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Abstract

Rice contains genetically and ecologically diverse wild and cultivated species that show a

wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy

is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies

of 24Oryza species spanning 11 genetically diverse rice genomes were studied in both lat-

eral and longitudinal directions and possible evolutionary trends were examined. A signifi-

cant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was

observed, suggesting precise genetic control over these major rice leaf anatomical traits.

Cellular dimensions, measured along three growth axes, were further combined proportion-

ately to construct three-dimensional (3D) leaf anatomy models to compare the relative size

and orientation of the major cell types present in a fully expanded leaf. A reconstruction of

the ancestral leaf state revealed that the following are the major characteristics of recently

evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an

increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf

anatomy within wild and domesticated rice species has been portrayed in this study, on an

evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa

leaf type’ that we see today in domesticated species.

Introduction

Rice leaf is composed of diverse cell types like, mesophyll cells (MC), bundle sheath cells

(BSC), epidermal cells (EP), bulliform cells (BL), stone cells (ST), and vascular bundles (VB)

with xylem and phloem and their associated companion cells. The equi-facial dorso-ventrally

flattened rice leaf originates from the leaf primordial cells in the SAM or the shoot apical meri-

stem [1]. Usually, changes in the cell division and cell expansion during axis formation, tissue

differentiation, and tissue specification finally determine the leaf shape [2]. A synchronized

activity of all these cellular modules effectively controls the leaf function [3]. Rice and its wild
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species possess huge diversity in plant and leaf phenotypes [4, 5]. This important crop species

belongs to grass genus Oryza that are formed by a total of 24 differentOryza species. Overall,

these species contain 11 diverse rice genomes from AA to KKLL, named differently according

to their genetic distance [4–6]. The most recently evolved species in the history of rice are the

cultivated rice speciesOryza sativa and Oryza glaberrima that harbor the AA genome [7]. For

the rest of the species, the level of genetic and reproductive diversity traditionally increases in

an A to Z alphabetical order across the genomes.

Leaf structure strongly controls leaf photosynthesis [8, 9] and plays a key role in every step

starting from light interception up to the biochemical fixation of carbon dioxide. Engineering

the leaf structure of cultivated rice could, therefore, be of direct interest to current research

efforts that aim to increase photosynthetic efficiency and thereby achieve improved yields [10–

12]. Despite leaf anatomy being a central component that determines leaf photosynthesis and

gas exchange, very little attention has been paid to quantify the diversity of leaf anatomical

traits withinOryza to use for genetic improvement or plant breeding programs in rice. Unfor-

tunately, the functional significance of leaf structure, especially at the cellular level, and its reg-

ulation is still not very clear in rice.

Until now, research on leaf structure in cultivated rice is mostly confined to leaf shape [13,

14] and leaf angle [15, 16]. There have been some studies to understand the function of bulli-

form cells [17–19], and more recently the variation in vein patterning and mesophyll architec-

ture in a mutant population of IR64 [20]. Of late, there has been growing interest in the

characterization of the foliar structure of wild rice ancestors [21, 22], which include some of

the wild species used in this structure-functionstudy. However, none of these studies have

included all theOryza species nor facilitated an evolutionary analysis as what this paper

presents.

The genetics of the genus Oryza is the most extensively studied among the grasses [6, 23–

25]. Therefore, a systematic genome-wide characterization of leaf structure in diverse rice spe-

cies might give an idea of how the structure of rice leaves has evolved in nature and also unravel

new traits that could be engineered into rice to increase its productivity. Indeed, here we have

shown the extensive variation in leaf anatomical components in different rice species that con-

tain different genetic makeup. Moreover, the leaf cellular diversity is compared in a 3-dimen-

sional (3D) volume basis rather than comparing them just in a conventional 2D area basis, and

we discuss this further with a phylogenetic context.

Materials and Methods

Plant materials

Twenty fourOryza species were characterized in terms of leaf morphology and anatomy. The

grouping of these 24 species under different genomes are as follows:Oryza sativa, O. glaber-

rima,O. nivara, O. barthii, O.meridionalis, O. rufipogon, O. longistaminata, and O. glumaepa-

tula belong to the most recent AA genome;O. punctata belongs to the BB genome;O.minuta

belongs to the allo-tetraploid BBCC genome;O. eichingeri, O. officinalis, and O. rhizomatis

belong to the CC genome;O. alta, O. latifolia, and O. grandiglumis belong to the allo-tetraploid

CCDD genome;O. australiensis belongs to the EE genome;O. brachyantha belongs to the FF

genome;O. granulata and O.meyeriana belong to the GG genome;O. ridleyi, and O. longiglu-

mis belong to the allo-tetraploid HHJJ genome;O. schlechteri belongs to the allo-tetraploid

HHKK genome; and finallyO. coarcatata belongs to the allo-tetraploid KKLL genome (4, 5, 6).

Conventionally, the genomes are genetically as distant from the AA genome as their alphabeti-

cal order suggests.
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All theOryza species were grown in a screen-house at the International Rice Research Insti-

tute, Philippines (14.1667° N, and 121.2167° E). Fully expanded leaves from 10 different clon-

ally propagated plants of each accession were characterized at the vegetative stage.

Sampling and leaf morphology characterization

Leaf types were determined based on both leaf blade length (LL, measured from base to tip of

the fully expanded leaf blade) and width (LW, measured frommargin to margin at the middle

portion of the leaf blade). Samples for vein counting and leaf anatomy imaging were taken

from the middle portion of the leaves. The leaves were fixed in FAA (50% ethanol, 5% (v/v)

acetic acid and 3.7% (v/v) formaldehyde) for further histological studies.

Counting of veins

Rice veins appear as white parallel bands on a green background on the leaf surface. Veins were

imaged using a bright field microscope (Olympus BX51) at both the left and right sides of the

midrib and at different locations lengthwise along the leaf. Vein number per mm was counted

using Image J software (Wayne Rasband, National Institute of Health, USA).

Leaf anatomical study

For detailed leaf anatomical studies, several sections (at least 3) were viewed and scored. For

uniformity, only the middle part of a leaf section, taken from middle of the leaf, was used for

analysis and scoring of different anatomical characters. Detailed anatomical information was

obtained from leaf transverse (TS), longitudinal (LS), and paradermal sections (PS) of either

free hand (50 μm thick) or microtome cut thin sections (20 μm). Images of these sections

were taken using the Olympus BX51 compound microscope and photographed with the

attached Olympus DP71 digital image documentation system. For thin sections, fixed leaves

were dehydrated in a series of graded ethanol and embedded in Spurr’s resin with further

graded infiltration series and were sectioned using an ultra-microtome (MT2-B, DuPont-

Instruments-Sorvall,Newtown, CT, USA), followed by staining in 0.05% Toluidene Blue

[26]. A Spinning Disc Fluorescent microscope (Olympus BX52) was used to collect fluores-

cence images showing cell boundaries. Anatomical parameters were quantified using Image J

software.

Defining leaf anatomical traits

The major anatomical features of a C3 rice leaf are shown in Fig 1A followed by the 3D descrip-

tion of the mesophyll cells and bundle sheath cells in Fig 1B. This diagram also explains the

three growing axes of leaves and the cells: leaf lateral or the margin-to-margin axis (X), leaf

abaxial-adaxial axis (Y), and leaf longitudinal or the proximo-distal axis (Z). The figure also

shows the correct orientations used for leaf sectioning and the position of different cells inside

the rice leaf.

The definitions of the anatomical traits used in the text are as follows:

Leaf traits:

1. LT: Leaf thickness measured by drawing a straight line from the top of the upper epider-

mis to the bottom of the lower epidermis at both sides of the small veins, avoiding the
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uneven thickening caused by the extra stone cells and bundle sheath cells above the

veins.

Vein traits:

2. VD: Vein density or the number of veins in 1 mm of leaf lateral space.

3. IVD: Inter-veinal distance measured from the center of one minor vein to the center of

the next minor vein.

4. TML: Total mesophyll length that fill the inter-veinal space (mesophyll cell length x meso-

phyll cell number in between two adjacent minor veins).

5. VW: Vein width (minor veins) or the vein diameter measured along leaf lateral (X) axis.

6. VH: Vein height (minor veins) or the vein diameter measured along the leaf ab-adaxial

(Y) axis.

Mesophyll cell traits:

7. MCN: Number of mesophyll cells present in between two adjacent minor veins.

8. MCL: Mesophyll cell length or the dimension of mesophyll cells measured along the X

axis, as viewed in leaf transverse section.

9. MCH:Mesophyll cell height measured along the Y axis, as viewed in leaf transverse section.

Fig 1. A schematic representation of a rice leaf shows different cell types and three different leaf dissection axes; used to calculate cell size,
number, and volume. For ease of viewing, bulliform and epidermal cells are not shown in detail. (A) Rice leaf transverse section. The position of major
leaf cells: mesophyll cell (MC, coloured green), bundle sheath cells (BSC, coloured white), vein (V, coloured blue), bulliform cells (BL), stone cells (ST),
and epidermal layers. In rice, inter-veinal distance is filled by a number of elliptic mesophyll cells. Veins are surrounded by a wreath of bundle sheath cells
and crowned by bundle sheath cell extension above the main circle. Large bulliform cells are present only at the adaxial side of the leaf. Stone cells are
present at both the abaxial and adaxial end of the vein. X, Y and Z represent the three growth axes where, X represents the leaf lateral axis, Y represents
the leaf abaxial-adaxial axis, and Z represents the leaf longitudinal or the proximo-distal axis. The long axis of the mesophyll cell is perpendicular to the
vein axis. The long axis of bundle sheath cell is parallel to the vein axis and perpendicular to the mesophyll cell. LT = Leaf thickness; IVD = Inter-veinal
distance; TML = Total mesophyll length in inter-veinal space; VW = Vein width; VH = Vein height. (B) Mesophyll and bundle sheath cell parameters,
measured along X, Y, and Z. MCL = mesophyll cell length; MCH =mesophyll cell height; MCW =Mesophyll cell width; and BSCW = Bundle sheath cell
width; BSCH = Bundle sheath cell height; and BSCL = Bundle sheath cell length.

doi:10.1371/journal.pone.0164532.g001
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10. MCW: Mesophyll cell width measured along the Z axis, as viewed in leaf longitudinal

section.

11. LBMC: Mesophyll cell lobing, ratio of the actual periphery of a cell to the periphery of the

cell circumscribedarea [22] as viewed in leaf transverse section.

Bundle sheath cell traits:

12. BSCN: Number of bundle sheath cells surrounding a minor vein. Extra cells out of this

circle, generally known as the ‘bundle sheath cell extensions’, were not included in the

scoring.

13. BSCL: Bundle sheath cell length measured along the Z axis, as viewed in leaf longitudinal

section.

14. BSCH: Bundle sheath cell height measured along the Y axis, as viewed in leaf transverse

section.

15. BSCW: Bundle sheath cell width measured along the X axis, as viewed in leaf transverse

section.

Statistics

One-Way Analysis of Variance (ANOVA) was carried out to test the significance of any varia-

tion in the leaf characters. Cluster analysis of species based on leaf morphology and ANOVA

of different leaf anatomical traits were made using SAS version 9.1 [27] and pair-wise compari-

son of the mean was performed using Duncan’s Pair-wise Comparison test. Correlation values

are corrected for the phylogenetically related species using phylogenetic independent contrast

method [28] by using the “pic” function in “ape” package in R [29]. Phylogenetic signal in the

trait values was checked by using phylosig function of phytools package [30] using K method

[31] and also by checking the correlation between the phylogenetic distances betweenOryza

species to the corresponding differences in values of the traits.

3Dmodeling

Polarized leaf anatomical values were merged proportionately to construct 3D graphics that

showed how the cells are actually arranged in the middle of a leaf. Mesophyll cells were drawn

by adjusting the width, height, and depth of an oval shape. Similarly, bundle sheath cells were

drawn by adjusting the width, height, and depth of a cylindrical shape along the X, Y and Z

axes. Vein width and height were also set by adjusting the width and height of a circle. A

smooth or wavy outline was selected to represent cellular lobing.

Phylogenetic analysis

A rice phylogenetic tree was built by concatenating gene sequences of Adh1 and Adh2 (S8

Table). The coding sequences (CDS) of ADH1 and ADH2 were concatenated for each rice spe-

cies and used as input sequences for the phylogenetic tree reconstruction using the web tool

suite “phylogeny.fr” [32]. In brief, the input sequences were first multiply aligned using the

softwareMUSCLE [33] and then aligned positions were annotated using Gblocks software [34]

with settings for a less stringent selection (allow smaller final blocks and allow less strict flank-

ing positions). The Gblocks-annotated alignments were used for phylogeny calculation based

on a maximum-likelihoodmethod using PhyML software [35] with 100 bootstraps. The
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phylogenetic tree was drawn and edited using MEGA 6.06 software based on the phylogenetic

tree data that resulted from PhyML.

Ancestral state reconstruction

The ancestral state was reconstructed for 13 leaf characters using Mesquite 2.75 software [36].

For this, each of the morphological and anatomical data was grouped into three equal por-

tions with definedminima and maxima to determine the high, low, and intermediate values

for each trait. The phylogenetic tree, created using PhyML, was used as a backbone to obtain

the transition parameters for ancient and recent state reconstruction using parsimony analy-

sis [37]. Mesquite software analyzes the character state at the terminal taxa and attempts to

reconstruct the ancestral state at each node and finally reconstructs the character history.

This software represents graphically the history of character evolution and displays it as a

phylogenetic tree.

Results

Leaf morphology

Distinct differences were observed inOryza leaf shapes. The leaf blade length (LL) varied

approximately six-fold among the species, ranging from 15 to 89 cm. A SAS based cluster anal-

ysis, taking leaf blade length and width both together as covariance, distinctly separated the

short and long leaved species in two groups (Fig 2). The range of leaf blade length of short

leaves was 15.1–36.0 cm whereas, the range of the long leaves was 41.0–89.4 cm. Two graphs

were plotted further to show the range of the leaf width separately for short and long leaves,

taking leaf blade width as a function of the leaf blade length. This clearly showed further scope

to classify the sub-groups of the main tree in narrow and wide categories. A code bar was finally

added adjacent to the tree to show the specific types of leaves and also the growing habitat of

each species [4], to relate the effect of growing habitat to the leaf morphological types in rice.

The general appearances of these four types are shown in Fig 2 as: A for the Long-wide (Lw), B

for the Long-narrow (Ln), C for the Short-wide (Sw) and D for the Short-narrow (Sn) types.

The IR64 leaf (41 cm x 0.97 cm) falls under the Long-narrow category. Leaf blade length and

width values of all the species are given in S1 Table.

Leaf anatomy

The basic anatomical features of a rice leaf, such as the position of the mesophyll cells in

between the veins, bundle sheath cells surrounding the veins, the presence of stone cells above

and below each vascular bundle, and the presence of bulliform cells at the upper middle portion

in between two adjacent veins, all remained consistent for all the wild and cultivated species

(Fig 3). An Oryza leaf typically contains 7–8 inter-veinal mesophyll cells and 12–13 bundle

sheath cells surrounding any minor vein (general observation).Overall, the transverse sections

of Oryza leaves appeared very diverse (Fig 3) in terms of leaf thickness, epidermal curvature,

bulliform size, vein spacing, mesophyll size and number, and bundle sheath cell size and num-

ber, and varied significantly (P<0.001, S2–S5 Tables) among the species. Here, in particular,

we have focused on quantifying the structural variation of mesophyll cell, bundle sheath cell,

and vein—the three major structural elements of an Oryza leaf. All traits were compared to the

traits of one of the most popular cultivated rice mega varieties (IR64), which belongs to Oryza

sativa that has the most recently evolved AA genome.
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Leaf thickness

Leaf thickness (LT) varied widely from 53.7 to 375.7 μm (S2 Table) and showed 104% natural

diversity compared to IR64 (LT = 74 μm), even with the exclusion of the extremely thick leaves

of O. coarctata. Thick leaves were found to be supported by veins with wider diameter as inO.

coarctata and O. australiensis (LT = 375.7 and 116.8 μm; VW = 36.5 and 31.9 μm; VH = 42

and 37.5 μm, respectively), whereas thin leaves were supported by narrow veins as seen in the

leaves of O. ridleyi,O. granulata, and O. punctata (LT = 74.8, 61.1, 53.7 μm; VW = 22.5, 23.2,

17.1 μm; VH = 29.5, 25, 20.7 μm, respectively (S3 Table).

Vein related traits

Generally, Oryza sativa has a vein density of 5 veins mm-1 leaf width (S3 Table). Among the

wild species, VD ranged from 3.8 to 6.6 veins mm-1 (S3 Table). O. brachyantha (VD = 6.6 veins

mm-1) and some other wild species such as O. schlechteri, O. longiglumis, and O. ridleyi

(VD = 6.4, 6.2, 6.2 veins mm-1, respectively) possessed a significantly higher number of veins

Fig 2. Leaf shape diversity inOryza.Cluster analysis of species based on leaf blade length and leaf blade width generates two distinct groups of long
and short leaved species, represented with a green background for long leaves and a yellow background for short leaves. Each species name is further
accompanied with its genome type as mentioned in the text. The bar graphs show leaf blade width of long and short leaves separately to show the
narrow and wide types. Representative photos of four leaf types inOryza are shown as A = Long-wide (Lw), B = Long-narrow (Ln), C = Short-wide
(Sw), and D = Short-narrow (Sn) leaf. Respective leaf types ofOryza species are mentioned in the black and white shaded boxes together with their
preferred growing habitat, i.e., sunny/shaded. Notably, majority of the species in the first cluster are sun loving, whereas most of the species in the
second cluster are shade loving. This suggests that sun-loving species mostly have long leaves whereas shade-loving species generally have short
leaves.

doi:10.1371/journal.pone.0164532.g002
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compared to the rest of the rice species and are referred to here as high vein density (HVD) spe-

cies. This increase in vein number was accompanied by a subsequent reduction in inter-veinal

total mesophyll length (TML) of up to 53% inO. granulata (S3 Table). In contrast, the largest

TML was found inO. glaberrima (TML = 231.3 μm), which indeed had a low VD of 5.0 veins

mm-1. The speciesO. glumaepatula surprisingly had thick veins (VW = 40.06, VH = 44.7 μm,

S3 Table) but did not have thick leaves.

Mesophyll cell related traits

Mesophyll cells are the major chloroplast containing green cells inside a rice leaf and are the

main sites of photosynthesis. All of the mesophyll cell structural traits varied significantly

(P<0.001, S4 Table) among the species.We observed two distinct types of mesophyll cell in

rice: termed here as Type-A that is without cell wall lobing and Type-B that is with cell wall

lobing. The first type comprisesO. schlechteri, O. longiglumis, O. ridleyi,O.meyeriana, and O.

granulate, which had no or very sparsely lobed walls (LBMC = 1–1.1, significantly different

Fig 3. Leaf anatomical variation inOryza. 2D leaf anatomical images as viewed in transverse sections. Cell types and the
arrangement of cells are as described in Fig 1. Significant variation is noticed for mesophyll cell, bundle sheath cell, and vein
size and shape (detailed quantification is given in S2–S5 Tables) in theOryza family.Oryza coarctata andO. australiensis
have the thickest leaves among the species. In contrast, species of the GG, HHJJ, HHKK, and BB genomes have thinner
leaves. In addition, the leaves of the species of the HHKK, HHJJ, and GG genomes show closer vein spacing with relatively
smaller mesophyll cells. Notably, theO. coarctata leaf possesses the widest bundle sheath cell and vertically placed
additional veins unique among the rest of theOryza species. Scale bar = 50 μm.

doi:10.1371/journal.pone.0164532.g003
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from other species, P<0.001) with generally smaller cells (exceptO. ridleyi). The second type

has a profusely lobed cell wall (a maximum of LBMC = 1.7 as inO.meridionalis) and generally

the cells appeared larger in transverse section.Notably, three ‘Type-A’ species (O. schlechteri,

O.meyeriana and O. granulata) possessedwider mesophyll cells (MCW = 9.7, 12.7, and

10.9 μm, respectively, Fig 4A and 4B) in longitudinal axis. In terms of the number, none of the

wild species had more mesophyll cells in between two veins than in IR64; although two species

(O. alta and O. glaberrima) had laterally larger mesophyll cells (MCL = 36.9 and 32.4 μm

respectively). The minimum number of mesophyll cells (MCN = 4 to 5) was found inO. coarc-

tata, O. grandiglumis, and O.minuta.

Bundle sheath cell related traits

The minor veins in the IR64 leaf are typically surrounded by 12–13 bundle sheath cells (S5

Table). An inverse trend was observedbetween the number and size of the bundle sheath cells.

Larger bundle sheath cells were found to be fewer in number, surrounding a vein (S5 Table).

Oryza coarctata was found to have a strikingly wide bundle sheath cell (BSCW= 45 μm and

BSCH = 29 μm) uniquely different from any otherOryza species.

Anatomical variation is independent of morphological types

We found that the total number of veins (counted from leaf margin to margin in the widest

part in the middle of a leaf) is strongly (r = 0.9, P<0.005) related to leaf width (S1 Fig). The

relation is strong even after the phylogenetic correction (r = 0.84, P<0.005, S9 Table for phylo-

genetic signal). But surprisingly, an increased number of veins in a unit leaf length (VD) were

found not to relate to any one morphological type. For example, the high vein density (HVD)

character was found in wide leaves of O. longiglumis, O. ridleyi,O.meyeriana, and O. granulata

(LL = 16 to 32 cm x LW = 1.5 to 1.9 cm) as well as in narrow leaves of O. schlechteri and O. bra-

chyantha (LL = 30.4 cm x LW = 0.7 cm, and LL = 18.8 cm x LW = 0.7 cm, respectively, Fig 5).

The two narrow-leavedHVD species further differed in their mesophyll characteristics (Type-

A inO. schlechteri and Type-B inO. brachyantha). Therefore, in terms of mesophyll cell struc-

ture,O. schlechteri is more similar to the broad-leavedHVD species, whereasO. brachyantha is

more similar to the rest of theOryza species carryingType-B MC, irrespective of having nar-

row or wide leaf morphologies. Similarly, the long wide leaves of O. alta, O. grandiglumis, O.

longistaminata O. glumaepatula, and O. rufipogon is diverse in several anatomical aspects (Fig

3 for 2D anatomies, examples of O. alta and O. rufipogon are shown in Fig 6A). Following this

trend, fewer mesophyll cells (4–5 in number) in betweenminor veins inO. coarctata, O. grand-

iglumis, and O.minuta are independent of their very different leaf shapes (Fig 6B).

Construction of 3-dimensional leaf anatomical model

3-Dimensional (3D) leaf anatomy models represent the actual volume and orientation of the

mesophyll and bundle sheath cells in rice leaves. These models were constructed by combining

all the cellular dimensions measured along the lateral and longitudinal directions, and then

serially orienting the appropriate number of cells (Figs 7 and 8). We noticed that the long axis

of the bundle sheath cell is actually oriented perpendicular to the long axis of the mesophyll

cell. Hence, although the length of the mesophyll cell can be viewed in transverse section, the

length of the bundle sheath cell can be viewed only in leaf longitudinal and paradermal section.

Due to the perpendicularplacement of mesophyll cells and bundle sheath cells to each other;

the lateral, vertical, and longitudinal axes of the leaf actually describe the length, height, and

width of the mesophyll cell but, oppositely, the width, height, and length of the bundle sheath

cell. For a better illustration, a wavy border was applied to the mesophyll cell where a lobing

Diversity inOryza Leaf Anatomy
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Fig 4. Variation in mesophyll cell size and lobing. (A) Leaf transverse sections and longitudinal section to
show the mesophyll cell length, mesophyll cell lobing and mesophyll cell width in IR64 and three wild rice
species:O. schlechteri,O. granulata, andO.meyeriana. The lobed/smooth line of the mesophyll cell wall
(arrows) is false colored in green that is visible as a result of auto-fluorescence of the wall components. Scale
bars show 10 μmdistance for transverse sections and 20 μm distance for the longitudinal sections. (B) The
graph shows the quantitative values (average ±SD) of MCL, MCW, and LBMC (secondary axis).
MCL = mesophyll cell length, MCW =mesophyll cell width, LBMC = mesophyll cell lobing.

doi:10.1371/journal.pone.0164532.g004
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value was greater than 1.1 (significantly different from the rest of the species, P<0.005, S4

Table). Veins were also drawn as cylinders at both ends of the 3D models. Along with IR64,

two other popularO. sativa cultivars (IR24 and IR31917) were also modeled as checks (values

are shown in S6 Table). These models provide an overall comparative view of the leaf cellular

arrangement in rice and its wild relatives.

Assessment of ancestral leaf characters

The ancestral state was reconstructed for leaf blade length, leaf blade width, leaf thickness,

three vein characters, four mesophyll characters, and three bundle sheath cell characters for all

theOryza species (Fig 9), and also separately for all the diploid species (Fig 10). The two

nuclear genesAdh1 and Adh2 were used here to construct the phylogenetic tree ofOryza family

that has been used further as a backbone for the leaf ancestral character tracing. These two

genes are widely used in grass phylogenetic studies [7, 38, 39]. Rhynchoryza subulata was used

as an out-group. The phylogenetic tree topology (S2 Fig) showed monophyly of the species

with nested small groups formed by closely-related genomes. After comparing the distribution

Fig 5. High vein frequency is conserved in closely related wild rice but not dependent on the leaf morphological types. Leaf surface
images at the middle of the figure, show increased vein density (white parallel bands) in morphologically diverse leaves (see plant images) of
closely related species of HHKK, HHJJ, GG, and FF genomes. Numbers, at the top and below these leaf surface images represent the vein
number at 2mm space in case ofO. schlechteri (one of the high vein density species) andO. sativa IR64. Scale bar under the leaf surface
image = 1 mm. Positions of the veins are marked by red stars (*) in the leaf transverse section (TS) at the right, confirmed that the increased
vein frequencies are due to reduced inter-veinal distance (IVD). Leaf types (Sw/Sn), mesophyll (MC) types (A/B), and inter-veinal distance
(IVD) are indicated. Sw = Short-wide leaves, Sn = Short-narrow leaves.

doi:10.1371/journal.pone.0164532.g005
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of character states in the terminal taxa on that rice phylogenetic tree, the evolutionary history

of each character was traced using character ancestral state analysis using parsimony. The

ancestral state reconstruction clearly showed that small leaves, more vein number, reduced

inter-veinal length, less mesophyll cell length, and fewer bundle sheath cells were the primitive

characters in rice (Fig 9). Characters like leaf width, and mesophyll cell lobing might have

evolved from an ancestor having an intermediate value for these traits (Fig 9), though, a much

more clear trend of evolving highly lobedmesophyll cells from the less lobedmesophyll cell

has been observed in case of the diploid species (Fig 10). Similarly, the trend of evolving thinner

leaves from thicker leaves, and smaller bundle sheath cells from larger bundle sheath cells has

been observed in case of the diploid species (Fig 10). The history of some of the traits such as

leaf thickness, vein width, bundle sheath cell width, and bundle sheath cell length could not be

resolved due to the general homogeneity of these traits inOryza.

Discussion

Leaf is a multicellular determinate organ and is controlled by regulation of complex genetic

networks, interaction between cell cycle and cell enlargement during its developmental stages,

according to neo cell theory [40, 41]. Generally, the leaf meristem develops from the flanking

region of the shoot apical meristem (SAM). Recruitment of founder cells is cued by down-

Fig 6. Similar leaf morphology or anatomy appears in diverse rice genomes. (A)Oryza alta (CCDD) andO. longistaminata (AA)
show similar Long-wide leaf morphologies but quite different in their leaf anatomies. (B) Similar mesophyll cell numbers (4–5, marked
by the red stars in leaf transverse sections) appear inO. coarctata,O. grandiglumis, andO.minuta (KKLL, CC, and BBCC genome
respectively) in spite of their markedly different leaf types. Lw = Long-wide, Sn = Short-narrow, Sw = Short-wide.

doi:10.1371/journal.pone.0164532.g006
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regulation of KNOTTED-1 like homeobox (KNOX) genes. This is followed by determination of

the leaf polarity; where class III homeodomain leucine zipper protein (HD-ZIP III), determines

the adaxial leaf surface and KANADI (KAN) and the YABBY gene family together with the

AUXIN RESPONSE FACTORS (ARF3 and ARF4) determine the leaf abaxial-polarity [42]. To

date, studies on leaf anatomy have been largely focused on the eudicot leaf especially in Arabi-

dopsis [43–45], specifying cell polarity [46, 47], cell patterning [48, 49] and cell shape develop-

ment [50–52]. Transcriptome sequencing has been recently applied in maize to gain an in-

depth knowledge of the regulation of gene expression during leaf development [53–55].

Recently, aWUSCHEL-related homeobox gene has been reported to work antagonistically with

YABBY to control leaf width in rice [56]. A number of anatomical factors like mesophyll cell

structure, mesophyll cell conductance and chloroplast area in mesophyll exposed to the CO2 in

intercellular space control the functional variation of leaves [57], but a clear knowledge of fac-

tors that regulate rice leaf anatomy is still obscure and limited by the identification of structur-

ally-diverse rice species.

Fig 7. 3-Dimensional anatomical models of plolyploidOryza rice leaves. The 3Dmodels were constructed by combining the measurements taken
separately along the three growth axes (X, Y, and Z) for all polyploidOryza species. Note that, when considering the perpendicular spatial positioning of
the mesophyll cell and bundle sheath cell to each other; X, Y, and Z represent length, height, and width of mesophyll cell, and the width, height, and
length of bundle sheath cell respectively. Mesophyll cells are colored in green to represent the main photosynthetic tissue, veins are colored in light
green, and bundle sheath cells are colored gray. Wavy surfaces are applied to the mesophyll cell boundaries with a degree of lobing value more than 1.1
(Type-Bmesophyll cell). Type-Amesophyll cell is shown with smooth wall structure as inO. schlechteri,O. longiglumis,O. ridleyi. Genome types are as
described in the text. A calibration scale of 50 μm is provided.

doi:10.1371/journal.pone.0164532.g007
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Fig 8. 3-Dimensional anatomical models of diploidOryza rice leaves. 3Dmodels describe the variation of rice leaf cellular structure of all
diploidOryza species; especially describing the characters of mesophyll cells, bundle sheath cells and veins. The construction of the 3Dmodels is
as described as in Fig 7. Type-A mesophyll cell is shown with smooth wall structure as inO.meyeriana andO. granulata. ThreeOryza sativa
cultivars IR64, IR24 and IR31917 are shown to provide a broad idea about the leaf anatomy of present day cultivated rice species. Genome types
are as described in the text. A calibration scale of 50 μm is provided.

doi:10.1371/journal.pone.0164532.g008
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Fig 9. Ancestral state reconstruction of leaf morphology and anatomy traits. Historical analysis of a total of 13 leaf
traits, taking all theOryza species, confirm that small leaf, high vein density, shorter inter-veinal mesophyll area, smaller-
sized mesophyll cells, and fewer number of bundle sheath cells surrounding a vein, are the primitive leaf characters in rice.
Likewise, a wider inter-veinal mesophyll area, highly-lobedmesophyll cells, and increased bundle sheath cell numbers are
advanced characters in cultivated rice leaves.Rhynchoryza subulatawas used as an out-group.

doi:10.1371/journal.pone.0164532.g009
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Fig 10. Ancestral state reconstruction of leaf morphology and anatomical traits in diploidOryza species. The history of
the evolution of leaf traits in diploid species confirms the increase in the inter-veinal mesophyll area, mesophyll number, mesophyll
length and bundle sheath cell number over time in rice. Leaf thickness and bundle sheath cell width also appear to be reduced in
the recently evolved rice species.

doi:10.1371/journal.pone.0164532.g010
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Leaf anatomical diversity in rice is under genetic control

Distinct variation in the leaf cellular structures of species of different rice genomes, that contain

different genetic blueprint, suggests genetic control over leaf anatomical modules in rice. At the

same time, a number of leaf anatomical traits are found to be quite conservedwithin and across

the genomes (S2 Fig). For example, the close vein spacing of Type-A mesophyll cell, in all the

known existing species of closely-related GG, HHJJ, and HHKK genomes, provides clear evi-

dence of the genetic conservation of the trait or phylogenetic inertia (Fig 5). Similarly, the pres-

ence of Type-B mesophyll cell in the rest of the species also suggests a strong genetic control

over this trait that is possibly also phylogenetically conserved.The uniformity of leaf anatomy

in the biggest family AA is quite expected as its members are genetically less diverse [58–60]

and, therefore, possibly contain similar anatomy-controlling gene pools across the species.

However, the cellular structure of leaves of O. punctata (BB genome) looks quite similar with

that of the species in the AA genome (Figs 2 and 8). This indicates the conservation of shared

anatomical genes in these two phylogenetically close genome types. Interestingly, most of the

anatomical traits (except the Type-B mesophyll cell) are not conserved starting from the EE

genome to the BBCC genome (S2 Fig), which probably indicates a buffer period in rice history,

where preferable genetic recombination for leaf characters had been tried to obtain final opti-

mum leaf structure in cultivated rice.

It has been reported earlier that an increase in vein number per unit area in rice leaves was

due to a change in vein diameter or due to the reduced size of other cells as an immediate com-

pensatorymechanism [20, 61]. Here we demonstrate that the increase in vein number inOryza

can also be due to an actual change in the number of mesophyll cells rather than just having a

change in cell size (S4 Table). This confirms independent regulatorymechanisms for cell divi-

sion and cell expansion exist in theOryza genus.

Interestingly, a number of species showed very thick veins compared to IR64 (O. coarctata,

O. brachyantha, O. australiensis, and O. glumaepatula) though their functionality still needs to

be resolved. Larger mesophyll cells in the wild speciesO. glaberrima and O. alta without a com-

pensatory change in the number of mesophyll cells could be a useful trait to engineer into culti-

vated rice as a means to enhance photosynthesis and yield. Larger mesophyll cells might

provide increasedmesophyll cell surface area to access more intercellular CO2 and also can

have more chloroplasts inside the cell, which is quite beneficial for increasing photosynthesis

[22].

3Dmodel of key anatomical features of rice

Conventional microscopic studies generally describe leaf structure in two dimensions only.

However, the exact nature of a cell’s structure is best achieved using 3-dimensional analysis.

3D leaf imaging throughmagnetic resonance imaging [62] and X-ray tomography [63] as well

as 3D graphics using multiphoton laser scanningmicroscopy and X-ray computed laminogra-

phy have been used in Arabidopsis [64] and tomato leaves [65] but applying these techniques

on rice still remains challenging. The 3D leaf models are constructed to facilitate the analysis of

cell number, type, volume, and orientation (Figs 7 and 8) of the major cells inside a rice leaf.

These models help us to gain new insights into leaf structural variation that possibly accounts

for differences in their physiology too. These 3D models together with additional 2D features

and leaf morphologies give a clearer idea of the key leaf structural features for each rice genome

and are also used to identify novel evolutionary trends.

Generally, the species of the AA and BB genomes characteristically retain wide vein spacing,

linked by 7–8 elliptical, laterally-flattened, and profusely-lobedType-B mesophyll cells,

arranged at right angles to the vein in both long-narrow and long-wide leaf types. A hollow
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tube was formed by the stacking of cylindrical bundle sheath cells, joined end to end, to wrap

the vein throughout the leaf length.

The curvy adaxial surface of the hard, needle-shaped, leaves of O. coarctata (KKLL) is pat-

terned with dorsal alternate ridges, which are supported by extra veins, bundle sheath cells, and

mesophyll cells (Fig 3). This makes the leaves of O. coarctata approximately three-fold thicker

than the leaves of O. sativa. This species possesses relatively small Type-B mesophyll cells but

has the shortest but widest bundle sheath cell.

The species of the HHKK, HHJJ, and GG genomes together contained both short-narrow

and short-wide leaves. These species characteristically possess relatively smooth walled (lobe-

less), small globular Type-A mesophyll cells and an increased vein number supported with

reduced inter-veinal mesophyll length (TML).

The increased vein density with reduced TML was maintained in the leaves of O. bra-

chyantha in the FF genome. Mesophyll cells were still smaller, but considerably lobed

(LBMC = 1.31, S4 Table). The lobing was either maintained or increased in the succeeding

genomes. Leaves of O. australiensis of the EE genome characteristically retained markedly

thicker leaves (LT = 116 μm) with reduced inter-venial distance and TML, and also showed

a reduction in mesophyll cell number (MCN). The leaves of the species of the CCDD

genome were easily identifiable by their very long and wide leaf shape (S1 Table). In terms

of leaf anatomy, this genome possesses larger mesophyll cells (MCL = 27.4–36.9 μm, S4

Table).

A wide variation in the leaf morphology of the CC genomemakes it difficult to describe a

signature leaf trait for this genome. Leaves were of two different types: long-wide inO. rhizo-

matis, O. officinalis, and short-wide inO. eichingeri (S1 Table). The vein density varied from

4.9 to 5.6 veins mm-1 and IVD ranged from 181.7 to 218.6 μm, with appropriate adjustment in

mesophyll cell size and vein diameter (S3 and S4 Tables). A significant reduction in mesophyll

cell number (MCN = 4) was the main anatomical characteristic of the allo-tetraploid speciesO.

minuta of the BBCC genome.Oryza punctata of the BB genome showed markedly thinner

leaves (LT = 53.76 μm, S2 Table).

Ancestral characters

After comparing all the 3D structures (Figs 7 and 8), we can clearly see that the first marked

change in leaf anatomy during rice evolution (following a retrogressive path) was inO.minuta

(BBCC) that occurred approximately before 0.4 million years [6]. This allo-tetraploid species

showed relatively thicker leaves with more veins per mm of leaf width, and had 4–5 mesophyll

cells in the inter-veinal region, which is significantly less than that of the leaves of rice culti-

vated today. These traits were more similar to that of the species of the CC and CCDD

genomes, and thus retained their ancestral inheritance.

Similar leaf anatomical features, observed in related species (S2 Fig), trigger the question

about the history of these characters during rice evolution. Tracing back the ancestral charac-

ters (Fig 9) clearly shows that a short leaf was a primitive character in rice. Long leaves are

derived from the shorter leaves with repetitive occurrences of the short type in the recent

BBCC and CC genomes as an acquired characteristic. It is known that polyploidy can affect

organ size [66]. The giant long leaves observed in the allo-tetrapolid CCDD genomemight be a

similar polyploid effect, which was also observed in three diploid species of the AA genome (O.

logistaminata, O. rufipogon and O. glumaepatula), which might be due to conservation and

dominancy of similar genes. It is also possible that these giant leaves were initially evolved as a

requirement for their sunny habitat, but had finally been optimized to a moderate leaf size in

recently evolved rice species to optimize the stoichiometry of leaf structure and function. Our
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historical analysis proposes an intermediate mesophyll cell lobing type as being ancestral (Figs

9 and 10). To further confirm if the mesophyll cell lobing had really evolved from the non-

lobed character, we studied the leaf anatomy of a fewmore Oryzawild relatives (called distant

wild rice species because of their morphological similarity to the wild rice plant). These species

possessed either of that two mesophyll cell types (S3 Fig). In Hygroryza aristata and Chikusi-

chloa aquatica, a complete reduction of lobing was observed,whereas the mesophyll cell wall

of Luziola leiocarpa, Rhynchoryza subulata, Leersia tisseranti, and Zizaniopsis villaniopsis

showed varying degrees of lobing from 1.00–1.38 (S7 Table). All these species showed a reduc-

tion in either mesophyll cell number or length or both, confirming again that these characters

were really primitive in the evolution of theOryza leaf.

Leaf evolution in rice

The changes in leaf characters during rice evolution (S2 Fig) indicate the gradual dominance of

certain anatomical characters during speciation. Our analysis suggests that Type-A and Type-

B mesophyll cell structures have possibly evolved from a common ancestor even before the

foundation of theOryza species i.e., at least 15 million years ago which is the reported origin

time of rice [6, 67]. Therefore, according to the constructed rice phylogeny (S2 Fig) and to

available chronological data [6],O. granulata and O. brachyantha were the first known diploid

species to have the Type-A and Type-B mesophyll cells respectively. These two contrasting

mesophyll cell types were present in a number of rice species until 11 million years ago, the

possible origin time of the allo-tetraploid KKLL and HHKK genomes [6] and after that the

Type-A mesophyll cell has remained unchanged. A unique increase in the bundle sheath cell

lateral diameter or width (BSCW), seen inO. coarctata, was also not found in any other rice

species that evolved afterO. coarctata. Therefore, the evolution of large bundle sheath cells can

be considered as an evolutionary dead end that terminated withO. coarctata. These observa-

tions led to the hypothesis of parallel leaf evolutionary lineages in rice (Fig 11), takingO. granu-

lata and O. brachyantha as the existing founder species of each lineage. Both lineages, with the

basic difference of mesophyll cell lobing, started with a common feature of reduced total meso-

phyll length in between the veins; and gradually modified this to achieve increasedmesophyll

area by increasingmesophyll cell number and length over evolutionary time.We conclude that

the first lineage had lasted for a short time span of approximately 4 million years and was lost

withO. schlechteri. In contrast, gradual increases in size, lobing, and number of mesophyll cells

in the second lineage ultimately led to the formation of the present-day leaf anatomy of rice.

An increase in mesophyll area possibly resulted increase in photosynthetic tissue within the

leaf, which eventually lead towards an improved photosynthetic efficiency in cultivated rice.

Conclusion

This study provides new insights into rice leaf diversity, described in an evolutionary context.

We have dissected rice leaf morphological and anatomical traits and reported significant leaf

morpho-anatomical diversity for these traits in wild rice, particularly for the veins, mesophyll

cells, and bundle sheath cells. We have concluded that leaf morphology and anatomy are not

always linked and thus recombining those traits can open new horizons to engineer a new leaf

types or even a C4-like rice leaf structure which requires very narrow vein spacing. Increasing

rice vein density, mesophyll size, and bundle sheath cell size is also possible using the trait from

appropriate wild species. Likewise, some of theOryza species identifiedwith thick leaves could

be of direct interest for rice breeding. This paper presents a thorough genome-wide study and

helps to identify the ancient and recently-evolved leaf characters. Finally the analysis of 3D leaf

anatomical models within an evolutionary context clearly shows that the increment in the
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mesophyll area is the key reason behind rice leaf succession towards the present-day O. sativa

leaf type. Further studies on the functional significance and genetic regulation of these anatom-

ical traits will be an exciting avenue for future research.

Supporting Information

S1 Fig. Relation between leaf width and the total number of veins (VD x LW) in leaves of

Oryza.

(TIF)

S2 Fig. Phylogeneticallyarranged leaf trait variation inOryza species.The phylogenetic tree

of Oryza, created using conservednuclear sequences of Adh1 and Adh2. Aligning leaf data

matrix with the tree suggests the successive changes that might have occurred in various leaf

traits duringOryza speciation. Heat map of the leaf traits shows certain colored patches (black

for low values and green for high values) suggesting cross-species conservation of similar leaf

traits. For example, small leaves (1), reduced inter-veinal mesophyll cell length (2), small (3)

and reduced lobedmesophyll cell (4), reduced bundle sheath cell diameter (5 and 6), more

veins (1a), wider total mesophyll area (2a), mesophyll cell number (3a), increasedmesophyll

cell lobing (4a), and increased bundle sheath cell number (5a) show conserved characters in

closely related wild/cultivated species. 3D anatomy models at the right are shown to compare

Fig 11. Rice leaf evolution. A two-pronged leaf evolutionary hypothesis in rice suggests that the leaf structure has possibly
evolved intoOryza sativa leaf type by the favorable selection of one of the two possible evolutionary lines (Lineage 1 and 2). The
first lineage explains the presence of Type-A mesophyll cells, which existed ~10 million years ago and has remained unchanged
since the evolution ofO. schlechteri. The second lineage explains a gradual modification of the ancestral Type-B mesophyll cells
that lead to an overall increase in the mesophyll area between the veins and gradually evolved into the cultivated rice leaf that we
see today. The probable time of evolution of a particular leaf type is shown as Million Years Ago (MYA).

doi:10.1371/journal.pone.0164532.g011

Diversity inOryza Leaf Anatomy

PLOSONE | DOI:10.1371/journal.pone.0164532 October 28, 2016 20 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164532.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164532.s002


the overall changes in anatomy that happened during evolution. (Rhynchoryza subulata was

used as out group).

(TIF)

S3 Fig. Leaf anatomy (2D) of distant wild rice relatives.Types and arrangement of cells as

describe in Fig 1.

(TIF)

S1 Table. Leaf length and leaf width of Oryza species.
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S3 Table. Vein characters of Oryza species.
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S4 Table. Mesophyll cell characters of Oryza species.
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S5 Table. Bundle sheath cell characters of Oryza species.
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S6 Table. Detailed anatomical characters of three high yielding rice cultivars IR64, IR24

and IR31917.

(PDF)

S7 Table. Detailed anatomical characters of distant wild rice species.
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