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The evolving concept of cell identity in the single cell era
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ABSTRACT

Fueled by recent advances in single cell biology, we are moving away

from qualitative and undersampled assessments of cell identity,

toward building quantitative, high-resolution cell atlases. However, it

remains challenging to precisely define cell identity, leading to

renewed debate surrounding this concept. Here, I present three pillars

that I propose are central to the notion of cell identity: phenotype,

lineage and state. I explore emerging technologies that are enabling

the systematic and unbiased quantification of these properties,

and outline how these efforts will enable the construction of a

high-resolution, dynamic landscape of cell identity, potentially

revealing its underlying molecular regulation to provide new

opportunities for understanding and manipulating cell fate.
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Introduction

For centuries, biologists have sought to deconstruct the complexity

of biological systems by breaking them down into their component

parts – cells – and cataloging these individual units according to

their identity. Establishing such a cellular taxonomy provides a

universal scheme to standardize cell biology, yet the notion of cell

identity, or cell type, remains poorly defined. Historically, cells have

been classified by features such as morphology, location, ontogeny

and interactions with other cell types. Over time, new assays were

developed to measure the physiological function of cells, and these,

accompanied by advances in molecular biology that enable the

quantification of gene and protein expression, have allowed for

more nuanced cell type classifications.

Fundamentally, though, no general method to accurately define

cell identity currently exists. This represents a barrier to cataloging

cell types in organisms where the full repertoire of cell identities

remains unknown, such as in mouse (Han et al., 2018; Tabula Muris

Consortium et al., 2018) and human (Regev et al., 2017). Thus,

although several cell atlas construction endeavors are under way,

these efforts have reignited debate around how cell identity can be

effectively and accurately curated, revealing many differing

viewpoints on this subject (Various authors, 2017; see also Xia

and Yanai, 2019 in this issue). Here, I draw on new and established

notions to synthesize a framework consisting of three pillars (Fig. 1)

that I propose are central to the concept of cell identity:

(1) phenotype (and function) – representing a central pillar for the

definition of cell identity, this defines the broad range of physical,

molecular and functional features that can be captured and analyzed

to enable systematic and unbiased cell type categorization;

(2) lineage – to fully characterize cell identity, it is also valuable

to understand the lineage relationships between different cell types

and their genesis. Tracing the developmental origins of cell identity

may allow a cellular taxonomy to be constructed, enabling similar

cell types to be grouped together, potentially helping to characterize

new cell species; (3) State – cell identity is stable; however, in

response to diverse stimuli, the same cell type can exhibit a range

of different phenotypes (states). Curating the cell states associated

with a given cell type enables identity to be distinguished from state.

Moreover, mapping the landscape of cell states lays the foundation

for identifying when a cell travels out of normal physiological

bounds into a pathological state. Together, a consideration of

these three pillars can enable the construction of a high-resolution,

dynamic cell identity landscape, potentially providing new

opportunities for understanding and manipulating cell fate.

Phenotype and function: curating high-resolution snapshots

of cellular features to characterize identity

Inferring cell identity from phenotype
The characterization of cell phenotype is central to defining cell

identity and represents a longstanding focus of biologists. In the

1600s, aided by light microscopy, Robert Hooke initially described

the cells that made up a sample of cork (Hooke, 1665). Two-hundred

years later, the first histological stains using carmine, silver, and

Hematoxylin and Eosin emerged, thus allowing relatively detailed

cytological observations to be made (Pearse, 1984). It was around

this time that Ramón y Cajal used Golgi’s silver staining method

to describe neurons, providing evidence that the nervous system

isn’t a continuum of fibers but is composed of individual units,

neurons (Ramón y Cajal, 1888). Since these early discoveries, cell

visualization using ever increasingly sophisticated microscopy and

imaging techniques has remained central to cell type identification;

probing key features such as cell shape, size, location and interactions

with other cell types facilitates the classification of cells into discrete

categories. With advances in molecular biology came the ability

to stain cells for specific markers of identity (Coons et al., 1941).

Eventually, distinct cell types could be labeled with fluorescent tags

such as GFP (Chalfie et al., 1994), enabling the detailed investigation

of cell phenotype within whole biological systems.

Imaging-based phenotypic assessment, along with other

established techniques, such as flow cytometry, provides high

resolution in terms of capturing information on an individual cell

basis. Furthermore, these analyses can be deployed in intact cells

and organisms, enabling cell function to be probed. However,

the information yielded by these assays is comparatively low

dimensional, i.e. relatively few phenotypic features are captured

frommany cells. In addition, the selection of these features tends to be

driven by prior knowledge of the biological system under study,

limiting and potentially biasing assessment of cell identity. In contrast,

methods supporting genome-wide analysis of RNA and protein

abundance support the collection of broader and more objective

measurements. Indeed, increasing the number of molecular features

used to define cell types has enabled more systematic and unbiased
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assessments of cell identity, based on gene expression alone (Cahan

et al., 2014; Roost et al., 2015). Nevertheless, these approaches have

relied on bulk analysis of mixed cell populations, blending signals

from different sub-populations and altogether masking rare cell

species, limiting the precision of cell type identification.

Recently developed single cell technologies have served to bridge

the gap between detailed studies of individual cells and bulk studies

of cell populations. These methods enable the capture of many

thousands of features, without the requirement for experimental

cell enrichment, thus generating a rigorous and unbiased picture of

the range of cell phenotypes that exists within any given tissue. Of

the current suite of technologies, which include genetic, epigenetic

and proteomic profiling (Stuart and Satija, 2019), single cell

RNA-sequencing (scRNA-seq), has seen rapid and wide adoption

since its recent emergence (Tang et al., 2009). Although early

iterations requiring cell separation in wells were relatively low-

throughput and expensive, more recently developed microfluidic-

based technologies have brought huge gains in cell capture rate

(Klein et al., 2015; Macosko et al., 2015). Presently, pool-and-split

cell labeling strategies are yielding even greater cell capture rates and

further reductions in cost (Cao et al., 2017; Rosenberg et al., 2018).

scRNA-seq delivers relatively high-dimensional datasets,

consisting of thousands of measurements across thousands of

individual cells. Computational tools based on dimensionality

reduction seek to reduce this complexity, clustering cells based on

transcriptional similarity and enabling their visualization within

two-dimensional space (Becht et al., 2018; Satija et al., 2015). It is

important to note here that cluster-specific gene expression is used to

infer cell type, representing an initial prediction of identity that must

be orthogonally validated. One key limitation of scRNA-seq is that it

requires tissue disruption and cell destruction, resulting in loss

of spatial information that is valuable for cell type identification.

Maintaining this spatial information has been a recent focus of new

single cell techniques (reviewed by Mayr et al., 2019 in this issue).

For example, multiplexed in situ hybridization and sequencing

technologies have enabled the measurement of gene expression at

subcellular spatial resolution within intact tissues (Chen et al., 2015;

Lee et al., 2014). Although these approaches initially required the

upfront selection of genes for analysis, information on the expression

of thousands of transcripts (Eng et al., 2019) and even genome-wide

gene expression can be now captured (Rodriques et al., 2019).

Overall, these technologies are particularly promising, offering

high-resolution visualization of many cellular features in situ,

thereby allowing powerful predictions of cell identity to be made,

based on phenotype.

Cell function: a ground truth of cell identity
Ultimately, cell identity is best defined by function. One powerful

method for investigating cell function involves the physical

elimination of cells, followed by observation of any physiological

or behavioral impact on the organism. For example, laser ablation

of a specific subset of C. elegans neurons revealed their role in

locomotion (Chalfie et al., 1985). Alternatively, where a cell type is

exclusively marked by expression of a specific gene, genetic

ablation is possible, as illustrated by the targeted expression of a

toxin gene to selectively kill pancreatic acinar cells (Palmiter et al.,

1987). Although elegant in approach, ablation experiments are

limited if cells cannot be physically accessed or are not marked by

exclusive gene expression. For example, in the context of assessing

cell function in humans, ablation experiments are clearly not

feasible. Under these more limited circumstances, cells can be

isolated and their function tested in vitro or in xenograft models.

These approaches are being facilitated by single cell technologies

that can identify new cell surface marker combinations at the

proteomic level, for a given transcriptional state, enabling new cell

species to be captured by flow cytometry and functionally assessed

(Peterson et al., 2017; Stoeckius et al., 2017). However, assigning

cell function to a previously undescribed cell type would require an

intractable array of assays to be deployed. Moreover, isolated cells

often quickly lose their phenotype and function if culture conditions

are not optimized, as illustrated by the dedifferentiation of ex vivo

cultured hepatocytes (Elaut et al., 2006). Therefore, how do we

begin to explore the function of novel cell types?

Where it is impractical to validate cell identity based on

functional assays, will it be possible to predict cell function?

Gene ontology serves as one commonly implemented method to

predict cell function and behavior based on gene expression patterns

(Ashburner et al., 2000). However, this approach often returns

vague annotations, as gene expression does not directly translate to

cell function. Considering that proteins are key effectors of cell

function, measurement of protein abundance may be a more

accurate predictor. Indeed, machine learning approaches have been

deployed to infer cellular function based on tissue-specific protein

function (Zitnik and Leskovec, 2017). To improve these predictions,

quantifying protein localization in addition to protein abundance,

e.g. via spatial proteomics, will undoubtedly prove beneficial. In

this context, the recent construction of high-resolution cell atlases of

protein expression, based on immunostaining of 12,003 proteins

across 56 human cell lines, is extremely valuable (Thul et al., 2017).

Also promising are machine learning algorithms that can be used to

predict protein expression and localization in cells, based on light

microscopy images alone (Christiansen et al., 2018). Indeed, the
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Fig. 1. The three pillars of cell identity. Phenotype and function: the main

pillar concerns measurements of a cell in the present that enable systematic

and unbiased cell type categorization. Lineage: this represents the past state of

the cell and allows a cellular taxonomy to be constructed, enabling similar cell

types to be grouped together to fully characterize cell identity. However, cell

identity cannot accurately be defined by lineage alone. State represents the

landscape of different future phenotypes within which a given cell type can

exist in response to diverse stimuli. Together, these three pillars enable the

construction of a high-resolution dynamic landscape of cell identity.
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broader application of machine learning to weave a more

comprehensive picture of cell phenotype may serve well to infer

cell function and classify cell identity (Smith et al., 2018). However,

where possible, these predictive approaches must ultimately be

supported by experimental evidence.

Lineage: new tracking technologies reveal cellular origins

So far, I have discussed some of the key tools that can be used to

measure cellular phenotype and function, and how they serve to

define cell identity. Consider a situation where the composite of these

measurements reveals a previously undescribed novel cell type. It

may be possible to assign some function to this new cell species using

predictive tools, ideally confirmed by experimental assays. Even so,

to fully understand cell identity is to place it within the context of all

other cell types, in a cellular taxonomy. Constructing such a

classification of cell identities from a snapshot of the adult organism

in homeostasis is challenging, especially at present where datasets are

sparse and we are still working to best integrate them in a meaningful

way (Stuart and Satija, 2019). Instead, understanding the origins of a

cell’s identity, its developmental lineage, is a powerful and simple

way to position a cell within a much more complex hierarchy. At a

minimum, the new cell species can then be connected to its nearest

relatives to provide further clues as to its role in the organism. Can,

then, developmental origins alone provide sufficient information to

define cell identity?

Lineage tracing, the identification of all progeny stemming from an

individual cell, originates from Whitman’s light microscopy studies

of cell cleavage and eventual cell fate in invertebrate embryos

(reviewed by Kretzschmar and Watt, 2012). Following on from these

early studies, C. elegans has proven to be a particularly powerful

model for lineage tracing, given its amenability to imaging, its

relative small number of somatic cells and its invariant cell lineage.

Indeed, a complete lineage tree for every cell in the C. elegans

embryo has been constructed via non-invasive live imaging,

documenting how cells decrease in potential and increase in

specialization as development progresses (Sulston et al., 1983).

With sequencing technologies, new methods to diagram the

relationships between lineal ancestry and prospective cell fates have

emerged. These stemmed from DNA-based barcoding approaches,

where cells are labeled with random heritable DNA sequences (Lu

et al., 2011), later progressing to transcribed barcodes that allow

clonal relationships and cell identity to be read in parallel (Yao et al.,

2017). These early approaches enable clonal analysis, i.e. all

descendants of an ancestrally marked founder cell can be identified

via inheritance of their integrated barcodes. However, lineage

relationships between clonal descendants cannot be mapped using

these techniques. New single cell tracking approaches are emerging

to fill this gap (reviewed by McKenna and Gagnon, 2019 in this

issue). For example, sequential rounds of labeling with transcribed

barcodes has enabled the construction of lineage trees (Biddy et al.,

2018). In an alternative approach, CRISPR/Cas9-based genome

editing has been leveraged to introduce mutable genetic labels into

individual cells (Alemany et al., 2018; Raj et al., 2018; Spanjaard

et al., 2018). Yet another method, transposon-based TracerSeq

(Wagner et al., 2018), exploits the Tol2 transposase to randomly

integrate unique heritable labels into individual cell genomes;

asynchronous insertion over successive cell divisions then permits

lineage tree reconstruction. When applied to zebrafish development,

TracerSeq revealed evidence of convergent differentiation, where

clonally distinct embryonic fields give rise to similar cell types

(Wagner et al., 2018). In contrast, some clonally related cells diverged

toward distant identities, supporting the case for divergent

differentiation. Thus, lineage analyses do not always produce an

expected tree structure, i.e. cells from diverse embryonic origins can

converge on a similar identity. This is not surprising given classic C.

elegans lineage tracing studies showing that similar neuron types can

be generated by distinct lineages (Sulston et al., 1983).More recently,

the same phenomenon has been suggested in mouse development,

where myocytes are produced by two convergent trajectories, and

neurons by several trajectories (Cao et al., 2019). However, it is

important to note that in this studyofmouse development, trajectories

were inferred via computational methods and are not based on ground

truth data. Nonetheless, taken together, we must bear these examples

of convergent differentiation in mind when considering the utility of

lineage alone in defining cell identity.

Another limitation of relying on lineage to facilitate cell type

identification is its deployment in the context of human

development. How, in the absence of ground truth data that can

be used to map lineage relationships, can we infer a meaningful and

accurate cell developmental hierarchy? Representing a relatively

simple experimental strategy, retrospective lineage tracing exploits

naturally occurring genetic variation to trace clonally related cells

(Ludwig et al., 2019), but this is limited in scale and cannot produce

detailed lineage trees. As an alternative, computational approaches

enable temporal reconstruction of scRNA-seq data (Saelens et al.,

2019; Tritschler et al., 2019 in this issue). However, the resulting

trajectories are inferred, relying on sufficient capture and sampling

of intermediate cell states. This can be problematic, particularly for

tracing the origins of human cell identities. Here, in vitro models of

mammalian development (Huch and Koo, 2015) could offer

valuable insights into human development. Another possibility is

to leverage non-human primate models, performing cross-species

comparisons to infer lineage (Boroviak et al., 2018).

Altogether, considering the restricted opportunity for ground

truth lineage tracing in humans, and the above evidence of

convergent differentiation, defining cell identity based on lineage

alone may not provide accurate cell type classification. However,

combining lineage with phenotypic and anatomical features could

be powerful, especially given that spatial transcriptomics is now

poised to enable the generation of fate maps by supplementing

lineage trees with positional information.

State: same identity, different guise

In the previous sections, I explored how high-resolution snapshots of

cell phenotype and function, together with lineage, can serve to

define cell identity. A third and essential facet of cell identity is

‘state’, which can be described as the range of cellular phenotypes

arising from the interaction of a defined cell type with its

environment. T cells serve as a well-characterized example: these

cells exist in different activation states, which arise in response to

different stimuli, yet they maintain their T-cell identity (Zemmour

et al., 2018). Indeed, cell identity is generally stable, maintained by

the autoregulation of identity-specifying transcription factors

(Holmberg and Perlmann, 2012). In this respect, cell identity can

be thought of as ‘hard-wired’, although it is reprogrammable under

defined conditions (as exemplified by Takahashi and Yamanaka,

2006). On the contrary, cell state can be thought of as ‘soft-wired’,

where a given cell type can exist in a range of subtly different

states, raising the issue of how cell identity and state can be

distinguished for previously uncharacterized cell types. For example,

how can we be confident that a novel transcriptional signature

represents a new cell type rather than a known cell type in an

unrecognized state? As the cell transcriptome adjusts rapidly

in response to changes in environmental conditions, reliance on
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scRNA-seq-based technologies alone is likely insufficient to address

these questions. In this respect, probing heritable, epigenetic

signatures of cell identity (reviewed by Ludwig and Bintu, 2019

in this issue) may provide a more stable measure of cell type,

permitting identity to be distinguished from state. For example,

ATAC-seq (assay for transposase-accessible chromatin using

sequencing) provides information on chromatin accessibility and

can now be applied at single cell resolution (Cusanovich et al., 2018).

Ideally, ‘multi-omic’ measurements will be collected from the

same individual cell (Cao et al., 2018), revealing the different

transcriptional states that are associated with the same epigenetic

signatures. Ultimately, though, these technologies provide only a

‘snapshot’ of cell phenotype within a tissue, with connections

between identity and state largely inferred, providing little objective

measurement of the states associated with a given identity.

To provide a direct measure of cell state potential, single cell

clonal or lineage mapping can be applied to map the emergence of

different cell states from a given cell identity. To achieve this, the

introduction of perturbations will be essential. For example, several

recent methods have employed pooled CRISPR/Cas9 genome

editing to introduce a large array of genetic perturbations into a

population of cells, followed by measurement of the effects via

scRNA-seq or scATAC-seq (Adamson et al., 2016; Dixit et al.,

2016; Rubin et al., 2018 preprint). This approach could be modified

to expose cells to a range of different environmental perturbations,

e.g. exposure to different cytokines, tracking features of clonally

related cells under different conditions and pushing given cell types

into their full range of potential states. Altogether, this will provide

ground truth data that reflect the different cell states that can arise

from the same cell identity in response to different environmental

cues. Using these approaches, we might also explore more extreme

scenarios where cells are pushed over their boundaries, into

different identities. In such cases, lineage may prove helpful to

distinguish the line between a change in identity versus a dramatic

change in state. Overall, for each cell identity, we can attach to it the

probability that it will exist in a given state under defined conditions,

potentially revealing the molecular regulation underlying hard-

wired cell identity and soft-wired cell state.

Perspectives

Here, I have outlined three pillars of cell identity – phenotype (and

function), lineage and state – each encompassing a unique and

complementary set of measurements that together can serve to

define cell identity in a systematic and unbiased manner. This

approach will undoubtedly reveal new cell identities that can be

placed within a larger cellular taxonomy, providing valuable clues

to their physiological role. The full application of this framework in

a human context may be somewhat limited at present, due to a

reliance on in vitro culture systems that do not fully recapitulate

in vivo counterparts. However, continued efforts to improve human

tissue culture models will prove beneficial in this context.

Altogether, these three pillars of cell identity will support the

construction of high-resolution dynamic cell atlases, with the

promise to reveal novel facets of the molecular regulation

controlling cell identity, and providing new opportunities for

understanding and manipulating cell fate. These endeavors raise

some interesting questions: first, is there a minimal set of

observations that will serve to universally define cell identity

across all cell types and organisms? This leads to a second question:

what information do we need to capture from cells to be able to

predict their past and future from their present state? This is

particularly exciting, as the construction of a probabilistic model of

cell identity could enable, for example, the future disease state of a

cell to be predicted, providing new insight into disease progression

and diagnosis. These questions are also relevant for the cell fate

reprogramming field where, at a minimum, we will gain a high-

resolution template to recapitulate the identity of major functional

cell types. Once we have amassed a critical amount of information,

will the landscape of cell identity be continuous or discrete? If cell

identity can indeed exist as a continuum, this presents the

opportunity to stabilize transient phenotypes and to create new

cell identities, endowing known cell types with new functions.

Through our continued efforts to define cell identity, we come

closer to realizing these possibilities.
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Tritschler, S., Büttner, M., Fischer, D. S., Lange, M., Bergen, V., Lickert, H. and

Theis, F. J. (2019). Concepts and limitations for learning developmental trajectories

from single cell genomics.Development 146, dev170506. doi:10.1242/dev.170506
Various (2017). What is your conceptual definition of cell type in the context of a

mature organism? Cell Syst. 4, 255-259. doi:10.1016/j.cels.2017.03.006
Wagner, D. E.,Weinreb, C., Collins, Z.M., Briggs, J. A., Megason, S.G. andKlein,

A. M. (2018). Single-cell mapping of gene expression landscapes and lineage in

the zebrafish embryo. Science 360, 981-987. doi:10.1126/science.aar4362
Xia, B. and Yanai, I. (2019). A periodic table of cell types. Development 146,

dev169854. doi:10.1242/dev.169854

Yao, Z., Mich, J. K., Ku, S., Menon, V., Krostag, A.-R., Martinez, R. A.,
Furchtgott, L., Mulholland, H., Bort, S., Fuqua, M. A. et al. (2017). A single-cell

roadmap of lineage bifurcation in human ESC models of embryonic brain

development. Cell Stem Cell 20, 120-134. doi:10.1016/j.stem.2016.09.011

Zemmour, D., Zilionis, R., Kiner, E., Klein, A.M., Mathis, D. andBenoist, C. (2018).
Single-cell gene expression reveals a landscape of regulatory T cell phenotypes

shaped by the TCR. Nat. Immunol. 19, 291-301. doi:10.1038/s41590-018-0051-0
Zitnik, M. and Leskovec, J. (2017). Predicting multicellular function through multi-

layer tissue networks. Bioinformatics 33, i190-i198. doi:10.1093/bioinformatics/

btx252

5

SPOTLIGHT Development (2019) 146, dev169748. doi:10.1242/dev.169748

D
E
V
E
L
O
P
M

E
N
T

https://doi.org/10.2174/138920006778017759
https://doi.org/10.2174/138920006778017759
https://doi.org/10.2174/138920006778017759
https://doi.org/10.2174/138920006778017759
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1016/j.cell.2018.02.001
https://doi.org/10.1038/nrg3209
https://doi.org/10.1038/nrg3209
https://doi.org/10.1242/dev.118570
https://doi.org/10.1242/dev.118570
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2012.01.002
https://doi.org/10.1016/j.cell.2012.01.002
https://doi.org/10.1126/science.1250212
https://doi.org/10.1126/science.1250212
https://doi.org/10.1126/science.1250212
https://doi.org/10.1126/science.1250212
https://doi.org/10.1038/nbt.1977
https://doi.org/10.1038/nbt.1977
https://doi.org/10.1038/nbt.1977
https://doi.org/10.1242/dev.170217
https://doi.org/10.1242/dev.170217
https://doi.org/10.1016/j.cell.2019.01.022
https://doi.org/10.1016/j.cell.2019.01.022
https://doi.org/10.1016/j.cell.2019.01.022
https://doi.org/10.1016/j.cell.2019.01.022
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1242/dev.176727
https://doi.org/10.1242/dev.176727
https://doi.org/10.1242/dev.176727
https://doi.org/10.1242/dev.169730
https://doi.org/10.1242/dev.169730
https://doi.org/10.1016/0092-8674(87)90497-1
https://doi.org/10.1016/0092-8674(87)90497-1
https://doi.org/10.1016/0092-8674(87)90497-1
https://doi.org/10.1002/path.1711430209
https://doi.org/10.1002/path.1711430209
https://doi.org/10.1002/path.1711430209
https://doi.org/10.1002/path.1711430209
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.3973
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nbt.4103
https://doi.org/10.1038/nbt.4103
https://doi.org/10.7554/eLife.27041
https://doi.org/10.7554/eLife.27041
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1016/j.stemcr.2015.05.002
https://doi.org/10.1016/j.stemcr.2015.05.002
https://doi.org/10.1016/j.stemcr.2015.05.002
https://doi.org/10.1016/j.stemcr.2015.05.002
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1126/science.aam8999
https://doi.org/10.1016/j.cell.2018.11.022
https://doi.org/10.1016/j.cell.2018.11.022
https://doi.org/10.1016/j.cell.2018.11.022
https://doi.org/10.1016/j.cell.2018.11.022
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1016/j.cels.2018.06.001
https://doi.org/10.1016/j.cels.2018.06.001
https://doi.org/10.1016/j.cels.2018.06.001
https://doi.org/10.1016/j.cels.2018.06.001
https://doi.org/10.1038/nbt.4124
https://doi.org/10.1038/nbt.4124
https://doi.org/10.1038/nbt.4124
https://doi.org/10.1038/nbt.4124
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1038/s41576-019-0093-7
https://doi.org/10.1016/0012-1606(83)90201-4
https://doi.org/10.1016/0012-1606(83)90201-4
https://doi.org/10.1016/0012-1606(83)90201-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1126/science.aal3321
https://doi.org/10.1242/dev.170506
https://doi.org/10.1242/dev.170506
https://doi.org/10.1242/dev.170506
https://doi.org/10.1016/j.cels.2017.03.006
https://doi.org/10.1016/j.cels.2017.03.006
https://doi.org/10.1126/science.aar4362
https://doi.org/10.1126/science.aar4362
https://doi.org/10.1126/science.aar4362
https://doi.org/10.1242/dev.169854
https://doi.org/10.1242/dev.169854
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1016/j.stem.2016.09.011
https://doi.org/10.1038/s41590-018-0051-0
https://doi.org/10.1038/s41590-018-0051-0
https://doi.org/10.1038/s41590-018-0051-0
https://doi.org/10.1093/bioinformatics/btx252
https://doi.org/10.1093/bioinformatics/btx252
https://doi.org/10.1093/bioinformatics/btx252

