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1 Introduction

In perfectly competitive markets, price-taking behavior is often justified by as-
suming that agents are small relative to market size. The implication of this as-
sumption is that prices are almost insensitive to individual actions. Hence, even
if agents behave strategically, equilibrium behavior corresponds to price-taking
optimization as the economy becomes large. The crucial axioms underlying
this non-cooperative foundation of competitive equilibrium are anonymity—the
names of the agents are irrelevant to the market—and aggregation—individual
actions affect market price only through the average of all actions (Dubey et al.
[8]).

Following Corchón [4], we say that a game is a (generalized) aggregative game
if payoffs depend only on individual strategies and an aggregate of all strategies.1

A prominent example is a Cournot oligopoly, where profits depend exclusively
on individual and total output. If, additionally, payoffs do not depend on the
names of the agents, the game is symmetric. Aggregate-taking optimization—
the natural generalization of price-taking behavior—is then still well defined
even if agents are not negligible, although it does not correspond to strategic,
rational behavior. An optimal aggregate-taking strategy (ATS) is one that
is individually optimal given the value of the aggregate that results when all
players adopt it. In an ATS, players who are not negligible behave as if they
were.

Instead of absolute payoffs, evolutionary game theory proposes relative per-
formance as the important criterion for the survival of a strategy. The un-
derlying assumption is that if a strategy earns higher payoffs than opponent
strategies, it tends to be copied more frequently and propagates faster at the
expense of worse performing strategies. We then say that a strategy is evolu-
tionarily stable (ESS) if, once adopted by all players, it will not be discarded
due to the appearance of a small fraction2 of experimenters choosing a com-
peting different strategy. If an ESS resists the appearance of any fraction of
such experimenters, we say that it is globally stable. Evolutionary stability thus
implies maximization of the difference between own and opponents’ payoffs.3

In this context, Schaffer [20] observed that, in a Cournot duopoly, the output
corresponding to a competitive equilibrium—the output level that maximizes
profits at the market-clearing price—is evolutionarily stable. That is, a firm
deviating from the competitive equilibrium will earn lower profits than its com-
petitor after deviation.4 This result was extended to a general oligopoly by

1Games with an aggregative structure of this sort appear very often in economic models
(cf. Section 2.3), although they are not always explicitly referred to as “aggregative games.”
Cornes and Hartley [5] also present examples of games which can be viewed as aggregative
games after appropriate transformations of the strategy spaces.

2If the number of players is finite, the smallest fraction is one player (cf. Section 3).
3The concept of evolutionarily stable strategy used here, due to Schaffer [19], refers to

a finite population and differs from the usual concept in evolutionary game theory for a
continuum population (cf. Section 3). For an introduction to evolutionary game theory see
e. g. Vega-Redondo [25], or Weibull [29].

4The key for the evolutionary success of the competitive firm is its spiteful behavior. Quot-
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Vega-Redondo [26], who additionally showed that the competitive equilibrium
would be the only long-run outcome of a learning dynamics based on imitative
behavior. The evolutionary approach, hence, provides foundations for compet-
itive equilibrium dispensing with the assumption of negligible agents.

In the present work, we identify the structural characteristics of the Cournot
oligopoly which underlie these results. The first is the fact that it is an aggrega-
tive game. The second is the strategic substitutability between individual and
total output. Since the incentive to increase individual output decreases the
higher the total output in the market, the Cournot oligopoly has a submodular
structure.5

Indeed, we find that the results for the Cournot oligopoly are but an instance
of a general phenomenon. An ATS is evolutionarily stable in any aggregative
game with a submodular structure. This has a natural counterpart in the su-
permodular case, where any ESS corresponds to aggregate-taking optimization.

Possajennikov [18] already observed a relation between optimal aggregate-
taking strategies and evolutionarily stable strategies in aggregative games. Un-
der differentiability, he finds that the first-order conditions of their defining
optimization problems are identical. Careful examination of the second-order
conditions allows to determine conditions under which both concepts coincide.
In contrast, our approach relies exclusively on the structure of the game and
provides an intuitive and direct way of relating both concepts.

In the submodular case, we obtain even stronger results. Any ATS is weakly
globally stable, i. e. weakly better in relative terms independently of the fraction
of opponents behaving differently. If the game has a strict ATS, then this is
strictly globally stable and the unique ESS.

Furthermore, we show that a strictly globally stable ESS is always the long-
run outcome of a learning dynamics based on imitation and experimentation.
This result, which is of independent interest, is proven for arbitrary (not neces-
sarily aggregative) symmetric games. As a corollary, this will also hold for any
strict ATS of a submodular aggregative game. In short, the dynamic stability
result of price-taking behavior quoted above generalizes for aggregate-taking
optimization to arbitrary submodular aggregative games.

In our view, these results might be taken to provide an alternative, evolu-
tionary foundation for the perfect competition paradigm. In contrast to the
large-population approach, this foundation does not rely on agents being negli-
gible. In fact, the evolutionary success of behaving as if they were negligible is
due precisely to the fact that they are not. When an agent optimizes assuming
that she will not affect the aggregate, the latter will actually change, but in
such a way that it is her opponents who will be more harmed. A key new in-

ing Schaffer [20]: “When firms have market power, the potential for ‘spiteful’ behavior exists.
A firm which forgoes the opportunity to maximise its absolute profit may still enjoy a selective
advantage over its competitors if its ‘spiteful’ deviation from profit-maximisation harms its
competitors more than itself.”

5We refer here to n-firm Cournot oligopolies with homogeneous product. Certain Cournot
oligopolies are supermodular, or can be seen as such through suitable changes of variable. On
this see e. g. Amir [1], Amir and Lambson [2], Vives [27], which introduced supermodularity
techniques in Economics, or Vives [28].
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sight is that this property derives directly from the supermodular or submodular
structure of the game.

These results are also of interest for evolutionary game theory, since they
provide either necessary or sufficient conditions to obtain ESS for a class of
aggregative games. In the submodular case, we actually provide shortcuts for
the computation of an ESS and the long-run outcomes of imitative learning
dynamics. Further, our result on imitative dynamics is, to our knowledge, the
first general result on the dynamic properties of finite-population ESS.

The paper is organized as follows. Section 2 introduces the notion of (gen-
eralized) aggregative games and presents examples beyond the Cournot oligop-
oly. Section 3 presents the concepts of evolutionary and global stability for n-
player games and particularizes them for aggregative games. Section 4 discusses
aggregate-taking behavior. Section 5 presents the results relating aggregate-
taking behavior and evolutionary stability. Section 6 contains the dynamic
results. Section 7 concludes.

2 Generalized symmetric aggregative games

A game is called aggregative if the payoffs to any player depend only on that
player’s strategy and the sum of all strategies chosen. If the sum is replaced by
an arbitrary aggregate g, we refer to a generalized aggregative game (Corchón
[4]).

In the present work we will consider symmetric games with a strategy space
S common to all players, assumed to be a subset of a totally ordered space X.
For our purposes it will be enough to let S ⊆ X = R. Further we will assume
the aggregate g to be a symmetric and monotone increasing function.6 For the
sake of expositional simplicity we will drop the qualifiers generalized, symmetric,
and monotone, referring to such games simply as aggregative games.

Definition 1. A (generalized) symmetric aggregative game with aggregate g
is a tuple Γ ≡ (N,S, π) where N is the number of players, the strategy set S,
common to all players, is a subset of a totally ordered space X, π : S×X → R is
a real-valued function, and g : SN → X is a symmetric and monotone increasing
function, such that individual payoff functions are given by πi(s) ≡ π(si, g(s))
for all s = (s1, . . . , sN ) ∈ SN and i = 1, . . . , N .

2.1 Families of aggregative games

Existence of a monotone aggregate function is the only requirement for a game
to be representable as an aggregative game. Hence, this class of games may be
rather large. Actually, in the examples we consider the aggregate is a functional
form that can be extended to any number of players as captured by the following
definition.

6The analysis could be analogously performed for the case of decreasing aggregates.
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Definition 2. A family of symmetric aggregative games is a collection of games
{Γn}∞n=1 where Γn ≡ (n, S, π) is a (generalized) symmetric aggregative game
with aggregate gn such that g1(s) = s for all s ∈ S and there exists a function
g : X × S → X such that

gn+1(s1, . . . , sn, sn+1) = g (gn(s1, . . . , sn), sn+1) (1)

for all s1, . . . , sn+1 ∈ S, and all n ≥ 1.

Note that the construction of an aggregate in Definition 2 follows an induc-
tive scheme. The condition that g1(s) = s strikes us as natural, although it is
not necessary for our analysis. This condition implies that the restriction of g
to S×S coincides with g2 and is, hence, symmetric. Constructing the aggregate
in an inductive way has two advantages. First, it allows us to speak of families
of games with a variable number of players but the same strategic structure.
This will be useful to perform comparative statics with respect to the number of
players. Second, it allows to formulate the payoffs of the game depending only
on individual strategy and either an aggregate of all strategies, or an aggregate
of the strategies of the other players. Indeed, consider a family of symmetric
aggregative games {Γn}∞n=1 with Γn ≡ (n, S, π). Define π̃ : S ×X → R by

π̃(s, x) = π(s, g(x, s)).

Now, using (1), we can view the payoffs of the game Γn as a function of individual
strategy and an aggregate (namely gn−1) of the strategies of the other players
as follows.

πi(si, s−i) = π(si, g
n(si, s−i)) = π̃(si, g

n−1(s−i))

In the literature, the dependence of the payoff function on an aggregate of the
opponents’ strategies is exploited to simplify the analysis of best reply corre-
spondences (see e. g. Vives [28]).

2.2 Super- and submodularity in aggregative games

In this section we adapt the concepts of super- and submodular games (see e. g.
Topkis [24]) to the case of aggregative games.

Definition 3. We say that an aggregative game Γ ≡ (N,S, π) is supermodular
(resp. submodular) in individual strategy and the aggregate if π has increas-
ing (resp. decreasing) differences; i. e. if π(s′′, x) − π(s′, x) is increasing (resp.
decreasing) in x ∈ X for all s′′ > s′ ∈ S.

If X = R and π(s, x) is continuously twice differentiable, then π has increas-
ing (resp. decreasing) differences if and only if

∂2π(s, x)
∂x∂s

≥ (resp. ≤ ) 0

The concept of increasing differences captures the notion of complementarity
—the incentive to increase s increases with the level of the aggregate x. Respec-
tively, the concept of decreasing differences captures the notion of substitutability
—the incentive to increase s decreases with the level of the aggregate x.
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Definition 4. We say that an aggregative game Γ ≡ (N,S, π) is quasisuper-
modular in individual strategy and the aggregate if π satisfies the single-crossing
property in (s, x) ∈ S ×X; i. e. if, for all s′′ > s′ and x′′ > x′

π(s′′, x′) ≥ π(s′, x′) ⇒ π(s′′, x′′) ≥ π(s′, x′′)
π(s′′, x′) > π(s′, x′) ⇒ π(s′′, x′′) > π(s′, x′′)

We say that Γ is quasisubmodular in individual strategy and the aggregate if π
satisfies the dual single crossing property in (s, x); i. e. if the conditions above
hold with the reversed inequalities.

The single-crossing property (SCP) is an ordinal version of complementarity
weaker than increasing differences. If s′′ is preferred to s′ given x = x′, then
s′′ is preferred to s′ given a higher x = x′′, although we cannot say whether
the incentive to replace s′ with s′′ has increased. Thus, increasing differences
implies the SCP, but not vice versa. An analogous remark can be made for the
dual SCP.

2.3 Examples of aggregative games

Example 1. Cournot oligopoly. Consider an oligopolistic market for a homo-
geneous good with quantity-setting firms. Let qi ∈ R+ be the quantity supplied
by firm i = 1, . . . , n. Inverse demand is given by a strictly decreasing function
P (·) that depends on the aggregate output level Q =

∑
i qi. All firms face the

same increasing cost function C(q). The profit to firm i is then given by

πi(q) = π(qi, g
n(q)) = P (gn(q)) qi − C(qi)

with q ∈ Rn
+ and gn(q) =

∑n
j=1 qj increasing. This defines a family of aggrega-

tive games in the sense of Definition 2, with aggregate equal to the sum of all
quantities.7

The Cournot game is submodular in own (qi) and total (Q) output. To see
this, let q′′i > q′i, and note that

π(q′′i , Q)− π(q′i, Q) = P (Q)(q′′i − q′i)− (C(q′′i )− C(q′i))

is decreasing in Q for P decreasing.
No further assumptions are required for the Cournot oligopoly to be sub-

modular in individual strategy and the aggregate. If, alternatively, we conceive
the payoffs of this game as a function of individual strategy and an aggregate
of the opponents’ strategies, the corresponding submodularity is obtained only
under the additional assumption of decreasing marginal revenues. Particular
instances of the Cournot game are usually analyzed in the literature as super-
modular in own output and the opponents’ total output through convenient
changes of variable (see Amir [1], or Vives [28, Ch.4]).

7Alternatively, we could have chosen the inverse demand function itself as a (decreasing)
aggregate. As noted above, our results could be rewritten for such aggregates.
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Example 2. Rent-seeking. There is a rent V to be obtained—e. g. rent
derived from monopoly power, a prize, some commonly valued good (auction).
Players compete for this rent by investing some effort or income, si ∈ R+,
i = 1, . . . , n. Only the player that wins the contest obtains the rent, while all
other expenditures are lost. The higher the expenditure of a player, si, the
higher the probability that i obtains the rent, given by

Prob{i gets V | s1, . . . , sn} =
sr

i∑n
j=1 sr

j

The parameter r models a technology that turns expenditures or efforts into
probabilities of winning. If r < 1 there are decreasing returns to these efforts.
If r > 1 there are increasing returns. The borderline case r = 1 corresponds to
constant returns.

In a Nash equilibrium total expenditure is always lower than V . In par-
ticular, if the number of players is n ≤ r/(r − 1), there is a symmetric Nash
equilibrium of this game with ŝ = n−1

n2 rV (see e. g. Lockard and Tullock (eds.)
[13]).

Rent-seeking corresponds to a family of aggregative games with payoff func-
tion

πi(s) = π(si, g
n(s)) =

(
si

gn(s)

)r

V − si

with gn(s) =
(∑n

j=1 sr
j

)1/r

and r > 0.
Note that rent-seeking games are submodular in individual strategy and the

aggregate, since
∂2π

∂x∂s
= −r2 sr−1

xr+1
V ≤ 0.

Alternatively, we could have defined the aggregate to be g(s) =
∑n

j=1 sr
j .

The payoff function would then be

πi(s) =
sr

i

g(s)
V − si

This, however, would not fulfill Definition 2.

Example 3. Tragedy of the commons. Consider the following version of the
problem of the commons. A set of agents operate a commonly owned production
process with decreasing returns to scale. Agents choose their input contributions
and total output is distributed in proportion to individual contributions. This
results in an average return game as defined by Moulin and Watts [16]. Let
si ∈ R+ denote the individual contribution of agent i = 1, . . . , n, and let gn(s) =∑

i si be the aggregate input. Output is produced with a technology given by
y = f(gn(s)), with f(0) = 0 and f concave.8 Payoffs are given by

πi(s) = π(si, g
n(s)) =

si

gn(s)
· f(gn(s))− si

8The production function f need not be differentiable. E. g. f(x) = ax for all x ≤ x̄ and
f(x) = b0 + b1x for all x ≥ x̄, with b1 < a < 1 and b0 = (a− b1)x̄.
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A Nash equilibrium of this game involves an overutilization of the technology
due to the presence of a negative externality which is not taken into account by
individual agents.9

Let A(x) = f(x)/x denote the average output. Set A(0) = limx→0 f(x)/x,
i. e. the slope of f at zero, and assume A(0) > 1. The function A is decreasing
by concavity of f . Note that payoffs can be written as π(s, x) = s[A(x)− 1].

The game is submodular in own contribution and the aggregate. To see this,
let s′′ > s′ and note that

π(s′′, x)− π(s′, x) = (s′′ − s′)[A(x)− 1]

is decreasing in x.

Example 4. Diamond’s search. Milgrom and Roberts [14] present a sim-
plified version of Diamond’s search model (Diamond [7]) of an economy where
production results from a technology with specialized labor, modelled through
an individual level of effort, si ∈ R+. In order to consume, each individual must
first produce a good at cost C(si), increasing with si, that must be exchanged
for another individual’s good. Success in finding a trading partner—and thus
in consumption of produced goods—depends proportionally on the own effort
and the total level of effort in the economy. The latter is then interpreted as
employment. The point was to show that there may be multiple equilibria,
i. e., multiple natural rates of unemployment. This is captured by a family of
aggregative games with payoff function

πi(s) = π(si, g
n(s)) = αsig

n(s)− C(si)

with gn(s) =
∑n

j=1 sj and α > 0.
This game is supermodular, since for s′′ > s′

π(s′′, x)− π(s′, x) = α(s′′ − s′)x− (C(s′′)− C(s′))

is increasing in the aggregate x.

Example 5. Minimum effort. The minimum-effort game can be used to
model a Stag-Hunt production game where the inputs are n different types of
specialized labor, all of them perfect complements for the production of the
output (see e. g. Bryant [3]). Individual level of effort is denoted si ∈ R+ and
production costs are linear. This can be seen as a family of aggregative games
with payoff function

πi(s) = π(si, g
n(s)) = agn(s)− bsi

aggregate gn(s) = mini{si}, and a > b ≥ 0.

9Moulin and Watts [16] show this in a general framework where agents are endowed with
convex preferences on output share and input consumption, and both goods are normal. The
version presented here is akin to the common pool resource extraction game in Sethi and
Somanathan [22].
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This game is simultaneously super- and submodular, since for s′′ > s′

π(s′′, x)− π(s′, x) = −b(s′′ − s′)

is constant in x.10

The focus of this paper is on symmetric games. Classic examples of aggrega-
tive games include, however, models of Bertrand competition with differentiated
products and monopolistic competition. We refer to Cornes and Hartley (2001)
for further examples of asymmetric games which can be seen as symmetric ag-
gregative games through suitable transformations.

3 Evolutionary stability in a finite population

Standard evolutionary game theory considers random, pairwise contests between
individuals drawn from an infinite population—two individuals are repeatedly
chosen at random to play a given two-player game. In that context, a strategy is
an evolutionarily stable strategy (ESS) if, once adopted by the whole population,
it cannot be invaded by a small mass of mutants, that is, individuals displaying
different behavior (see e. g. Weibull [29]).

To apply the principle of natural selection to, say, firms in an industry, we
need a definition of an ESS for a finite population of players which “play the
field”, that is all compete with each other simultaneously (Schaffer [19]). This
will differ from the analogous concept for an infinite population. In a small
population with mutants coming in one at a time, the single mutant will not
face other mutants.

Let Γ ≡ (N,S,Π) be a symmetric N -player game. That is, S is the common
strategy set for all players, Π : S × SN−1 → R, and the individual payoff
functions are given by πi(s) ≡ Π(si|s−i) for all s ∈ SN and i = 1, . . . , N , where
Π(si|s−i) = Π(si|s′−i) if s′−i is a permutation of s−i.

Definition 5. We say that s ∈ S is an ESS of a symmetric game Γ ≡ (N,S,Π)
if for all s′ ∈ S,

Π(s|s′, s, . . . , s) ≥ Π(s′|s, s, . . . , s).

An ESS is strict if the inequality holds strictly for all s′ 6= s.

In a finite population, an ESS strategist does not maximize own payoffs in
general; rather, it is relative payoffs that are maximized—the difference between
own and opponents’ payoffs. A deviation to an ESS may decrease own survival
probability, but in that case it will decrease the opponents’ probability of sur-
vival even more. This is called spiteful behavior (Hamilton [10]). As observed
by Schaffer [19], an ESS is a strategy s such that

s ∈ arg max
s′

[Π(s′|s, s, . . . , s)−Π(s|s′, s, . . . , s)]

10This holds true for any separable payoff function π(s, x) = h1(s) + h2(x).
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Thus, an ESS corresponds to a symmetric Nash equilibrium of the game with
relative payoffs. In general, however, a finite-population ESS does not necessar-
ily correspond to a Nash equilibrium of the original game in stark contrast to
the standard ESS concept for an infinite population.

Allowing for the appearance of mutants in groups results in a more stringent
concept of stability of a finite-population ESS.

Definition 6. Let s be an ESS of a symmetric game Γ ≡ (N,S,Π). We say
that s is weakly (strictly) globally stable if for all s′ ∈ S, s′ 6= s

Π(s|s′, m. . ., s′, s, . . . , s) ≥ (>)Π(s′|s′, m−1. . . , s′, s, . . . , s)

for all 1 ≤ m ≤ N − 1.

Note that in a finite population of N players with m mutants, players choos-
ing the incumbent strategy face m mutants, while mutants face only m−1 other
mutants, since the mutant never faces herself.

Definition 6 differs slightly from the one by Schaffer [19], who calls an ESS
globally stable if it fulfills the strict inequality in Definition 6 for m ≥ 2 (see
Crawford [6] and Tanaka [23] for closely related concepts).

Both ESS and global stability constitute a stability check against a single
competing strategy. An ESS is robust against all possible mutants coming in
small fractions; i. e. in a finite population only one at a time. A globally stable
strategy is robust against all possible mutant strategies independently of the
fraction of mutants.11

ESS in an aggregative game

Let Γ ≡ (N,S, π) be a symmetric aggregative game with aggregate g. Then,
s ∈ S is an ESS if, for all s′ ∈ S,

π(s, g(s′, s, . . . , s)) ≥ π(s′, g(s′, s, . . . , s)).

That is, s performs better than the mutant strategy s′ in the post-mutation
strategy profile with aggregate g(s′, s, . . . , s). Thus, an ESS solves

s ∈ arg max
s′

[π(s′, g(s′, s, . . . , s))− π(s, g(s′, s, . . . , s))] (2)

An ESS, s, is weakly (strictly) globally stable if, for all s′ 6= s and all
1 ≤ m ≤ N − 1

π(s, g(s′, m. . ., s′, s, . . . , s)) ≥ (>)π(s′, g(s′, m. . ., s′, s, . . . , s)). (3)

Example 1. Cournot oligopoly (continued). Denote by qw the output level
corresponding to a Walrasian equilibrium, which satisfies

P (n · qw) qw − C (qw) ≥ P (n · qw) q − C (q)
11In Section 6 we will postulate a dynamic model where simultaneous mutations to different

strategies are allowed.
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for all q 6= qw. In words, qw maximizes profits given the price. Vega-Redondo
[26] shows that for all q 6= qw and 1 ≤ k ≤ n

π(qw, g(q, n−k. . . , q, qw, k. . ., qw)) = P ((n− k)q + kqw)qw − C(qw) >

P ((n− k)q + kqw)q − C(q) = π(q, g(q, n−k. . . , q, qw, k. . ., qw))

which implies that qw is a strictly globally stable ESS. To see this, note that it
follows from P (.) strictly decreasing that

[P (nqw)− P ((n− k)q + kqw)] (qw − q) < 0

Subtracting C(q) + C(qw) and rearranging we obtain

[P ((n− k)q + kqw) qw − C (qw)]− [P ((n− k)q + kqw) q − C (q)] >

[P (nqw) qw − C (qw)]− [P (nqw) q − C (q)]

It suffices to notice that the right-hand side of the previous inequality is non-
negative by definition of qw.

Remark 1. In general, the output corresponding to a competitive equilibrium is
larger than the output corresponding to a Cournot equilibrium. It is worth not-
ing that this fact generalizes as follows. For any aggregative game with strictly
increasing aggregate g and payoff function π(s, x) strictly decreasing in x, a
globally stable ESS, s∗, will always be larger than the strategy corresponding
to a symmetric Nash equilibrium, s̃. For

π(s̃, g(s̃, . . . , s̃)) ≥ π(s∗, g(s∗, s̃, . . . , s̃)) ≥ π(s̃, g(s∗, s̃, . . . , s̃)),

but s̃ > s∗ would imply g(s∗, s̃, . . . , s̃) < g(s̃, . . . , s̃) and π(s̃, g(s∗, s̃, . . . , s̃)) >
π(s̃, g(s̃, . . . , s̃)), a contradiction.

4 Aggregate-taking behavior

We have just seen in Example 1 that the outcome of price-taking behavior
corresponds to a finite population ESS. By price-taking behavior it is meant
that agents ignore the effect of their individual decisions on the market price.
The generalization of this idea to an arbitrary aggregative game results in the
concept of aggregate-taking behavior.

Definition 7. Let Γ ≡ (N,S, π) be a symmetric aggregative game. We say
that s∗ ∈ S is an optimal aggregate-taking strategy (ATS) if

s∗ ∈ arg max
s

π(s, g(s∗, . . . , s∗)) (4)

A strict ATS is an ATS which is a strict maximizer of this problem.
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Example 2. Rent-seeking (continued). The first order condition of problem
(4) for this case yields

∂π(si, g(s∗, . . . , s∗))
∂si

∣∣∣∣
si=s∗

=
r

ns∗
· V − 1 = 0.

Moreover, since

∂2π(si, g(s∗, . . . , s∗))
∂s2

i

=
r(r − 1)sr−2

i

n(s∗)r
· V

it follows that π(si, g(s∗, . . . , s∗)) is strictly concave in si if r < 1. Thus, s∗ =
r
n ·V is a strict maximum and, hence, a strict ATS in that case. Note that total
investment is n · s∗ = r · V < V ; i. e., there is no overdissipation of rent. The
Nash equilibrium of the game, however, is given by ŝ = n−1

n2 · r · V 6= s∗.
Hehenkamp et al. [11] find that s∗ is an ESS of this game for r ≤ 1 + 1

n−1 .
This is a second example where ATS and ESS coincide, for a certain range of
parameters. The ESS problem in this example captures the tradeoff between in-
creasing the relative probability of winning the prize and the additional relative
per unit investment necessary to do so, where relative here means in comparison
with the opponents. The fact that s∗ is an ESS means that ignoring the effect
of individual investments on the aggregate level of investment is a shortcut to
solve that problem. In a sense, an ATS maximizes the relative probability of
winning the prize taking the cost into account.

Existence of ATS

Existence of a solution to problem (4) is guaranteed by Kakutani’s fixed point
theorem if the strategy set S is a compact, convex subset of R and the payoff
function π(s, x) is continuous in (s, x) and quasiconcave in s. Here we provide
alternative conditions based on supermodularity for the existence of an ATS.

Proposition 1. Let Γ ≡ (N,S, π) be a symmetric, quasisupermodular aggrega-
tive game. If S ⊂ R is compact and π(s, x) is upper semicontinuous in s for
each x, then an ATS exists.

Proof. The result follows as an application of Lemma 1 in the Appendix to the
function F (s, t) = π(s, g(t, . . . , t)). The function F satisfies the single-crossing
property by quasisupermodularity of Γ and the fact that g is increasing.

Existence of an ATS for a quasisubmodular game cannot be directly estab-
lished. For the case of a Cournot oligopoly, Amir and Lambson [2] observe that
payoff functions can be rewritten to depend only on total output and the sum of
the opponents’ output levels. Under mild, additional assumptions, the game is
supermodular in these two variables, a fact that can be used to show existence
of Cournot-Nash equilibria. This approach can be generalized to show existence
of Nash equilibrium in families of aggregative games, for which the aggregate of
the opponents’ strategies is well defined by gn−1. It can be shown by means of
counterexamples, however, that this method fails to provide an existence result
for ATS.
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5 ESS, ATS, and supermodularity

In Examples 1 and 2 we saw that ESS and ATS coincide at least for certain pa-
rameter ranges. We also saw that both are examples of submodular aggregative
games. In the present section, we explore the relation between ATS and ESS in
the framework of a general super- or submodular aggregative game.

Proposition 2. Let Γ ≡ (N,S, π) be a symmetric aggregative game. Suppose
Γ is quasisupermodular in individual strategy and the aggregate. If s∗ ∈ S is an
ESS, then s∗ is also an ATS. If s∗ is a strict ESS, then s∗ is also a strict ATS.

Proof. Let s∗ be an ESS. Consider a mutation to a strategy s < s∗. By mono-
tonicity of the aggregate,

g(s, s∗, . . . , s∗) ≤ g(s∗, s∗, . . . , s∗). (5)

Since s∗ is an ESS, we have that

π(s, g(s, s∗, . . . , s∗)) ≤ π(s∗, g(s, s∗, . . . , s∗)). (6)

Since π satisfies the SCP, (5) and (6) imply that

π(s, g(s∗, . . . , s∗)) ≤ π(s∗, g(s∗, . . . , s∗)), (7)

verifying the ATS property for s.
Consider now a mutation to s > s∗. By monotonicity of the aggregate,

g(s, s∗, . . . , s∗) ≥ g(s∗, s∗, . . . , s∗). (8)

By contradiction, suppose that the ATS property is not fulfilled:

π(s∗, g(s∗, . . . , s∗)) < π(s, g(s∗, . . . , s∗)). (9)

By the SCP, (8) and (9) imply that

π(s∗, g(s, s∗, . . . , s∗)) < π(s, g(s, s∗, . . . , s∗)), (10)

which contradicts that s∗ is an ESS.
The proof that strict ESS implies strict ATS follows analogously, with strict

inequalities in (6) and (7), and weak inequalities in (9) and (10).

Proposition 3. Let Γ ≡ (N,S, π) be a symmetric aggregative game. Suppose
Γ is quasisubmodular in individual strategy and the aggregate. If s∗ ∈ S is an
ATS, then s∗ is also an ESS and it is weakly globally stable. If s∗ is a strict ATS,
then s∗ is the unique ESS (and hence also the unique ATS) and it is strictly
globally stable.

13



Proof. Let s∗ be an ATS. To check weak global stability and, in particular, the
ESS property, we consider first m mutations to the same strategy s > s∗, with
1 ≤ m ≤ N − 1. By monotonicity of the aggregate,

g(s, m. . ., s, s∗, . . . , s∗) ≥ g(s∗, s∗, . . . , s∗). (11)

Since s∗ is an ATS, we have that

π(s, g(s∗, . . . , s∗)) ≤ π(s∗, g(s∗, . . . , s∗)). (12)

Since π satisfies the dual SCP, (11) and (12) imply that

π(s, g(s, m. . ., s, s∗, . . . , s∗)) ≤ π(s∗, g(s, m. . ., s, s∗, . . . , s∗)), (13)

verifying the ESS property for s.
Consider now m mutations to s < s∗. By monotonicity of the aggregate,

g(s, m. . ., s, s∗, . . . , s∗) ≤ g(s∗, s∗, . . . , s∗). (14)

By contradiction, suppose that the weak global stability property is not fulfilled:

π(s∗, g(s, m. . ., s, s∗, . . . , s∗)) < π(s, g(s, m. . ., s, s∗, . . . , s∗)). (15)

By the dual SCP, (14) and (15) imply that

π(s∗, g(s∗, . . . , s∗)) < π(s, g(s∗, . . . , s∗)), (16)

which contradicts that s∗ is an ATS.
The proof that strict ATS implies strict global stability and, in particular

strict ESS follows analogously, with strict inequalities in (12) and (13), and weak
inequalities in (15) and (16). To see uniqueness, suppose there is a different ESS
s̃ 6= s∗. Applying strict global stability of s∗ for m = N − 1, we obtain

π(s∗, g(s∗, s̃, . . . , s̃)) > π(s̃, g(s∗, s̃, . . . , s̃)),

in contradiction with s̃ being an ESS.
Summarizing, the last two propositions show that ESS implies ATS in the

supermodular case, and the reverse implication is true in the submodular case.12

For instance, the Cournot oligopoly of Example 1 is submodular in own and
aggregate output. Hence, the individual output level of a Walrasian equilibrium
(by definition, an ATS) is an ESS by Proposition 3.

To get an intuition for these results, consider an ATS s∗ and an arbitrary
strategy s > s∗ in the quasisubmodular case. By definition of ATS, there is no
incentive to switch from s∗ to s given the value of the aggregate. Mutations to s
will increase the value of the aggregate. Quasisubmodularity implies that there
are no gains in relative terms from playing s rather than s∗ in the post-mutation
profile.

12If we allow for decreasing aggregates in Definition 1, we obtain the dual results, i. e., ESS
implies ATS if π satisfies the dual SCP, and ATS implies ESS if π satisfies the SCP.
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Note that our results for the submodular case are stronger than those for
supermodularity. This is due to an asymmetry in the concepts of ATS and ESS.
In particular, Proposition 3 will be more useful than Proposition 2, as we will
illustrate in examples below. Recall an ESS solves the maximization problem
(2) and an ATS solves the maximization problem (4). In general, the latter is
much easier to solve than the former. In the supermodular case, Proposition 2
implies that solving (4) yields a necessary condition for an ESS. In that case,
sufficient conditions for ESS need still be checked. In the submodular case,
though, solving (4) is sufficient to find an ESS by Proposition 3. Moreover, in
this case, strict ATS will always be strictly globally stable, a fact that will have
strong implications for dynamic stability (see Section 6).

The differentiable case

Propositions 2 and 3 do not require any differentiability assumptions on the
considered aggregative game, relying only on sub- or supermodularity. For
specific examples, however, differentiability helps to establish the equivalence of
ESS and ATS (or to identify the parameter range where this equivalence holds).
Possajennikov [18] observes that under differentiability, the first order conditions
of problems (2) and (4) are identical. He then finds sufficient conditions for
(interior) ESS and ATS to coincide. These conditions can be summarized as
follows. If relative payoffs (the argument in problem (2)) are quasiconcave in
the mutant’s strategy (s′)—and hence the second-order condition for a global
maximum of (2) is fulfilled—then ATS implies ESS; conversely, if the function
π (the argument in problem (4)) is quasiconcave in individual strategy—the
second-order condition for a global maximum of (4) is fulfilled—then ESS implies
ATS. The difference between these and our results is illustrated in Example 2
below.

Examples

Example 2. Rent-seeking (continued). We saw that this game is submodular
in individual strategy and the aggregate, and that s∗ = r

n ·V is a strict ATS for
0 < r < 1. By Proposition 3, it follows that s∗ is the unique ESS. Hence, ATS
implies ESS, and vice versa (by uniqueness). Therefore, ATS and ESS coincide
for 0 < r < 1.

In order to apply the approach in Possajennikov [18] the second-order con-
ditions of both problems must be carefully examined to reach the previous
conclusion. The point here is that examination of the second-order condition
for problem (2) is more cumbersome than the direct application of Proposition
3.

For r > 1 there is no ATS, so neither Proposition 3 nor the results in
Possajennikov [18] can be applied. Hehenkamp et al. [11] show, however, that
s∗ is an ESS for r ≤ 1 + 1

n−1 . For 1 < r < 1 + 1
n−1 , s∗ is an ESS but not an

ATS.
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Example 3. Tragedy of the Commons (continued). We saw that this game
is submodular in individual strategy and the aggregate. An interior ATS is given
by the condition A(ns∗) = 1.13 By Proposition 3, it follows that every ATS is a
globally stable ESS. By Remark 1, in a globally stable ESS input contributions
are larger than in a Nash equilibrium, and the tragedy of the commons is exac-
erbated. The intuition is straightforward. If selfish agents act strategically, they
neglect to consider the negative externality that increasing their contribution
imposes on the other agents. Under aggregate-taking behavior, they further
neglect to consider the negative effect that an increase of their input has on
their own payoff. This resembles the case of a Cournot oligopoly with constant
returns to scale. From the firms’ point of view, the Cournot-Nash equilibrium is
strictly worse than the “efficient” collusive outcome, and the Walrasian outcome
(which is an ATS) is even worse.

Example 4. Diamond’s search (continued). We saw that this game is super-
modular in individual strategy and the aggregate. In this case, by Proposition
2, it follows that every ESS is an ATS. If C ′′ > 0, an ATS is given by the
first-order condition for problem (4), αns∗ − C ′(s∗) = 0. Hence, this is also a
necessary conditions for an ESS.14 As in Possajennikov [18], here we must check
the second-order condition for problem (2). Direct computations show that if
C ′′ > 2α, then the condition above is also sufficient for ESS. Therefore, ESS and
ATS coincide for C ′′ > 2α, but it is easy to construct examples (with C ′′ > 0
but C ′′ ≯ 2α) where there is no ESS but there is an ATS.

Example 5. Minimum effort (continued). In this case, since the aggregate is
a minimum function, the individual payoff functions are not differentiable and
the analysis based on first- and second-order conditions does not apply. The
game, though, is both super- and submodular in individual strategy and the
aggregate. By Propositions 2 and 3, every ESS is an ATS and vice versa. Since
π is decreasing in si the only ATS (hence, the only ESS) is s∗ = 0. Note that
all symmetric profiles (s, . . . , s) with s ∈ R+ are Nash equilibria. Thus, in this
case the finite-population ESS is a Nash equilibrium.

6 Stochastic stability of an ESS

Vega-Redondo [26] considers a discrete-time dynamic model of a Cournot oli-
gopoly where firms choose quantities from a finite grid.15 Each period, imper-
fectly informed, boundedly rational firms imitate the output level of any firm
with highest profits in the previous period. Occasionally, with an exogenous
probability ε > 0, firms experiment with an arbitrary output level. The pre-
diction of the model is that, for small ε, the system spends most of the time

13If S = [0, K] and A(nK) > 1, the ATS is given by s∗ = K.
14In contrast, the necessary condition for a symmetric Nash equilibrium is α(n + 1) · sN −

C′(sN ) = 0.
15This requirement is for tractability. For a discussion of this model with a continuum of

strategies see K.R.Schenk-Hoppé [12].
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at the state where all firms produce the output corresponding to the Walrasian
equilibrium—strict ATS (hence, strictly globally stable ESS) of the Cournot
game with strictly decreasing demand. Formally, this state is stochastically sta-
ble.16 Using recent results on stochastic stability from Ellison [9], it is easy to
show that the former conclusion generalizes to any strictly globally stable ESS.
This result is of independent interest and can be stated for symmetric games in
general, and not only for aggregative games. To our knowledge, this is the first
result on dynamic stability of a finite-population ESS.

Let Γ ≡ (N,S,Π) be any symmetric game with finite S. Assume players
choose strategies from S in discrete time t = 0, 1, . . . according to the following
two rules:

(i) Imitation: Each period t ≥ 1, players mimic one of the strategies that
gave highest payoffs in the previous period.

(ii) Experimentation: With independent probability ε > 0, players ignore the
prescription of imitation, and choose a strategy from S according to a
probability distribution with full support.

Proposition 4. Let Γ ≡ (N,S,Π) be a symmetric N -player game with finite
S. Let s∗ be a strictly globally stable ESS. Then, the profile (s∗, . . . , s∗) is the
unique stochastically stable state of the imitation dynamics with experimenta-
tion.

Proof. s∗ is a strictly globally stable ESS; i. e., it is resistant to any number of
simultaneous experiments (mutations) with the same strategy. Taking m = 1
and m = N − 1 in Definition 6, we obtain that

(a) starting at s∗, an experimenter choosing any other s 6= s∗ performs strictly
worse, and

(b) starting at any s 6= s∗, an experimenter with s∗ performs strictly better.

Ellison [9, Theorem 1] provides the following result for stochastic stability
of a state ω. Let the radius of the state, R(ω), be the minimum number of
experiments necessary to leave ω. Let the coradius of the state, CR(ω), be the
maximum number of experiments necessary to reach ω from any other state. If
R(ω) > CR(ω), then ω is the only stochastically stable state.

For our particular imitation dynamics with experimentation, (a) above im-
plies that R(s∗, . . . , s∗) > 1 and CR(ω) > 1 for any other state. By (b),
CR(s∗, . . . , s∗) = 1 and R(ω) = 1 for any other state. In particular, R(s∗, . . . , s∗) >
CR(s∗, . . . , s∗), implying that (s∗, . . . , s∗) is the only stochastically stable state.17

Intuitively, this state is harder to destabilize through experimentation than any
other state.

16A state is stochastically stable if it is in the support of the limit invariant distribution of
the process as ε → 0.

17Moreover, the expected waiting time until this state is first reached is of order ε−1. In
particular, the order of convergence is independent of population size.
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We mentioned in Section 3 that a finite-population ESS is not necessarily
a Nash equilibrium of the game. This implies that there may be incentives to
deviate from an ESS. By definition, though, starting at a population profile
where all players are choosing an ESS, any experimenter would be worse in
relative terms after deviation. We should stress the fact that the latter holds
even if the ‘experimenter’ cleverly chooses a best response to her opponents’
strategies. Note that by allowing experimentation with full support we allow,
among others, also ‘clever’ experimentation with best replies.

Corollary 1. Let Γ ≡ (N,S, π) be a quasisubmodular aggregative game with
finite S. Let s∗ be a strict ATS. Then the profile (s∗, . . . , s∗) is the unique
stochastically stable state of the imitation dynamics with experimentation.

Corollary 1 follows from Propositions 3 and 4.18 It provides a link between
the ATS concept in submodular aggregative games and the long-run outcome of
dynamical models based on imitative behavior. Applied to a Cournot oligopoly
as in Example 1, it yields the result in Vega-Redondo [26]. Applied to a rent-
seeking game as in Example 2, it implies stochastic stability of the profile where
each player invests s∗ = r

n · V when r < 1. This can be seen as an efficient
outcome since it avoids overdissipation of rent.

7 Conclusions

The present work deals with the class of (generalized) symmetric aggregative
games, whose payoff function may be written to depend only on individual
strategy and an aggregate of all strategies. If players were negligible, in a
Nash equilibrium of such games their behavior would correspond to optimization
given the value of the aggregate. If players are not negligible, this kind of
aggregate-taking behavior is still well defined, although it does not correspond
to rational behavior. We refer to an optimal aggregate-taking strategy (ATS) as
an optimizing strategy given the value of the aggregate, when all players choose
that strategy. This is a generalization of the concept of competitive equilibrium.

We consider two dual cases. Under submodularity of the payoff function,
which includes the case of Cournot oligopoly, an ATS satisfies an evolutionary
stability criterion. Specifically, any deviation from an ATS in that case leaves
the deviator worse off in relative terms. A strategy verifying this property is
called a finite-population ESS. Under supermodularity of the payoff function, the
converse result obtains; i. e. aggregate-taking behavior is a necessary condition
for evolutionary stability.

Moreover, in the submodular case, we show that a strict ATS is also the
long-run outcome of a learning dynamics based on imitation and experimenta-
tion. This provides dynamic foundation for aggregate-taking behavior in such
settings.

18It has come to our attention after circulating our paper that Corollary 1 has independently
been shown by Schipper [21], using the concept of recurrent set introduced by Nöldeke and
Samuelson [17].
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In other words, in the supermodular case we find that ATS is a necessary
condition for ESS, while in the submodular case it is a sufficient condition for
globally stable ESS. In the latter case, this provides a shortcut for the compu-
tation of an ESS and the long-run outcomes of imitative learning dynamics. Of
course, these findings are useful provided an ATS exists. Existence is guaran-
teed if the payoff function of the game is quasiconcave in individual strategy. It
turns out that this requirement is easier to verify than the conditions required
to find an ESS directly, due to the complexity of the objective function of the
associated optimization problem.

Appendix

We say that F : R2 → R satisfies the single-crossing property in (s, x) ∈ R2 if,
for all s′′ > s′ and x′′ > x′

F (s′′, x′) ≥ F (s′, x′) ⇒ F (s′′, x′′) ≥ F (s′, x′′)
F (s′′, x′) > F (s′, x′) ⇒ F (s′′, x′′) > F (s′, x′′)

The following result is an application of well known lattice programming
results. We refer the reader to Topkis [24] for further details.

Lemma 1. Let S ⊂ R be compact. Suppose F : R2 → R satisfies the single-
crossing property and F (s, x) is upper semicontinuous in s for each value of x.
Then there exists s∗ ∈ S such that

s∗ ∈ arg max
s∈S

F (s, s∗)

Proof. Upper-semicontinuity of F and compactness of S guarantee that
arg maxs∈S F (s, x) is non-empty for each x. By Topkis [24, Theorem 2.8.6]
(due to Milgrom and Shannon [15]) and Topkis [24, Corollary 2.7.1 and The-
orem 2.4.3] the maximum and minimum selections of arg maxs∈S F (s, x) are
increasing. By Tarski’s fixed point theorem (see e. g. Topkis [24, Corollary
2.5.1]) these selections have a fixed point.
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