the study of the vacuum equations (3). This fact is very appealing for the
mathematician who does not wish to dirty his hands with matter! Equations
(3) express a relation of pure geometry. See also the discussion in [55].

1.2. The Cauchy problem. The natural problem for (3) is the Cauchy
problem. In contrast, however, to other non-linear field theories arising in
physics, in the case of general relativity, even formulating the Cauchy prob-
lem requires addressing several conceptual issues (e.g. what is the appropri-
ate notion of initial data, in what sense is (3) hyperbolic?), and these took
a long time to be correctly sorted out. Important advances in this process
include the identification of the harmonic gauge by de Donder [65], the exis-
tence and uniqueness theorems for general quasilinear wave equations in the
1930’s based on work of Friedrichs, Schauder, Sobolev, Petrovsky, Leray and
others, and Leray’s notion of global hyperbolicity [103]. The well-posedness
of the appropriate Cauchy problem for the vacuum equations (3) was finally
formulated and proven in celebrated work of Choquet-Bruhat [30] (1952)
and Choquet-Bruhat–Geroch [32] (1969). We shall give in Section 2 a con-
cise survey of these developments, the precise statement of the existence and
uniqueness theorems and some comments on their proof.

1.3. Explicit solutions: Minkowski, Schwarzschild, Kerr. A much
more elementary approach to understanding a nonlinear theory like (3) than
studying the general Cauchy problem is to identify important explicit solu-
tions, i.e., solutions which can be written in closed form.1 Not surprisingly,
much of the early history of general relativity centred around the discov-
ery and interpretation of such solutions. The simplest explicit solution to
the Einstein vacuum equations (3) is Minkowski space, typically denoted by
R3+1. This solution predates the formulation of general relativity. It was in
fact precisely Minkowski’s discovery [108] that Einstein’s earlier “special”
relativity principle could be described by the metric

−dt2 + dx2 + dy2 + dz2

on the four-dimensional R4 which introduced the spacetime concept and
paved the way for the formulation of general relativity.

The next simplest solution of (3) is the so-called Schwarzschild solution,
written down [131] already in 1916. This is in fact a one-parameter family of

1The traditional terminology in general relativity for such solutions is exact solutions.
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solutions (M, gM ), the parameter M identified with mass. See (15) below
for the metric form. The Schwarzschild family lives as a subfamily in a
larger two-parameter family of explicit solutions (M, gM,a) known as the
Kerr solutions, discussed in Section 3.2. These were discovered only much
later [90] (1963).

When the Schwarzschild solution was first written down in local coordi-
nates, the necessary concepts to understand its geometry had not yet been
developed. It took nearly 50 years from the time when Schwarzschild was
first discovered for its global geometry to be sufficiently well understood so
as to be given a suitable name: Schwarzschild and Kerr were examples of
what came to be known as black hole spacetimes.2 The Schwarzschild and
Kerr solutions also illustrate another feature of solutions to the Einstein
equations, namely, they exhibit geodesic incompleteness. This incomplete-
ness turns out to be a very general feature, as was shown by Penrose in a
celebrated theorem (Theorem 2.6 below). In Schwarzschild, the curvature
blows up along all incomplete geodesics. In Kerr, the origin of incomplete-
ness is purely global. The question of interpreting Penrose’s incompleteness
theorem naturally gives rise to the celebrated weak and strong cosmic cen-
sorship conjectures. We will formulate these in Sections 3.1.5 and 3.2.3.

1.4. Dynamics and the stability problem. Explicit solutions are
suggestive of general features of dynamics, but only if they are stable. This
notion can in turn only be formulated in the context of the Cauchy problem
discussed above: A family of solutions F is stable if the solution arising from
any Cauchy data set sufficiently close to the Cauchy data of a member of F
tends asymptotically to another member of F in a suitable sense.

The stability of Minkowski space was first proven in the monumental
work of Christodoulou and Klainerman [46]. See Section 2.5 for a formula-
tion of this result. The dynamical stability of the Kerr family3 as a family
of solutions to the Cauchy problem for the Einstein equations, even re-
stricted to parameter values near Schwarzschild, i.e. |a| ≪ M , is yet to be
understood and poses an important challenge for the mathematical study
of general relativity in the coming years. See Section 4.1 for a formulation
of this problem. In fact, even the most basic linear properties of waves, for
instance, general solutions of

(4) ✷gψ = 0

on Schwarzschild or Kerr spacetime backgrounds (or more generally, back-
grounds near Kerr) have only recently been understood. In view of the wave-
like features of the Einstein equations (3) (see in particular Section 2.4), this
latter problem should be thought of as a prerequisite for understanding the
non-linear stability problem.

2This name is due to John Wheeler.
3Note that (without restricting to symmetry) one cannot study the stability problem

for Schwarzschild per se. Only the larger Kerr family can be stable.
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1.5. Outline. This article will give an overview of aspects of the evo-
lution problem in general relativity. Section 2 will review general results
on the Cauchy problem, including a discussion of the stability of Minkowski
space and Penrose’s incompleteness theorem. Section 3 will discuss the black
hole concept via the examples of Schwarzschild and Kerr. This discussion
will lead naturally to the formulations of the weak and strong cosmic cen-
sorship conjectures. Section 4 will begin with a formulation of the nonlinear
stability of Kerr conjecture, and then pass to the study of the linear problem
(4) on Schwarzschild, Kerr, and more general spacetime backgrounds near
Kerr. This is the most basic linear problem that must be understood well if
one is to approach the nonlinear stability conjecture. The theorems of Sec-
tions 4.3–4.8 are due to the author in collaboration with Igor Rodnianski.
Finally, Section 5 provides a list of open problems. It is hoped that these
lectures contribute to the point of view that puts general relativity at the
centre of modern developments in partial differential equations of evolution.

2. The Cauchy problem in general relativity

This section will outline the basic framework of the Cauchy problem for
the Einstein equations

(5) Rμν − 1

2
gμνR + Λgμν = 8πTμν .

Here Λ is a constant known as the cosmological constant and Tμν is the
so-called energy momentum tensor of matter. We shall consider mainly the
vacuum case

(6) Rμν = Λgμν ,

where the system closes in itself. In the original formulation of the theory,
Λ = 0. See the discusssion of Section 4.8. The case of matter will be
illustrated by the example of a scalar field.

2.1. The constraint equations. Let Σ be a spacelike hypersurface
in (M, g), with future directed unit timelike normal N . By definition, Σ
inherits a Riemannian metric from g. On the other hand, the so-called
second fundamental form of Σ is defined to be the symmetric covariant 2-
tensor in TΣ given by

K(u, v) = −g(∇uV, N)

where V denotes an arbitrary extension of v to a vector field along Σ, and
∇ here denotes the connection of g. As in Riemannian geometry, one easily
shows that the above indeed defines a tensor on TΣ, and that it is symmetric.

Suppose now (M, g) satisfies (5) with some tensor Tμν . With Σ as
above, let ḡab, ∇̄, Kab denote the induced metric, connection, and second
fundamental form, respectively, of Σ. Let barred quantities and Latin indices



THE EVOLUTION PROBLEM IN GENERAL RELATIVITY 7

refer to tensors, curvature, etc., on Σ, and let Πν
a(p) denote the components

of the pullback map T ∗M → T ∗Σ. It follows that

R̄ + (Ka
a )2 − Ka

b Kb
a = 16π Tμνn

μnν + 2Λ,(7)

∇bK
b
a − ∇aK

b
b = 16π Πν

aTμνn
μ.(8)

To see this, one derives as in Riemannian geometry the Gauss and Codazzi
equations, takes traces, and applies (5).

2.2. Initial data. It is clear that (7), (8) are necessary conditions on
the induced geometry of a spacelike hypersurface Σ so as to arise as a hyper-
surface in a spacetime satisfying (5). As shall be seen immediately below,
they will also be sufficient conditions for solving the initial value problem.

2.2.1. The vacuum case. Let Σ be a 3-manifold, ḡ a Riemannian metric
on Σ, and K a symmetric covariant 2-tensor. Let us call (Σ, ḡ, K) a vacuum
initial data set with cosmological constant Λ if (7)–(8) are satisfied with
Tμν = 0. Note that in this case, equations (7)–(8) refer only to Σ, ḡ, K.

2.2.2. The case of matter. Let us here provide only the case for the
Einstein-scalar field case. Here, the system is (5) coupled with

✷gψ = 0,(9)

Tμν = ∂μψ∂νψ − 1

2
gμν∇αψ∇αψ.(10)

First note that were Σ a spacelike hypersurface in a spacetime (M, g)
satisfying the Einstein-scalar field system with massless scalar field ψ, and
nμ were the future-directed normal, then setting ψ′ = nμ∂μφ, ψ = φ|Σ, it
follows that

Tμνn
μnν =

1

2
((ψ′)2 + ∇̄aψ∇̄aψ),

Πν
aTμνn

μ = ψ′∇̄aψ,

where latin indices and barred quantities refer to Σ and its induced metric
and connection.

This motivates the following: Let Σ be a 3-manifold, ḡ a Riemannian
metric on Σ, K a symmetric covariant 2-tensor, and ψ : Σ → R, ψ′ :
Σ → R functions. The triple (Σ, ḡ, K) is said to be an Einstein-scalar field
initial data set with cosmological constant Λ if (7)–(8) are satisfied replacing
Tμνn

μnν with 1
2((ψ′)2 + ∇̄aψ∇̄aψ), and replacing Πν

aTμνn
μ with ψ′∇̄aψ.

Note again that with the above replacements the equations (7)–(8) do
not refer to an ambient spacetime M.

2.2.3. Asymptotic flatness and the positive mass theorem. The study of
the Einstein constraint equations is non-trivial!

Let us refer in this section to a triple (Σ, ḡ, K) where Σ is a 3-manifold,
ḡ a Riemannian metric, and K a symmetric two-tensor on Σ as an initial
data set, even though we have not specified a particular closed system of
equations. An initial data set (Σ, ḡ, K) is strongly asymptotically flat with
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one end if there exists a compact set K ⊂ Σ and a coordinate chart on Σ � K
which is a diffeomorphism to the complement of a ball in R3, and for which

gab =

(
1 +

2M

r

)
δab + o2(r

−1), kab = o1(r
−2),

where δab denotes the Euclidean metric and r denotes the Euclidean polar
coordinate.

The assumption of asymptotic flatness is an idealization for “isolated
self-gravitating systems”. For the case of cosmology, where spacetime is to
represent the whole universe, see Section 4.8.

In appopriate units, M is the “mass” measured by asymptotic observers,
when comparing to Newtonian motion in the frame δab. On the other hand,
under the assumption of a global coordinate system well-behaved at infin-
ity, M can be computed by integration of the t00 component of a certain
pseudotensor4 added to T 0

0 . In this manifestation, the quantity E = M is
known as the total energy.5 This relation was first studied by Einstein and
is discussed in Weyl’s [144]. If one looks at E for a family of hypersurfaces
with the above asymptotics, then E is conserved.

A celebrated theorem of Schoen-Yau [129, 130] (see also [146]) states

Theorem 2.1. Let (Σ, ḡ, K) be strongly asymptotically flat with one end
and satisfy (7), (8) with Λ = 0, and where Tμνn

μnν , Πν
aTμνn

μ are replaced
by the scalar μ and the tensor Ja, respectively, defined on Σ, such that
moreover μ ≥ √

JaJa. Suppose moreover the asymptotics are strengthened
by replacing o2(r

−1) by O4(r
−2) and o1(r

−2) by O3(r
−3). Then M ≥ 0

and M = 0 iff Σ embeds isometrically into R3+1 with induced metric ḡ and
second fundamental form K.

The assumption μ ≥ √
JaJa holds if the matter satisfies the dominant

energy condition [81]. In particular, it holds for the Einstein scalar field
system of Section 2.2.2, and (of course) for the vacuum case. The statement
we have given above is weaker than the full strength of the Schoen-Yau
result. For the most general assumptions under which mass can be defined,
see [9].

One can define the notion of strongly asymptotically flat with k ends by
assuming that there exists a compact K such that Σ � K is a disjoint union of
k regions possessing a chart as in the above definition. The Cauchy surface
Σ of Schwarzschild of Kerr with 0 ≤ |a| < M , can be chosen to be strongly

4This is subtle: The Einstein vacuum equations arise from the Hilbert Lagrangian
L(g) =

∫
R which is 2nd order in the metric. In local coordinates, the highest order term

is a divergence, and the Lagrangian can thus be replaced by a new Lagrangian which is 1st
order in the metric. The resulting Lagrangian density, however, is no longer coordinate
invariant. The quantity t00 now arises from “Noether’s theorem” [116]. See [44] for a nice
discussion.

5With the above asymptotics, the so-called linear momentum vanishes. Thus, in this
case “mass” and energy are equivalent.
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asymptotically flat with 2-ends. The mass of both ends coincides with the
parameter M of the solution.

The above theorem applies to this case as well for the parameter M
associated to any end. If M = 0 for one end, then it follows by the rigidity
statement that there is only one end.

In the presence of black holes, one expects a strengthening of the lower
bound on mass in Theorem 2.1 to include a term related to the square
root of the area of a cross section of the horizon. Such inequalities were first
discussed by Penrose [119] with the Bondi mass in place of the mass defined
above. All inequalities of this type are often called Penrose inequalities. It
is not clear what this term should be, as the horizon is only identifyable
after global properties of the maximal development have been understood.
Thus, one often replaces this area in the conjectured inequality with the
area of a suitably defined apparent horizon. Such a statement has indeed
been obtained in the so-called Riemannian case (corresponding to K = 0)
where the relevant notion of apparent horizon coincides with that of minimal
surface. See the important papers of Huisken-Ilmanen [86] and Bray [22].

2.3. The maximal development. Let (Σ, ḡ, K) denote a smooth
vacuum initial data set with cosmological constant Λ. We say that a smooth
spacetime (M, g) is a smooth development of initial data if

(1) (M, g) satisfies the Einstein vacuum equations (3) with cosmolog-
ical constant Λ.

(2) There exists a smooth embedding i : Σ → M such that (M, g)
is globally hyperbolic with Cauchy surface i(Σ), and ḡ, K are the
induced metric and second fundamental form, respectively.

The original local existence and uniqueness theorems were proven in 1952
by Choquet-Bruhat [30].6 In modern language, they can be formulated as
follows

Theorem 2.2. Let (Σ, ḡ, K) be as in the statement of the above theorem.
Then there exists a smooth development (M, g) of initial data.

Theorem 2.3. Let M, M̃ be two smooth developments of initial data.
Then there exists a third development M′ and isometric embeddings j :

M′ → M, j̃ : M′ → M̃ commuting with i, ĩ.

Application of Zorn’s lemma, the above two theorems and simple facts
about Lorentzian causality yields:

Theorem 2.4. (Choquet-Bruhat–Geroch [32]) Let (Σ, ḡ, K) denote a
smooth vacuum initial data set with cosmological constant Λ. Then there
exists a unique development of initial data (M, g) satisfying the following

maximality statement: If (M̃, g̃) satisfies (1), (2) with embedding ĩ, then

there exists an isometric embedding j : M̃ → M such that j commutes
with ĩ.

6Then called Fourès-Bruhat.
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The spacetime (M, g) is known as the maximal development of (Σ, ḡ, K).
The spacetime M∩J+(Σ) is known as the maximal future development and
M ∩ J−(Σ) the maximal past development.

We have formulated the above theorems in the class of smooth initial
data. They are of course proven in classes of finite regularity. There has
been much recent work in proving a version of Theorem 2.2 under minimal
regularity assumptions. The current state of the art requires only ḡ ∈ H2+ǫ,
K ∈ H1+ǫ. See [93].

We leave to the reader the task of formulating the analogue of Theo-
rem 2.4 for the Einstein-scalar field system (5), (9), (10), where the notion
of initial data set is that given in Section 2.2.2.

2.4. Harmonic coordinates and the proof of local existence.
The statements of Theorems 2.2 and 2.3 are coordinate independent. Their
proofs, however, require fixing a gauge which determines the form of the
metric functions in coordinates from initial data. The classic gauge is the
so-called harmonic gauge.7 Here the coordinates xμ are required to satisfy

(11) ✷gx
μ = 0.

Equivalently, this gauge is characterized by the condition

(12) gμνΓα
μν = 0.

A linearised version of this coordinate condition was used by Einstein [69]
to predict gravitational waves. It appears that de Donder [65] was the first
to consider harmonic coordinates in general.

The result of Theorem 2.3 actually predates Theorem 2.2, and in some
form was first proven by Stellmacher [133]. Given two developments (M, g),

(M̃, g̃) one constructs for each harmonic coordinates xμ, x̃μ adapted to Σ,
such that gμν = g̃μν , ∂λgμν = ∂λg̃μν along Σ. In these coordinates, the
Einstein vaccum equations can be expressed as

(13) ✷gg
μν = Qμν,αβ

ικλρστ gικ ∂αgλρ ∂βgστ

for which uniqueness follows from general results of Schauder [128]. This
theorem gives in addition a domain of dependence property.8

Existence for solutions of the system (13) with smooth initial data would
also follow from the results of Schauder [128]. This does not immediately
yield a proof of Theorem 2.2, because one does not have a priori the space-
time metric g so as to impose (11) or (12)! The crucial observation is that if
(12) is true “to first order” on Σ, and g is defined to be the unique solution

7Also known as wave coordinates.
8There is even earlier work on uniqueness in the analytic category going back to

Hilbert, appealing to Cauchy-Kovalevskaya. Unfortunately, nature is not analytic; in
particular, one cannot infer the domain of dependence property from those considerations.
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to (13), then (12) will hold, and thus, g will solve (5). Thus, to prove Theo-
rem 2.2, it suffices to show that one can arrange for (12) to be true “to first
order” initially. Choquet-Bruhat [30] showed that this can be done precisely
when the constraint equations (7)–(8) are satisfied with vanishing right hand
side. Interestingly, to obtain existence for (13), Choquet-Bruhat’s proof [30]
does not in fact appeal to the techniques of Schauder [128], but, following
Sobolev, rests on a Kirchhoff formula representation of the solution. Re-
cently, new representations of this type have found applications to refined
extension criteria [94].

An interesting feature of the classical existence and uniqueness proofs
is that Theorem 2.3 requires more regularity than Theorem 2.2. This is
because solutions of (11) are a priori only as regular as the metric. This
difficulty has recently been overcome by Planchon and Rodnianski [121].

2.5. Stability of Minkowski space. The most celebrated global re-
sult on the Einstein equations is the stability of Minkowski space, first proven
in monumental work of Christodoulou and Klainerman [46]:

Theorem 2.5. Let (Σ, ḡ, K) be a strongly asymptotically flat vacuum
initial data set, assumed sufficiently close to Minkowski space in a weighted
sense. Then the maximal development (M, g) is geodesically complete, and
the spacetime approaches Minkowski space (with quantitative decay rates) in
all directions. Moreover, a complete future null infinity I+ can be attached
to the spacetime as an ideal boundary such that J−(I+) = M.

The above theorem also allows one to rigorously define the laws of grav-
itational radiation. These laws are nonlinear even at infinity. Theorem 2.5
led to the discovery of Christodoulou’s memory effect [37].

A new proof of a version of stability of Minkowski space using harmonic
coordinates has been given by Lindblad and Rodnianski [104]. This has now
been extended in various directions in [31]. The original result [46] was ex-
tended to the Maxwell case in the Ph.D. thesis of Zipser [147]. Bieri [11] has
very recently given a proof of a version of stability of Minkowski space un-
der weak asymptotics and regularity assumptions, following the basic setup
of [46].

There was an earlier semi-global result of Friedrich [75] where initial
data were prescribed on a hyperboloidal initial hypersurface meeting I+.

A common misconception is that it is the positivity of mass which
is somehow responsible for the stability of Minkowski space. The results
of [104] for this are very telling, for they apply not only to the Einstein-
vacuum equations, but also to the Einstein-scalar field system of
Section 2.2.2, including the case where the definition of the energy-
momentum tensor (10) is replaced with its negative:

Tμν = −∂μψ∂νψ +
1

2
gμν∂

αψ∂αψ.
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In this latter case, Minkowski space is then not even a local minimizer for
the mass functional in the class of perturbations allowed! Nonetheless, by
the results of [104], Minkowski space is still stable in this context.

Stability of Minkowski space is the only truly global result on the max-
imal development which has been obtained for asymptotically flat initial
data without symmetry. There are a number of important results applica-
ble in cosmological settings, due to Friedrich [75], Andersson-Moncrief [3],
and most recently Ringstrom [126].

Other than this, our current global understanding of solutions to the
Einstein equations (in particular all work on the cosmic censorship conjec-
tures) has been confined to solutions under symmetry. We refer the reader
to the recent review article and book of Rendall [124, 125] for an overview
and many references.

2.6. Penrose’s incompleteness theorem. First a definition: Let
(M, g) be a time-oriented Lorentzian manifold, and S a closed spacelike
2-surface. For any point p ∈ S, define two null mean curvatures trχ and
trχ̄, corresponding to the two future-directed null vectors n(x), n̄(x), where
n, n̄ are normal to S at x. We say that S is trapped if trχ < 0, trχ̄ < 0.
Note that this definition does not depend on the choice of n, n̄.

Theorem 2.6. (Penrose 1965 [118]) Let (M, g) be globally hyperbolic9

with non-compact Cauchy surface Σ, where g is a C2 metric, and let

(14) RμνV
μV ν ≥ 0

for all null vectors V . Then if M contains a closed trapped two-surface S,
it follows that (M, g) is future causally geodesically incomplete.

This is the celebrated Penrose incompleteness theorem.
Note that solutions of the Einstein vacuum equations (3) satisfy (14).

(Inequality (14), known as the null convergence condition, is also satisfied
for solutions to the Einstein equations (1) coupled to most plausible mat-
ter models, specifically, if the energy momentum tensor Tμν satisfies
TμνV

μV ν ≥ 0 for all null V μ.) On the other hand, by definition, the maximal
Cauchy development of initial data is globally hyperbolic (see Section 2.3).
Thus, the theorem applies to the maximal development of (say) asymptot-
ically flat vacuum initial data containing a trapped surface. By Cauchy
stability [81], the presence of a trapped surface in M is clearly “stable” to
perturbation of initial data.

Note finally that there are related incompleteness statements due to
Penrose and Hawking [81] relevant in cosmological (see Section 4.8) settings.

The proof of Theorem 2.6 is a remarkable adaptation of classical com-
parison theorems of Riemannian geometry. Its simplicity, however, comes at
a price. The theorem says nothing about the nature of incompleteness. Is
incompleteness related to the curvature (say) blowing up along some or all

9See Appendix A.
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incomplete geodesics? In the asymptotically flat setting, is the incomplete-
ness observable to a suitable class of “far-away” observers? These question
will lead to Penrose’s celebrated cosmic censorship conjectures. It is more
natural to formulate these when we have some examples at our disposal. See
Sections 3.1.5 and 3.2.3.

3. Schwarzschild and Kerr

This section shall introduce the geometry of the Schwarzschild and Kerr
metrics, the most celebrated explicit solutions to the Einstein vacuum
equations (3).

3.1. The Schwarzschild metric. We now readily associate the
Schwarzschild metric with the black hole concept. It is important to re-
member, however, that the Schwarzschild solution was first discovered in a
thoroughly classical astrophysical setting: it was to represent the vacuum
region outside a star. The black hole interpretation–though in some sense
inevitable–historically only emerged much later. Let us review briefly how
this came about.

3.1.1. Schwarzschild’s stars. The most basic self-gravitating objects are
stars. In the most primitive stellar models, dating from the 19th century,
stars are modeled by a self-gravitating fluid surrounded by vacuum. More-
over, to a first approximation, classically stars are spherically symmetric
and static.

It should not be surprising then that early research on the Einstein
equations (1) would address the question of the existence and structure of
general relativistic stars in the new theory. In view of our above discus-
sion, the most basic problem is to understand spherically symmetric, static
metrics, represented in coordinates (t, r, θ, φ), such that the spacetime has
two regions: In the region r ≤ R0–the interior of the star–the metric should
solve a suitable Einstein-matter system (1) with appropriate matter, and in
the region r ≥ R0–the exterior of the star–the spacetime should be vacuum,
i.e. the metric should solve (3).
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This is the problem first addressed by Schwarzschild [131, 132], already
in 1916. Schwarzschild considered the vacuum region first [131] and arrived
at the one-parameter family of solutions:

(15) g = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2).

Every student of this subject should explicitly check that this solves (3).
In [132], Schwarzschild found interior metrics for the darker shaded

region r ≤ R0 above. In this region, matter is described by a perfect fluid.
We shall not write down explicitly such metrics here, as this would require
a long digression into fluids, their equations of state, etc. See [39]. Suffice
it to say here that the existence of such solutions required that one take the
constant M positive, and the value R0 marking the boundary of the star
always satisfied R0 > 2M . The constant M could then be identified with the
total mass of the star as measured by considering the orbits of far-away test
particles.10 In fact, for most reasonable matter models, static solutions of the
type described above only exist under a stronger restriction on R0 (namely
R0 ≥ 9M/4) now known as the Buchdahl inequality. See [12, 2, 88].

The restriction on R0 necessary for the existence of Schwarzschild’s stars
appears quite fortuitous: It is manifest from the form (15) that the com-
ponents of g are singular if the (t, r, θ, φ) coordinate system for the vacuum
region is extended to r = 2M . But a natural question arises, namely, what
happens if one does away completely with the star and tries simply to con-
sider the expression (15) for all values of r? This at first glance would appear
to be the problem of understanding the gravitational field of a “point par-
ticle” with the particle removed.

For much of the history of general relativity, the degeneration of the
metric functions at r = 2M , when written in these coordinates, was under-
stood as meaning that the gravitational field should be considered singu-
lar there. This was the famous Schwarzschild “singularity”.11 Since “sin-
gularities” were considered “bad” by most pioneers of the theory, various
arguments were concocted to show that the behaviour of g where r = 2M is
to be thought of as “pathological”, “unstable”, “unphysical” and thus, the
solution should not be considered there. The constraint on R0 related to
the Buchdahl inequality seemed to give support to this point of view. See
also [70].

3.1.2. The maximal extension of Synge and Kruskal. It turns out that
the above point of view was incorrect, essentially at every level. Let us for
now, however, avoid the question of the physical interpretation of such pure
vacuum solutions with the star removed, and simply ask the purely mathe-
matical question of how big can be the underlying manifold on which such a

10Test particles in general relativity follow timelike geodesics of the spacetime metric.
11Let the reader keep in mind that there is a good reason for the quotation marks

here and for those that follow.
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solution lives. This leads to the notion of a “maximally extended” solution.
In the case of Schwarzschild, this will be a spacetime which, although not
to be taken as a model for anything per se, can serve as a reference for the
formulation of all important concepts in the subject.

Synge was the first to consider these issues systematically and construct
“maximal extensions” of the original Schwarzschild metric in a paper [136]
of 1950. A more concise approach to such a construction was given in
a celebrated 1960 paper [98] of Kruskal. Indeed, let M be the manifold
with differentiable structure given by U × S2 where U is the open subset
T 2 − R2 < 1 of the (T, R)-plane. Consider the metric g

g =
32M3

r
e−r/2M (−dT 2 + dR2) + r2dσ2

S

where r is defined implicitly by

T 2 − R2 =
(
1 − r

2M

)
er/2M .

The region U is depicted below:

This is a spherically symmetric 4-dimensional Lorentzian manifold satisfying
(3) such that the original Schwarzschild metric is isometric to the region
R > |T | (where t is given by tanh

(
t

4M

)
= T/R). It can be shown now that

(M, g) is inextendible as a C2 (in fact C0) Lorentzian manifold, that is to
say, if

i : (M, g) → (M̃, g̃)

is an isometric embedding, where (M̃, g̃) is a C2 (in fact C0) 4-dimensional

Lorentzian manifold, then necessarily i(M) = M̃.
The above property defines the sense in which our spacetime is “maxi-

mally” extended, and thus, (M, g) is called sometimes maximally-extended
Schwarzschild. In later sections, we will often just call it “the Schwarzschild
solution”.

Note that the form of the metric is such that the light cones are as
depicted. Thus, one can read off much of the causal structure by sight.

It may come as a surprise that in maximally-extended Schwarzschild,
there are two regions which are isometric to the original r > 2M
Schwarzschild region. Alternatively, a Cauchy surface will have topology
S2 × R with two asymptotically flat ends. This suggests that this spacetime
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is not to be taken as a physical model. We will discuss this later on. For now,
let us simply try to understand better the global geometry of the metric.

3.1.3. The Penrose diagram of Schwarzschild. There is an even more
useful way to represent the above spacetime. First, let us define null co
ordinates U = T − R, V = T + R. These coordinates have infinite range.
We may rescale them by u = u(U), v = v(V ) to have finite range. (Note the
freedom in the choice of u and v!) The domain of (u, v) coordinates, when
represented in the plane where the axes are at 45 and 135 degrees with the
horizontal, is known as a Penrose diagram of Schwarzschild. Such a Penrose
diagram is depicted below12:

In more geometric language, one says that a Penrose diagram corre-
sponds to the image of a bounded conformal map

M/SO(3) = Q → R
1+1,

where one makes the identification v = t + x, u = t − x where (t, x) are
now the standard coordinates R1+1 represented in the standard way on the
plane. We further assume that the map preserves the time orientation, where
Minkowski space is oriented by ∂t. (In our application, this is a fancy way of
saying that u′(U), v′(V ) > 0). It follows that the map preserves the causal
structure of Q. In particular, we can “read off” the radial null geodesics of
M from the depiction.

Now we may turn to the boundary induced by the causal embedding.
We define I± to be the boundary components as depicted.13 These are
characterized geometrically as follows: I+ are limit points of future-directed
null rays in Q along which r → ∞. Similarly, I− are limit points of past-
directed null rays for which r → ∞. We call I+ future null infinity and I−

past null infinity. The remaining boundary components i0 and i± depicted
are often given the names spacelike infinity and future (past) timelike infinity,
respectively.

12Note that (u, v) can indeed be chosen so that the r = 0 boundaries are horizontal
lines as depicted.

13Our convention is that open endpoint circles are not contained in the intervals
they bound, and dotted lines are not contained in the regions they bound, whereas solid
lines are.
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In the physical application, it is important to remember that asymptot-
ically flat14 spacetimes like our (M, g) are not meant to represent the whole
universe,15 but rather, the gravitational field in the vicinity of an isolated
self-gravitating system. I+ is an idealization of far away observers who
can receive radiation from the system. In this sense, “we”–as astrophysi-
cal observers of stellar collapse, say–are located at I+. The ambient causal
structure of R1+1 allows us to talk about J−(p) ∩ Q for p ∈ I+.16 And this
will lead us to the black hole concept. Therein lies the use of the Penrose
diagram representation.

The systematic use of the conformal point of view to represent the global
geometry of spacetimes is one of the many great contributions of Penrose
to general relativity. These representations can be traced back to the well-
known “spacetime diagrams” of special relativity, promoted especially by
Synge [137]. The “formal” use of Penrose diagrams in the sense above goes
back to Carter [25], in whose hands these diagrams became a powerful tool
for determining the global structure of all classical black hole spacetimes. It
is hard to overemphasize how important it is for the student of this subject
to become comfortable with these representations.

3.1.4. The black hole concept. With Penrose diagram notation, one can
now understand the black hole concept. First an important remark: In
Schwarzschild, the boundary component I+ enjoys a limiting affine com-
pleteness. More specifically, normalising a sequence of ingoing radial null
vectors by parallel transport along an outgoing geodesic meeting I+, the
affine length of the null geodesics generated by these vectors, parametrized
by their parallel transport (restricted to J−(I+)), tends to infinity:

This has the interpretation that far-away observers in the radiation zone
can observe for all time. (This is in some sense related to the presence of
timelike geodesics near infinity of infinite length, but the completeness is best
formulated with respect to I+.) A similar statement clearly holds for I−.

Given this completeness property, let us define now the black hole region
to be Q � J−(I+), and the white hole region to be Q � J+(I−). Thus, the

14See Appendix 2.2.3 for a definition.
15The study of that problem is what is known as “cosmology”. See Section 4.8.
16Refer to Appendix A for J±.
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black hole corresponds to those points of spacetime which cannot “send sig-
nals” to future null infinity, or, in the physical interpetation, to far-away ob-
servers who (in view of the completeness property!) nonetheless can observe
radiation for infinite time.

The future boundary of J−(I+) in Q (alternatively characterized as
the past boundary of the black hole region) is a null hypersurface known
as the future event horizon, and is denoted by H+. Exchanging past and
future, we obtain the past event horizon H−. In maximal Schwarzschild,
{r = 2M} = H+ ∪ H−. The subset J−(I+) ∩ J+(I−) is known as the
domain of outer communications.

Let us consider at the case of Minkowski space for comparison. Note that
this is again described by (15) but with M = 0. Here, Q = R3+1/SO(3) is a
manifold with boundary since the SO(3) action has a locus of fixed points,
the centre of symmetry. A Penrose diagram of Minkowski space is easily
seen to be:

Here I+ and I− are characterized as before, and enjoy the same com-
pleteness property as in Schwarzschild. One reads off immediately that
J−(I+) ∩ Q = Q, i.e. R3+1 does not contain a black hole under the above
definitions.

It was mentioned before that maximal Schwarzschild is not to be con-
sidered “physical”. The simplest “physical” model of a black hole spacetime
are provided by the celebrated Oppenheimer-Snyder solutions [117]. Hav-
ing now the notation of Penrose diagrams, one can concisely describe their
geometry without giving explicit forms of the metric. Like Schwarzschild’s
original picture of the gravitational field of a spherically symmetric star,
these solutions involve a region r ≤ R0 solving (1) and r ≥ R0 satisfying
(3). The matter is described now by a pressureless fluid which is initially
assumed homogeneous in addition to being spherically symmetric. The as-
sumption of staticity is however dropped, and for appropriate initial condi-
tions, it follows that R0(t

∗) → 0 with respect to a suitable time coordinate
t∗. (In fact, the Einstein equations can be reduced to an o.d.e. for R0(t

∗).)
One says that the star “collapses”.17 A Penrose diagram of such a solution

17Note that R0(t
∗) → 0 does not mean that the star collapses to “a point”, merely

that the spheres which foliate the interior of the star shrink to 0 area. The limiting singular
boundary is a spacelike hypersurface as depicted.
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(to the future of a Cauchy hypersurface) can be seen to be of the form:

The lighter shaded region is isometric to a subset of maximal Schwarzschild.
In particular, the completeness property of I+ holds, and as before, we
identify the black hole region to be Q � J−(I+).

In contrast to maximal Schwarzschild, where the initial configuration is
unphysical (the Cauchy surface has two ends and topology R×S2), here the
initial configuration is entirely plausible: the Cauchy surface is topologically
R3, and its geometry is not far from Euclidean space.

It is traditional in general relativity to “think” Oppenheimer-Snyder
but “write” maximally-extended Schwarzschild. In particular, one often
imports terminology like “collapse” in discussing Schwarzschild, and one
often reformulates our definitions replacing I+ with one of its connected
components, that is to say, we will often write J−(I+) ∩ J+(I+) meaning
J−(I+

A )∩J+(I−
A ), etc. In any case, the precise relation between the two solu-

tions should be clear from the above discussion. In view of Cauchy stability
results [81], sufficiently general theorems about the Cauchy problem on
maximal Schwarzschild lead immediately to such results on Oppenheimer-
Snyder. One should always keep this relation in mind.

The above definition of black hole for the Schwarzschild and Oppen-
heimer -Snyder metrics should be thought of as a blueprint for how to define
the notion of black hole region in general. That is to say, to define the black
hole region, one needs

(1) some notion of future null infinity I+,
(2) a way of identifying J−(I+), and
(3) some characterization of the “completeness” of I+.18

If I+ is indeed complete, we can define the black hole region as

“the complement in M of J−(I+)”.

For spherically symmetric spacetimes arising as solutions of the Cauchy
problem for (1), one can show that there always exists a Penrose diagram,
and thus, a definition can be formalised along precisely these lines (see [53]).

18The characterization of completeness can be formulated for general asymptoti-
cally flat vacuum space times using the results of [46]. This formulation is due to
Christodoulou [42]. Previous attempts to formalise these notions rested on “asymptotic
simplicity” and “weak asymptotic simplicity”. See [81]. Although the qualitative pic-
ture suggested by these notions appears plausible, the detailed asymptotic behaviour of
solutions to the Einstein equations turns out to be much more subtle, and Christodoulou
has proven [43] that these notions cannot capture even the simplest generic physically
interesting systems.
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For spacetimes without symmetry, however, even defining the relevant as-
ymptotic structure so that this structure is compatible with the theorems
one is to prove is a main part of the problem. This has been accomplished
only in the case of perturbations of Minkowski space. In particular, as we
have seen in Section 2.5, Christodoulou and Klainerman [46] have shown
that spacetimes arising from perturbations of Minkowski initial data have a
complete I+ in a well defined sense, whose past can be identified and is in-
deed the whole spacetime. That is to say, small perturbations of Minkowski
space cannot form black holes.

3.1.5. Negative mass Schwarzschild and weak cosmic censorship. Sch-
warzschild’s stars required taking M > 0. But what happens when one
takes M < 0 in (15)? This defines so-called negative mass Schwarzschild.
The metric element (15) for such M is now regular for all r > 0. The limiting
singular behaviour of the metric at r = 0 is in fact essential, i.e. one can
show that along inextendible incomplete geodesics the curvature blows up.
Thus, one immediately arrives at a maximally extended solution which can
be seen to have Penrose diagram:

Note that in contrast to the case of R3+1, the boundary r = 0 is here depicted
by a dotted line denoting (according to our conventions) that it is not part
of Q!

The above spacetime is interpreted as having a “naked singularity”. The
traditional way of describing this in the physics literature is to remark that
the “singularity” B = {r = 0} is “visible” to I+, i.e., J−(I+) ∩ B �= Ø.
From the point of view of the Cauchy problem, however, this characteri-
zation is meaningless because the above maximal extension is not globally
hyperbolic, i.e. it is not uniquely characterized by an appropriate notion of
initial data.19 From the point of view of the Cauchy problem, one must not
consider maximal extensions but the maximal Cauchy development of initial
data, which by definition is globally hyperbolic (see Theorem 2.4 of Appen-
dix 2). Considering an inextendible spacelike hypersurface Σ as a Cauchy
surface, the maximal Cauchy development of Σ would be the darker shaded

19See Appendix A for the definition of global hyperbolicity.
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region depicted below:

The proper characterization of “having a naked singularity”, from the point
of view of the darker shaded spacetime, is that its I+ is incomplete. Let us
take this as a definition. Of course, this example does not say anything about
the dynamic formation of naked singularities, because the inital data hyper-
surface Σ is already in some sense “singular”, for instance, it is geodesically
incomplete, and the curvature blows up along incomplete geodesics. The dy-
namic formation of a naked singularity from regular, complete initial data
would be pictured by:

where we are to understand also in the above that I+ is incomplete. We have

Conjecture. (Weak cosmic censorship) For generic asympotically
flat20 initial data for “reasonable” Einstein-matter systems, the maximal
Cauchy development “possesses a complete I+”.21

Christodoulou [40, 42] has shown this conjecture to be true for the
Einstein-scalar field system under spherical symmetry. On the other hand,
he has also shown [38] that the assumption of genericity is necessary by
explicitly constructing solutions with incomplete I+ and Penrose diagram
as depicted above.

In light of the above conjecture, the story of the Oppenheimer-Snyder
solution and its role in the emergence of the black hole concept does have
an interesting epilogue, however. Recall that in the Oppenheimer-Snyder
solutions, the region r ≤ R0, in addition to being spherically symmetric,
is homogeneous. It turns out that by considering spherically symmetric
initial data for which the “star” is no longer homogeneous, Christodoulou
has proven that one can arrive at spacetimes for which “naked singularities”
form as in the above Penrose diagram [34]. Moreover, it is shown in [34] that

20See Section 2.2.3 for a formulation of this notion. Asymptotically flat implies in
particular complete.

21This conjecture is originally due to Penrose [119]. The present formulation is taken
from Christodoulou [42].
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this occurs for an open subset of initial data within spherical symmetry.
Thus, the statement of weak cosmic censorship is violated for this matter
model when the conjecture is restricted to spherically symmetric data. The
fact that in the Oppenheimer-Snyder solutions black holes formed appears
thus to be a rather fortuitous accident! Nonetheless, we should note that
the failure of weak cosmic censorship in this context is believed to be due to
the inappropriateness of the pressureless model, not as indicative of actual
phenomena. Hence, the restriction on the matter model to be “reasonable”
in the formulation of the weak cosmic censorship conjecture.

3.2. The Kerr metric. What about other vacuum solutions?
We have the so-called Birkhoff’s theorem:

Theorem 3.1. Let (M, g) be a spherically symmetric solution to the
vacuum equations (3). Then it is locally isometric to a Schwarzschild solu-
tion with parameter M , for some M ∈ R.

Thus one must look for solutions with less symmetry. It was not until
1963 that Roy Kerr discovered that the Schwarzschild family is a subfamily
of a two parameter family of axisymmetric stationary vacuum metrics now
known as the Kerr family.

3.2.1. Boyer-Lindquist coordinates. The Kerr metric is a 2-parameter
family of vacuum metrics first discovered [90] in 1963. The parameters are
called mass M and specific angular momentum a, i.e. angular momentum
per unit mass. In so-called Boyer-Lindquist local coordinates, the metric
element takes the form:

−

⎛
⎝1 − 2M

r
(
1 + a2 cos2 θ

r2

)

⎞
⎠ dt2 +

1 + a2 cos2 θ
r2

1 − 2M
r + a2

r2

dr2 + r2

(
1 +

a2 cos2 θ

r2

)
dθ2

+ r2

⎛
⎝1 +

a2

r2
+

(
2M

r

)
a2 sin2 θ

r2
(
1 + a2 cos2 θ

r2

)

⎞
⎠ sin2 θ dφ2

− 4M
a sin2 θ

r
(
1 + a2 cos2 θ

r2

) dt dφ.

The vector fields ∂t and ∂φ are Killing. We say that the Kerr family is

stationary and axisymmetric.22 Traditionally, one denotes

Δ = r2 − 2Mr + a2.

If a = 0, the Kerr metric clearly reduces to Schwarzschild (15).
Maximal extensions of the Kerr metric were first constructed by Carter

[26]. For parameter range 0 ≤ |a| < M , these maximal extensions have
black hole regions and white hole regions bounded by future and past event

22There are various conventions on the meaning of the words “stationary” and
“axisymmetric” depending on the context. Let us not worry about this here. . .
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horizons H± meeting at a bifurcate sphere. The above coordinate system
is defined in a domain of outer communications, and the horizon will corre-
spond to the limit r → r+, where r+ is the larger positive root of Δ = 0, i.e.

r+ = M +
√

M2 − a2.

Since the motivation of our study is the Cauchy problem for the Einstein
equations, it is more natural to consider not maximal extensions, but maxi-
mal developments of complete initial data. (See Section 2.) In the Schwarz-
schild case, the maximal development of initial data on a Cauchy surface
Σ as described previously coincides with maximally-extended Schwarzschild.
In Kerr, if we are to take an asymptotically flat (with two ends) hypersurface
in a maximally extended Kerr for parameter range 0 < |a| < M , then its
maximal development will have a smooth boundary in maximally-extended
Kerr. This boundary is what is known as a Cauchy horizon. We have al-
ready discussed this phenomenon in Section 3.2.3 in the context of strong
cosmic censorship. The maximally extended Kerr solutions are quite bizarre,
in particular, they contain closed timelike curves. This is of no concern to
us here, however. By definition, for us the term “Kerr metric (M, gM,a)”
will always denote the maximal development of a complete asymptotically
flat hypersurface Σ, as above, with two ends. One can depict the Penrose-
diagramatic representation of a suitable two-dimensional timelike slice of
this solution as below:

With this convention in mind, we note that the dependence of gM,a on
a is smooth in the range 0 ≤ |a| < M . In particular, Kerr solutions with
small |a| ≪ M can be viewed as close to Schwarzschild.

One can see this explicitly in the subregion of interest to us by passing
to a new system of coordinates. Define

t∗ = t + t̄(r)

φ∗ = φ + φ̄(r)
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where

dt̄

dr
(r) = (r2 + a2)/Δ2.

dφ̄

dr
(r) = a/Δ.

(These coordinates are often known as Kerr-star coordinates.) These coor-
dinates are regular across H+ � H−.23 We may finally define a coordinate
rSchw = rSchw(r, a) such that which takes [r+,∞) → [2M, ∞) with smooth
dependence in a. In particular, if we define Σ0 by D = {t∗ = 0}, and define
R = D ∩ {t∗ ≥ 0}, and fix rSchw, t∗, φ∗ Schwarzschild coordinates, then
the metric functions of gM,a written in terms of these coordinates as defined
previously depend smoothly on a for 0 ≤ |a| < M .

3.2.2. The ergoregion. We note that ∂t = ∂t∗ in the intersection of the
coordinate systems. We immediately note that ∂t is spacelike on the horizon,
except where θ = 0, π, i.e. on the axis of symmetry. Note that we shall often
abuse notation (as we just have done) and speak of ∂t on the horizon or at
θ = 0, where of course the (r, t, θ, φ) coordinate system breaks down, and
formally, this notation is meaningless.

In general, the part of the domain of outer communications plus horizon
where ∂t is spacelike is known as the ergoregion. It is bounded by a hyper-
surface known as the ergosphere. The ergosphere meets the horizon on the
axis of symmetry θ = 0, π.

The ergosphere allows for a particle “process”, originally discovered by
Penrose [119], for extracting energy out of a black hole. This came to be
known as the Penrose process. In his thesis, Christodoulou [33] discovered
the existence of a quantity–the so-called irreducible mass of the black hole–
which he showed to be always nondecreasing in a Penrose process. The
analogy between this quantity and entropy led later to a subject known
as “black hole thermodynamics” [8, 10]. This is currently the subject of
intense investigation from the point of view of high energy physics.

The presence of the ergoregion will be one of the fundamental difficulties
for understanding the stability problem in Section 4.

3.2.3. The Cauchy horizon and strong cosmic censorship. Following [44],
we have called Theorem 2.6 an “incompleteness theorem” and not a “singu-
larity theorem” as is more standard. The reason is precisely the situation
illustrated by Kerr. Note that the Kerr solution satisfies the assumptions
of Theorem 2.6 and thus is future causally geodesically incomplete. The
maximal development is however extendible as a C∞ Lorentzian manifold
such that every incomplete causal geodesic of the original spacetime enter
the extension! Thus, in the context of Kerr initial data, the statement of
Theorem 2.6 does not result in local breakdown of the metric, but rather in

23Of course, one again needs two coordinate systems in view of the breakdown of
spherical coordinates. We shall suppress this issue in the discussion that follows.
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the breakdown of globally hyperbolicity itself, and thus predictability of the
future from initial data.24

The boundary of (M, g) in such extensions corresponds to CH+ above.
This boundary is known as the Cauchy horizon. From the philosophical
point of view, the existence of Cauchy horizons is quite problematic. Ob-
servers crossing them are not destroyed, yet the theory can no longer predict
their future. The purpose of the strong cosmic censorship conjecture is to
protect the theory from this predicament:

Conjecture. (Strong cosmic censorship) The maximal develop-
ment of generic asymptotically flat initial data for the vacuum Einstein
equations is inextendible as a suitably regular Lorentzian metric.25

One can paraphrase this conjecture as saying that whenever one has ge-
odesic incompleteness, it is due to a local breakdown of the metric. In view
of the above comments, for this conjecture to be true, the behaviour of the
Kerr metric described above would have to be unstable to perturbation.26

Thus, if by the term “singularity” one wants to suggest “breakdown of the
metric”, it is only a positive resolution of the strong cosmic censorship con-
jecture that would in particular (generically) make Theorem 2.6 into a true
“singularity theorem”.

Finally, let us note that the question of what is the proper notion of
inextendibility in the formulation of the above conjecture may be a subtle
one. A spherically symmetric analogue of the behaviour exhibited by Kerr
is given by the so-called Reissner-Nordström metric, which is a solution to
the Einstein-Maxwell equations with metric given in local coordinates by

−(1 − 2M/r + e2/r2)dt2 + (1 − 2M/r + e2/r2)−1dr2 + r2(dθ2 + sin2 θdφ2),

and global structure given precisely by the Penrose diagram of the previous
page. In particular, as in the Kerr metric, this spacetime can be extended
to a larger spacetime across a smooth Cauchy horizon. One can study the

24Further confusion can arise from the fact that “maximal extensions” of Kerr con-
structed with the help of analyticity are still geodesically incomplete and inextendible, in
particular, with the curvature blowing up along all incomplete causal geodesics. Thus,
one often talks of the “singularities” of Kerr, referring to the ideal singular boundaries
one can attach to such extensions. One must remember, however, that these extensions
are of no relevance from the point of view of the Cauchy problem, and in any case, their
singular behaviour in principle has nothing to do with Theorem 2.6.

25As with weak cosmic censorship, the original formulation of this conjecture is due
to Penrose [120]. The formulation given here is from [42]. Related formulations are given
in [49, 110]. One can also pose the conjecture for compact initial data, and for various
Einstein-matter systems. It should be emphasized that “strong cosmic censorship” does
not imply “weak cosmic censorship”. For instance, one can imagine a spacetime with
Penrose diagram as in the last diagram before the formulation of the latter conjecture,
with incomplete I

+, but still inextendible across the null “boundary” emerging from the
centre.

26Note that the instability concerns a region “far inside” the black hole interior. The
black hole exterior is expected to be stable as in the formulation of Section 4.1.
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stability of the Reissner-Nordström Cauchy horizon by viewing it as a special
solution of the Einstein-Maxwell-scalar field system: (1),

(16) dF = 0, ∇μFμν = 0, ✷gψ = 0

(17)

Tμν =
1

4π

(
FμλFνρg

λρ − 1

4
gμνFαβFγδg

αγgβδ

)
+ ∂μψ∂νψ − gμνg

αβ∂αψ∂βψ

where ψ = 0. We have in particular [51, 52]

Theorem 3.2. For the system (1), (16), (17) restricted to spherical sym-
metry, there exists an open set of asymptotically flat initial data such that
the causal structure of the spherically symmetric quotient Q of the maximal
development coincides with that of Reissner-Nordstrom in a neighborhood
of the future limit point of I+. Moreover, the maximal development is ex-
tendible as a C0 Lorentzian metric.

Thus, the formulation of strong cosmic censorship of [42] does not hold in
this context. It is shown in addition [52] that under a plausible assumption
on the behaviour of ψ on H+, the above extensions cannot be C2. Thus, a
weaker formulation of strong cosmic censorship may still hold.

4. The black hole stability problem

4.1. The nonlinear stability of Kerr conjecture. The central open
problem in this direction is the nonlinear stability of the Kerr family. Let
us give here a rough formulation.

Conjecture. (Nonlinear stability of Kerr) Let (Σ, ḡ, K) be a vac-
uum initial data set (see Section 2.2) sufficiently close (in a weighted sense)
to the initial data on a Cauchy hypersurface in the Kerr solution (M, gM,a)
for some parameters 0 ≤ |a| < M . Then the maximal vacuum development
(M, g) possesses a complete null infinity I+ such that the metric restricted
to J−(I+) approaches a Kerr solution (M, gMf ,af

) in a uniform way with
quantitative decay rates, where Mf , af are near M , a respectively.

Let us make some remarks concerning the above statement. Under the
assumptions of the above conjecture, (M, g) certainly contains a trapped
surface S by Cauchy stability [81]. By Penrose’s incompleteness theorem
(Theorem 2.6), this implies that (M, g) is future causally geodesically in-
complete. By the methods of the proof of Theorem 2.6, it is easy to see that
S ∩ J−(I+) = Ø. Thus, as soon as I+ is shown to be complete, it would
follow that the spacetime has a black hole region.27

In the spherically symmetric analogue of this problem where the Einstein
equations are coupled with matter, or the 5-dimensional triaxial Bianchi IX
vacuum problem discussed in Section 5, the completeness of null infinity can

27Let us also remark the obvious fact that the above conjecture implies in particular
that weak cosmic censorship holds in a neighborhood of Kerr data.
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be inferred easily without detailed understanding of the geometry [53, 56].
One can view this as an “orbital stability” statement. In this spherically
symmetric case, the asymptotic stability can then be studied a posteriori,
as in [57, 84]. This latter problem is much more difficult.

In the case of Conjecture 4.1, in contrast to the symmetric cases men-
tioned above, one does not expect to be able to show any weaker stabil-
ity statement than that of asymptotic stability with decay rates, as stated
above. Note that it is only the Kerr family as a whole–not the Schwarzschild
subfamily–which is expected to be asymptotically stable: Choosing a = 0
certainly does not imply that af = 0. On the other hand, if |a| ≪ M , then
by the formulation of the above conjecture, it would follow that |af | ≪ Mf .
It is with this in mind that we will consider |a| ≪ M case later in this article.

4.2. Introduction to ✷gψ = 0. In the remainder of this article, we
will concern ourselves solely with linear wave equations on black hole back-
grounds, specifically, the scalar linear homogeneous wave equation

(18) ✷gψ = 0.

The study of the solutions to such equations is motivated by the stability
problem for the black hole spacetimes themselves as solutions to (3). The
equation (18) can be viewed as a poor man’s linearisation of (3), neglecting
tensorial structure. Other linear problems with an even closer relationship
to the study of the Einstein equations will be discussed in Section 5.

Proposition 4.2.1. Let (M, g) be globally hyperbolic and Σ a Cauchy
hypersurface. If ψ ∈ H2

loc(Σ), ψ′ ∈ H1
loc(Σ), then there is a unique ψ with

ψ|S ∈ H2
loc(S), nSψ|S ∈ H1

loc(S), for all spacelike S ⊂ M, satisfying

✷gψ = 0, ψ|Σ = ψ, nΣψ|Σ = ψ′,

where nΣ denotes the future unit normal of Σ. For m ≥ 1, if ψ ∈ Hm+1
loc ,

ψ′ ∈ Hm
loc, then ψ|S ∈ Hm+1

loc (S), nSψ|S ∈ Hm
loc(S). Moreover, if ψ1,ψ

′
1,

and ψ2,ψ
′
2 are as above and ψ1 = ψ2, ψ′

1 = ψ′
2 in an open set U ⊂ Σ, then

ψ1 = ψ2 in M � J±(Σ � clos(U)).

This proposition follows from estimates of energy type. Let us review the
geometric origin of such estimates. The geometric picture will be essential
for global applications.

Let ψ be a solution of

(19) ✷gψ = 0

on a Lorentzian manifold (M, g). Define

(20) Tμν(ψ) = ∂μψ∂νψ − 1

2
gμν∂

αψ∂αψ.
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We call Tμν the energy-momentum tensor of ψ.28 Note the symmetry
property

Tμν = Tνμ.

The wave equation (19) implies

(21) ∇μTμν = 0.

Given a vector field V μ, we may define the associated currents

(22) JV
μ (ψ) = V νTμν(ψ)

(23) KV = V πμνT
μν(ψ)

where Xπ is the deformation tensor defined by

Xπμν =
1

2
∇(μXν) =

1

2
(LXg)μν .

The identity (21) gives

∇μJV
μ (ψ) = KV (ψ).

In this context, we call V a vector field multiplier.
Note that JV

μ (ψ) and KV (ψ) both depend only on the 1-jet of ψ, yet
the latter is the divergence of the former. Applying the divergence theorem,
this allows one to relate quantities of the same order.

The existence of a tensor Tμν(ψ) satisfying (21) follows from the fact
that equation (19) derives from a Lagrangian of a specific type. These is-
sues were first systematically studied by Noether [116]. For more general
such Lagrangian theories, two currents Jμ, K with ∇μJμ = K, both de-
pending only on the 1-jet, but not necessarily arising from Tμν as above, are
known as compatible currents. These have been introduced and classified by
Christodoulou [41].

Higher order estimates arise by commuting the wave equation with other
vector fields, and then applying multipliers as above.

Proposition 4.2.2. Let ψ be a solution of the equation of the scalar
equation

✷gψ = f,

and W be a vectorfield. Then

✷g(Wψ) = W (f) − 2 W παβ∇α∇βψ − 2
(
2(∇α W παμ) − (∇μ

W πα
α)

)
∇μψ.

In this context we call W a vector field commutator.
We may obtain thus divergence identities for JV (W1 . . . Wpψ) where V

is an arbitrary multiplier and Wi are a string of commutators, relating quan-
tities of the same order. When V is timelike and Σ spacelike then at every
point

JV
μ (ξ)nμ

Σ ∼
3∑

i=0

(∂iξ)
2,

28Note that this is the same expression that appears on the right hand side of (5) in
the Einstein-scalar field system. See Section 2.2.2.
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where the constants depend on the choice of V . This allows one to obtain
control of positive definite quantities.

Proposition 4.2.1 can be obtained applying an arbitrary smooth timelike
V as a multiplier, and commuting with Wi a basis for the tangent space. For
global results, careful choice of multipliers and commutators is paramount.
The choices will be very related to geometric features of spacetime.

4.2.1. The Kay–Wald boundedness theorem. We begin with the case of
Schwarzschild.

We will be interested in understanding the global behaviour of ψ in the
exterior of the black hole and white hole regions, up to and including the
horizons. It is enough of course to understand the behaviour in the region

D .
= clos

(
J−(I+

A ) ∩ J+(I−
A )

)
∩ Q

where I±
A denote a pair of connected components of I±, respectively, with

a common limit point.29

Moreover, it suffices to assume that Σ ∩ H− = Ø, and that we are
interested in the behaviour in J−(I+) ∩ J+(Σ). Note that in this case, by
the domain of dependence property of the above proposition, we have that
the solution in this region is determined by ψ|D∩Σ, ψ′|D∩Σ. In the case where
Σ itself is spherically symmetric, then its projection to Q will look like:

If Σ is not itself spherically symmetric, then its projection to Q will in
general have open interior. Nonetheless, we shall always depict Σ as above.

The most basic problem is to obtain uniform boundedness for ψ. This
is resolved in the celebrated:

Theorem 4.1. Let (M, g) be Schwarzschild and Σ a Cauchy hyper-
surface, and let ψ, ψ, ψ′ be as in Proposition 4.2.1 with ψ ∈ Hm+1

loc (Σ),
ψ′ ∈ Hm

loc(Σ) for a sufficiently high m, and such that ψ, ψ′ decay suitably
at i0. Then there is a constant D depending on ψ, ψ′ such that

|ψ| ≤ D

in D.

29We will sometimes be sloppy with distinguishing between π−1(p) and p, where
π : M → Q denotes the natural projection, distinguishing J−(p) and J−(p)∩Q, etc. The
context should make clear what is meant.
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The original proof of this theorem is due to Wald [141] and Kay–
Wald [89]. The completely standard “easy part” of the proof is a clas-
sic application of vector field commutators and multipliers, together with
elliptic estimates and the Sobolev inequality. We review this below.

Let ϕt denote the 1-parameter group of diffeomorphisms generated by
the Killing field T = ∂t. Define Στ = ϕt(Σ ∩ D). We have that {Στ}τ≥0

defines a spacelike foliation of

R .
= ∪τ≥0Στ .

Define

H+(0, τ)
.
= H+ ∩ J+(Σ0) ∩ J−(Στ ),

and

R(0, τ)
.
= ∪0≤τ̄≤τΣτ̄ .

Let nμ
Σ denote the future directed unit normal of Σ, and let nμ

H define a null
generator of H+, and give H+ the associated volume form.

Let JT
μ (ψ) denote the energy current defined by applying the vector field

T as a multiplier, i.e.

JT
μ (ψ) = Tμν(ψ)T ν = (∂μψ∂νψ − 1

2
gμν∂

αψ∂αψ)T ν

with its associated current KT (ψ),

KT (ψ) = T πμνTμν(ψ) = ∇μJT
μ (ψ).

Since T is Killing, and ∇μTμν = 0, it follows that KT (ψ) = 0, and the
divergence theorem applied to JT

μ in the region R(0, τ) yields

(24)

∫

Στ

JT
μ (ψ)nμ

Στ
+

∫

H+(0,τ)
JT

μ (ψ)nμ
H =

∫

Σ0

JT
μ (ψ)nμ

Σ0
.

See

Since T is future-directed causal in D, we have

(25) JT
μ (ψ)nμ

Σ ≥ 0, JT
μ (ψ)nμ

H ≥ 0.

Let us fix an r0 > 2M . It follows from (24), (25) that
∫

Στ ∩{r≥r0}
JT

μ (ψ)nμ
Στ

≤
∫

Σ0

JT
μ (ψ)nμ

Σ0
.
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As long as −g(T, nΣ0
) ≤ B for some constant B, we have in fact

B(r0, Σ)((∂tψ)2 + (∂rψ)2 + |∇/ ψ|2) ≥ JT
μ (ψ)nμ ≥ b(r0, Σ)((∂tψ)2

+ (∂rψ)2 + |∇/ ψ|2).
Here, |∇/ ψ|2 denotes the induced norm on the group orbits of the SO(3)
action, with ∇/ the gradient of the induced metric on the group orbits. We
thus have

(26)

∫

Στ ∩{r≥r0}
(∂tψ)2 + (∂rψ)2 + |∇/ ψ|2 ≤ B(r0, Σ)

∫

Σ0

JT
μ (ψ)nμ

Σ0
.

We may now commute the equation with T : Since [✷, T ] = 0, if ✷gψ = 0
then ✷g(Tψ) = 0. We thus obtain an estimate

(27)

∫

Στ ∩{r≥r0}
(∂2

t ψ)2 + (∂r∂tψ)2 + |∇/ ∂tψ|2 ≤ B(r0, Σ)

∫

Σ0

JT
μ (Tψ)nμ

Σ0
.

By elliptic estimates and a Sobolev estimate, it follows that if ψ(x) → 0 as
x → i0, then (27) implies that for r ≥ r0,

(28) |ψ|2 ≤ B(r0, Σ)

(∫

Σ0

JT
μ (ψ)nμ

Σ0
+

∫

Σ0

JT
μ (Tψ)nμ

Σ0

)
,

for solutions ψ of ✷gψ = 0.
This concludes the “easy part” of Theorem 4.1. Unfortunately, the con-

stant B(r0, Σ) → ∞ as r0 → 2M . Nonetheless, Kay and Wald were able to
obtain boundedness all the way up to H+ by a number of clever arguments:
The degeneration of (28) at the event horizon was overcome by applying

the estimate to an auxiliary ψ̂ constructed from ψ by inverting an elliptic
operator associated to the so-called optical metric, and commuting also with
a basis Ωi for the so(3) Lie algebra. This inversion required however that
ψ vanish at H+ ∩ H−. This unphysical assumption was then overcome by
appealing to a discrete symmetry of maximal Schwarzschild, interchanging
the two ends. See [63] for details.

Unfortunately, the arguments above rely on so much of the special struc-
ture of the Schwarzschild solution, that they are not at all robust to per-
turbation. Moreover, the Kay and Wald proof cannot obtain estimates
for higher transversal derivatives to the horizon. To eventually go beyond
Schwarzschild, it is clear that one must first understand Theorem 4.1 in a
more robust way.

4.3. The red-shift and a new proof of boundedness. We give in
this section a new proof of boundedness which overcomes the shortcomings
outlined above. In essence, the previous proof limited itself by relying solely
on Killing fields as multipliers and commutators. It turns out that there
is an important physical aspect of Schwarzschild which can be captured
by other vector-field multipliers and commutators which are not however
Killing. This is related to the celebrated red-shift effect.
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4.3.1. The classical red-shift. The red-shift effect is one of the most cel-
ebrated aspects of black holes. It is classically described as follows: Suppose
two observers, A and B are such that A crosses the event horizon and B
does not. If A emits a signal at constant frequency as he measures it, then
the frequency at which it is received by B is “shifted to the red”.

The consequences of this for the appearance of a collapsing star to far-
away observers were first explored in the seminal paper of Oppenheimer-
Snyder [117]. For a nice discussion, see also the classic textbook [109].

The red-shift effect as described above is a global one, and essentially
depends only on the fact that the proper time of B is infinite whereas the
proper time of A before crossing H+ is finite. In the case of the Schwarzschild
black hole, there is a “local” version of this red-shift: If B also crosses the
event horizon but at advanced time later than A:

then the frequency at which B receives at his horizon crossing time is shifted
to the red by a factor depending exponentially on the advanced time differ-
ence of the crossing points of A and B.

The exponential factor is determined by the so-called surface gravity, a
quantity that can in fact be defined for all so-called Killing horizons. This
localised red-shift effect depends only on the positivity of this quantity. Let
us explore how we can analytically “capture” this red-shift effect in the
Schwarzschild geometry.

4.3.2. The redshift effect as a multiplier and commutator estimate. It
turns out that a “vector field multiplier” version of this localised red-shift
effect is captured by the following

Proposition 4.3.1. There exists a ϕt-invariant smooth future-directed
timelike vector field N on R and a positive constant b > 0 such that

KN (ψ) ≥ bJN
μ (ψ)Nμ

on H+ for all solutions ψ of ✷gψ = 0.

We can moreover clearly choose this N so that N = T far from H+.
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The localised red-shift effect also has a “vector field commutator”
manifestation:

Theorem 4.2. Under the assumptions of the above theorem, let Y =
N − T . If ψ satisfies ✷gψ = 0, then for all k ≥ 1.

(29) ✷g(Y
kψ) = bk+1Y

k+1ψ +
∑

0≤|m|≤k+1, 0≤m4<k+1

cmEm1

1 Em2

2 Tm3Y m4ψ

on H+, where bk > 0.

The positivity of b and bk is related to the surface gravity. In fact,
analogues of the above propositions hold for general stationary spacetimes
with a Killing horizon with positive surface gravity.

It turns out that one can interpolate the estimate (26) of Section 4.2.1
with the estimate for JN arising from Proposition 4.3.1. Essential use is
made of the positive definite spacetime term KN (ψ) near H+. This yields
an estimate for

(30)

∫

Σ(τ)
JN

μ (ψ)nμ
Σ.

Note that, in contrast with
∫
Σ(τ) JT

μ (ψ)nμ
Σ, the integrand of (30) does not

degenerate on H+. Higher order estimates can be obtained by commuting
with T and in addition with Y above. The most dangerous error term on
the right hand side of (29) is the first, and the positivity of bk ensures that
it arises with a favourable sign.

4.3.3. A robust boundedness statement. We obtain finally (see [63])

Theorem 4.3. Let Σ be a Cauchy hypersurface for Schwarzschild such
that Σ∩H− = Ø, let Σ0 = D∩Σ, let Στ denote the translation of Σ0, let nΣτ

denote the future normal of Στ , and let R = ∪τ≥0Στ . Assume −g(nΣ0
, T )

is uniformly bounded. Then there exists a constant C depending only on Σ0

such that the following holds. Let ψ, ψ, ψ′ be as in Proposition 4.2.1, with
ψ ∈ Hk+1

loc (Σ), ψ′ ∈ Hk
loc(Σ), and

∫

Σ0

JT
μ (Tmψ)nμ

Σ0
< ∞

for 0 ≤ m ≤ k. Then

|∇Στ ψ|Hk(Στ ) + |nψ|Hk(Στ ) ≤ C
(
|∇Σ0ψ|Hk(Σ0) + |ψ′|Hk(Σ0)

)
.

If k ≥ 1, then we have
∑

0≤m≤k−1

∑

m1+m2=m,mi≥0

|(∇Σ)m1nm2ψ|

≤ C

(
lim
x→i0

|ψ| + |∇Σ(0)ψ|Hk(Σ0) + |ψ′|Hk(Σ0)

)

in R.
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Note that (∇Σ)m1nm2ψ denotes an m1-tensor on the Riemannian mani-
fold Στ , and |·| on the left hand side of the last inequality above just denotes
the induced norm on such tensors.

4.3.4. Perturbing? The validity of Proposition 4.3.1 rests only on the
fact that the horizon H+ is Killing with positive surface gravity κ > 0.

Theorem 4.4. Let g be another asymptotically flat metric on R such
that H+ is a Killing horizon with positive surface gravity and ∂t is Killing
and causal. Then the statement of Theorem 4.3 holds.

In particular, it holds for instance for the Reissner-Nordström metrics in
the entire nonextremal range 0 ≤ |Q| < M . The point of the above theorem,
however, is that the spherical symmetry plays no role in its proof.

Unfortunately, the above proof cannot apply in Kerr, not on account of
its lack of spherical symmetry, but on account of the fact that the Killing
field ∂t becomes spacelike in R. This discussion may suggest that one should
not expect an argument proving only boundedness for Kerr, that is to say,
a “stable argument” would of necessity need to prove more than bounded-
ness, i.e. decay. We shall see later that there is a sense in which this is
true and a sense in which it is not! But before exploring this, let us under-
stand how one can go beyond boundedness and prove quantitative decay for
waves on Schwarzschild itself. It is quantitative decay after all that we must
understand if we are to understand nonlinear problems.

4.4. Quantitative decay for the wave equation on Schwarz-
schild. Quantitative decay rates are central for our understanding of non-
linear problems. To discuss energy decay for solutions ψ of ✷gψ = 0 on

Schwarzschild, one must consider a different foliation. Let Σ̃0 be a spacelike
hypersurface terminating on null infinity and define Σ̃τ by translation.

The main result of this section is the following

Theorem 4.5. There exists a constant C depending only on Σ̃0 such that
the following holds. Let ψ ∈ H4

loc, ψ′ ∈ H3
loc, and suppose limx→i0 ψ = 0

and

E1 =
∑

|(α)|≤3

∑

Γ={Ωi}

∫

t=0
r2Jn0

μ (Γ(α)ψ)nμ
0 < ∞
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where n0 denotes the unit normal of the hypersurface {t = 0}. Then

(31)

∫

Σ̃τ

JN
μ (ψ)nμ

Σ̃τ
≤ CE1τ

−2,

where N is the vector field of Section 4.3.2. Now let ψ ∈ H7
loc, ψ′ ∈ H6

loc,
limx→i0 ψ = 0, and suppose

E2 =
∑

|(α)|≤6

∑

Γ={Ωi}

∫

t=0
r2Jn0

μ (Γ(α)ψ)nμ
0 < ∞.

Then

(32) sup
Σ̃τ

|ψ| ≤ C
√

E2τ
−1, sup

Σ̃τ

|rψ| ≤ C
√

E2τ
−1/2.

The fact that (31) “loses derivatives” is a fundamental aspect of this
problem related to the trapping phenomenon, to be discussed in what fol-
lows, although the precise number of derivatives lost above is wasteful.

We can also express the pointwise decay in terms of advanced and re-
tarded null coordinates u and v. Defining v = (t+ r∗) = (t+ r +2M log(r −
2M)), u = (t − r∗) = (t − r − 2M log(r − 2M)), we have

(33) |ψ| ≤ CE2(|v| + 1)−1, |rψ| ≤ C(r0)E2u
− 1

2 ,

where the first inequality applies in D ∩ clos({t ≥ 0}), whereas the second
applies only in D ∩ {t ≥ 0} ∩ {r ≥ r0}, with C(r0) → ∞ as r0 → 2M . Note
that, as in Minkowski space, the first inequality of (33) is sharp as a uniform
decay rate in v.

4.4.1. The X-multiplier and integral decay. The zero’th step in the proof
of Theorem 4.5 is an estimate for a spacetime integral whose integrand
should control the quantity

(34) χ JN
μ (ψ)Nμ

where χ is a ϕt-invariant weight function such that χ degenerates only at
infinity and N is as in Section 4.3.2. Estimates of the spacetime integral
(34) have their origin in the classical virial theorem, which in Minkowski
space essentially arises from applying the energy identity to the current JV

with V = ∂
∂r .

Naively, one might expect to be able to obtain an estimate of the form
say

(35)

∫

R̃(0,τ)
χJN

μ (ψ)Nμ ≤ B

∫

Σ̃0

JN
μ nμ

Σ̃0

,

for such a χ. It turns out that there is a well known high-frequency obstruc-
tion for the existence of an estimate of the form (35) arising from trapped null
geodesics. This problem has been long studied in the context of the wave
equation in Minkowski space outside of an obstacle, where the analogue
of trapped null geodesics are straight lines which reflect off the obstacle’s
boundary in such a way so as to remain in a compact subset of space. In
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Schwarzschild, one can easily infer from a continuity argument the existence
of a family of null geodesics with i+ as a limit point.30 But in view of the
integrability of geodesic flow, one can in fact understand all such geodesics
explicitly.

It turns out that the hypersurface r = 3M is spanned by null geodesics.
This timelike hypersurface r = 3M is traditionally called the photon sphere.
From every point in the R, there is a codimension-one subset of future
directed null directions whose corresponding geodesics approach r = 3M ,
and all other null geodesics either cross H+ or meet I+.

We may capture the trapping by constructing a current JX whose associ-
ated current KX is positive semidefinite in highest derivatives, degenerating
precisely at the photon sphere.

The construction is delicate. See [61]. A suitable current turns out
to be:

JX

μ (ψ) = eJN
μ (ψ) + JXa

μ (ψ) +
∑

i

JXb,wb

μ (Ωiψ)

− 1

2

r(f b)′

f b(r − 2M)

(
r − 2M

r2
− (r∗ − α − α1/2)

α2 + (r∗ − α − α1/2)2

)
Xb

μψ2.

Here, N is as in Section 4.3.2, r∗ = r + 2M log(r − 2M) − 3M − 2M log M ,
Xa = fa∂r∗ , Xb = f b∂r∗ ,

fa = − Ca

αr2
+

ca

r3
,

f b =
1

α

(
tan−1 r∗ − α − α1/2

α
− tan−1(−1 − α−1/2)

)
,

wb =
1

8

(
(f b)′ + 2

r − 2M

r2
f b

)
,

and for general X, w, the JX,w, KX,w are the “modified” currents

JX,w
μ = JX

μ (ψ) +
1

8
w∂μ(ψ2) − 1

8
(∂μw)ψ2

KX,w = ∇μJX,w
μ ,

and e, Ca, ca, α are positive parameters which must be chosen accordingly.
With these choices, one can show (after some computation) that the

divergence KX = ∇μJX
μ controls in particular

(36)

∫

S2

KX(ψ) ≥ bχ

∫

S2

JN
μ (ψ)nμ,

where χ is non-vanishing but decays (polynomially) as r → ∞. Note that in
view of the normalisation of the r∗ coordinate, Xb = 0 precisely at r = 3M .

30This can be thought of as a very weak notion of what it would mean for a null
geodesic to be trapped from the point of view of decay results with respect to the folia-
tion Σ̃τ .
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The quantity KX controls in fact also second order derivatives of ψ but this
control degenerates precisely at r = 3M .

On the other hand, we can control the spacelike boundary terms by the
the energy we have shown to be bounded

(37) |JX

μ (ψ)nμ

Σ̃τ
| ≤ B

(
JN

μ (ψ)nμ

Σ̃τ
+

3∑

i=1

JN
μ (Ωiψ)nμ

Σ̃τ

)

and the boundary term on the event horizon H+ by

(38) −JX

μ (ψ)nμ
H+ ≤ B

(
JT

μ (ψ)nμ
H+ +

3∑

i=1

JT
μ (Ωiψ)nμ

H+

)
.

Applying the divergence theorem in R(τ ′, τ) and the previous Theo-
rem 4.3, one obtains the integrated decay estimate:

(39)

∫

R̃(τ ′,τ)
χJN

ν (ψ)Nμ ≤ B

∫

Σ̃(τ ′)

(
JN

μ (ψ) +

3∑

i=1

JN
μ (Ωiψ)

)
nμ

Σ̃τ ′

.

4.4.2. The Z-multiplier. How does the estimate (39) assist us to prove
decay?

Recall that energy decay can be proven in Minkowski space with the
help of the so-called Morawetz current. Let

(40) Z = u2∂u + v2∂v

and define

JZ,w
μ (ψ) = JZ

μ (ψ) +
tr∗(1 − 2M/r)

2r
ψ∂μψ − r∗(1 − 2M/r)

4r
ψ2∂μt.

Setting M = 0, this corresponds precisely to the current introduced by
Morawetz [111] to prove decay for scalar waves outside a convex obstacle
on Minkowski space.

It is interesting to note that this current is C0 but not C1 across H+ ∪ H−.
To understand how one hopes to use this current, let us recall the situ-

ation in Minkowski space. There, the signifance of (40) arises since it is a
conformal Killing field. Setting M = 0, r∗ = r in the above one obtains31

(41)

∫

t=τ
JZ,w

μ nμ ≥ 0,

(42) KZ,w = 0.

31The reason for introducing the 0’th order terms is because the wave equation is not
conformally invariant. It is remarkable that one can nonetheless obtain positive definite
boundary terms, although a slightly unsettling feature is that this positivity property (41)
requires looking specifically at constant t = τ surfaces and integrating.



38 M. DAFERMOS

The inequality (41) remains true in the Schwarzschild case and one can
obtain exactly as before

(43)

∫

t=τ
JZ,w

μ nμ ≥ b

∫

t=τ
u2(∂uψ)2+v2(∂vψ)2+

(
1 − 2M

r

)
(u2+v2)|∇/ ψ|2.

(In fact, we have dropped positive 0’th order terms from the right hand side
of (43), which will be useful for us later on in Section 4.4.3.) Note that away
from the horizon, we have that

(44)

∫

t=τ
JZ,w

μ nμ ≥ b(r0, R)τ2

∫

{t=τ}∩{r0≤r≤R}
JN

μ nμ.

Thus, if the left hand side of (44) could be shown to be bounded, this would

prove the first statement of Theorem 4.5 where Σ̃τ is replaced however with
{t = τ} ∩ {r0 ≤ r ≤ R}.

In the case of Minkowski space, the boundedness of the left hand side of
(43) follows immediately by (42) and the energy identity

(45)

∫

t=τ
JZ,w

μ +

∫

0≤t≤τ
KZ,w =

∫

t=0
JZ,w

μ

as long as the data are suitably regular and decay so as for the right hand
side above to be bounded. For Schwarzschild, one cannot expect (42) to
hold, and this is why we have introduced the X-related currents.

First the good news: There exist constants r0 < R such that

KZ,w ≥ 0

for r ≤ r0, and in fact

(46) KZ,w ≥ b
t

r3
ψ2

for r ≥ R and some constant b. These terms have the “right sign” in the
energy identity (45). In {r0 ≤ r ≤ R}, however, the best we can do is

−KZ,w ≤ B t (|∇/ ψ|2 + |ψ|2).
Remarkable, the above inequality together with (39) is sufficient to

obtain the energy decay statement (31) by a dyadic iteration argument.
See [59, 63] for details.

4.4.3. Pointwise estimates. To derive pointwise decay for ψ itself, we
should remember that we have in fact dropped a good 0’th order term from
the estimate (43). In particular, we have also

∫

t=τ
JZ,w

μ (ψ)nμ ≥ b

∫

{t=τ}∩{r≥r0}
(τ2r−2 + 1)ψ2.

From this and the previously derived bounds, pointwise decay can be shown
easily by applying Ωi as commutators and Sobolev estimates. See [59] for
details.
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4.4.4. Comments and further reading. The origin of the use of vector
field multipliers of the type X and Z for proving decay for solutions of the
wave equation goes back to Morawetz. The first results in the direction of
the estimate (39) were in the pioneering work of Laba and Soffer [101] and
Blue and Soffer [16]. See also [1, 17, 18, 106].

The decay result Theorem 4.5 was obtained in our [59]. A result yielding
similar decay away from the horizon (but weaker decay along the horizon)
was proven independently in a nice paper of Blue and Sterbenz [19]. State-
ment (32) of Theorem 4.5 has been generalised to the Maxwell case by
Blue [15].

The best previously known results on general solutions of the wave equa-
tion were non-quantitative decay type statements, scattering, and asymp-
totic completeness. See [139, 67, 68, 5, 4, 114]. These type of statements
are typically insensitive to the amount of trapping. See the related discus-
sion of Section 4.4.6, where the statement of Theorem 4.5 is compared to
non-quantitative statements heuristically derived in the physics literature.

4.4.5. Perturbing? Use of the JN current “stabilises” the proof of The-
orem 4.5 with respect to considerations near the horizon. There is, how-
ever, a sense in which the above argument is still fundamentally attached
to Schwarzschild. The approach taken to derive the multiplier estimate (36)
depends on the structure of the trapping set, in particular, the fact that
trapped null geodesics approach a codimension-1 subset of spacetime, the
photon sphere. Overcoming the restrictiveness of this approach is the funda-
mental remaining difficulty in extending these techniques to Kerr, as will be
accomplished in Section 4.6. Precise implications of this fact for multiplier
estimates are discussed further in [1].

4.4.6. Aside: Quantitative vs. non-quantitative results and the heuristic
tradition. The study of wave equations on Schwarzschild has a long his-
tory in the physics literature, beginning with the pioneering paper of Regge
and Wheeler [123]. These studies have all been associated with showing
“stability”.

A seminal paper is that of Price [122]. There, insightful heuristic ar-
guments were put forth deriving the asymptotic tail of each spherical har-
monic ψℓ evolving from compactly supported initial data, suggesting that
for r > 2M ,

(47) ψℓ(r, t) ∼ Cℓt
−(3+2ℓ).

These arguments were later extended by Gundlach et al. [78] to suggest

(48) ψℓ|H+ ∼ Cℓv
−(3+2ℓ), rψℓ|I+ ∼ C̄ℓu

−(2+ℓ).

Another approach to these heuristics via the analytic continuation of the
Green’s function was followed by [28]. The latter approach in principle
could perhaps be turned into a rigorous proof, at least for solutions not
supported on H+ ∩ H−. See [105, 97] for just (47) for the ℓ = 0 case.
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Statements of the form (47) are interesting because, if proven, they would
give the fine structure of the tail of the solution. However, it is important to
realise that statements like (47) in of themselves would not give quantitative
bounds for the size of the solution at all later times in terms of initial data. In
fact, the above heuristics do not even suggest what the best such quantitative
result would be, they only give a heuristic lower bound on the best possible
quantitative decay rate in a theorem like Theorem 4.5.

Let us elaborate on this further. For fixed spherical harmonic, by com-
pactness a statement of the form (47) would immediately yield some bound

(49) |ψℓ|(r, t) ≤ D(r, ψℓ)t
−3,

for some constant D depending on r and on the solution itself. It is not
clear, however, what the sharp such quantitative inequality of the form (49)
is supposed to be when the constant is to depend on a natural quantity
associated to data. It is the latter, however, which is important for the
nonlinear stability problem.

There is a setting in which a quantitative version of (49) has indeed
been obtained: The results of [57] (which apply to the nonlinear problem
where the scalar field is coupled to the Einstein equation, but which can be
specialised to the decoupled case of the ℓ = 0 harmonic on Schwarzschild)
prove in particular that

(50) |nΣτ ψ0| + |ψ0| ≤ CǫD(ψ,ψ′)τ−3+ǫ, |rψ0| ≤ CD(ψ,ψ′)τ−2

where Cǫ depends only on ǫ, and D(ψ,ψ′) is a quantity depending only on
the initial JT energy and a pointwise weighted C1 norm. In view of the
relation between τ , u, and v, (50) includes also decay on the horizon and
null infinity as in the heuristically derived (48). The fact that the power 3
indeed appears in both in the quantitative (50) and in (49) may be in part
accidental. See also [13].

For general solutions, i.e. for the sum over spherical harmonics, the situa-
tion is even worse. In fact, a statement like (47) a priori gives no information
whatsoever of any sort, even of the non-quantitative kind. It is in princi-
ple compatible with lim supt→∞ ψ(r, t) = ∞.32 It is well known, moreover,
that to understand quantitative decay rates for general solutions, one must
quantify trapping. This is not, however, captured by the heuristics leading
to (47), essentially because for fixed ℓ, the effects of trapping concern an
intermediate time interval not reflected in the tail. It should thus not be
surprising that these heuristics do not address the fundamental problem at
hand.

Another direction for heuristic work has been the study of so-called
quasi-normal modes. These are solutions with time dependence e−iωt for ω
with negative imaginary part, and appropriate boundary conditions. These

32Of course, given the quantitative result of Theorem 4.3 and the statement (47), one
could then infer that for each r > 2M , then limt→∞ φ(r, t) = 0, without however a rate.



THE EVOLUTION PROBLEM IN GENERAL RELATIVITY 41

occur as poles of the analytic continuation of the resolvent of an associated
elliptic problem, and in the scattering theory literature are typically known
as resonances. Quasinormal modes are discussed in the nice survey article
of Kokkotas and Schmidt [95]. Rigorous results on the distribution of reso-
nances have been achieved in Bachelot–Motet-Bachelot [7] and Sá Barreto-
Zworski [127]. The asymptotic distribution of the quasi-normal modes as
ℓ → ∞ can be thought to reflect trapping. On the other hand, these modes
do not reflect the “low-frequency” effects giving rise to tails. Thus, they too
tell only part of the story. See, however, the case of Schwarzschild-de Sitter
in Section 4.8.

Finally, we should mention Stewart [134]. This is perhaps the first
clear discussion in the physics literature of the relevance of trapping for
the Schwarzschild metric and the difference between quantitative and non-
quantitative decay rates. It is interesting to compare Section 3 of [134] with
what has now been proven: Although the predictions of [134] do not quite
match the situation in Schwarzschild (they are in particular incompatible
with (47)), they apply well to the Schwarzschild-de Sitter case developed in
Section 4.8.

4.5. Boundedness for axisymmetric black holes. We now turn to
the problem of perturbing the Schwarzschild metric and proving bound-
edness and decay for the wave equation on the backgrounds of such per-
turbed metrics. Let us recall our dilemma: The boundedness argument of
Section 4.2 required that T remains causal everwhere in the exterior. In
view of the comments of Section 4.3.4, this is clearly unstable. On the
other hand, the decay argument of Section 4.4 requires understanding the
trapped set and in particular, uses the fact that in Schwarzschild, a certain
codimension-1 subset of spacetime–the photon sphere–plays a special role.
Again, as discussed in Section 4.4.5, this special structure is unstable.

It turns out that nonetheless, these issues can be addressed and both
boundedness (see Theorem 4.6) and decay (see Theorem 4.8) can be proven
for the wave equation on suitable perturbations of Schwarzschild including
slowly rotating Kerr. As we shall see, the boundedness proof (See Sec-
tion 4.5) turns out to be more robust and can be applied to a larger class
of metrics–but it too requires some insight from the Schwarzschild decay
argument! The decay proof (see Section 4.6) will require us to restrict to
exactly Kerr spacetimes.

We will derive a rather general boundedness theorem for a class of axi-
symmetric stationary black hole exteriors near Schwarzschild. The result
(Theorem 4.6) will include slowly rotating Kerr solutions with parameters
|a| ≪ M . We have already explained in what sense the Kerr metric is
“close” to Schwarzschild in the region R. Let us note that with respect
to the coordinates rSchw, t∗, φ∗, θ in R, then ∂t∗ and ∂φ∗ are Killing for
both the Schwarzschild and the Kerr metric. The class of metrics which will
concern us here are metrics defined on R such that the metric functions are
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close to Schwarzschild in a suitable sense,33 and ∂t∗ , ∂φ∗ are Killing, where
these are defined with respect to the ambient Schwarzschild coordinates.

There is however an additional geometric assumption we shall need,
and this is motivated by a geometric property of the Kerr spacetime, to be
described immediately below.

4.5.1. A geometric property of the horizon. Let us here remark a geo-
metric property of the Kerr spacetime itself which turns out to be of utmost
importance in what follows: Let V denote a null generator of H+. Then

(51) V ∈ Span{∂t∗ , ∂φ∗}.

There is a deep reason why this is true. For stationary black holes with non-
degenerate horizons, a celebrated argument of Hawking retrieves a second
Killing field in the direction of the null generator V . Thus, if ∂t∗ and ∂φ∗

span the complete set of Killing fields, then V must evidently be in their
span.

In fact, choosing V accordingly we have

(52) V = ∂t∗ + (a/2Mr+)∂φ∗ .

4.5.2. The boundedness theorem. Besides closeness to Schwarzschild, (51)
is the crucial assumption we shall need. Our boundedness theorem is the
following:

Theorem 4.6. Let g be a metric defined on the differentiable manifold
R with stratified boundary H+ ∪ Σ0, and let ∂t∗ and ∂φ∗ be Schwarzschild
Killing fields. Assume

(1) g is sufficiently close to Schwarzschild in an appropriate sense
(2) ∂t∗ and ∂φ∗ are Killing with respect to g
(3) H+ is null with respect to g and ∂t∗ and ∂φ∗ span the null generator

of H+.

Then the statement of Theorem 4.3 holds.

See [62] for the precise formulation of the closeness assumption 1.

Corollary 4.1. The result applies to Kerr, and to the more general
Kerr-Newman family (solving Einstein-Maxwell), for parameters |a| ≪ M
(and also |Q| ≪ M in the Kerr-Newman case).

Thus, we have quantitative pointwise and energy bounds for ψ and ar-
bitrary derivatives on slowly rotating Kerr and Kerr-Newman exteriors.

For simplicity, the reader can specialise the discussion below to the case
of a Kerr metric with |a| ≪ M .

33This requires moving to an auxiliary coordinate system. See [62].
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4.5.3. The axisymmetric case. From (52), it follows that there is a con-
stant ω0 > 0, depending only on the parameters a and M , such that if

(53) |∂t∗ψ|2 ≥ ω0|∂φ∗ψ|2,
on H+, then the flux satisfies

(54) JT
μ (ψ)nμ

H+ ≥ 0.

Note also that, for fixed M , we can take

(55) ω0 → 0, as a → 0.

Note that this holds as well in the case of the general assumptions of Theo-
rem 4.6, where the condition a → 0 in (55) is now replaced by the condition
that the closeness parameter of g to Schwarzschild in the sense of condition 1
is suitably small.

There is an immediate application of (53). Let us restrict for the moment
to axisymmetric solutions, i.e. to ψ such that ∂φψ = 0. It follows that (53)
trivially holds. As a result, our argument proving boundedness is stable,
i.e. Theorem 4.3 holds for axisymmetric solutions of the wave equation on
Kerr spacetimes with |a| ≪ M . In fact, the restriction on a can be be
removed:

Theorem 4.7. The statement of Theorem 4.3 holds for axisymmetric
solutions ψ0 of for Kerr-Newman the full subextremal range of parameters
M > 0, 0 ≤ |Q| <

√
M2 − a2.

4.5.4. Superradiant and non-superradiant frequencies. There is a more
general setting where we can make use of (53). Let us suppose for the time

being that we could take the Fourier transform ψ̂(ω) of our solution ψ in
t∗ and then expand in azimuthal modes ψm, i.e. modes associated to the
Killing vector field ∂φ∗ .

If we were to restrict ψ to the frequency range

(56) |ω|2 ≥ ω0m
2,

then (53) and thus (54) holds after integrating along H+. In view of this,
frequencies in the range (56) are known as nonsuperradiant frequencies. The
frequency range

(57) |ω|2 ≤ ω0m
2

determines the so-called superradiant frequencies. In the physics literature,
the main difficulty of this problem has traditionally been perceived to “lie”
with these frequencies.

Let us pretend for the time being that using the Fourier transform, we
could indeed decompose

(58) ψ = ψ♯ + ψ♭

where ψ♯ is supported in (56), whereas ψ♭ is supported in (57).
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In view of the discussion immediately above and the comments of Sec-
tion 4.5.3, it is plausible to expect that one could indeed prove boundedness
for ψ♯ in the manner of the proof of Theorem 4.3. In particular, if one

could localise the integrated version of (54) to arbitrary sufficiently large
subsegments H(τ ′, τ ′′), one could obtain

(59)

∫

Στ

J
nΣτ
μ (ψ♯)n

μ
Στ

≤ B

∫

Σ0

J
nΣ0
μ (ψ♯)n

μ
Σ0

.

This would leave ψ♭. Since this frequency range does not suggest a
direct boundedness argument, it is natural to revisit the decay mechanism of
Schwarzschild. We have already discussed (see Section 4.4.5) the instability
of the decay argument; this instability arose from the structure of the set
of trapped null geodesics. At the heuristic level, however, it is easy to see
that, if one can take ω0 sufficiently small, then solutions supported in (57)
cannot be trapped. In particular, for |a| ≪ M , superradiant frequencies
for ✷gψ = 0 on Kerr are not trapped. This will be the fundamental
observation allowing for the boundedness theorem. Let us see how this
statement can be understood from the point of view of energy currents.

We continue here our heuristic point of view, where we assume a de-
composition (58) where ψ♭ is supported in (57). In particular, one has an
inequality

(60)

∫ ∞

−∞

∫ 2π

0
ω2

0(∂φψ♭)
2 dφ∗ dt∗ ≥

∫ ∞

−∞

∫ 2π

0
(∂tψ♭)

2 dφ∗ dt∗

for all (r, θ). We shall see below that (60) allows us easily to construct a
suitable stable current for Schwarzschild. The choice is actually quite flexible
in comparison with the considerations of Section 4.4.1. Our choice (see [62])
is defined by

(61) JX = eJN + JXa + JXb,wb

where here, N is the vector field of Section 4.3.2, Xa = fa∂r∗ , with

fa = −r−4(r0)
4, for r ≤ r0

fa = −1, for r0 ≤ r ≤ R1,

fa = −1 +

∫ r

R1

dr̃

4r̃
, for R1 ≤ r ≤ R2,

fa = 0, for r ≥ R2,

Xb = fb∂r∗ with

fb = χ(r∗)π−1

∫ r∗

0

α

x2 + α2
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and χ(r∗) is a smooth cutoff with χ = 0 for r∗ ≤ 0 and χ = 1 for r∗ ≥ 1.
Here r and r∗ are Schwarzschild coordinates.34 The function wb is given by

wb = f ′
b +

2

r
(1 − 2M/r)(1 − M/r)fb.

The parameters e, α, r0, R1, R2 must be chosen accordingly!
Restricting to the range (57), using (60), with some computation we

would obtain

(62)

∫ ∞

−∞

∫ 2π

0
KX(ψ♭) dφ∗ dt∗ ≥ b

∫ ∞

−∞

∫ 2π

0
χJnΣ

μ (ψ♭)n
μ
Σ dφ∗ dt∗,

for all (r, θ).
The above inequality can immediately be seen to be stable to metrics in

the class allowed in the statement of Theorem 4.6. That is to say, for such
metrics, if ψ♭ is supported in (57) (where frequencies here are defined by
Fourier transform in coordinates t∗, φ∗), then the inequality (62) holds as
before. In particular, (62) holds for Kerr for small |a| ≪ M .

How would (62) give boundedness for ψ♭? We need in fact to suppose
something slightly stronger, namely that (62) holds localised to R(0, τ).
Consider the currents

J = JT + e2J
X, K = ∇μJμ,

where e2 is a positive parameters, and JN is the current of Section 4.3.2.
Then, for metrics g close enough to Schwarzschild, and for e2 sufficiently
small, we would have from a localised (62) that

∫

R(0,τ)
K(ψ♭) ≥ 0,

∫

H(0,τ)
Jμ(ψ♭)n

μ
H ≥ 0,

and thus ∫

Στ

Jμ(ψ♭)n
μ
Στ

≤
∫

Σ0

Jμ(ψ♭)n
μ
Σ0

.

Moreover, for g sufficiently close to Schwarzschild and e1, e2 suitably defined,
we also have ∫

Στ

J
nΣτ
μ (ψ♭)n

μ ≤ B

∫

Στ

Jμ(ψ♭)n
μ
Στ

.

We thus would obtain

(63)

∫

Στ

J
nΣτ
μ (ψ♭)n

μ ≤ B

∫

Σ0

J
nΣ0
μ (ψ♭)n

μ.

34Since we are dealing now with general perturbations of Schwarzschild, we shall now
use r for what we previously denoted by rSchw. Note that in the special case that our
metric is Kerr, this r is different from the Boyer-Lindquist r.
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Adding (63) and (59), we would obtain
∫

Στ

J
nΣτ
μ (ψ)nμ ≤ B

∫

Σ0

J
nΣ0
μ (ψ)nμ

provided that we could also estimate say

(64)

∫

Σ0

J
nΣ0
μ (ψ♯)n

μ ≤ B

∫

Σ0

J
nΣ0
μ (ψ)nμ.

4.5.5. Cutoff and decomposition. Unfortunately, things are not so simple!
For one thing, to take the Fourier transform necessary to decompose

in frequency, one would need to know a priori that ψ(t∗, ·) is in L2(t∗).
What we want to prove at this stage is much less. A priori, ψ can in fact
grow exponentially in t∗. In order to apply the above, one must cut off the
solution appropriately in a time slab of interest, and then decompose with
the Fourier transform and smooth frequency cutoffs, defining ψ♭, ψ♯. These

will now satisfy

(65) ✷gψ♭ = F♭, ✷gψ♯ = F♯.

When interpreted for the ψ♭, ψ♯ defined above, the arguments outlined

before produce error terms from:

• the inhomogeneous terms F♭, F♯ from (65)

• the fact that we wish to localise estimates (54) and (60) to sub-
regions H+(τ ′, τ ′′) and R(τ ′, τ ′′) respectively

• the fact that (64) is not exactly true.

To close the continuity argument, it is essential to control these error terms
by the non-degenerate energy (the analogue of (30)) one proves to be bounded
times a small constant. This is rather technical. For this, use is made of the
fact that for metrics in the allowed class sufficiently close to Schwarzschild
(in the Kerr case, for |a| ≪ M), one can control a priori the exponential
growth rate of ψ to be small. See [62].

4.5.6. Pointwise bounds. Having proven the uniform boundedness of
(30), one argues as in the proof of Theorem 4.3 to obtain higher order
energy and pointwise bounds. In particular, the positivity property in the
computation of Proposition 4.2 is stable. See [62]. This completes the proof
of Theorem 4.6.

4.6. Quantitative decay for waves on Kerr. To obtain decay re-
sults analogous to Theorem 4.5, one needs to understand trapping. For gen-
eral perturbations of Schwarzschild of the class considered in Theorem 4.6,
it is not a priori clear what stability properties one can infer about the na-
ture of the trapped set, and how these can be exploited. But for the Kerr
family itself, the trapping structure can easily be understood, in view of
the complete integrability of geodesic flow discovered by Carter [26]. The
codimensionality of the trapped set persists, but in contrast to the Schwarz-
schild case where trapped null geodesics all approach the codimensional-1
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subset r = 3M of spacetime, in Kerr, this codimensionality must be viewed
in phase space.

There is a convenient way of doing phase space analysis in Kerr space-
times, namely, as discovered by Carter [27], the wave equation can be sep-
arated. Walker and Penrose [143] later showed that both the complete
integrability of geodesic flow and the separability of the wave equation have
their fundamental origin in the presence of a Killing tensor.35 In fact, as we
shall see, in view of its intimate relation with the integrability of geodesic
flow, Carter’s separation of ✷g immediately captures the codimensionality
of the trapped set.

The separation of the wave equation requires taking the Fourier trans-
form, and then expanding into oblate spheroidal harmonics. As before,
taking the Fourier transform requires cutting off in time. Let us for now
argue heuristically. We may decompose

ψ̂✂(ω, ·) =
∑

m,ℓ

Rω
mℓ(r)Smℓ(aω, cos θ)eimφ,

F̂ (ω, ·) =
∑

m,ℓ

Fω
mℓ(r)Smℓ(aω, cos θ)eimφ,

where Smℓ are the oblate spheroidal harmonics. For each m ∈ Z, and fixed
ω, these are a basis of eigenfunctions Smℓ satisfying

− 1

sin θ

d

dθ

(
sin θ

d

dθ
Smℓ

)
+

m2

sin2 θ
Smℓ − a2ω2 cos2 θSmℓ = λmℓSmℓ,

and, in addition, satisfying the orthogonality conditions with respect to the
θ variable,

∫ 2π

0
dϕ

∫ 1

−1
d(cos θ)eimφSmℓ(aω, cos θ) e−im′φSm′ℓ′(aω, cos θ) = δmm′δℓℓ′ .

Here, the λmℓ(ω) are the eigenvalues associated with the harmonics Smℓ.
Each of the functions Rω

mℓ(r) is a solution of the following problem

Δ
d

dr

(
Δ

Rω
mℓ

dr

)
+

(
a2m2 + (r2 + a2)2ω2 − Δ(λmℓ + a2ω2)

)
Rω

mℓ

= (r2 + a2)ΔFω
mℓ.

Note that if a = 0, we typically label Smℓ by ℓ ≥ |m| such that

λmℓ(ω) = ℓ(ℓ + 1).

With this choice, Smℓ coincides with the standard spherical harmonics Ymℓ.
Defining a coordinate r∗ by

dr∗

dr
=

r2 + a2

Δ

35See [29, 99] for recent higher-dimensional generalisations of these properties.
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and setting

u(r) = (r2 + a2)1/2Rω
mℓ(r), H(r) =

ΔFω
mℓ(r)

(r2 + a2)1/2
,

then u satisfies
d2

(dr∗)2
u + (ω2 − V ω

mℓ(r))u = H

where

V ω
mℓ(r) =

4Mramω − a2m2 + Δ(λmℓ + ω2a2)

(r2 + a2)2
+

Δ(3r2 − 4Mr + a2)

(r2 + a2)3

− 3Δ2r2

(r2 + a2)4
.

Consider the following quantity

Q = f

(∣∣∣∣
du

dr∗

∣∣∣∣
2

+ (ω2 − V )|u|2
)

+
df

dr∗ Re

(
du

dr∗ ū

)
− 1

2

d2f

dr∗2 |u|2.

Then, with the notation ′ = d
dr∗ ,

(66) Q′ = 2f ′|u′|2 − fV ′|u|2 + Re(2fH̄u′ + f ′H̄u) − 1

2
f ′′′|u|2.

The most dangerous frequency range is |ω| ≥ ω1, λmℓ ≥ λ1ω for arbitrary
ω1 > 0 and some λ1 > 0.

Proposition 4.6.1. For |a| ≪ M , then for the above frequency range,
V ′ has a unique simple zero rω

mℓ.

This allows to construct for each frequency set (ω, m, ℓ) a function f
(vanishing precisely at rω

mℓ) such that the resulting Q′ is nonegative definite.
The resulting estimates can be summed to yield an integrated decay estimate
precisely as in (39).

Of course, as with the proof of the boundedness theorem, the cutoff
in time necessary to implement this argument gives rise to error terms.
Having already obtained Theorem 4.6, these error terms can be controlled
more easily. See [63].

To turn integrated decay as in (39) into decay of energy and pointwise
decay, we must adapt the argument of Section 4.4.2. There are various
subtleties. The stability of considerations near the horizon is tricky, since
Z is not C1. Here, an improved version of Proposition 4.3.1 is essential.
It turns out that in view of the ergoregion, one has quadratically growing
terms in t in the KZ.w. This necessitates a loss of δ > 0 in the polynomial
decay rate, where however we may take δ → 0 as a → 0. Another subtlety is
that to obtain good decay towards null infinity, one must commute with the
Schwarzschild angular momentum operators, which are of course no longer
Killing.
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We obtain finally [64, 63]

Theorem 4.8. Let (M, g) be Kerr for |a| ≪ M , D be the closure of
its domain of dependence, let Σ0 be the surface D ∩ {t∗ = 0}, let ψ, ψ′ be
initial data on Σ0 such that ψ ∈ Hs

loc(Σ), ψ′ ∈ Hs−1
loc (Σ) for s ≥ 1, and

limx→i0 ψ = 0, and let ψ be the corresponding unique solution of ✷gψ = 0.
Let ϕτ denote the 1-parameter family of diffeomorphisms generated by T , let
Σ̃0 be an arbitrary spacelike hypersurface in J+(Σ0 �U) where U is an open

neighborhood of the asymptotically flat end,36 and define Σ̃τ = ϕτ (Σ̃0). Let
s ≥ 3 and assume

E1
.
=

∫

Σ0

r2(Jn0
μ (ψ) + Jn0

μ (Tψ) + Jn0
μ (TTψ))nμ

0 < ∞.

Then there exists a δ > 0 depending on a (with δ → 0 as a → 0) and a B

depending only on Σ̃0 such that
∫

Σ̃τ

JN (ψ)nμ

Σ̃τ
≤ BE1 τ−2+2δ.

Now let s ≥ 5 and assume

E2
.
=

∑

|α|≤2

∑

Γ={T,N,Ωi}

∫

Σ0

r2(Jn0
μ (Γαψ) + Jn0

μ (ΓαTψ) + Jn0
μ (ΓαTTψ))nμ

0 < ∞

where Ωi are the angular momentum operators of the Schwarzschild solution
with a = 0. Then

sup
Σ̃τ

|ψ| ≤ B
√

E2 τ−1+δ, sup
Σ̃τ

|rψ| ≤ B
√

E2 τ (−1+δ)/2.

One can obtain decay for arbitrary derivatives, including transversal
derivatives to H+, using additional commutation by N . See [64, 63] for
further details.

4.7. Comments and further reading. Theorem 4.6 was proven in
[62]. In particular, this provided the first global result of any kind for general
solutions of the Cauchy problem on a (non-Schwarzschild) Kerr background.
Theorem 4.8 was first announced at the recent Zürich Clay Summer School
on Evolution Equations. Results in the direction of the integrated decay
estimate (39) in the Kerr case are independently being studied in work in
progress by Tataru-Tohaneanu37 and Andersson-Blue.

The best previous results concerning Kerr had been obtained by Finster
and collaborators in an important series of papers culminating in [73]. The
methods of [73] are spectral theoretic, with many pretty applications of
contour integration and o.d.e. techniques. The results of [73] apply not to
general solutions of the Cauchy problem, but to individual azimuthal modes,
i.e. solutions ψm of fixed m. Under the assumption that ψm is smooth and

36This is just the assumption that Σ̃0 “terminates” on null infinity
37This has since appeared as a preprint [138].
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vanishes in a neighborhood of H+ ∩ H−, the main result stated in [73] is
that

(67) lim
t→∞

ψm(r, t) = 0

for any r > r+. To obtain a result on the sum over m one can interpolate this
with the quantitative boundedness statement Theorem 4.6. It is important
to note, however, that the statement of [73] need not restrict to |a| ≪ M , but
concerns the entire subextremal range |a| < M . Thus, the statement (67)
of [73] is currently the only available global statement concerning azimuthal
modes on Kerr spacetimes for large but subextremal a.

There has also been interesting work on the Dirac equation [72, 80], for
which superradiance does not occur, and the Klein-Gordon equation [79].
For the latter, see also Section 5.3.

4.8. The cosmological constant Λ and Schwarzschild-de Sitter.
Another interesting setting for the study of the stability problem are black
holes within cosmological spacetimes. Cosmological spacetimes–as opposed
to asymptotically flat spacetimes (See Appendix 2.2.3), which model space-
time in the vicinity of an isolated self-gravitating system–are supposed to
model the whole universe. The working hypothesis of classical cosmology is
that the universe is approximately homogeneous and isotropic (sometimes
known as the Copernican principle [81]). In the Newtonian theory, it was
not possible to formulate a cosmological model satisfying this hypothesis.38

One of the major successes of general relativity was that the theory allowed
for such solutions, thus making cosmology into a mathematical science.

In the early years of mathematical cosmology, it was assumed that the
universe should be static. To allow for such static cosmological solutions,
Einstein modified his equations (1) by adding a 0’th order term:

(68) Rμν − 1

2
gμνR + Λgμν = 8πTμν .

Here Λ is a constant known as the cosmological constant. When coupled with
a perfect fluid, this system admits a static, homogeneous, isotropic solution
with Λ > 0 and topology S3 × R. This spacetime is sometimes called the
Einstein static universe.

Cosmological solutions with various values of the parameter Λ were stud-
ied by Friedmann and Lemaitre, under the hypothesis of exact homogeneity
and isotropy. Static solutions are in fact always unstable under perturbation
of initial data. Typical homogeneous isotropic solutions expand or contract,
or both, beginning and or ending in singular configurations. As with the
early studies illuminating the extensions of the Schwarzschild metric across
the horizon, these were ahead of their time. (See the very recent [115]
for a history of this fascinating early period in the history of mathematical

38It is possible, however, if one geometrically reinterprets the Newtonian theory and
allows space to be–say–the torus. See [124]. These reinterpretations, of course, postdate
the formulation of general relativity.
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cosmology.) These predictions were taken more seriously with Hubble’s ob-
servational discovery of the expansion of the universe, and the subsequent
evolutionary theories of matter, but the relevance of the solutions near where
they are actually singular was taken seriously only after the incompleteness
theorems of Penrose and Hawking–Penrose were proven (see Section 2.6).

We shall not go into a general discussion of cosmology here, nor tell the
fascinating story of the ups and downs of Λ–from its adoption by Einstein
to his subsequent well-known rejection of it, to its later “triumphant” re-
turn in current cosmological models, taking a very small positive value, the
“explanation” of which is widely regarded as one of the outstanding puz-
zles of theoretical physics. Rather, let us pass directly to the object of our
study here, one of the simplest examples of an inhomogeneous “cosmologi-
cal” spacetime, where non-trivial small scale structure occurs in an ambient
expanding cosmology. This is the Schwarzschild–de Sitter solution.

4.8.1. The Schwarzschild-de Sitter geometry. Again, this metric was dis-
covered in local coordinates early in the history of general relativity, inde-
pendently by Kottler [96] and Weyl [145]. Fixing Λ > 0,39 Schwarzschild-de
Sitter is a one-parameter family of solutions of the from

(69) −(1 − 2M/r − Λr3)dt2 + (1 − 2M/r − Λr3)−1dr2 + r2dσS2 .

The black hole case is the case where 0 < M < 1
3
√

Λ
. A maximally-extended

solution (see [25, 77]) then has as Penrose diagram the infinitely repeating
chain:

To construct “cosmological solutions” one often takes spatially compact
quotients.

4.8.2. Boundedness and decay. The region “analogous” to the region
studied previously for Schwarzschild and Kerr is the darker shaded region

D above. The horizon H+
separates D from an “expanding” region where

the spacetime is similar to the celebrated de-Sitter space. If Σ is a Cauchy

surface such that Σ∩H− = Σ∩H−
= Ø, then let us define Σ0 = D∩Σ, and

let us define Στ to be the translates of Σ0 by the flow ϕt generated by the
Killing field T (= ∂

∂t). Note that, in contrast to the Schwarzschild or Kerr
case, Σ0 is compact.

39The expression (69) with Λ < 0 defines Schwarzschild–anti-de Sitter. See Sec-
tion 5.4.
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We have

Theorem 4.9. The statement of Theorem 4.3 holds for these spacetimes,
where Σ, Σ0, Στ are as above, and limx→i0 |ψ| is replaced by supx∈Σ0

|ψ|.
Proof. The proof of the above theorem is as in the Schwarzschild case,

except that in addition to the analogue of N , one must use a vector field
N̄ which plays the role of N near the “cosmological horizon” H̄+. This is
possible in view of the positivity of the surface gravity. �

As for decay, we have

Theorem 4.10. For every k ≥ 0, there exist constants Ck such that the
following holds. Let ψ ∈ Hk+1

loc , ψ′ ∈ Hk
loc, and define

Ek
.
=

∑

|(α)|≤k

∑

Γ={Ωi}

∫

Σ0

J
nΣτ
μ (Γαψ)nμ

Στ
.

Then

(70)

∫

Στ

J
nΣτ
μ (ψ)nμ

Στ
≤ CkEkτ

−k.

For k > 1 we have

(71) sup
Στ

|ψ − ψ0| ≤ Ck

√
Ekτ

−k+1

2 ,

where ψ0 denotes the 0’th spherical harmonic, for which we have for instance
the estimate

(72) sup
Στ

|ψ0| ≤ sup
x∈Σ0

ψ0 + C0

√
E0(ψ0,ψ

′
0).

The proof of this theorem uses the vector fields T , N and N̄ together
with a version of X as multipliers, and requires commutation of the equation
with Ωi to quantify the loss caused by trapping. (Like Schwarzschild, the
Schwarzschild-de Sitter metric has a photon sphere which is at r = 3M for all
values of Λ in the allowed range.) An estimate analogous to (39) is obtained,
but without the χ weight, in view of the compactness of Σ0. The result of
the Theorem follows essentially immediately, in view of Theorem 4.9 and a
pigeonhole argument. No use need be made of a vector field of the type Z
as in Section 4.4.2. Note that for ψ = constant, Ek = 0, so removing the
0’th spherical harmonic in (71) is necessary. See [60] for details.

4.8.3. Comments and further reading. Theorem 4.10 was proven in [60].
Independently, the problem of the wave equation on Schwarzschild-de Sitter
has been considered in a nice paper of Bony-Häfner [21] using methods
of scattering theory. In that setting, the presence of trapping is manifest
by the appearance of resonances, that is to say, the poles of the analytic
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continuation of the resolvent.40 The relevant estimates on the distribution
of these necessary for the analysis of [21] had been obtained earlier by Sá
Barreto and Zworski [127].

In contrast to Theorem 4.10, the theorem of Bony-Häfner [21] must
assume that ψ is supported away from H+ ∩ H−. For these special data,
however, the results of [21] obtain better decay than Theorem 4.10 away
from the horizon, namely exponential, at the cost of only an ǫ derivative.
The decay results of [21] degenerate at the horizon, in particular, they do
not retrieve even boundedness for ψ itself. However, using the result of [21]
together with the analogue of the red-shift Y estimate as used in the proof
of Theorem 4.10, one can prove exponential decay up to and including the
horizon, i.e. exponential decay in the parameter τ . This still requires, how-
ever, the restrictive hypothesis of [21] concerning the support of the data.
It would be interesting to sort out whether the restrictive hypothesis can be
removed from [21], and whether this fast decay is stable to perturbation.
There also appears to be interesting work in progress by Sá Barreto, Melrose
and Vasy [140] on a related problem.

One should expect that the statement of Theorem 4.9 holds for the wave
equation on axisymmetric stationary perturbations of Schwarzschild-de Sit-
ter, in particular, slowly rotating Kerr-de Sitter, in analogy to Theorem 4.6.

Finally, we note that in many context, more natural than the wave
equation is the conformally covariant wave equation ✷gψ − 1

6Rψ = 0. For
Schwarzschild-de Sitter, this is then a special case of Klein-Gordon (74)
with μ > 0. The analogue of Theorem 4.9 and Theorem 4.10 holds for this
equation.

5. Open problems

Let us end these notes with a discussion of open problems. Many of
these are related to Conjecture 4.1, but all have independent interest.

5.1. The wave equation. The decay rates of Theorem 4.5 are sharp
as uniform decay rates in v for any nontrivial class of initial data. On the
other hand, it would be nice to obtain more decay in the interior, possibly
under a stronger assumption on initial data.

Open problem 1. Show that there exists a δ > 0 such that (31) holds

with τ replaced with τ−2(1+δ), for a suitable redefinition of E1. Show the
same thing for Kerr spacetimes with |a| ≪ M .

At the very least, it would be nice to obtain this result for the energy
restricted to Σ̃τ ∩ {r ≤ R}.

Recall how the algebraic structure of the Kerr solution is used in a
fundamental way in the proof of Theorem 4.8. On the other hand, one would

40In the physics literature, these are known as quasi-normal modes. See [95] for a
nice survey, as well as the discussion in Section 4.4.6.



54 M. DAFERMOS

think that the validity of the results should depend only on the robustness
of the trapping structure. This suggests the following

Open problem 2. Show the analogue of Theorem 4.8 for the wave equa-
tion on metrics close to Schwarzschild with as few as possible geometric
assumptions on the metric.

For instance, can Theorem 4.8 be proven under the assumptions of The-
orem 4.6? Under even weaker assumptions?

Our results for Kerr require |a| ≪ M . Of course, this is a “valid” as-
sumption in the context of the nonlinear stability problem, in the sense that
if this condition is assumed on the parameters of the initial reference Kerr
solution, one expects it holds for the final Kerr solution. Nonetheless, one
certainly would like a result for all cases. See the discussion in Section 4.7.

Open problem 3. Show the analogue of Theorem 4.8 for Kerr solutions
in the entire subextremal range 0 ≤ |a| < M .

The extremal case |a| = M may be quite different in view of the fact
that the surface gravity of the horizon is no longer positive.

Open problem 4. Understand the behaviour of solutions to the wave
equation on extremal Reissner-Nordström, extremal Schwarzschild-de Sitter,
and extremal Kerr.

Turning to the case of Λ > 0, we have already remarked that the ana-
logue of Theorems 4.9 and 4.10 should certainly hold in the case of Kerr-
de Sitter. In the case of both Schwarzschild-de Sitter and Kerr-de Sitter,
another interesting problem is to understand the behaviour in the region

C = J+(H+
A)∩J+(H+

B), where H+
A, H+

B are two cosmological horizons meet-
ing at a sphere:

Open problem 5. Understand the behaviour of solutions to the wave
equation in region C of Schwarzschild-de Sitter and Kerr-de Sitter, in par-
ticular, their behaviour along r = ∞ as i+ is approached.

Let us add that in the case of cosmological constant, in some contexts it
is appropriate to replace ✷g with the conformally covariant wave operator
✷g − 1

6R. In view of the fact that R is constant, this is a special case of the
Klein-Gordon equation discussed in Section 5.3 below.

5.2. Higher spin. The wave equation is a “poor man’s” linearisation
of the Einstein equations (3). The role of linearisation in the mathematical
theory of nonlinear partial differential equations is of a different nature than
that which one might imagine from the formal “perturbation” theory which
one still encounters in the physics literature. Rather than linearising the
equations, one considers the solution of the nonlinear equation from the
point of view of a related linear equation that it itself satisfies.

In the case of the simplest nonlinear equations (say (75) discussed in Sec-
tion 5.6 below), typically this means freezing the right hand side, i.e. treating
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it as a given inhomogeneous term. In the case of the Einstein equations, the
proper analogue of this procedure is much more geometric. Specifically, it
amounts to looking at the so called Bianchi equations

(73) ∇[μRνλ]ρσ = 0,

which are already linear as equations for the curvature tensor when g is
regarded as fixed. For more on this point of view, see [46]. The above
equations for a field Sλμνρ with the symmetries of the Riemann curvature
tensor are in general known as the spin-2 equations. This motivates:

Open problem 6. State and prove the spin-2 version of Theorems 4.6
or 4.8 (or Open problem 1) on Kerr metric backgrounds or more generally,
metrics settling down to Kerr.

In addition to [46], a good reference for these problems is [45], where
this problem is resolved just for Minkowski space. In contrast to the case
of Minkowski space, an additional difficulty in the above problem for the
black hole setting arises from the presence of nontrivial stationary solutions
provided by the curvature tensor of the solutions themselves. This will
have to be accounted for in the statement of any decay theorem. From
the “linearisation” point of view, the existence of stationary solutions is of
course related to the fact that it is the 2-parameter Kerr family which is
expected to be stable, not an individual solution.

5.3. The Klein-Gordon equation. Another important problem is
the Klein-Gordon equation

(74) ✷gψ = μψ.

A large body of heuristic studies suggest the existence of a sequence of quasi-
normal modes (see Section 4.4.6) approaching the real axis from below in the
Schwarzschild case. When the metric is peturbed to Kerr, it is thought that
essentially this sequence “moves up” and produces exponentially growing
solutions. See [148, 66]. This suggests

Open problem 7. Construct an exponentially growing solution of (74)
on Kerr, for arbitrarily small μ > 0 and arbitrary small a.

Interestingly, if one fixed m, then adapting the proof of Section 4.5, one
can show that for μ > 0 sufficiently small and a sufficiently small, depending
on m, the statement of Theorem 4.6 holds for (74) for such Kerr’s. This is
consistent with the quasinormal mode picture, as one must take m → ∞
for the modes to approach the real axis in Schwarzschild. This shows how
misleading fixed-m results can be when compared to the actual physical
problem.

5.4. Asymptotically anti-de Sitter spacetimes. In discussing the
cosmological constant we have considered only the case Λ > 0. This is
the case of current interest in cosmology. On the other hand, from the
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completely different viewpoint of high energy physics, there has been intense
interest in the case Λ < 0. See [76].

The expression (69) for Λ < 0 defines a solution known as Schwarzschild-
anti-de Sitter. A Penrose diagramme of this solution is given below.

The timelike character of infinity means that this solution is not globally
hyperbolic. As with Schwarzschild-de Sitter, Schwarzschild-anti-de Sitter
can be viewed as a subfamily of a larger Kerr-anti de Sitter family, with
similar properties.

Again, as with Schwarzschild-de Sitter, the role of the wave equation is
in some contexts replaced by the conformally covariant wave equation. Note
that this corresponds to (74) with a negative μ = 2Λ/3 < 0.

Even in the case of anti-de Sitter space itself (set M = 0 in (69)), the
question of the existence and uniqueness of dynamics is subtle in view of
the timelike character of the ideal boundary I. It turns out that dynamics
are unique for (74) only if the μ ≥ 5Λ/12, whereas for the total energy
to be nonnegative one must have μ ≥ 3Λ/4. Under our conventions, the
conformally covariant wave equation lies between these values. See [6, 23].

Open problem 8. For suitable ranges of μ, understand the bounded-
ness, decay and blow-up properties for solutions of (74) on Schwarzschild-
anti de Sitter and Kerr-anti de Sitter.

See [100, 24] for background.41

5.5. Higher dimensions. All the black hole solutions described above
have higher dimensional analogues. See [71, 112]. These are currently of
great interest from the point of view of high energy physics.

Open problem 9. Study all the problems of Sections 5.1–5.4 in dimen-
sion greater than 4.

Higher dimensions also brings a wealth of explicit black hole solutions
such that the topology of spatial sections of H+ is no longer spherical. In
particular, in 5 spacetime dimensions there exist “black string” solutions,

41The boundedness problem has since been resolved in the slowly-rotating Kerr-anti
de Sitter case. See the very recent paper of Holzegel [85].
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and much more interestingly, asymptotically flat “black ring” solutions with
horizon topology S1 × S2. See [71].

Open problem 10. Investigate the dynamics of the wave equation ✷gψ =
0 and related equations on black ring backgrounds.

5.6. Nonlinear problems. The eventual goal of this subject is to
study the global dynamics of the Einstein equations (3) themselves and
in particular, to resolve Conjecture 4.1.

It may be interesting, however, to first look at simpler non-linear equa-
tions on fixed black hole backgrounds and ask whether decay results of the
type proven here are sufficient to show non-linear stability.

The simplest non-linear perturbation of the wave equation is

(75) ✷gψ = V ′(ψ)

where V = V (x) is a potential function. Aspects of this problem on a
Schwarzschild background have been studied by [113, 58, 19, 106].

Open problem 11. Investigate the problem (75) on Kerr backgrounds.

In particular, in view of the discussion of Section 5.3, one may be able to
construct solutions of (75) with V = μψ2+ |ψ|p, for μ > 0 and for arbitrarily
large p, arising from arbitrarily small, decaying initial data, which blow up
in finite time. This would be quite interesting.

A nonlinear problem with a stronger relation to (3) is the wave map
problem. Wave maps are maps Φ : M → N where M is Lorentzian and N
is Riemannian, which are critical points of the Lagrangian

L(Φ) =

∫
|dΦ|2gN

In local coordinates, the equations take the form

✷gM
Φk = −Γk

ijg
αβ
M (∂αΦk∂βΦj),

where Γk
ij denote the Christoffel symbols of gN . See the lecture notes of

Struwe [135] for a nice introduction.

Open problem 12. Show global existence in the domain of outer com-
munications for small data solutions of the wave map problem, for arbitrary
target manifold N , on Schwarzschild and Kerr backgrounds.

All the above problems concern fixed black hole backgrounds. One of the
essential difficulties in proving Conjecture 4.1 is dealing with a black hole
background which is not known a priori, and whose geometry must thus be
recovered in a bootstrap setting. It would be nice to have more tractable
model problems which address this difficulty. One can arrive at such prob-
lems by passing to symmetry classes. The closest analogue to Conjec-
ture 4.1 in such a context is perhaps provided by the results of Holzegel [84],
which concern the dynamic stability of the 5-dimensional Schwarzschild as a
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solution of (3), restricted under Triaxial Bianchi IX symmetry first studied
in [14]. In the symmetric setting, one can perhaps attain more insight on
the geometric difficulties by attempting a large-data problem. For instance

Open problem 13. Show that the maximal development of asymptoti-
cally flat triaxial Bianchi IX vacuum initial data for the 5-dimensional vac-
uum equations containing a trapped surface settles down to Schwarzschild.

The analogue of the above statement has in fact been proven for the
Einstein-scalar field system under spherical symmetry [35, 57]. In the di-
rection of the above, another interesting set of problems is provided by
the Einstein-Maxwell-charged scalar field system under spherical symmetry.
For both the charged-scalar field system and the Bianchi IX vacuum sys-
tem, even more ambitious than Open problem 13 would be to study the
strong and weak cosmic censorship conjectures, possibly unifying the anal-
ysis of [40, 51, 52]. Discussion of these open problems, however, is beyond
the scope of the present notes.
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Appendix A. Lorentzian geometry

The reader who wishes a formal introduction to Lorentzian geometry
can consult [81]. For the reader familiar with the concepts and notations
of Riemannian geometry, the following remarks should suffice for a quick
introduction.

A.1. The Lorentzian signature. Lorentzian geometry is defined as
in Riemannian geometry, except that the metric g is not assumed positive
definite, but of signature (−, +, . . . ,+). That is to say, we assume that at
each point p ∈ Mn+1,42 we may find a basis ei of the tangent space TpM,
i = 0, . . . , n, such that

g = −e0 ⊗ e0 + e1 ⊗ e1 + · · · + en ⊗ en.

In Riemannian geometry, the − in the first term on the right hand side
would by +.

A non-zero vector v ∈ TpM is called timelike, spacelike, or null, accord-
ing to whether g(v, v) < 0, g(v, v) > 0, or g(v, v) = 0. Null and timelike
vectors collectively are known as causal. There are various conventions for
the 0-vector. Let us not concern ourselves with such issues here.

The appellations timelike, spacelike, null are inherited by vector fields
and immersed curves by their tangent vectors, i.e. a vector field V is timelike

42It is conventional to denote the dimension of the manifold by n + 1.
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if V (p) is timelike, etc., and a curve γ is timelike if γ̇ is timelike, etc. On
the other hand, a submanifold Σ ⊂ M is said to be spacelike if its induced
geometry is Riemannian, timelike if its induced geometry is Lorentzian, and
null if its induced geometry is degenerate. For a codimension-1 submanifold
Σ ⊂ M, at every p ∈ M , there exists a non-zero normal nμ, i.e. a vector
in TpM such that g(n, v) = 0 for all v ∈ TpΣ. It is easily seen that Σ is
spacelike iff n is timelike, Σ is timelike iff n is spacelike, and Σ is null iff n is
null. Note that in the latter case n ∈ TpΣ. The normal of Σ is thus tangent
to Σ.

A.2. Time-orientation and causality. A time-orientation on (M, g)
is defined by an equivalence class [K] where K is a continuous timelike vector
field, where K1 ∼ K2 if g(K1, K2) < 0. A Lorentzian manifold admitting a
time-orientation is called time-orientable, and a triple (M, g, [K]) is said to
be a time-oriented Lorentzian manifold. Sometimes one reserves the use of
the word “spacetime” for such triples. In any case, we shall always consider
time-oriented Lorentzian manifolds and often drop explicit mention of the
time orientation.

Given this, we may further partition causal vectors as follows. A causal
vector v is said to be future-pointing if g(v, K) < 0, otherwise past-pointing,
where K is a representative for the time orientation. As before, these names
are inherited by causal curves, i.e. we may now talk of a future-directed
timelike curve, etc. Given p, we define the causal future J+(p) by

J+(p) = p ∪ {q ∈ M : ∃γ : [0, 1] → M : γ̇ future-pointing, causal}
Similarly, we define J−(p) where future is replaced by past in the above. If
S ⊂ M is a set, then we define

J±(S) = ∪p∈SJ±(p).

A.3. Covariant derivatives, geodesics, curvature. The standard
local notions of Riemannian geometry carry over. In particular, one defines
the Christoffel symbols

Γμ
νλ =

1

2
gμα(∂νgαλ + ∂λgνα − ∂αgνλ),

and geodesics γ(t) = (xα(t)) are defined as solutions to

ẍμ + Γμ
νλẋν ẋλ = 0.

Here gμν denote the components of g with respect to a local coordinate sys-
tem xμ, gμν denotes the components of the inverse metric, and we are ap-
plying the Einstein summation convention where repeated upper and lower
indices are summed. The Christoffel symbols allow us to define the covariant
derivative on (k, l) tensor fields by

∇λAν1...νk
μ1...μℓ

= ∂λAν1...νk
μ1...μℓ

+

k∑

i=1

Γνi

λρA
ν1...ρ...νk
μ1...μℓ

−
l∑

i=1

Γρ
λμi

Aν1...νk
μ1...ρ...μℓ
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where it is understood that ρ replaces νi, μi, respectively in the two terms
on the right. This defines (k, l + 1) tensor. As usual, if we contract this
with a vector v at p, then we will denote this operator as ∇v and we note
that this can be defined in the case that the tensor field is defined only on
a curve tangent to v at p. We may thus express the geodesic equation as

∇γ̇ γ̇ = 0.

The Riemann curvature tensor is given by

Rμ
νλρ

.
= ∂λΓμ

ρν − ∂ρΓ
μ
λν + Γα

ρνΓ
μ
λα − Γα

λνΓ
μ
ρα,

and the Ricci and scalar curvatures by

Rμν
.
= Rα

μαν , R
.
= gμνRμν .

Using the same letter R to denote all these tensors is conventional in relativ-
ity, the number of indices indicating which tensor is being referred to. For
this reason we will avoid writing “the tensor R”. The expression R with-
out indices will always denote the scalar curvature. As usual, we shall also
use the letter R with indices to denote the various manifestations of these
tensors with indices raised and lowered by the inverse metric and metric, e.g.

Rμνλρ = gμαRα
νλρ.

We say that an immersed curve γ : I → M is inextendible if there does
not exist an immersed curve γ̃ : J → M where J ⊃ I and γ̃|I = γ.

We say that (M, g) is geodesically complete if for all inextendible geodesics
γ : I → M, then I = R. Otherwise, we say that it is geodesically incomplete.
We can similarly define the notion of spacelike geodesic (in)completeness,
timelike geodesic completeness, causal geodesic completeness, etc., by re-
stricting the definition to such geodesics. In the latter two cases, we may
further specialise, e.g. to the notion of future causal geodesic completeness,
by replacing the condition I = R with I ⊃ (a,∞) for some a.

We say that a spacelike hypersurface Σ ⊂ M is Cauchy if every inex-
tendible causal curve in M intersects it precisely once. A spacetime (M, g)
admitting such a hypersurface is called globally hyperbolic. This notion was
first introduced by Leray [103].
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