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Abstract

The evolutionary events that cause colorectal adenomas (benign) to progress to carcinomas 

(malignant) remain largely undetermined. Using multi-region genome/exome sequencing of 24 

benign and malignant colorectal tumours, we probe the evolutionary fitness landscape occupied by 

these neoplasms. Unlike carcinomas, advanced adenomas frequently harbour sub-clonal driver 

mutations, which are considered to be functionally important in the carcinogenic process, that have 

not swept to fixation, and have relatively high genetic heterogeneity. Carcinomas are distinguished 

from adenomas by widespread aneusomies that are usually clonal and often accrue in a 

“punctuated” fashion. We conclude that adenomas evolve across an undulating fitness landscape, 

whereas carcinomas occupy a sharper fitness peak, probably owing to stabilising selection.

Introduction

The classical adenoma-carcinoma sequence of colorectal tumorigenesis1 postulates that a 

conventional colorectal adenoma (CRA) is initiated by “two hits” at APC2,3, and typically 

progresses to colorectal cancer (CRC) through a stepwise accumulation of driver mutations 

such as KRAS and TP53 and deletion of chromosome 18q4. The evolutionary dynamics 

presumed to underlie this process comprise a series of selective sweeps to (near) fixation, 

each triggered by an elevation in sub-clone fitness through the occurrence of a new, 

positively-selected driver mutation5. In this model, progression to an invasive lesion 

(carcinoma) is postulated to be prompted by the acquisition of a critical driver mutation 

burden, implying that adenomas and carcinomas should be distinguishable by specific driver 

mutations. CRCs can, however, develop without the full complement of driver mutations6,7, 

and some studies have suggested that sub-clonal evolution within established tumours is 

‘effectively neutral’8,9, questioning whether selective sweeps occur at all, especially in 

established CRCs.

As part of a comprehensive assessment of colorectal tumour evolution, here we have 

attempted to re-assess the classical model and outline the evolutionary ‘fitness landscape’ of 

CRAs and CRCs. The fitness landscape, a concept, first introduced by Sewall Wright in 

193210, is an abstraction to help visualise the relationship between genotypes and 

reproductive success (sub-clone fitness in this context). The X- and Y-axes can be thought of 
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as the genotype ‘space’ (simplified to 2 dimensions) that can be occupied by adenomas and 

carcinomas. The Z-axis or height is proportional to genotype fitness: peaks represent 

particularly fit genotypes, valleys less fit genotypes, and ridges/plateaux equally fit 

genotypes. Individuals sampled from a population are likely to occupy (local) fitness peaks, 

because less fit individuals have been removed by negative (purifying or stabilising) 

selection. Herein we search for the genotypes associated with the fitness peaks occupied by 

CRAs and CRCs and probe peak shapes by quantifying intra-tumour heterogeneity (ITH). 

Transitions around the landscape are measured using phylogenetic and molecular clock 

analyses. These data provide a comprehensive understanding of the evolutionary trajectories 

underpinning the development of CRAs and CRCs.

Results

To map the evolutionary landscape of CRAs and CRCs, we performed multi-region whole-

genome sequencing (WGS) or whole-exome sequencing (WES) on 2-16 regions (total 118) 

from 9 CRAs and 15 CRCs, each with constitutional DNA (Table S1 for sample details and 

S2 for sequencing statistics). Five CRCs, including four from Lynch syndrome patients, had 

microsatellite instability (MSI) owing to defective DNA mismatch repair, and these tumours 

were analysed as a distinct group unless otherwise stated. The remaining ten CRCs were 

microsatellite-stable (MSS) and of these, two were synchronous lesions from a single 

patient. Mutations in a subset of genes were validated using targeted molecular inversion 

probe sequencing (Online Methods).

Somatic single nucleotide alterations do not define CRC fitness peaks

We first assessed how somatic single nucleotide alterations (SNAs) defined the co-ordinates 

of CRAs and CRCs in the fitness landscape. CRAs tended to have only slightly fewer SNAs 

than MSS CRCs CRAs: median exonic burden=94, 95% range [51-146]; MSS CRCs: 

median=130, 95% range [98-171]; p=0.29 Wilcoxon test; Figure 1A, Table S2). After 

sequencing coverage normalisation, the mutational frequency in CRAs remained very 

similar to that of MSS CRCs (CRA; 4.1/Mb [3.3-4.9], MSS CRC; 4.2/Mb [2.9-6.4], p=0.9).

Next we compared the burden of driver mutations across CRAs and CRCs, and included 

SNAs and indels, and also cnLOH and monosomy (chromosome loss) events that are known 

to act as ‘second hits’ to the tumour suppressor genes APC and TP53, and also 18q allelic 

loss/imbalance (Figure 1C-D and Table S3). The burden of tier 1 mutations, which we 

defined as likely pathogenic changes in known CRC driver genes (see Online Methods, 

Table S4), was not significantly different in our cohort (CRAs: median=5 [2-9]; MSS CRCs: 

median=6 [2-8], p=0.9). We noted that the difference remained non-significant when 

comparing drivers across individual biopsies (p=0.19; Wilcoxon test). Individual tier 1 driver 

mutations were detected at similar frequencies across CRAs and CRCs, with the exception 

of TP53, which was more commonly mutated (possessing least one SNA, indel or copy 

change) in CRCs (Fisher test; p=0.005, see Figure 1D and Table S5). The frequency of tier 2 

driver mutations (uncertain pathogenicity changes in CRC or pan-cancer driver genes) was 

also not discernably different in CRAs and MSS CRCs (CRAs: median=3 [2-4]; MSS 

CRCs: median=3 [1-7]; p=0.8). Several tier 2 driver mutations were specific to CRAs or 
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CRCs, but most occurred infrequently; only KMT2C was notable, being mutated in 4 CRAs 

and no CRCs. The total driver mutation burdens (tier 1 and 2 combined; medians CRAs=7 

[2-12]; CRCs=8 [3-15]; p=0.6; Figure 1C, Tables S3, S4) were also similar. Furthermore, 

when using an alternative definition of driver genes (the top 15 genes mutated in MSS CRCs 

[excluding TTN], according to the TCGA publication7, Table S4b), the burdens remained 

not statistically different in CRAs and CRCs (CRAs: median=5 [2-7]; MSS CRCs: 

median=5.5 [2-9], p=0.7).

The power to detect differences in mutation burden between CRAs and CRCs was limited by 

sample size, such that differences in exonic mutation burden smaller than approximately 30 

mutations could not be detected with high power (see supplementary methods for post hoc 

power calculation). With this constraint in mind, SNA mutation burden (including tier 1 

driver mutations) did not distinguish the relative co-ordinates of CRAs and CRCs in the 

evolutionary landscape.

Intra-tumour heterogeneity and phylogenetic analyses suggest that CRCs occupy sharper 

fitness peaks than CRAs

To broadly assess the shape of the fitness peaks occupied by CRAs and MSS CRCs, we 

measured the degree of ITH in each tumour. Excluding tumours with only two regions 

sampled (see Online Methods), a median 56% [53-70%] of all CRA SNAs were “sub-

clonal” (variant not detected in all sampled regions). MSS CRCs had a significantly lower 

proportion of sub-clonal SNAs (45% [23-77%]; p=0.04; Figure 2 inset) than CRAs. The 

average pairwise genetic divergence between the regions of each tumour was then assessed 

following normalisation of sequencing coverage (Online Methods). CRAs showed 

significantly more divergence between biopsies than CRCs (CRA mean=2.0 versus 

CRC=1.7, divergent SNAs/Mb; p<2x10-16; Figure S1A), despite having the same average 

mutation burden. The measured values of ITH were unaffected by the number of biopsies 

available from each neoplasm (Figure S1B-C).

To further quantify ITH, we used SNAs to construct maximum parsimony phylogenetic trees 

(Figure 2). CRC topologies were often characterised by long trunks (variants ubiquitous 

across biopsies) with comparatively short branches and leaves (relatively few sub-clonal 

variants), thus appearing ‘palm tree-shaped’11. CRAs had proportionally shorter trunks, and 

thus longer branches/leaves than CRCs, albeit at borderline significance (average branch and 

leaf length as a proportion of the trunk: CRAs 82% versus MSS CRCs 50%; p=0.06; Figure 

2, Table S6). The difference remained when the MSI+ CRCs were included in the analysis 

(CRAs 82% versus all CRCs 45%; p=0.05). CRAs are thus more genetically diverse than 

CRCs.

To investigate whether individual CRAs and CRCs occupied single or multiple fitness peaks, 

we compared the lengths of the phylogenetic tree branches/leaves. Large variations in 

branch length indicate that mutations accrue faster in some tumour regions than others, 

which can potentially be caused by selection on a new fitness peak. Average intra-tumour 

variation in relative branch/leaf length was generally low and similar across CRAs and 

CRCs (mean standard deviation: CRA 0.14 [0.06-0.24] versus CRC 0.2 [0.06-0.47]; p=0.68; 

Figure 3, Table S6). Formal assessment of unbalanced tree topologies could only be 
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performed on one tumour (carcinoma 6) as high numbers of samples are needed for 

sufficient power12. Unbalanced trees occur when some ancestor clones produce more 

surviving lineages than another, another potential indicator of sub-clonal selection. We did 

not find any significant asymmetry in this single tumour analysis (Colless’ test, Yule model, 

p=0.3). Thus the available data were consistent with the idea that tumours occupied a single, 

potentially broad, fitness peak.

The SNA-based ITH and phylogenetic analyses suggested that CRAs were more 

heterogeneous than CRCs, consistent with the former occupying a broader fitness peak, 

under which several distinct genotype-phenotype combinations could co-exist. The lower 

ITH in CRCs could also, however, reflect a more recent selective sweep with a genetic 

bottleneck during the transition from an adenoma, and/or that CRCs were more spatially 

mixed than CRAs, causing variants at sub-clonal frequency in multiple samples to appear 

truncal. We therefore directly sought evidence of stronger selection in CRCs by examining 

the ratio of non-synonymous to synonymous mutations on tumour trunks and branches/

leaves. This showed a reduction in non-synonymous mutations on the branches/leaves of 

CRCs relative to their trunks (Wilcoxon sign rank test, p=0.01; Figure S2), but no such 

reduction for CRAs (p=0.9), possibly representing on-going positive subclonal selection in 

CRAs. On the reasonable assumption that positive selection acted on the phylogenetic trunk 

- the location of almost all tier 1 driver mutations – together these results indicate that 

subclonal selection is absent (neutral dynamics) or weak within the established carcinoma, 

with possible negative (stabilising) selection also at play.

Mutational processes are not detectably associated with fitness advantages

Mutation signatures were identified de novo using the EMu program13. We recovered 

ageing, MSI-associated and molecular clock signatures14 (our Signatures A, B and C 

respectively), as expected (Figure S3A). Our Signature D, which resembles COSMIC 

Signature 17 (unknown aetiology, high CTT>CGT frequency15) was present at appreciable 

levels within carcinomas 2, 7, 9P and 10, with its activity often differing between the trunks 

and branches/leaves of the same lesion (Figure S3B,C). We explored whether signature D 

had any effect on sub-clonal evolution in CRCs with WGS. It appeared to increase the 

mutation burden in two CRCs 2 and 9P, but had no discernible effect on their evolution 

(details in Figure S3D). Carcinoma 9D, the synchronous partner of carcinoma 9P, showed 

low signature 17 activity, despite being located only 10cm apart in the bowel. These cancers 

also had different driver mutations, confirming that they essentially behaved as independent 

neoplasms, with no detectable effect of any shared microenvironment on mutagenic 

processes (Figure S4).

Major driver mutations can be sub-clonal in CRAs, but are very rarely so in MSS CRCs

Tier 1 driver mutations (defined above) were typically, but not always, clonal in CRAs, 

whereas in MSS CRCs drivers were more commonly clonal. However, these distributions 

were not significantly different between tumour types (CRAs=39/49, 80% versus 

CRCs=49/55, 89%; p=0.3). The clonal distributions of tier 2 clonal driver mutations were 

however, different; CRAs had significantly less clonal drivers than MSS CRCs (CRAs=7/15, 

47% versus CRCs=21/26, 80%; Fisher’s exact test, p=0.03, Table S3). We noted that the 
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clonality of tier 1 driver mutations was the same when using the second definition of driver 

mutations based on the TCGA publication7 (37/43, 86% versus 45/53, 85%; Fisher’s exact 

test, p>0.9, see Online Methods). The findings are consistent with a scarcity of sub-clonal 

expansions after the most recent common ancestor (MRCA) in CRCs. This trend seems to 

be similar in CRAs, though CRAs do show some evidence of sub-clonal driver mutations.

We additionally noted, however, that the most frequently mutated CRC driver genes, apart 

from the probable tumour-initiating mutations in APC, were sub-clonal in at least one CRA. 

Notably in adenoma 2, KRAS Q61H and an ARID2 frameshift mutation were present in one 

region, which was separate from the three regions of this tumour that contained a TP53 

E219X mutation. Adenoma 3 had a PIK3CA E545K mutation in two tumour regions, GNAS 

R201H in another, and an AKAP9 frameshift in another. SMAD4 R496H in adenoma 4 was 

also present in a single region. There was no evidence from the phylogenetic analysis that 

these proven driver mutations were associated with differential sub-clonal expansion, 

suggesting that their selective benefits were relatively modest (Figure 2). NRAS G60V and 

PIK3CA H1047R were present in both regions of adenomas 7 and 8 respectively, but were 

putatively sub-clonal since their corrected allele frequencies were significantly lower 

(p<0.05) than those of other driver mutations, suggesting that biopsies crossed sub-clonal 

boundaries. By contrast, only one sub-clonal mutation with high-confidence pathogenicity 

(CHD1 R619X in carcinoma 1) was found in the MSS carcinomas. There was no evidence 

for parallel evolution of sub-clones based on recurrent known or novel drivers (details not 

shown).

We next we wished to relate the heterogeneity of mutational burdens to fundamental 

molecular processes. Immunohistochemistry for Ki-67 (proliferation) and β-catenin 

(activated Wnt-signalling; Figure S5; Online Methods) showed positive cell fractions of 53% 

[2-80%] and 82% [3-97%] respectively, with considerable variability between and within 

CRCs (Table S7). Neither Ki67 nor β-catenin expression was associated with regional SNA 

burden or ploidy (SNA burden, R2=0.2, p=0.2, ploidy, R2=0.9, p=0.08; Figure S5).

Genetic and spatial relationships between CRC sub-clones

In all CRCs, physical and phylogenetic distances between biopsies were strongly correlated 

(R2=0.81-0.93, p<10-4 for all carcinomas measured; Figure 4). The invasive edge of CRCs 

and central regions had similar mutational burdens (exonic SNAs, edge versus central; 

p=0.76). We looked further for sub-clonal mixing within the sampled regions of the MSS 

CRCs with WGS data by clustering of SNA cancer cell fractions across related samples, 

using a Dirichlet process-based model (Figure S6). Only 10% of biopsy samples showed 

evidence of ≥1 sub-clonal population. Whilst we do not exclude a degree of sub-clonal 

intermingling, these results suggest that, given the depth of our sequencing data, sub-clonal 

expansions broadly occurred in a spatially contiguous, uniform and discrete fashion.

Copy number changes differ between CRAs and CRCs

We next assessed whether somatic copy number alterations (CNAs) might define the fitness 

peaks occupied by CRAs and MSS CRCs. Every region of every tumour carried at least one 

CNA, including cnLOH (see Online Methods). In a combined analysis of all regions from 
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each tumour, as expected, adenomas had fewer CNAs (number of discrete CNA segments 

>1Mb) than carcinomas16,17 (CRAs median=13 [7-11] versus CRCs median=40 [15-42], 

p=0.003; Figure 1B). Correspondingly, the overall average proportion of the genome 

disrupted by CNAs (copy number ≠ 2, allelic ratio ≠ 1) was higher in CRCs (CRCs, 72% 

versus CRAs, 40%; p=0.05; Figure 3). These data show that despite carrying similar SNA 

burdens, CRCs display higher CNA levels than CRAs.

Driver CNAs are currently hard to identify with certainty in cancer18. In colorectal tumours, 

losses (deletions or cnLOH) on chromosomes 5q, 17p and 18q are often thought to be 

second hits involving tumour suppressors APC, TP53 and SMAD4 respectively (although 

18q loss is more common than SMAD4 mutation). The status of other recurrent changes – 

such as 1q gain, 7 gain, 8p deletion, 13q gain and 20 gain – as drivers or passengers is less 

clear. Many recurrent, and hence potential driver7, CNAs were present at significantly 

higher frequencies in CRCs compared to CRAs (Figure 3). Notably, 17p loss occurred in 

9/10 MSS CRCs, but only 2/9 CRAs (Fisher’s exact test, p=0.005), paralleling the TP53 

SNA data. By comparison, loss at the APC locus (8/10 CRCs versus 5/9 CRAs; p=0.35) and 

the SMAD4 locus (7/10 CRCs versus 4/9 CRAs; p=0.37; Figure 2) occurred at similar 

frequencies in both lesion types.

Every tumour had at least 2 clearly sub-clonal CNAs (non-ubiquitous, present versus absent 

changes; Figure 3A) and no chromosome aberration was exclusively ubiquitous or sub-

clonal across the tumours. Overall, 75% and 48% of gains were sub-clonal in CRAs and 

CRCs respectively (p=0.002), compared with 57% and 27% of losses/cnLOH (p=0.007; 

Figure S7). Thus, a greater proportion of CNAs were sub-clonal in CRAs than in CRCs.

We compared the size distribution of large (>1Mb) CNAs in early (truncal) versus late (sub-

clonal) tumour evolution. In CRCs, sub-clonal CNAs were smaller than ubiquitous CNAs 

(p<0.001 ; Figure S3C), but this difference was not present in CRAs (p=0.45). The lower 

frequency of large CNAs later in evolutionary time in CRCs suggests that the cancers have 

obtained a near-optimal level of aneuploidy, with further large-scale CNAs subjected to 

negative/stabilising selection. In adenomas, since the overall CNA burden is lower, new 

large CNAs may still be tolerated.

MSS CRC evolution can involve either “punctuated” or more gradual CNA acquisition

Since CNAs were the principal genetic feature distinguishing CRAs and CRCs, we 

investigated their role in the transition between the benign and malignant fitness peaks. 

Utilising a similar strategy to Durink19 and Newman20 (details in Online Methods), we 

used the SNAs within informative chromosomal segments (copy number gains and cnLOH) 

as a molecular clock to time the occurrence of that CNA. SNAs present on a chromosome 

prior to gain, cnLOH or amplification increase in frequency (VAF) following the copy 

number change, whereas SNAs that accrue after the gain remain at their original, lower VAF. 

The ratio of higher to lower VAF SNAs therefore estimates the time of CNA occurrence.

Sufficient SNAs for molecular clock analysis were only present in WGS data. Of the five 

MSS CRCs analysed by WGS, carcinomas 3, 9P and 10 showed a clustering of CNA 

timings shortly before the MRCA (Kolmogorov-Smirnov test against a uniform distribution 
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of CNA timings, p<0.02 for all, Figure 5). A similar, borderline significant CNA cluster 

occurred in carcinoma 9D. Carcinoma 5 showed a more gradual accumulation of CNAs.

Since the timing method demonstrated a form of “punctuated” CNA evolution (rejection of 

null hypothesis of uniform accumulation), but did not distinguish between multiple gains of 

individual chromosomes and genome doubling followed by chromosomal gain or loss, we 

searched heuristically for evidence of genome doubling using a score based on the number 

of chromosome centromeres present at copy number 4 or above, with extra weight for allelic 

balance (Figure S8). Based on this measure, all of the CRCs with significantly or borderline 

significantly clustered CNA timings (n=4) were genome-doubled on this measure, as was the 

untimed carcinoma 8. The CNAs in these tumours are typically trisomies, judged to have 

arisen by chromosome (arm) loss subsequent to allele-balanced genome doubling. The other 

tumours (including carcinomas 1, 2, 4, 5, 6, 7) were scored as non-genome-doubled. Sub-

clonal genome doubling was present in one CRA (adenoma 2). This tumour carried a TP53 

mutation in its genome-doubled regions, and overall TP53 mutations (SNAs and/or CNAs) 

were associated with genome-doubling in MSS CRCs (Fisher’s Exact Test p=0.018). In 

addition, genome-doubled cancer regions had higher Ki67 expression (see above; p=0.04; 

Figure S5), hinting at the existence of a selective benefit of doubling.

The evolutionary landscape of microsatellite-unstable CRCs

The overall SNA burden of the 5 MSI+ CRCs was, as expected, far higher than in MSS 

CRCs (Figure S9A). More pointedly, the number of tier 1 CRC driver mutations was also 

higher (median=12 [4-14]) than in MSS CRCs, median=3, p=0.042, Figure S9B), whilst 

CNA burden was lower (Figure S9C). Of note, in MSI+ CRCs, the great majority of driver 

SNAs were truncal, the number of sub-clonal tier 1 drivers was only a little greater 

(median=1 [0-7]) than in MSS CRCs, and the proportion of all sub-clonal SNAs was not 

significantly increased (median MSI+ CRCs 34% versus MSS CRCs 42%; p=0.13; Figure 

S9D). In phylogenetic analysis, neither the average branch/leaf length as a proportion of the 

trunk nor its variability differed significantly between MSI+ and MSS CRCs (Figure S9E). 

Our signature B (COSMIC signature 6) predominated in MSI+ CRCs, especially on the 

branches/leaves, but the other COSMIC MSI-associated signatures14 were not detected. 

Overall, the data suggest that MSI+ CRCs evolve in a similar way to MSS CRCs, albeit with 

some limited evidence of sub-clonal selection.

Discussion

Here we have contrasted the patterns of evolution in colorectal carcinomas and their 

classical adenomatous precursor lesion, and our data begin to reveal the shape of the fitness 

landscape over which CRCs grow. CRAs tend to evolve through acquisition of major driver 

mutations in genes such as APC, KRAS, TP53 and via 18q loss as per the Kinzler and 

Vogelstein model4. More recently discovered cancer driver mutations are also present in 

many adenomas (Table S3 & S4). In fact, CRAs can harbour mutations in any of the major 

CRC driver genes, but those mutations do not necessarily occur in a stereotypic order. Driver 

mutation acquisition also does not necessarily cause selective sweeps (leading to ‘stepwise’ 

evolution of the tumour cell population), since sub-clones with additional major driver 
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mutations may not displace sub-clones lacking those mutations, but instead may co-exist in 

spatially discrete areas. It follows that many driver mutations probably confer a relatively 

small selective advantage. This is reflected in several observations in CRAs, including a 

relatively high level of genetic diversity (both SNAs and CNAs), variation in the major 

driver mutation complement in different regions of individual tumours, and phylogenetic 

trees with relatively long branches/leaves. It is even possible that SNA accumulation is not 

an essential feature of tumorigenesis prior to malignancy, and we speculate that carcinomas 

need not arise from the sub-clone with the greatest number of driver mutations, thus 

explaining why some CRCs have a very small driver mutation complement7.

MSS CRCs have longer phylogenetic tree trunks than branches/leaves as compared to 

CRAs. These findings may reflect the influence of several factors, including not only 

selective constraints, but also time from the MRCA after an additional selective sweep, 

ploidy, sample purity and genomic instability. Overall, the lack of sub-clonal driver SNAs 

and reduction in non-synonymous SNAs on the branches and leaves of CRCs suggest that 

there is not strong positive sub-clonal selection for SNAs after the MRCA. CRAs on the 

other hand do show subclonal drivers and relatively high ITH together providing evidence of 

(perhaps relatively weak) subclonal selection.

Although present in CRAs, large CNAs and genome doubling are much more common in 

CRCs. CNAs on CRC tree branches/leaves are smaller than those on trunks. Whilst negative 

or stabilising selection remains difficult to measure, this is consistent with the relatively low 

genetic diversity in CRCs, based on SNAs and large CNAs. For most MSS CRCs, a near-

triploid karyotype seems optimal, either through genome doubling followed by loss of some 

chromosomes, or through a gain of chromosomes that mostly occurs within a putatively 

short time window between malignant progression and the MRCA. In each case, one or 

more selective sweeps seem to occur, rendering the driver SNAs and most CNAs clonal. We 

do not exclude additional positive selection for specific sub-clonal CNAs in CRCs, but this 

remains unproven and indeed our data showed no evidence of sub-clonal selection. Although 

every CRC had at least one sub-clonal CNA, we found no evidence of parallel CNA 

evolution.

In all our MSI+ cases, defective MMR and most major driver mutations arose on the 

phylogenetic trunk, and the relative branch/leaf length was similar to that of MSS CRCs. 

Although the sporadic MSI+ cancer had a low driver mutation burden, as expected if driven 

in part by a methylator phenotype21, its evolution was otherwise similar to the Lynch 

syndrome CRCs. We speculate that MSI+ CRCs experience either multiple selective sweeps 

driven by individual SNAs, or, more intriguingly, by co-occurring or epistatically acting 

non-canonical driver SNAs (such as CTNNB1, SOX9, NF1 and CASP8).

A small number of ITH studies have been undertaken previously in CRC. Kim et al22 and 

Uchi et al23 performed multi-region WES of 5 primary and metastatic CRCs and 9 CRCs 

respectively, and Suzuki et al24 performed deep targeted sequencing of 799 genes in four 

CRCs. Similar to our study, these studies reported that major driver mutations, affecting 

APC, KRAS and TP53, were truncal, with the exception of PIK3CA. Uchi et al23 also 

Cross et al. Page 9

Nat Ecol Evol. Author manuscript; available in PMC 2019 February 28.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



reported that large copy gains were common on the trunk of the evolutionary tree, with focal 

deletions on branches.

Fewer studies of CRA evolution exist. Kim et al25 used WES to compare malignant and 

benign regions of 4 mixed cancer-in-adenoma polyps. They reported similar SNA burdens in 

cancer and adenoma regions, and thus suggested that the regions evolved in parallel, rather 

than the carcinoma progressing from a late adenoma. We note, however, that it is extremely 

hard to distinguish benign and malignant components of these lesions, since malignancy is 

defined not by cytology, but by invasion and hence the location of tumour cells. The 

different neoplastic components of such polyps may therefore, in reality, both be 

‘cancerous’. For these reasons, in this study, we based our comparison between advanced 

CRAs and CRCs that were distinct lesions.

Previous work from our group10 examined single glands from 11 CRCs and 4 CRAs for 

CNAs, and for Ampliseq panels of SNAs that had been derived from bulk tumour WES. 

Although that manuscript and our present study had very different focuses, the findings are 

consistent. For example, one feature of the “Big Bang” model of sub-clonal intermixing 

expounded in the previous study is that after the MRCA, CRC sub-clones radiate outwards 

without notable differential sub-clonal expansion or selection of further advantageous 

variants; our present study is broadly consistent with those data. There are also, however, 

some differences between the studies that allow refinement of the “Big Bang” model. For 

example, our current study, which benefits from the significantly increased genomic 

resolution of WGS/WES, emphasises that large sub-clones after the MRCA remain spatially 

restricted in CRCs and consequently that the previously observed, widespread clonal 

‘intermixing’ in some CRCs10 may reflect the shape, size, and boundary location of discrete 

sub-clones as well as outwards radiation of low frequency clones. Furthermore, whilst the 

“Big Bang” was broadly consistent with ITH measured in CRAs, our present study finds that 

sub-clonal driver mutations in the absence of selective sweeps occur commonly in these 

tumours.

In a study analogous to ours, Stachler et al26 exome-sequenced 5-11 samples of oesophageal 

carcinoma and its precursor, Barrett’s oesophagus (BE) from 5 patients. Comparing the two 

studies reveals both similarities and differences. BE is not a discrete tumour and is generally 

a highly polyclonal lesion, reflected in multiple “initiating” deletion mutations in CDKN2A 

and a series of clonal expansions without selective sweeps. By comparison, CRAs are 

discrete and probably have monoclonal origins usually caused by bi-allelic APC mutation, 

followed either by selective sweeps, or by polyclonal expansions reminiscent of BE. We note 

that in both BE27,28 and CRA, data are consistent with malignant progression sometimes 

occurring from a sub-clone that does not have the largest driver mutation burden.

In summary, we have used measurements of intra-tumour heterogeneity to reveal the 

evolutionary trajectories of colorectal tumour cell populations across what appears to be a 

rather flat fitness landscape for adenomas, with a higher, sharper peak occupied by cancers. 

Our data refine the Fearon and Vogelstein model4 of CRC progression by showing that 

driver mutations do not necessarily lead to hard selective sweeps and that progression to 

CRC can involve punctuated evolution.
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Methods

Sample acquisition and processing

Oxfordshire Research Ethics Committee B gave permission for the study (protocol 05/

Q1605/66), and all samples were collected with informed patient consent, that was obtained 

by the local clinicians prior to tissue collection. Fresh-frozen biopsies from 24 colorectal 

adenomas or carcinomas were obtained from the John Radcliffe Hospital, Oxford or from 

University Hospital, Basel. In the case of CRAs, the biopsies were obtained from endoscopic 

resections, whereas the CRC biopsies were obtained from surgical resections. Any residual 

bulk cancer surplus to diagnostic requirements was also acquired. Paired normal biopsies 

were also taken from regions clearly separate from the tumour.

Library preparation and sequencing

DNA was extracted from tumour regions and morphologically normal tissue using the 

Qiagen DNeasy® kit. The sequencing library preparations were performed using either the 

NEBNext® DNA kit or in the case of exome sequencing the Illumina TruSeq® exome kit. 

Sequencing of these biopsies was carried out using standard protocols on the Illumina HiSeq 

2000 by the Genomics Core at the Wellcome Trust Centre for Human Genetics, Oxford. The 

FastQC program29 was used to assess raw sequencing quality and coverage and depth were 

assessed using the GATK package (specifically the DepthOfCoverage module)30.

Pre-processing and nucleotide variant calling

Reads in FastQ format were aligned to version 19 of the human genome reference using 

BWA version 0.7.531. The Picard package32 was used to identify duplicate reads and the 

Samtools package33 was used to count the number of reads in the binary alignment map 

(.bam) files. Single nucleotide variant (SNA) calling was performed using the Platypus 

tool34. Variant call format (.vcf) files were annotated with AnnoVar35 and converted to tab-

delimited file format using snpSift36. SNAs were categorised as somatic if they were present 

in at least one tumour sample and either the normal sample had <40X coverage and zero 

mutant reads or ≥40X depth and ≤1 mutant read. To obtain high confidence and consistent 

variants for phylogenetic analysis, only variants called with depths consistently ≥10X and 

allele frequency ≥1% in one or more regions were retained.

Calling small insertions and deletions

Indel calling remains problematic and highly inaccurate37. For this reason we focussed 

mainly on potential driver events. We identified a set of reliable indels by performing a first 

pass using the Scalpel tool38 then verifying the presence in the Platypus call sets and also by 

visual inspection using the IGV browser39. On visual inspection, we found that many 

ubiquitous indels were actually called incompletely across the biopsy sets by Platypus and 

sometimes missed all together by Scalpel, highlighting the inconsistency of the currently 

available tools.
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Driver mutation identification

We used two classifications of driver genes (Table S3). First, we identified CRC drivers 

using the IntOGen database 2016.5 (https://www.intogen.org/). Driver mutations were then 

classified using a two-tier system. Tier 1 driver mutations were considered to be very likely 

involved in colorectal carcinogenesis and included canonical mutations such as most 

protein-truncating APC SNAs, BRAF V600E and KRAS codon 12, 13, 61, 117 and 146 

changes. For non-canonical mutations, tier 1 status was assigned to protein-truncating 

mutations in tumour suppressor genes or recurrently occurring mutations in CRCs in the 

COSMIC database (http://cancer.sanger.ac.uk/cosmic). Tier 2 mutations, considered to be of 

lower confidence as drivers, comprised all other coding or splice site changes in the same set 

of genes. These genes are defined in Table S3a. Second, we used a more restrictive 

definition of the top 5% significantly mutated genes in the TCGA publication exclusively 

(non-MSI+ carinomas). These genes are defined in Table S3b.

Coverage normalisation

We normalised for differences in sequencing coverage to avoid bias in mutation calling and 

intra-tumour heterogeneity measurements due to unequal coverage between samples. To do 

this, we identified a subset of 110,533 exonic regions consistently sequenced at ≥10X in all 

biopsies across all tumours. To normalise coverage between samples, we individually sub-

sampled each .bam file such that each contained a roughly equal number of reads. This 

equated to around 17,000,000 reads per biopsy, covering in total 25Mb of exonic regions.

We then generated 100 sets of ‘mini-bams’ (one bam from each sample) where each bam 

contained the same 10,000 regions randomly selected regions from the original 110,533 

well-covered regions. For each set of mini-bams we repeated the joint Platypus calling 

procedure (as per the above). The mutation frequency was calculated by simply taking the 

resulting number of variants and the total length of the 10,000 regions in each iteration.

Deep sequencing

In order to validate the exome and genome sequencing, and to search for additional low 

allele frequency somatic mutations, we sequenced a panel of 50 CRC driver genes in 

selected tumour regions. These genes encompassed all well established driver events 

including the top 15 genes from the IntOGen list (see Table S3) and included both tier 1 and 

2 driver mutations. Coding regions were captured using molecular inversion probes (MiPs) 

and sequenced using the Illumina NextSeq. Molecule tagging was used to ensure that reads 

were derived from unique tumour DNA molecules. Further details of the gene panel and the 

sequencing protocol are available on request.

All of the subset of 44 driver mutations identified by WES/WGS from three carcinomas and 

five adenomas were validated. We also were able to identified two additional ubiquitous 

APC mutations that had not been called in the WGS/WES data.

CNA calling

We used CloneHD40 to call absolute copy number and LOH profiles for each sample. We 

first collected raw read depth data across the genomes using Samtools. For WGS samples, 
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we used 1kb non-overlapping windows (excluding difficult regions such as centromeric). For 

WES samples, bed files corresponding to the exome capture kit were used and the data were 

further placed onto 20kb bins. For each set we utilised the corresponding normal sample to 

identify outlier bins, which we removed. Furthermore, variant call files for each sample set 

were used to identify germline heterogeneous loci to collect B-allele data, informative for 

LOH and/or unbalanced aberrations in the tumour samples.

We then ran filterHD (part of the CloneHD tool) to identify changes in the read depth and B-

allele tracks that go beyond the noise resulting from finite sequencing depth for each set40. 

Such “jump” locations were used as input for cloneHD copy number calling for the tumour 

samples. For WES samples we also used the corresponding normal samples to correct for 

platform related bias in the read depth tracks. The bias correction is important for WES 

samples and not using it would result in a large number of loci with high jump probability, 

i.e., over-segmentation (see discussion about bias correction40).

We validated the general patterns of large CNA to calls from SNP arrays (Illumina Global 

Screening Array) using the OncoSNP program on the majority of tumours. Overall, 93% of 

the larger CNAs were in congruence.

For this analysis, we did not report structural variants or chromosomal hypermutation events 

such as chromothripsis and chromoplexy.

Exclusion of tumours from analysis of heterogeneity

The ability to accurately measure ITH depends on the number of biopsies available from the 

tumour41. We assessed the relationship between biopsy number and genetic divergence and 

found no correlation (Fig S1B). A subsampling bootstrap analysis of three neoplasms each 

with a high number of biopsies showed that at least four biopsies per neoplasm provided a 

suitably accurate measurement of ITH (Fig S1C); hence neoplasms with less than four 

biopsies available were excluded from ITH analysis.

Analysis on sub-clonal populations

Since larger sub-clones might disturb the overall phylogenetic analysis, we investigated the 

existence of such in the samples with whole genome sequencing using the Battenberg 

algorithm42. Briefly, the algorithm phases heterozygous SNPs with use of the 1000 

genomes genotypes as a reference panel. The resulting haplotypes are corrected for 

occasional errors in phasing in regions with low linkage disequilibrium. After segmentation 

of the resulting b-allele frequency (BAF) values, t-tests are performed on the BAFs of each 

copy number segment to identify whether they correspond to the value resulting from a fully 

clonal copy number change. If not, the copy number segment is represented as a mixture of 

2 different copy number states, with the fraction of cells bearing each copy number state 

estimated from the average BAF of the heterozygous SNPs in that segment.

Clusters of subclonal substitutions were identified in whole genome sequencing data using a 

Bayesian Dirichlet process (DP) in n dimensions, where n is the number of related samples 

as previously described43. For each mutation, the allele frequency was converted to a cancer 

cell fraction (CCF) prior to clustering, allowing for purity and copy number estimates 
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obtained from the Battenberg algorithm, as described previously43. Clusters were identified 

as local peaks in the posterior mutation density obtained from the DP. For each cluster, a 

region representing a ‘basin of attraction’ was defined by a set of planes running through the 

point of minimum density between each pair of cluster positions. Mutations were assigned 

to the cluster in whose basin of attraction they were most likely to fall, using posterior 

probabilities from the DP.

We investigated the geographical spread of subclones by analysing the presence of each 

subclone across samples from each patient. Subclones may be: clonal (defined as CCF ≥ 0.9) 

in all samples; clonal in some samples and absent (defined as CCF ≤ 0.1) from others; 

present subclonally in a single sample; present in multiple samples and subclonal in at least 

one. The first three categories represent clones/subclones that are in defined geographical 

regions of various sizes, whereas the last category represents subclones that are more 

diffuse, indicative of subclone mixing across regions covering multiple biopsies. The 

percentage of mutations in this last category was low (median 12%, range 5-26%), 

indicating that where subclones were present they were generally in defined geographical 

regions.

Phylogenetic analysis

We built phylogenetic trees from the SNAs sets for each tumour using PAUP* software. We 

first converted each variant set into a binary matrix, where the rows related to a particular 

biopsy or the normal sample and the columns related to a specific variant. The binary 

encoding (0/1) designated absence or presence of a variant. A nexus file was used to specify 

the parsimony parameters needed for the tree construction along with the variant matrix. The 

following functions and parameters were used: (i) the outgroup function was used to root all 

resulting trees to the normal sample - effectively a column on the mutation matrix containing 

only zeros; (ii) the hsearch function was used to perform a heuristic search of 10,000,000 

trees from the given tree space, with 1000 of the shortest trees output for the main analysis; 

(iii) the bootstrap function was used to perform a sub-sampling procedure 10,000 times that 

involved randomly selecting a set of mutations from the binary matrix (with replacement), 

with the proportion of each branch instance was reported in a log file; and (iv) the alltrees 

function was used in the cases where less than 10 biopsies were present. This made it 

possible to perform an extended 'brute-force' run to acquire the definitely shortest tree(s) 

from the total search space, at the expense of computational time. The resulting .tre files 

were visualised and converted to .pdf format using FigTree software44. The homoplasy 

indexes for the most parsimonious tree in a given set was automatically calculated and 

output to the PAUP* log file.

To obtain the shortest and thus most parsimonious tree, an Rscript using the ape package45 

was used to input the .tre file. In all cases expect carcinoma 6 only one tree was the shortest. 

In the case of carcinoma 6 the 8 shortest trees were visually compared revealing that a 

specific clade was unresolved across these trees though the main topology was the same. For 

this case we build a consensus tree using the ape package, consensus function.

We also tested for phylogenetic consistency across the variant types. We produced subsets of 

the SNAs using only non-synonymous or synonymous mutations or if the whole genome 
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was available, the exome and then compared the resulting phylogenies with the original total 

data trees. Comparisons were performed in three ways: (i) topology structure, where 

identical topology matches were noted; (ii) the number of consistent terminal clades 

represented across each tree; and (iii) statistical comparison of tree topologies using the 

Penny and Hendy (P&H) symmetrical distance method. The P&H method was implemented 

using an R script and the apTreeshape package46. To obtain a p-value for the P&H index we 

build a distribution of random trees of the same length and number of taxa for a given set, 

thus enabling a probability to be determined for obtaining a given P&H index.

To perform tree balance analysis (which was only appropriate for carcinoma 6 that 

possessed > 15 samples), we used the Colless’s test function as implemented in the R 

apTreeShape package. We tested the topology of carcinoma 6 against a balanced ‘Yule’ tree, 

hence the p-value represents the likelihood of imbalance given this branching process.

Diversity analysis: adenoma versus cancer

To compare the SNA diversity of adenomas and carcinomas, we performed two main 

analyses. Firstly, we wanted to compare the proportion of truncal SNAs from the total SNAs 

called in adenomas and carcinomas, but since certain tumours had many more biopsies, we 

performed a biopsy-wise down-sampling procedure. Here, in tumours with more than four 

biopsies (this was considered a reasonable minimum) we randomly selected various four-

biopsy combinations and calculated the proportion of variants classified as trunk, branch and 

leaf. The distributions of these proportions was then plotted with the quartiles for the four-

biopsy samples.

Second, the downsampled call sets were used to assess the SNA diversity by measuring the 

SNA divergence of a pair of randomly selected biopsies from a given tumour. The diverging 

(non-shared) somatic variants were given as a number per Mb of the genome across the 100 

down-sampled iterations.

Mutational signatures with EMu

For each tumour set, we classified all SNAs based on their flanking trinucleotide sequence 

context47 and whether they fell onto the trunk (shared) or branches (including trunk and 

leaves) of the phylogenetic tree. Inference of mutational processes and their activities was 

then determined using the EMu algorithm48. Through this analysis we identified 4 

signatures (Signatures A, B, C and D). The resemblance to the COSMIC signatures was 

determined by comparing 96-channel mutation frequencies and by visual inspection.

Comparison of spatial and genetic distances

To obtain estimates of the physical distances between each biopsy from any tumour, we 

produced normalised measurements of the number of pixels on a straight-line drawn 

between the centre points of the biopsy locations. The photographs of the tumour and biopsy 

locations were used as reference. We then used the ape R package to obtain the inter-taxa 

distances for each of the phylogenetic trees and performed a linear regression of the physical 

on the phylogenetic distance for each tumour.
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Digital Pathology

Patient material was fixed in 10% buffered formalin and paraffin-embedded. Tumour blocks 

were sectioned at 4 μm. Ki67 and β-catenin proteins were analysed by 

immunohistochemistry using a Leica autostainer with haematoxylin counterstaining 

according to standard protocols (ki-67 antibody, DAKO MIB-1 cat no M7240, 1:150; β-
catenin antibody, BD biosciences cat no 610154, 1:50; DAB chromogen). All slides were 

scanned at 200x magnification on a 3D Histech Pannoramic Scanner and stored in MIRAX 

(.mrxs) format.

Digital image analysis was performed by a board-certified pathologist (VHK) using the 

HALO™ image analysis software, v.2.0.1145.19 (Indica Labs, Corrales, NM 87048, USA). 

Briefly, invasive cancer regions were identified on each scanned tissue section and manually 

annotated. Normal mucosa and regions of necrosis were excluded. Next, the HALO ™ 

classifier machine learning algorithm was trained to categorize tumour tissue, stroma and 

background regions for each stain. The goodness of classification was visually controlled on 

all cases. Marker-positive cancer cells were identified using the cytonuclear algorithm. 

Cellular recognition was trained and optimized on invasive cancer tissue. Colour 

segmentation was performed. The H&E nuclear stain was set as R=0.644, G=0.716, 

B=0.267, and the DAB positive stain as R=0.268, G=0.570, B=0.776. Algorithm settings are 

provided in Table S9. ki-67 and β-catenin stains were calibrated using normal, non-

proliferative mucosal cells outside of the crypt bases. The total counts and percentage of 

marker-positive cells in the tumour cell compartment were recorded.

General statistical analyses

All analyses were performed in R or STATA. Unless otherwise stated, all statistical 

comparisons of two distributions used the Wilcoxon test (Wilcox.test function in R). Unless 

otherwise stated, 95% confidence intervals of medians were determined using a 

bootstrapping analysis of the median values (1000 repeats of 20 samples [10 adenoma, 10 

carcinoma] with replacement). Data in contingency tables were analysed using Fisher’s 

exact test. Researchers were not blinded to sample type.

Power calculation for detecting a difference in mutation burden

We calculated the power to detect a difference in the mutation burden of 9 adenomas versus 

10 carcinomas. In accordance with the measured burdens, we assumed 90 mutations per 

adenoma (std. dev. 35 mutations) and considered the power of a t-test to detect a difference 

between the carcinomas with a variety of higher burdens, requiring a (one tailed) 

significance level of p<0.05. Standard formulae were used to calculate power. Our data had 

very good power to detect a 50% increase in burden in carcinomas and good/fair power to 

detect a 33% increase (Figure S10).

CNA timing model

Full details of the model are presented as a Supplementary Note. Matlab code to calculate 

the CNA timing is available from the GitHub project page: https://github.com/daniel-temko/

CNVTiming.
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We modelled the last common ancestor of WGS tumour samples by obtaining the SNAs 

(together with their associated variant allele frequencies) and informative CNAs 

(asymmetric copy number gains/amplifications or cnLOH) that were observed in all biopsies 

of a given tumour. Using an assumption of constant SNA mutation rate over time, we sought 

to time individual clonal CNAs along the history of the ancestral cell lineage, by partitioning 

the SNAs present in the same region of the CNA into those accumulated before and after the 

CNA.

The premise of the timing model is to use the information from all CNAs under 

consideration in a joint likelihood maximisation of their respective timing. The individual 

timings are estimated using the assumption that the SNAs in a CNA region will accumulate 

following a Poisson process, based itself on the assumption of a given mutation rate. The 

SNVs in a given CNA region were partitioned into those on the non-amplified and amplified 

DNA strands (referred to as alpha and beta variants respectively in the supplementary note) 

using a Gaussian mixture model, implemented using the R package ‘mixtools’ and the 

‘normalmixEM’ function. Here the parameter mu (the starting cluster means) was inferred 

from the cellularity and copy state of the CNA. For example: in a biopsy with 100% tumour 

content, the expected cluster means of a trisomy region are 0.33 and 0.67, representing, the 

non-amplified and amplified chromosomes. We performed a heuristic search (using 10,000 

iterations of the normalmixEM function) to assess the confidence in the inferred cluster 

centres. Only cases where clustering was deemed successful, determined by the final means 

of the two clusters being located within one standard deviation of the expected cluster 

means, were passed forward for timing analysis. Note that ‘complex CNAs’ – those CNAs 

where there was reason to suspect multiple alterations occurred at the same locus (for 

example focal gain after an arm gain) - were excluded from the analysis.

The statistical assessment of the distribution of the CNA timings was performed by 

comparing the distribution of timings for each tumour against a uniform distribution using 

the Kolmogorov–Smirnov test. The duration of the comparative interval was set to the 

interval between the inferred initiation of the adenoma (timing of the 5q LOH event) and the 

time most recent common ancestor (MRCA). In the cases where no 5q event was detected, 

the time of initiation of adenoma growth was taken as the average time of 5q LOH in the two 

cases where this event could be timed (adenoma 4 and carcinoma 5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutation burdens in CRAs and CRCs
a. CRAs tended to have slightly fewer exonic SNAs than CRCs but the difference was not 

significant. The average burden and 95% range across these different tumours is shown by 

the rightmost bars. b. The number of individual CNAs (as measured by the number of 

segmentations) is significantly greater in CRCs than CRAs (p=0.003, 95% range shown by 

bars). c. SNA driver mutation burdens and allelic loss of 5q, 17p and 18q, are shown for 

each tumour. A comparison of all events is show by the red bars, while tier 1 driver changes 

exclusively are shown in dark grey, with tier 2 in light grey. d. Distribution of canonical 

driver mutations across tumours. APC is the only ubiquitous driver event. There is no 

significant enrichment of cnLOH mutations as second hits to APC or TP53 mutations in 

adenomas compared to carcinomas (though TP53 is borderline).
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Figure 2. Phylogenetic analysis of CRAs and MSS CRCs
Maximum parsimony construction of evolutionary trees. For tumours with only two regional 

biopsies, truncal mutations were simply those shared between the regions. Tier 1 driver 

mutations (Table S3) are shown, illustrating their enrichment on the trunks, especially in 

CRCs, indicating they are acquired early in evolutionary time. Phylogenetic trees showed 

were produced using all available SNAs. Tree shape robustness (branch support) was 

confirmed by bootstrapping. Branches had greater than 95% support unless otherwise stated 

(44/55 (80%) of branches had >95% support). The most parsimonious trees are shown 

except in carcinoma 6, where one clade could not be resolved (A: green box). Left Bar 
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chart: Ubiquitous SNAs (found in all regional biopsies and on the trunk of the phylogenetic 

tree) are compared with sub-clonal SNAs on the phylogenetic tree branches (non-ubiquitous, 

but present in >1 region) and leaf (present in only one region). CRAs have a smaller 

proportion of ubiquitous variants than CRCs.
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Figure 3. Copy number alterations in CRAs and MSS CRCs
a. A genome-wide view of CNAs is shown for each region of CRAs (top) and CRCs 

(bottom). Cancers show a greater CNA burden than adenomas, and most CNAs are clonal in 

cancers, whereas CRAs show more frequent sub-clonal CNAs. Copy number ≥5 is shown as 

“polysomy”. b. The figure shows estimated ploidy and summarises the proportion of each 

tumour at different copy-states. Black bars show the range of biopsy copy-numbers. c. Size 

distributions of ubiquitous and sub-clonal (branch and leaf) CNAs demonstrate the 

preference of CRCs to have larger events. Boxplots show the median and inter quantile 
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range (IQR), upper whisker is 3rd quantile + 1.5*IQR and lower whisker is 1st quantile - 

1.5*IQR. The colour-coding of copy number states (top right) applies to all panels.
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Figure 4. Geography of CRCs
Photographs of the tumour specimens from histopathology departments are shown, with 

biopsy locations marked. The sporadic MSI+ cancer 4 is included here. The corresponding 

phylogenetic relationship between tumour regions is shown below the photograph of each 

tumour. The regression plots show pairwise physical and genetic separation for each biopsy 

from that cancer. There was a significant positive correlation between the phylogenetic 

(mutational) distance and physical distance in every case.
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Figure 5. CNA timing
The plots show the CNA timing results for the six neoplasms with WGS data. For each 

tumour, the X-axis represents inferred evolutionary time to the MRCA, since tumour 

initiation (unit of measurement is SNAs accrued per unit time). Green dashed line is inferred 

from the “second hit” at APC (and thus likely represents the time of initiation of the 

adenoma). The upper panels show the accumulation of CNAs (red, arrowed line) relative to a 

steady accumulation (black, dashed line); p-values are derived from Kolmogorov-Smirnov 

tests of inferred CNA time versus a uniform accumulation. The lower panel shows the 

estimated times of driver mutations, where these could be derived, for individual CNAs by 

chromosome arm and type of change. Bars indicate 95% confidence intervals for CNA 

timing estimates.
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