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Treatment of chronic lymphocytic leukemia (CLL) has shifted from chemo-immunotherapy to

targeted agents. To define the evolutionary dynamics induced by targeted therapy in CLL, we

perform serial exome and transcriptome sequencing for 61 ibrutinib-treated CLLs. Here, we

report clonal shifts (change >0.1 in clonal cancer cell fraction, Q< 0.1) in 31% of patients

during the first year of therapy, associated with adverse outcome. We also observe tran-

scriptional downregulation of pathways mediating energy metabolism, cell cycle, and B cell

receptor signaling. Known and previously undescribed mutations in BTK and PLCG2, or

uncommonly, other candidate alterations are present in seventeen subjects at the time of

progression. Thus, the frequently observed clonal shifts during the early treatment period and

its potential association with adverse outcome may reflect greater evolutionary capacity,

heralding the emergence of drug-resistant clones.
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C
lonal evolution is a major driving force in the ability of
malignancies to adapt to therapeutic bottlenecks, becom-
ing more aggressive and resistant to therapy. Chronic

lymphocytic leukemia (CLL), the most common leukemia in
western countries, illustrates the challenge posed to modern
oncology by cancer evolution: despite highly effective therapies,
the leukemia invariably evolves and recurs1–4. Indeed, in the
context of standard frontline fludarabine-based chemo-immu-
notherapy for CLL, we have previously reported that tumor
evolution following therapy is the rule rather than the
exception5,6.

Recently, the therapeutic landscape of CLL has been dramati-
cally altered through the introduction of multiple highly effective
targeted agents7. Leading these is ibrutinib, a first-in-class Bruton
tyrosine kinase (BTK) inhibitor, which blocks B cell receptor
(BCR) signaling, a key pathway for CLL cell survival and pro-
liferation. Ibrutinib has potent activity even in high-risk groups
such as previously treated CLL or CLL with TP53 aberrations8–10.
Approved for all CLL patients based on improved progression
free survival in treatment-naive disease and a favorable safety
profile8,11–13, ibrutinib is increasingly used as monotherapy or
tested in combination regimens.

Despite this high level of clinical activity, disease progression
on ibrutinib has been increasingly appreciated, with mutations in
BTK and in PLCG2 (a key signaling molecule immediately
downstream of BTK in the BCR pathway), as the most common
adaptations to therapy14–17. In a limited series of CLL patients,
we have also previously identified del(8p) as a putative resistance
enabling driver emerging with disease progression on ibrutinib16.

We further identified that the capacity for resistance (e.g., the
observation of minute PLCG2 mutated clones) was already
present at the time of study entry, thus emphasizing the role of
ibrutinib in providing strong selection pressure for the emergence
of resistant clones.

Collectively, these results suggest that a study of clonal
evolution patterns based on dense serial sampling and the
measurement of clone-specific growth with therapy can provide
clues regarding the mechanisms of resistance to this targeted
agent. We therefore performed a longitudinal study of 61 CLLs
treated with ibrutinib monotherapy (n = 45) or ibrutinib in
combination with rituximab (n = 16), examining early patterns of
clonal growth prior to development of overt CLL relapse,
dynamic transcriptional changes and the course of clonal evolu-
tion upon disease progression. Here, we demonstrate that early
clonal shifts, detected in 31% of patients, are associated with
disease progression and identify previously undescribed muta-
tions in PLCG2 and ITPKB at the time of relapse. These data
suggest that greater evolutionary capacity, as indicated by the
presence of clonal shifts during the early treatment period, lead to
the emergence of drug-resistant clones and an adverse clinical
outcome.

Results
Whole-exome sequencing of samples during ibrutinib therapy.
We analyzed sequential samples from 61 patients enrolled in
phase 2 clinical trials of single-agent ibrutinib (NCT01500733,
Cohort A, n = 45) or ibrutinib with rituximab (NCT02007044,
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Fig. 1 Putative driver gene mutations and copy number alterations at treatment initiation. a Treatment schema, absolute lymphocyte count (ALC) and

number of samples per cohort that underwent whole-exome sequencing (WES) and RNA-sequencing at the indicated time points. Box plot shows the
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mutations and copy number alterations (blue) across the 61 patients
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Cohort B, n = 16). The median age of the combined cohorts was
65 (range 33–85) years and the majority of patients had markers
of poor prognosis such as deletion of chromosome 17p (del(17p))
by fluorescence in situ hybridization (FISH), unmutated IGHV
(U-IGHV) status and relapsed or refractory disease (Supple-
mentary Table 1). Fifty-eight patients (95%) achieved a clinical
response by 6 months. We observed marked cytoreduction across
patients over the first 6 months of treatment, with a median
decrease in the absolute lymphocyte count (ALC) of 64.6%,
without differences between the 2 cohorts (rank sum P = 0.53). At
a median follow-up of 48.5 months (range 5.8–58.5), 17 of 61
(28%) patients had evidence of progressive disease.

We hypothesized that subclones within each patient may be
differentially affected by ibrutinib treatment resulting in clonal
shifts, and that these changes may be apparent early during
therapy18,19. We therefore performed whole-exome sequencing
(WES) on a median of 3 (range 3–5) pre-relapse peripheral blood
CLL samples with median depth of coverage of ×107 (inter-
quartile range [IQR] of 97–119X, Supplementary Data 1). Pre-
study samples were available for all patients as well as samples at
1 and 6 months after therapy initiation for more than 85% of
patients. Additional samples were available at 2, 3, and 12 months
(Fig. 1a). For 14 patients in Cohort A, matched serial RNA-
sequencing (RNA-seq) was also performed.

Consistent with previous characterizations of CLL5, baseline
WES revealed a median mutation rate of 1.13 (IQR: 0.93–1.78)
silent and non-silent somatic single nucleotide variants (sSNVs)
and insertions and deletions (sIndels) per megabase across
patients, with no significant differences between the two clinical
cohorts (Mann–Whitney P = 0.156). Across the 61 pre-treatment
samples, we observed 229 sSNVs and sIndels affecting 49
candidate CLL genes, and 108 CLL somatic copy number
alterations (sCNAs)6. Of the 229 putative driver sSNVs/sIndels,
152 (66.4%) were observed at subclonal frequency6, while 33 of
108 (21.7%) driver sCNAs were subclonal in frequency (Fig. 1b,
Supplementary Fig. 1, Supplementary Data 2 & 3). The most
recurrent lesions were mutations in TP53 and del(17p), under-
lining the high-risk nature of CLL patients enrolled in these early
clinical studies. We note that the presence of a TP53 alteration at
baseline did not have a statistically significant association with
adverse outcome (time-to-progression, log-rank P = 0.33). Other
candidate drivers such as mutations in SF3B1 and ATM, del(13q)
and del(11q) were found in a similar proportion of samples,
compared with our previous report6.

Since the BCR and nuclear factor-κB (NF-κB) pathways are
directly inhibited by ibrutinib, we examined whether the presence
of mutations in these pathways prior to ibrutinib therapy was
associated with inferior outcome. We identified 25 pre-study
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samples with 32 somatic mutations in the BCR and NF-κB
pathways at both clonal and subclonal frequencies (Supplemen-
tary Fig. 2a, Supplementary Data 4). Most mutations were
predicted to be damaging (73.9% missense mutations with
PolyPhen-2 score ≥0.9520) and 14 (43.8%) of 32 had been
previously reported in cancer (COSMIC21, cancer.sanger.ac.uk,
v79). We did not observe the previously described ibrutinib

resistance mutations in BTK or PLCG2, although we detected a
clonal CARD11 L251P mutation reported to confer resistance to
ibrutinib in diffuse large B cell lymphoma22,23. Despite the
presence of baseline mutations in critical regulators downstream
of BTK in more than a third of patients, the reduction in
ALC during the first 6 months was not significantly different
between patients with and without pathway mutations (rank sum
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P = 0.43). We noted only a trend towards higher risk of relapse
(Fisher P = 0.091) and shorter time-to-progression (hazard ratio
2.1 [95% CI 0.80–5.53, log-rank P = 0.12, Supplementary Fig. 2b)
in patients with baseline pathway mutations.

Early clonal shifts associate with adverse clinical outcome. In
addition to the baseline characterization, the frequent serial
sequencing of early on-treatment (prior to relapse) samples

enabled us to directly compare the relative diminution of different
clonal subsets in response to ibrutinib therapy. To track clonal
trajectories across serial samples, we first measured the variant
allele fraction (VAF) of all sSNVs/sIndels identified in all avail-
able WES data (i.e., across the different timepoints) per patient.
VAFs were transformed to cancer cell fractions (CCFs) using
ABSOLUTE24, followed by n-dimensional clustering (n = number
of timepoints per patient), across all samples. This procedure
allows us to infer discrete clusters of somatic mutations that
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define each subclone, and to calculate the CCF of each subclone at
each timepoint (Methods section).

For each patient, we compared the clonal composition of the
baseline sample with the latest on-treatment sample, within the
first 12 months of therapy (median time interval 168 days, range
56–365). Nineteen of 61 CLLs (31%) showed significant pre-
relapse changes in CCF over time, defined as a FDR adjusted P
value of <0.1 for change in CCF >0.1 in the largest rising or
falling clone (Fig. 2a, Supplementary Fig. 3 & 4, see Methods for P
value estimation). We observed a wide range of CCF changes in
these clones (median 0.23 [range 0.12–0.56]; Fig. 2b). Of the 19
CLLs with significant early clonal shifts, a likely branched pattern
was observed in 15 patients, in which distinct clones appeared to
reciprocally rise and fall, suggestive of shifts in dominance
between the two sibling clones (e.g., A18), while the remainder of
evolving CLLs demonstrated a linear evolution pattern (n = 4),
where clonal dynamics may have resulted from a change in
frequency between parent and progeny clones. Neither the
number of serial samples per patient (rank sum P = 0.3), nor
the time interval between the baseline and last sample (rank sum
P = 0.055) differed significantly between CLLs with and without
clonal shifts. Moreover, the propensity for clonal shifts was not
impacted by the addition of rituximab treatment (Fisher P = 1.0),
nor by ibrutinib-related lymphocytosis, which may persist for
months after therapy initiation, but has not been associated with
inferior clinical outcome11. Indeed, the change in ALC during the
first 6 months of treatment was not different between CLLs with
or without early clonal shifts (rank sum P = 0.49). A survey of
additional baseline clinical characteristics, such as IGHV muta-
tion status, prior treatment history, del(17p) or TP53 mutations,
del(11q), and BCR or NF-κB pathway mutations, did not identify
clear associations with early clonal shifts (Fig. 2c).

We further leveraged our dense sampling of timepoints during
ibrutinib treatment to examine the growth and decline rates of
subclonal populations between any pair of timepoints. Although
CCF changes were largely concordant in their directionality
(78.9% (95% CI: 62.7–90.4)) throughout treatment, we observed
that clonal shifts were more pronounced during rather than after
the first month on treatment (e.g., ATM-mutated clone in A18,
Fig. 2a). Thus, the median absolute change in CCF per day (d|
CCF|/dt) of the most changing clones was 4.3 × 10−3 % per day
(IQR 1.6–5.1 × 10−3 %) during the first month on ibrutinib, but 5-
fold less at 8.6 × 10−4 % per day thereafter (IQR 5.0–12.0 × 10−4

%, paired Welch’s t test P< 0.000003, Fig. 3a). Consistent with
this decrease in CCF change over time, the median absolute CCF
change rate (dv|CCF|/dt) showed a deceleration of –2.7 × 10−5

per day (IQR −0.6–−5.8 × 10−5, Student’s one-sample t test
P< 0.0004, Fig. 3b). CCF change deceleration was associated
neither with lymphocytosis at day 30 (ANOVA P = 0.95) nor with
the addition of rituximab (ANOVA P = 0.3), but was consistent
with exponential decline dynamics (Fig. 3c).

CLLs that harbored a candidate CLL driver6 at a subclonal
frequency in the baseline sample were more likely to manifest
early clonal dynamics (54 vs. 27%). We examined the changes in
CCF over time in those CLL drivers detected at subclonal
frequency, focusing on the 14 candidate CLL genes and CNVs
present in at least six cases across the 61 baseline samples.
Overall, these recurrent subclonal drivers (e.g., SF3B1mut,
ATMmut subclones) showed clonal stability, without a clear trend
towards clonal increase or clonal decrease (Fig. 3d, e). This
included deletions and mutations in TP53 (TP53mut), which have
been associated with adverse outcome in the setting of
conventional chemotherapy. Our finding of general stability of
subclones over the early treatment period, even with TP53mut, is
consistent with prior studies reporting comparable early response
rates to ibrutinib for both TP53mut and TP53wt CLL9,25.

Despite the lack of detectable differential fitness across the
individual genotypes, the presence of on-treatment clonal shifts
during the first year of therapy was associated with a greater
likelihood of disease progression (9 of 19 [47%] evolved CLLs vs.
8 of 42 [19%] of non-evolved CLLs, Fisher P = 0.032) and shorter
time-to-progression (hazard ratio 3.05 [95% CI 1.05–8.91],
log-rank P = 0.015, Fig. 3f-left). To assess the sensitivity of this
finding to changes in the criterion for defining significant CCF
shifts (CCF change >0.1 with FDR Q< 0.1), we reanalyzed the
data with a less stringent criterion of CCF change greater than
0.05. While as expected, more CLLs showed clonal shifts that
reached statistical significance (30/61 compared with 19/61), the
shorter time-to-progression remains significant (hazard ratio 2.73
(95% CI 1.05–7.09), log-rank P = 0.049, Supplementary Fig. 2C).
Thus, early clonal dynamics may reflect a greater evolutionary
capacity, irrespective of specific driver alterations, heralding
emergence of drug-resistant clones and disease progression.

Progressive transcriptional changes during ibrutinib therapy.
To investigate the consequences of BTK inhibition on tumor cells
in vivo, we sequentially profiled the CLL transcriptome in 14
patients treated with single-agent ibrutinib (Supplementary
Table 1). RNA-seq was performed on CD19+ selected tumor cells
at baseline, 1 month and 6 months on therapy. Flow cytometric
analysis showed that CLL cells comprised >99% of B cells in all
samples tested during the first year of therapy. After subtraction
of subject-specific effects23 (Supplementary Fig. 5a, b) from the
expression data, sampling time point became the dominant factor
associated with transcriptional change, clearly separating baseline
from on-treatment samples (Fig. 4a and Supplementary Fig. 5b).
Of note, there was no significant correlation between the extent of
treatment-induced changes in lymphocyte count and the degree
of transcriptomic change (Supplementary Fig. 5c).

Comparing baseline to on-treatment samples, we identified
653 differentially expressed coding genes (fold-change ≥2 in at
least one on-treatment sample, FDR< 0.1), of which 498 genes
were downregulated and 155 were upregulated (Supplementary
Data 5; Fig. 4b). Transcriptional changes became progressively
more pronounced with treatment duration, involving a greater
number of genes and increasing in magnitude of change
from baseline (Supplementary Data 5; Fig. 4c). There was no
difference in treatment-induced transcriptional changes between
patients with early clonal shifts and those without (P> 0.77).
Overall, these data indicate a progressively stronger impact of
therapy on the transcriptome of residual tumor cells in
circulation over time.

To identify specific cellular responses affected by ibrutinib, we
tested for enrichment of well-characterized gene sets representing
lymphocyte cellular functions and processes (Supplementary
Data 6)24,25. Of 48 gene sets, 18 were significantly enriched with
genes downregulated on ibrutinib treatment (FDR< 0.1; hyper-
geometric test), and followed three main categories: (i) immune-
receptor signaling, (ii) cytokine signaling, and (iii) other general
cellular processes (e.g., cell proliferation, Supplementary Data 6,
Fig. 4d). Gene sets consistent with the first category of
downregulation of immune-receptor signaling included those
representing BCR (including IRF4), TLR, CD40 and canonical
NF-κB signaling, consistent with the expected direct on-target
effects of BTK inhibition26. The decrease in HRAS, KRAS, and
calcium signaling likely also reflects inhibition of BCR signaling.
Of the second category of cytokine signaling, and consequent
downregulation of JAK/STAT signaling, we observed enrichment
of gene sets representing IL-4, IL-6, IL-10, and T cell-derived
cytokines, as well as those representing STAT3 expression. The
third category of enriched gene sets further indicated overall

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02329-y

6 NATURE COMMUNICATIONS | 8:  2185 |DOI: 10.1038/s41467-017-02329-y |www.nature.com/naturecommunications

www.nature.com/naturecommunications


reduced cell activation on ibrutinib. We observed a substantial
overlap with expression changes seen in anergic B cells, as well as
downregulation of genes expressed in proliferating cells, and of
genes required for glucose and amino acid metabolism. This
analysis is consistent with previously shown extinction of the
proliferation marker Ki67 in CLL cells from patients on
ibrutinib26, and a marked reduction in cell size by flow cytometry
(Supplementary Fig. 4d, e). Finally, we found a marked reduction
in genes modulated by HIF1α, a regulator of chemokine and
adhesion molecules that facilitate interactions between tumor
cells and the microenvironment26.

Overall, the transcriptomic changes on ibrutinib reflect B cells
in a quiescent-like state, with substantially reduced signaling,
proliferation and activation. While many of these changes are
BCR-dependent, these results suggest broader effects than
inhibition of BCR signaling alone. In contrast, none of the 48
gene sets were significantly enriched with genes upregulated on
ibrutinib, suggesting that there is a lack of strong compensatory
pathway or cellular process activation by ibrutinib.

Relapsed disease and clonal evolution. We have recently char-
acterized with targeted sequencing BTK and PLCG2 mutations in
relapsed CLL after ibrutinib therapy17. We have demonstrated
that these mutations may arise before the clinical appearance of
relapsed disease, often with multiple clones bearing resistance
variants. In the presently studied cohort, 17 of 61 patients
exhibited progressive disease, 14 with relapsed CLL and 3
exhibited either transformation to aggressive lymphoma (Richter
transformation: A34, A42) or to prolymphocytic leukemia (A03,
Fig. 5a; Supplementary Table 2, we note that targeted sequencing
was reported for 7/17 cases in Ahn et al.17). For 10 of 17 relapses,
mutations in BTK and PLCG2 were tested by targeted sequencing
of known hotspots (exon 15 of BTK; exons 19, 20, and 24 of
PLCG2), and detected in 6 of 10 cases (Fig. 5b, Supplementary
Table 3). Based on sample availability, we undertook WES to
identify putative drivers of ibrutinib resistance in four relapse
cases without detectable BTK/PLCG2 mutations by targeted
sequencing (from Cohort A) or that did not undergo targeted
sequencing (from Cohort B, Fig. 5c, Fig. 6).
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Fig. 5 PLCG2 mutations in ibrutinib resistant CLL. a The relapse characteristics are provided for the entire cohort. Patients without progressive disease

(PD), are shown in gray with the time from treatment initiation to the last follow-up. For patients with PD, in addition to the time-to-progression, we

provide the resistant genotype information. b Map of the PLCG2 gene with mutations identified in cases of ibrutinib resistance14,16,17,29. Red circles denote

the number of patients with indicated mutations identified in the current study. Gray bars denote the regions covered by targeted sequencing. Domains PH
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SH3 Src homology 3, Y-box phosphatidylinositol-specific phospholipase C Y domain, C2 calcium-binding motif. c Detailed information is presented for the

two cases in which WES revealed additional PLCG2 mutations. Top panel shows the absolute lymphocyte count (ALC) over the patient’s clinical course, as

well as changes in CCF of subclones as depicted in the inferred phylogenetic tree. Bottom panel shows the inferred growth kinetics of the different

subclones, including measurements with corresponding 95% CI, as well as the exponential growth curves with 95% CI as shaded area. The calculated

growth or decline rates from the exponential growth curves as well as the corresponding R2 fit with exponential growth dynamics is listed in the table in the

bottom panel. *We note that clones with R2= 1.0 merely reflects that only two data points were available for fitting
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In two of four relapse cases, we identified previously
undescribed mutations in PLCG2. Patient B06 experienced CLL
relapse 12 months following combined ibrutinib and rituximab,
with a rise to dominance of a subclone harboring del(8p), which
we previously linked to ibrutinib resistance16. This growing CLL
clone yielded additional progeny clone(s) with a CCF of 0.12 at
relapse, containing the canonical C481R BTK resistance variant,
and two additional previously unreported PLCG2 variants (L848R
with a high Polyphen-220 score of 0.993 for a damaging mutation,
and an in-frame three base pair deletion in codon E1139del).
Although the resolution of our data led our clustering algorithm
to assign these three mutations to a single subclone, these likely
represent three distinct sibling subclones based on our previous
single-cell sequencing analysis of a similar case (Fig. 5c)16. Patient
A43 exhibited an early rise in CCF following initiation of therapy
of a subclone with BIRC3 mutation, which was later slowly
replaced by the time of relapse at 42 months by a progeny clone

carrying the same E1139 deletion in the C2 terminal domain of
the PLCG2 gene. This region was outside of the territory assayed
by the targeted sequencing assay, is involved in calcium binding
and membrane anchoring27,28, and appears to be a hotspot for
resistant mutations along with PLCG2 D1140G and M1141K,
previously described in ibrutinib-treated patients with progressive
CLL16,29.

Two of the four relapse cases studied with WES did not harbor
BTK or PLCG2 mutations. In Patient A11, relapse occurred at
39 months and was driven by a progeny of a del(8p)-clone,
containing a single Indel on the gene CDIPT (Fig. 6). Mutations
in this gene have not been previously reported in CLL, and thus
this Indel may reflect a passenger event with potential additional
(e.g., non-coding or non-genetic) changes within this subpopula-
tion that have led to its accelerated growth in the presence of
ibrutinib. This patient also had an ancestral gain-of-function
CARD11 G126D mutation at baseline that has been shown to
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activate the NF-κB pathway in transfected HEK293 cells30.
However, the early response and marked clonal shifts with relapse
suggest that this mutation was not sufficient for ibrutinib
resistance in a CLL context. Patient A42 exhibited Richter’s
transformation after 9 months of therapy driven by a CLL-related
clone with an ITPKB somatic substitution (C873F, PolyPhen-2
score 0.986, Fig. 6). We have previously reported this gene as
recurrently affected in CLL5, and frequent alterations have also
been observed in diffuse large B cell lymphoma31. ITPKB is a
central feedback inhibitor of the BCR pathway, and its disruption
may provide enhanced BCR signaling downstream of BTK32.

From CCF information across serial measurements, we
calculated clone-specific growth rates, based on exponential
growth models, which are well supported by experimental CLL
data16,33. For most relapse clones, we found growth rates of
0.1–2% per day (e.g., PLCG2 E1139del in Patient A43 (1.43%
per day, 95% CI: 1.27–1.71%)), consistent with previous estimates
of relapse-driving clones in CLL16,33. As expected, the clone with
ITPKB mutation in the Richter’s transformation (Patient A42)
showed a much higher growth rate of 5.89% per day (95% CI:
5.86–5.93%). In some cases, the exponential growth dynamics of
the likely resistant clone were insufficient to explain the
resurgence of the CLL. For example, in Patient A43, in addition
to the rise of the mutant PLCG2 clone, another large clone
(BIRC3 mutant) that was previously declining in cell number,
registered an increase in number in the peripheral blood upon
relapse. This suggests that either additional genetic (not covered
with WES) or non-genetic (e.g., cell–cell interaction, epigenetic)
factors are contributing to the relapse.

We back-extrapolated the calculated growth rates to estimate
of the size of the resistant clone at treatment initiation.
These analyses suggested that the del(8p) clone of Patient B06
involved 4 × 109 circulating cells at treatment initiation (95%
CI 2.8–5.5 × 109 cells), while the emerging progeny BTK/PLCG2
clones involved only 2.5 × 106 cells at baseline (95% CI:
0.26–19 × 106 cells). Likewise, the PLCG2 mutated clone in
Patient A43 appeared to be present at the time of treatment
initiation at a much smaller size with a predicted cell number of
only 75 cells (95% CI 12–514). Similarly, the ITPKB mutated
Richter’s transformation clone was estimated to involve a small
proportion of circulating cells at treatment initiation, estimated at
10,700 cells (95% CI 10,000–11,400).

Discussion
The potent therapeutic efficacy of ibrutinib results in major
clinical benefit for patients with CLL. However, this therapy also
exerts strong selective pressure, which can promote the eventual
outgrowth of resistant subclones. We therefore undertook an
effort to perform unbiased sequencing of serially collected sam-
ples in order to define the evolutionary dynamics of ibrutinib-
treated CLL, as we and others have shown that closely timed
temporal sampling of tumor samples is a powerful approach to
characterize such changes16,18,19.

Our data support the presence of marked clonal shifts within
the early, pre-relapse treatment period in nearly a third of these
high-risk ibrutinib-treated CLLs. While clonal dynamics were
common, no single common CLL driver (e.g., SF3B1mut or
ATMmut) exhibited a clear trend of clonal expansion suggestive of
selective fitness to ibrutinib. Furthermore, mutations in BCR
signaling components, such as CARD11 L251P-conferring ibru-
tinib refractoriness in DLBCL, did not promote clonal fitness or
preclude clinical response to ibrutinib in CLL. Likewise, in con-
trast to the patterns observed with fludarabine-based therapy,
TP53mut subclones had similar likelihood to increase or decrease
on treatment, arguing against a direct relationship between

TP53mut and clonal fitness in the context of ibrutinib therapy.
Instead, we speculate that the genomic instability in TP53mut

cancer may potentially lead to greater clonal diversity and a
higher chance of acquiring additional resistance mutations. This
is consistent with the clinical observation that TP53mut CLLs
show similar ibrutinib-response dynamics to TP53wt CLL9, but
may be more likely to relapse. Thus, early clonal dynamics may
serve as an indicator of the evolutionary capacity of the disease,
which may underlie the potential association between early clonal
dynamics and adverse outcome.

Our strategy of using serial sampling may also enhance our
appreciation of dynamics of transcriptional changes in response
to ibrutinib. Ibrutinib induced widespread changes in gene
expression in CLL cells in vivo, reflecting strong inhibitory effects
across multiple pathways. This suggests a broader impact on CLL
biology than expected from the loss of BTK function alone.
Moreover, we did not identify any distinct biologic signatures that
were upregulated in response to ibrutinib, which may indicate the
absence of a cellular stress response. This is consistent with the
apparent resting state of residual circulating CLL cells and their
slow attrition over time. Importantly, we observed reinforcement
of this transcriptional response with time, which was unrelated to
clonal shifts or the degree of decrease in cell number. This may be
related to the fact that ibrutinib not only affects tumor cells
directly, but also leads to widespread changes in the tumor
microenvironment as reported by us and others, including a
decrease in inflammatory cytokines, shifts in T cell subsets and
interactions between tumor cells and macrophages34,35. The
dynamic transcriptional changes observed in this study suggest
that these phenomena may involve long-term remodeling, in
addition to the immediate effects of ibrutinib therapy on CLL
cells.

This study also offered an opportunity to better characterize
the genetic landscape of relapsed CLL after ibrutinib therapy. Our
results confirm previous studies that highlight mutations in BTK
and PLCG2 as central to ibrutinib resistance14–16. By employing
WES, we further identify additional putative sites within the
PLCG2 gene, including a recurrent small deletion in the C2
terminal domain found in two relapse cases. Thus, our analysis
informs cases of progressive disease in which targeted sequencing
was unable to explain resistance. These results suggest that clin-
ical investigations of ibrutinib resistance may benefit from com-
prehensive sequencing of PLCG2 until the spectrum of resistance
mutations is fully characterized. As previously observed14,16,17,
relapsed CLL may often contain multiple distinct mutations in
these resistance genes highlighting the tremendous evolutionary
capacity of this disease. The estimation of the size of
resistant clones, based on the back-extrapolation of growth rates,
showed that typically resistance arises from pre-existing clonal
diversity36,37. We note that these calculations rely on the
assumption of exponential growth with stable growth rates, an
assumption we have previously validated experimentally16, but
remains to be further tested. Finally, it is also important to
consider that the characterization of the resistance genotypes in
CLL is likely incomplete. Here, we identify an additional candi-
date relapse driver—ITPKB. ITPKB mutations are significantly
overrepresented in DLBCL38,39, and in ITPKB−/− mice, B cell
lymphomas develop with constitutive activation of PI3K signal-
ing40. This example suggests that efforts to study relapse cases
should continue as our experience with ibrutinib therapy
broadens, especially in these relapses without known PLCG2 or
BTK mutations.

Collectively, these findings may help guide the ongoing efforts
to optimize therapy, in order to overcome the evolutionary
potential of CLL that leads to relapse. First, these results support
the investigation of ibrutinib therapy in the treatment-naive
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setting where clonal complexity is expected to be lower5. Second,
these results add to considerations about early treatment versus a
“watch and wait” approach in CLL, as earlier stage disease may
harbor less clonal diversity and therefore may have reduced
evolutionary potential. Third, the progressive transcriptional
changes seen over time suggest that the therapeutic effect of
ibrutinib may be extended with longer use by allowing ongoing
microenvironmental remodeling. Finally, the estimation of clone
sizes at treatment initiation may serve to optimize combination
therapy, as therapies combined with ibrutinib would need to
specifically target these resistant cell populations.

Methods
Patients and samples. Cohort A included 45 of 86 subjects enrolled on a phase
2 study of ibrutinib 420 mg once daily in patients with CLL, based on sample
availability. Inclusion criteria included ≥ 65 years of age or CLL with del(17p) or
TP53 mutation at the National Institutes of Health (NIH) Clinical Center
(NCT01500733). Cohort B included 16 of 41 enrolled subjects on a phase 2 study
of rituximab 375 mg/m2 on days 1, 8, 15, and 22, then once every 4 weeks during
cycles 2–6 and ibrutinib 420 mg once daily starting on cycle 1 day 2 at the Uni-
versity of Texas MD Anderson Cancer Center (MDACC, NCT01520519). Inclu-
sion criteria included diagnosis of high-risk CLL with either the presence of a 17p
deletion or 11q deletion or TP53 mutation or previous treatment with up to three
lines of prior therapy. Each clinical trial was approved by the NIH National Heart,
Lung, and Blood and the MDACC institutional review board, respectively, and
conducted in accordance with the Declaration of Helsinki and the International
Conference on Harmonization Guidelines for Good Clinical Practice. Written
informed consent was obtained from all participants. Heparinized blood was col-
lected before and after initiation of ibrutinib therapy; peripheral blood mono-
nuclear cells from patient samples were isolated by Ficoll/Hypaque density-
gradient centrifugation. Tumor cells were purified by CD19+ selection with MACS
Cell Separation Columns (Miltenyi Biotec, Cambridge, MA) at 4 °C and stored as
pellets at −80 °C. Of note, we have previously shown that during the first year of
ibrutinib therapy the proportion of CD19 + non-malignant cells remains low
(<5%)41, and have confirmed this by flow cytometry of the samples analyzed in the
current work.

Prognostic marker and IGHV analysis. Pretreatment evaluation included inter-
phase FISH for common CLL chromosomal abnormalities with Vysis probes
(Abbott Molecular, Des Plaines, IL) and sequencing of the IGHV gene in tumor
cells. IGHV sequences were aligned to germline sequences in the international
ImMunoGeneTics (IMGT) information system and database tools (IMGT/V-
Quest)42. As per convention, the IGHV somatic mutation status was designated as
unmutated if there was ≥98% homology; or as mutated if there was <98%
homology to germline sequences43.

Nucleic acid extraction and quality control. Genomic DNA from CLL cells and
matched germline DNA (from bone marrow stromal cells or saliva) were extracted
per manufacturer’s recommendations (Qiagen, Germantown, MD). The con-
centrations of tumor and normal DNA were measured using PicoGreen dsDNA
Quantitation Reagent (Invitrogen, Carlsbad, CA). A minimum DNA concentration
of 60 ng/ml was required for sequencing and each Illumina sequencing library was
created using the native DNA. Mass spectrometric fingerprint genotyping of 24
common SNPs (Sequenom, San Diego, CA) was used to confirm the identities of all
tumor and normal DNA samples. Standard RNA extraction protocols (RNAeasy
kit, Qiagen, Germantown, MD) were used to extract RNA from CLL-B cells.

Whole-exome sequencing data generation and preprocessing. Samples were
sequenced using Agilent SureSelect capture kit and Illumina Rapid Capture
Enrichment—37Mb target kit on Illumina next-generation sequencers. The
sequencing data processing pipeline known as “Picard” (http://broadinstitute.
github.io/picard/) was used to generate a BAM file for each sample. Picard consists
of four steps.

The first step involves alignment to the genome. Here, BWA is used to align the
sequence data to the NCBI Human Reference Genome GRCh37/hg1944. Within
the BAM file, sequence reads are sorted by chromosomal position and unaligned
reads passing the Illumina quality filter (PF reads) are also included in the BAM
file.

The second step involves base recalibration. Here, each base within a read
sequence is assigned a Phred-like quality Q score that represents the probability
that the base call is erroneous. The Q score represents −10*log (probability of error)
and is rounded to an integer value. We also used GATK to empirically recalibrate
the qualities according to the original Q score (generated by the Illumina software),
the lane, the read cycle, the tile, the base in question and the preceding base45. The
original quality scores are also represented by the read-level OQ tag within the
BAM file.

The third step involves aggregation of lane and library level data. Here, for each
sample, multiple lanes and libraries were aggregated into a single BAM file. Lane-
level BAM files were then combined into a single BAM file for each sample. The
read group information within these BAM files represent the library and lane
information. Information regarding the read groups appears in the BAM header.

The fourth step involves marking of duplicated reads. The MarkDuplicates
algorithm from Picard (http://broadinstitute.github.io/picard/) is used here to flag
molecular duplicate reads. Pairs of reads in which both ends map to the identical
genomic position are considered as arising from the same DNA molecule and thus
considered duplicate reads. Only one of these duplicate reads is retained in the
BAM file.

Following the generation of BAM files using Picard, Firehose (http://archive.
broadinstitute.org/cancer/cga/firehose) was used to analyze the whole-exome
sequencing data. Firehose has been developed at the Broad Institute. All tumor-
normal pairs were required to pass the Firehose QC pipeline. This QC pipeline
involved testing for DNA contamination of a sample from other individuals using
the ContEst algorithm, together with cross-checking lane fingerprints.

Mutation calling. Somatic mutations were identified in targeted exon data using
the MuTect algorithm, version 1.1.646. MuTect involves the Bayesian statistical
analysis of bases and their qualities to identify candidate somatic mutations at a
given genomic locus using tumor and normal BAM files. The ContEst algorithm47

was used to estimate the level of cross-contamination which was in turn used to
estimate the lowest allelic fraction at which somatic mutations could be detected on
a per-sample basis. Candidate indels (small insertions and deletions) were detected
using Indelocator (http://archive.broadinstitute.org/cancer/cga/indelocator). All
mutations were filtered using a panel of normals filter, which removes mutations
commonly seen across a large number of sequenced normal (non-cancer) samples.
All paired tumor-normal pairs were run through deTiN, a Bayesian method to
estimate the contamination of tumor DNA in the normal sample, and keep
mutations which would otherwise have been removed by germline filters (manu-
script in preparation, Taylor-Weiner et al.) Furthermore, manual review of somatic
mutations from their respective BAM files using the Integrative Genomics Viewer
(IGV)48 was also used to filter mutations. For each patient, the union of all point
mutations and indels from every sample was created. Then, the mutant and
reference allele counts of every mutation in this union were measured in each
sample using samtools in a process called force-calling49.

Somatic copy number alteration identification. The ReCapSeq tool (version 34)
50 was used to estimate the coverage profile for each tumor sample. In brief, this
tool first normalizes read coverage for each target segment using the total number
of aligned reads. The coverage for every segment is then normalized using tangent
normalization against the coverage present across a Panel of Normals that have
been sequenced using the same target regions. The circular binary segmentation
algorithm51 is then used to merge target regions so as to form segments that
correspond to the same copy number event. The allelic copy ratio in each tumor
sample was then estimated by measuring the allelic fraction of germline hetero-
zygous SNPs. These allelic copy ratio estimates were then combined with the
observed copy ratio of each segment.

Calculation of cancer cell fraction and clustering. ABSOLUTE24 was performed
to assess purity and overall ploidy of each sample, as well as the cancer cell fraction
(CCF) of each mutation (percentage of tumor cells harboring mutation in the
sample). The ABSOLUTE algorithm requires two inputs, an input maf (mutation
annotation file), and segmented allelic specific copy ratio file (allelic seg file). The
allelic seg file was produced as described in the previous section. The input maf file
passed in to ABSOLUTE for each sample contained all of the force-called mutation
calls. This made it possible to estimate the CCF of mutations which were not
originally detected in a given sample, but detected in other samples belonging to
that patient. ABSOLUTE produces an array of possible purity/ploidy combinations,
ordered by their relative likelihoods. The final purity and ploidy of each sample
were chosen by manual review of these possible solutions.

To estimate the number of clusters and subsequent clonal structure in each
individual, we further developed an approach previously published by our group52,
and improved and extended the method to incorporate analysis of a large number
of samples from a single patient. In brief, the method uses a Bayesian clustering
framework based on a Dirichlet Process53, where the parameter defining the
number of clusters is varied during the process and inferred over many MCMC
iterations.

For each individual in the cohort (n = 61), the two clusters with maximal
negative and positive change between baseline and latest post-treatment samples
were identified. For each of these clusters the posterior probability density of the
two-dimensional cluster CCF distribution lying within ±10% of the diagonal was
quantified to evaluate the null assumption that the cluster CCF was similar between
timepoints. These probabilities were submitted to a Benjamini–Hochberg FDR
procedure to account for multiple hypotheses testing, and the null was rejected if
the adjusted P value was <0.1.
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Clonal kinetics analysis and growth rate inference. An MCMC (Monte-Carlo
Markov Chain) algorithm was run on the final clustering results of the four
individuals shown in Figs. 5, 6, to determine growth and death rates in each clone
which had a maximal cluster CCF of at least 0.1 in at least one time point. CCF
values were converted to absolute cell numbers by multiplying the ALC by the
blood volume in microliters, sample purity and clone-specific CCF. Phylogenetic
trees and clusters were fixed at the beginning of the MCMC iterations, with a total
of 10,000 MCMC iterations run per individual. Within each iteration, mutations
were assigned randomly to a clone from a multinomial random distribution based
on the likelihood of each mutation belonging to that clone. Finally, the growth rates
were calculated at the end of the iteration by fitting the clustered CCFs of each
clone at each time point to an exponential curve. For the relapse case A11, as the
cluster only contained the single CDIPT event it was consistently merged with
other neighboring clusters during MCMC iterations. Thus, the exponential growth
curve for the clone containing a single CDIPT deletion was fitted using a linear
regression of the CCF point estimates for this subclone. Phylogenies of subclones
within each case were assigned based on the following constraints: (i) parent-
progeny relationships were assigned only if the parent clone had a higher cancer
cell fraction than the progeny clone in all samples, and sibling relationships were
enforced by the constraint of sibling clones having a summed cancer cell fraction of
no more than 1 at any timepoint. When more than one phylogeny resulted from
the application of these constraints, the phylogenetic relationship that maximized
the goodness of fit for the exponential growth model of each clone was chosen.

Targeted sequencing of BTK and PLCG2 genes. Exon 15 of BTK and exons 19,
20, and 24 of PLCG2 were amplified using custom oligonucleotides and analyzed
by bidirectional Sanger sequencing. To increase the limit of detection for hotspot
mutations, mutant alleles were preferentially amplified by wild-type blocking
polymerase chain reactions followed by hybrid-capture based next-generation
sequencing with custom SureSelect QXT Target Enrichment (Agilent; La Jolla, CA)
or Nextera Rapid Capture (Illumina; San Diego, CA) panels that include BTK and
PLCG2 genes (NeoGenomics Laboratories, Irvine, CA).

RNA-sequencing analysis. A cDNA library was prepared from poly-A selected
RNA and sequenced on an Illumina platform. The total counts of reads across
samples were normalized, and log2 transformed counts data were used for
downstream analysis. Subject effect and time effect of treatment of the samples
were qualitatively assessed by the first few principal components of the data. A two-
way ANOVA model was then used to account for subject effect and time point
effect for each gene. Genes with 2 fold-change in expression on treatment com-
pared to baseline and with a false-discovery rate less than 10% were considered
differentially expressed and selected for further investigation. Overrepresentation
of experimentally derived gene sets in the list of selected genes was estimated by the
P values (FDR adjusted P values) calculated from hypergeometric distribution.
Under-enrichment or over-enrichment scores were calculated based on the
cumulative distribution function of the hypergeometric distribution. The Graeber
Lab CDF calculator54 (UCLA, CA), JMP 12 (Cary, NC) and R software55 were used
in data analysis. Gene sets with a minimum of five differentially expressed genes, P
< 0.05 and a FDR q< 0.1 were considered overrepresented. The mean change in
gene expression was calculated by averaging the change across all differentially
expressed genes per patient at each time point for each overrepresented gene set.

General statistical considerations. Associations between clonal evolution, pro-
gressive disease and clinical features were assessed by the Wilcoxon rank-sum test
or Fisher exact test, as appropriate. The Kaplan–Meier method was used to esti-
mate time-to-progression and differences between groups were compared using the
log-rank test. Associations between patient groups were determined by unpaired
Student's t test, while associations across gene sets overtime was determined by
paired Student's t test.

Data availability. The sequence data have been deposited in dbGaP under the
accession code 26784.
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