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           Introduction 
 The discovery and development of new metallic alloys 
with unique properties and functionalities have revolution-
ized entire industries (e.g., aviation, space, communica-
tions, automotive, biomedical, and architecture), continuing 
the centuries-long trend for materials to fundamentally 
transform society (i.e., the bronze, iron, and silicon ages). 
Their design has traditionally been experimentally intensive, 
with linear exploration of composition space or via “design 
of experiments” approaches. Often with fi ve to 10 major 
elements and as many “minor” elements, the compositional 
landscape is prohibitively large. Thus the design and develop-
ment process has been slow and expensive, and more recently, 
unable to keep pace with the design tools of other engineering 
disciplines.  1   –   5 

 To a greater degree than many other classes of materials, 
metallic alloys are challenged by a strong interdependence 
of processing, structure, and properties (PSP) across length 
scales, from atomic (Å) to the nanoscale (nm), spanning the 
microscale ( µ m) and extending up to the macroscale (>mm) 
(  Figure 1  ). In order to reliably produce materials that perform 
in a predictable manner in service, it is essential for the PSP 
linkages to be predictable. These linkages have traditionally 
been established via experiments and characterization. For 
example, as demonstrated by the right pillar of  Figure 1 , the 
infl uence of forging parameters on grain structure and texture 

and the resultant yield strength and fatigue life of an alloy 
would be understood by varying temperatures and strain rates 
during forging, measuring grain size and texture by electron 
backscatter imaging in a scanning electron microscope (SEM), 
and machining test specimens to establish yield strength and 
S-N curves as a function of temperature. Characterization 
results, processing information, and the results of testing 
would be stored in different data formats, most likely without 
metadata and in different physical locations.     

 In recent years, there has been a dramatic expansion in 
our ability to predict PSP relationships, through improved 
theory, expanding suites of models, and a dramatic expansion 
in our ability to generate, archive, federate, and analyze 
materials data.  1   –   3 , 6 , 7   These emerging capabilities provide 
two additional foundational “pillars” ( Figure 1 ) that prom-
ise to dramatically change the landscape for alloy design. 
New developments along all three pillars (theory/modeling, 
data, and experiments/characterization) have been in large 
part enabled by an unprecedented expansion in computa-
tional power over the past decade. Thus, the aspirational 
vision to design new alloys “on demand” with the ability 
to predict their properties within statistically signifi cant 
confi dence limits is now within reach. In this article, we 
highlight examples of the progress along each of the pillars 
and also call attention to some of the many remaining gaps 
in the infrastructure.   
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Theory and computation
Most alloys are designed to harness the multitude of  
structure-sensitive properties that can be engineered over 
different length scales (Figure 2).9 A multiscale approach is 
crucial, and modeling in the context of alloy design must be 

capable of predicting properties over scales that range from 
the electronic structure to the macroscopic continuum scale. 
There are two general classes of multiscale materials theories: 
(1) those that address thermokinetic properties, of relevance 
to develop processing strategies; and (2) those that seek to 
predict mechanical properties.

Thermodynamic prerequisites
An essential ingredient of any alloy development effort is 
an accurate description of thermodynamic properties within 
the composition design space. An alloy designer is generally 
keen to know whether targeted phases are thermodynamically 
stable or metastable. The article by Raabe et al. in this issue, 
for example, describes new alloy design approaches that spe-
cifically exploit metastability.8 The CALculation of PHAse 
Diagrams (CALPHAD) method was an early attempt to  
organize the vast experimental thermochemical data of 
known alloys and compounds within a thermodynamically 
self-consistent framework.10,11 It has served as an invaluable  
tool in alloy design as it enabled the rapid and flexible calcula-
tion of thermodynamic properties and phase diagrams. In its 
original incarnation, the method was based solely on experi-
mentally measured data, making it essentially an interpolation 
tool.

The emergence of accurate and easy to use first-principles 
electronic structure methods have given alloy designers a new 
tool with which to survey previously unexplored composition 

spaces. First-principles electronic methods can 
predict formation enthalpies for any candidate 
crystal structure, often with remarkable accu-
racy.12 While such calculations do not account 
for the effects of temperature explicitly, they 
can be used to construct zero-Kelvin phase 
diagrams, and thereby reveal whether partic-
ular intermetallic compounds are stable or not, 
at least at low temperature. First-principles 
methods have become so robust in recent 
years that they can be implemented in high-
throughput schemes to map out materials 
properties over vast uncharted composition 
spaces. Efforts that seek to do this system-
atically include the Materials Project, the  
Open Quantum Materials Database (OQMD), 
Automatic Flow for Materials Discovery 
(AFLOW), and the Novel Materials Discovery 
Laboratory (NOMAD), which are large inter-
active repositories of materials properties that 
have been calculated with density functional 
theory.13–16

Unfortunately, the availability of powerful 
first-principles software packages is only a first 
step in developing comprehensive thermody-
namic descriptions in new composition spaces. 
Many alloys are designed for high-temperature 
applications or exploit properties of solid 

Figure 2. A multiscale approach that connects the electronic structure of a solid to 

its thermodynamic and kinetic properties at the macroscale. Approximations to the 

Schrödinger equation inform effective Hamiltonians and force-�eld descriptions, which 

in turn, are used in Monte Carlo and molecular dynamics simulations to calculate 

thermodynamic potentials and kinetic coef�cients. These then feed into mesoscale 

phenomenological descriptions of microstructure evolution and phase transformations, 

such as the phase-�eld model and sharp interface approaches.9

Figure 1. The alloy design infrastructure, where processing–

structure–property (PSP) relationships are derived from three 

pillars of materials science: theory and models/simulations; data 

(unstructured and high volume “big” data); and experiments and 

characterization.
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solutions. In these circumstances, entropy plays a crucial role. 
The strengthening L12 phase in Co-rich Co-Al-W alloys, for 
example, only emerges at temperatures above 900°C, in large 
part due to a combination of both configurational and vibra-
tional entropy.17 Zero-Kelvin enthalpies by themselves are, 
therefore, often insufficient to guide alloy developers toward 
promising high-temperature phases that are entropy stabilized.

Statistical mechanics approaches are necessary to calculate 
entropic contributions to free-energy descriptions of multi-
component alloys from first principles. A statistical mechanics 
study of phase stability usually requires an order of magnitude 
more computational effort than calculations of zero-Kelvin 
phase diagrams. This is due to the fact that most first-principles 
statistical mechanics schemes consist of a step that maps the 
results of large numbers of first-principles electronic structure 
calculations onto a computationally simpler model that can be 
evaluated rapidly within molecular dynamics or Monte Carlo 
simulations where thermodynamic averages are collected (as 
indicated in the left half of Figure 2). Two general approaches 
are common. The first relies on force-field descriptions, which 
in the early days were based on interatomic potentials having 
functional forms that were motivated by the bonding phys-
ics of particular materials classes. Machine-learning approaches  
are now offering more flexibility, as they do not require pre-
determined functional forms.18–21 A second approach uses 
effective Hamiltonians that are designed to extrapolate first-
principles energies for a restricted set of degrees of freedom.22 
Two well-known examples are the harmonic lattice dynamical 
Hamiltonians describing vibrational excitations and cluster 
expansion Hamiltonians describing configurational degrees 
of freedom. Effective Hamiltonians have proven invaluable in 
many first-principles studies of high-temperature thermody-
namic properties, especially when configurational degrees of 
freedom are important as in nondilute, disordered alloys.23–25 
They can be parameterized to have similar accuracies as those 
of the first-principles methods they have been trained to using 
one of several fitting methods22 and are generally easier to 
train than the more complex force-field descriptions.

In spite of the remarkable capabilities of first-principles 
statistical mechanics approaches, fundamental theoretical 
challenges remain. One of these pertains to high-temperature 
phases that become dynamically unstable at low temperature. 
Many technologically important high-temperature materials 
have crystal structures that are predicted to be dynamically 
unstable at zero Kelvin by first-principles electronic-structure 
calculations. Well-known examples include cubic ZrO2 as 
well as body-centered-cubic Ti and Zr, among others.24–28 
Anharmonicity must be accounted for to predict the stability 
of high-temperature phases with low-temperature phonon  
instabilities since the statistical mechanics approaches based 
on either the harmonic or quasi-harmonic approximation of 
crystal vibrations29,30 break down for these phases. This not only 
substantially complicates the calculation of high-temperature 
free energies, it also poses challenges to formulating a con-
ceptual understanding of the thermal excitations responsible 

for the thermodynamic stability of many high-temperature 
phases. Indeed, the true nature of a dislocation or a diffusive 
hop remains to be established in a high-temperature phase 
that becomes dynamically unstable at low temperature. Zero-
Kelvin estimates of elastic moduli for such phases are often 
meaningless, as instabilities with respect to a homogeneous 
distortion of the crystal results in negative elastic moduli. It 
is only through anharmonic vibrational excitations that such 
instabilities are lifted and any effort to predict mechanical 
properties of many high-temperature phases therefore requires 
a full statistical mechanics treatment.31–34

Several schemes have been proposed to account for the 
large anharmonic excitations responsible for stabilizing 
high-temperature phases. Some approaches attempt to treat 
anharmonicity directly, by using ab initio molecular dynam-
ics,32 or indirectly via self-consistent phonon theories, which 
approximate the full anharmonic energy surface with a dynami-
cally stable quasi-harmonic potential that describes vibrational 
excitations at the characteristic amplitudes of a specified 
temperature.35 Other approaches rely on anharmonic lattice 
dynamical Hamiltonians that can be arbitrarily refined to match 
the energy of the crystal as a function of vibrational degrees 
of freedom.33,34 While these approaches show promise, they 
remain labor intensive and are generally developed on a case-
by-case basis.

While challenges remain, the availability of highly  
automated first-principles and statistical mechanics tools 
is opening doors to new design approaches. For example,  
it is becoming easier to explore the stability of existing and 
hypothetical phases under more complex thermodynamic 
constraints than are commonly imposed. The metastabil-
ity of a target phase may be turned into absolute stabil-
ity upon altering thermodynamic boundary conditions. For  
example, an additional lever with which to manipulate rela-
tive stabilities between phases is strain.36 While pressure 
is well known to modify relative stabilities, anisotropic 
stress states that are present during coherent nucleation 
and growth can be exploited to either suppress undesirable 
precipitates or favor a desirable precipitate.37 They can also be 
exploited to control precipitate shapes.38,39 Metallurgists have 
been aware of these notions for many decades and have exploit-
ed them in recent years to improve the mechanical properties of 
lightweight magnesium alloys, as described in this issue by Nie 
et al. in this issue.40 Emerging computational tools now gener-
ate new insights and provide guidance as to how strengthening 
phases and microstructures can be achieved.4

Kinetics
Once a thermodynamic description has been mapped out in 
a particular composition space, it is often necessary to estab-
lish kinetic properties that describe the evolution of an alloy 
during both synthesis and use. Although there are many  
examples where dynamic processes in materials occur far from 
equilibrium, a large class of thermally activated, nonequilib-
rium processes of technological interest can be described at 
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a phenomenological level using irreversible thermodynamics 
or phase-field models that were inspired by Cahn–Hilliard–
Allen-type kinetic descriptions.41,42

Phase-field models predict the temporal evolution of 
a set of order parameters for nonequilibrium phenomena  
in microstructures consisting of phases that share a group/
subgroup symmetry relationship.43 They can be applied to 
predict coherent precipitation (upper right of Figure 2), spi-
nodal decomposition, and weak martensitic transformations. 
Examples of order parameters include composition (for a mis-
cibility gap), order-disorder order parameters (e.g., to describe 
the γ to γ′-L12 reaction in face-centered-cubic superalloys), 
and displacive shuffle amplitudes and strain-order parameters 
(e.g., if there is a cubic to tetragonal type of transformation).22 
The various phases competing for stability correspond to local 
minima on a common free-energy surface that is continu-
ous as a function of these order parameters.44 Ingredients to 
a phase-field model include homogeneous free energies as a 
function of order parameters, gradient energy coefficients, and 
various mobility coefficients.

Other phenomenological methods exist to predict nonequi-
librium processes in which one phase converts into another 
through a reconstructive mechanism (lower right of Figure 2). 
The interfaces separating the phases participating in a recon-
structive phase transformation are often atomically abrupt, 
in rare circumstances coherent or possibly semi-coherent, but 
usually incoherent in nature. Separate free-energy descriptions 
are necessary for each phase. Furthermore, separate constitu-
tive thermodynamic and kinetic descriptions are required for 
the interfaces separating the various phases.45 From a numeri-
cal point of view, phase evolution involving the migration 
of sharp interfaces with their own separate response functions 
can be simulated using a level-set approach.46

Predicting dynamical evolution using phenomenological 
kinetic approaches requires accurate thermodynamic and 
kinetic information that is often difficult if not impossible to 
measure experimentally, especially in isolation. Phase-field 
models of microstructure evolution rely on gradient energy 
coefficients, which are especially difficult to measure experi-
mentally. Here again, first-principles statistical mechanics 
methods and tools can play a crucial role in informing phe-
nomenological descriptions of nonequilibrium processes in 
the solid state. First-principles approaches to predict atomic 
mobilities are now well established.22,47 Progress has also been 
made in identifying order parameters and in predicting free 
energies as a function of those order parameters.44 Interfacial 
free energies and mobilities are also accessible with first-
principles statistical mechanics methods.48–50 Many chal-
lenges remain. One is overcoming the hurdles to developing 
a quantitative theory of nucleation. The challenges in this  
respect are not just limited to developing an accurate theory of 
nucleation and accompanying modeling tools to predict nucle-
ation rates, but also to develop new experimental probes that 
will enable more precise and in situ measurements of nucle-
ation processes.

Mechanical properties
The thermokinetic models previously described can be hierar-
chically integrated within a simple multiscale framework. At 
the micro- and mesolength scales, there are the phenomeno-
logical descriptions, while at the atomic and nanoscale, there 
are the first-principles statistical mechanics approaches. The 
linkages between these distinct length scales are the thermo-
dynamic potentials and the kinetic coefficients that emerge 
from first-principles statistical mechanics calculations and 
that then feed into the larger length scale phenomenologi-
cal theories as materials specific parameters (right half of 
Figure 2). Mechanical properties also arise from phenomena 
that occur at many length scales. Unfortunately, phenomena 
that occur at different length scales often cannot be separated 
as distinctly as is possible with thermokinetic models. In this 
issue, Beyerlein et al. review51 the advances and the chal-
lenges that emerge in modeling mechanical properties within 
a multiscale framework.

Experiments and characterization
Experiments and characterization have long been at the heart 
of alloy design, critical for establishing the structure–property 
linkages. While tremendous strides have been made across 
a wide spectrum of instrumentation platforms, it is worth 
considering a few recent trends that specifically enhance 
alloy design, including improved resolution; in situ, three-
dimensional (3D), and four-dimensional (4D) capabilities; 
model-driven characterization; and automation.

Resolution
The ability to resolve structural and physical phenomena at all 
of the length scales and time scales relevant to alloy design is 
essential for the development of rigorous models for material 
behavior. With the advent of aberration-corrected transmis-
sion electron microscopy (TEM),52,53 complementary metal 
oxide semiconductor (CMOS) direct electron detectors,54 high 
sensitivity energy-dispersive spectroscopy (EDS) with silicon 
drift x-ray detectors,55 and local electrode atom probe tomog-
raphy,54 there is now an unprecedented ability to resolve struc-
ture and chemistry at the atomic scale. This has enabled, for 
example, rigorous studies of segregation to grain boundaries 
and stacking faults.57–68 Refractory element segregation has 
been observed at superlattice intrinsic stacking faults in a new 
class of cobalt-based alloys containing L12 precipitates,57,58,69,70  
and is revealed by both local electrode atom probe tomog-
raphy and high-angle annular dark field-scanning transmis-
sion electron microscopy (HAADF-STEM) (see Figure 3a). 
This provides a new pathway for control of fault energies 
and higher length scale mechanical properties sensitive to 
this property. Similar phenomena have also been observed 
in commercial nickel-based superalloys,59,60 suggesting new 
strategies for alloying in both classes of materials. This  
approach to tailoring of interface properties promises improved 
fracture properties, control of grain growth, and stabilization 
of nanocrystalline structures.61–68
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At higher length scales, recent improvements in electron 
backscatter diffraction (EBSD) cameras and forward model-
ing of EBSD pattern formation enables rapid acquisition of 
high spatial resolution crystallographic information as well as 
quantification of geometrically necessary dislocation densities 
over large areas (mm2–cm2).71,72 Combined with in situ strain-
ing and SEM-based digital image correlation (DIC),73,74 includ-
ing recent Heaviside function-based DIC analysis,75 individual 
slip planes can be resolved and slip systems identified without 
the need for transmission electron microscopy (see Figure 3a, 
bottom). Other imaging modalities such as spatially resolved 
acoustic spectroscopy76,77 provide previously unattainable reso-
lution over large scan areas (>cm2). Given that structure exists 
across a wide variety of length scales, continued improvements 
in resolution are needed for all types of characterization signals, 
including electrons, x-rays, neutrons, light optical, and acoustic.

In situ, 3D, and 4D microscopy
Ideally, PSP relationships reflect the physics of the underly-
ing processes that occur during processing and application of 

materials. In many cases, property prediction requires detailed 
knowledge of material structure and stress distribution in 3D 
and its evolution with time (4D). New suites of tomography 
and in situ tools that reveal processing kinetics and the dynam-
ics of deformation are providing such insights. Emerging and 
rapidly maturing approaches include electron tomography,78,79 
dynamic transmission electron microscopy (DTEM),80 and 
in situ scanning transmission electron microscopy experi-
ments in the SEM (STEM).80,81 Specialized microelectrome-
chanical systems stages and improved focused ion beam (FIB) 
microscopes have enhanced the ability to fabricate small-scale 
samples to observe the dynamics of deformation. An example 
is shown in Figure 3b, where precipitate shearing and sequen-
tial fault creation/destruction events are captured in a STEM 
experiment.82

Lab-scale x-ray tomography and ever-expanding syn-
chrotron beamline facilities are revolutionizing our ability to 
collect 3D and 4D data.83–86 In cases where higher resolution 
information about chemistry or microstructure is required, 
automated serial sectioning systems87–93 can now collect such 

Figure 3. Emerging capabilities for characterization of structure and properties. (a) High-resolution measurements of segregation at stacking 

faults in Co-based alloys detected by local electrode atom probe tomography (upper panel), high-angle annular dark �eld-scanning transmission 

electron microscopy (HAADF-STEM) in the TEM (middle panel), and Heaviside digital image correlation measurements (bottom panel) 

of strain localization at the grain scale in a Ti alloy. (b) Dynamic imaging of dislocation motion within a SEM using in situ straining with a 

microelectromechanical systems stage and a STEM detector (upper panel), mesoscale 3D data sets generated by TriBeam tomography, along 

with a network analysis of twin-related grains created by recrystallization (bottom panel). (c) Representative volume elements and property 

prediction by crystal plasticity �nite element modeling (CPFEM) with prescribed degrees of con�dence.56,80,95,96
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information in reasonable periods of time (days to weeks). 
The 3D data set for a polycrystalline nickel-based superalloy 
(Figure 3b, center) was collected by the femtosecond laser-
assisted TriBeam tomography approach in 132 h.94–96 The spe-
cific motivation for this data set was to extract 3D information 
on grain size and orientation and the connectivity of twin-
related grains, shown in a network representation (Figure 3b, 
bottom) for prediction of strength and fatigue behavior.95–97

Model-driven characterization
With an increased focus on models for prediction of alloy 
properties, characterization will become more focused on 
supplying information to develop, parameterize, and validate 
models. For properties that are highly structure-sensitive, 
this is a major challenge, particularly if properties are to be 
predicted with a prescribed degree of confidence, which is  
important for component/device design. A primary consider-
ation is obtaining structure information over a representative 
volume element. However, for metallic alloys, there is rarely 
a single representative volume element (RVE), and it may be 
necessary to consider several RVEs in connection with all crit-
ical microstructural features97,98 (see Figure 3c). For the case 
of the 3D microstructure shown in Figure 3b, this includes 
grain size, precipitate size, and twin-related domain size. 
The volume required for full characterization of each of these 
features is referred to as a microstructural volume element 
(MVE). Since a property, such as yield strength, will likely 
depend on multiple microstructural features, the volume for 
convergence of the property, the property volume element 
(PVE), will have a different size than the individual MVE. 
Finally, the design volume element (DVE) will be prescribed 
by the region of interest in an engineering component; in this 
case, it is indicated as the volume of highly stressed material 
adjacent to a notch-like feature. If virtual microstructures are 
instantiated from distributions extracted from an experimental 
data set, then the statistically equivalent volume element for 
the microstructure is indicated as MSERVE and the property 
equivalent as PSERVE.

The 3D data sets can be meshed (Figure 3c, center) and 
used for property calculations in finite element models; the 
accompanying article in this issue by Beyerlein et al.51  
describes the associated challenges with development of con-
stitutive models for mechanical behavior. For the polycrys-
talline nickel-based superalloy in Figure 3b–c, convergence 
to a yield strength of 1170 MPa occurs with 95% confidence 
at PVE size of 150 µm3.97 Properties such as fatigue crack 
initiation life converges at a higher volume element size of  
500 µm3.94,95 While this is only one example of the character-
ization capability developed to support modeling, future close 
coupling between models and characterization will dramatically 
improve predictive capabilities across a spectrum of properties.

Automation
To gather statistically significant quantities of data such 
as described in the previous section, automation of testing 

and characterization will become increasingly important. 
Combinatorial libraries, while they may sample large regions 
of compositional space, are not necessarily “high throughput,” 
since long lead times may be required, for example, to prepare 
the targets that develop the libraries. Characterization data of 
various modalities are often gathered with a high degree of 
individual intervention, control, and analysis. The article by 
Boyce and Uchic in this issue99 highlights recent advances in 
automation, enabled by advances in robotics. Such automa-
tion inevitably leads to large volumes of data, addressed in the 
following section.

Materials data
A critically important piece of the PSP infrastructure is the 
data pillar (Figure 1). Materials data are complex, ranging 
from structured (tabular data in spreadsheets or databases), 
unstructured (images, video, instrument data), or semi-
structured (i.e., extensible markup language [XML]). It is 
estimated that only about 5% of existing materials data are 
structured.100,101 With respect to structured materials data, 
crystallographic (Inorganic Crystal Structure Database 
[ICSD]), thermodynamic (CALPHAD) and emerging high-
throughput databases described by van de Walle and Asta10 
in this issue are examples. Data are typically characterized by 
the five “Vs”: volume, variety, velocity, value, and veracity.7  
Most materials data are not large in volume and are typically 
unstructured, making it difficult to capitalize on emerging 
artificial intelligence (AI)/machine-learning tools. However, 
some large companies with extensive historical material 
development databases do in some cases have sufficient data 
to take this approach; see the article by Suzuki et al. in this 
issue.102

There are several notable exceptions where “big” materials 
data are generated. First, sensors that monitor processing 
operations are a source of data that are often collected, but 
typically, incompletely analyzed or leveraged to improve 
materials design. This is often the case due to the high vol-
umes of information and lack of accompanying workflows 
to extract meaningful information from the data. Emerging 
3D printing systems are an excellent example. For selective 
laser-melting systems, Spears and Gold103 point out that for 
a laser scan rate of 100 mm/s and a part with geometric tol-
erances of +/–100 µm, a 50 kHz multichannel (laser power, 
photodiodes, IR signal, and position) data sampling rate is 
required for process monitoring at the scale of the melt pool. 
As a result, a three-day build will generate about 233 GB 
of data. With this volume of data, real-time data reduction 
is often required and visualization is a challenge, result-
ing in missed opportunities for the use of melt pool data to 
guide the development of alloys compatible with these new 
processes. This quickly narrows the field of alloys that are 
printed, since the process is iteratively optimized experi-
mentally with great effort. As a result, only approximately 
10 alloys are routinely printed currently, as compared to the 
approximately 5000 alloys available along conventional 

https://doi.org/10.1557/mrs.2019.69 Published online by Cambridge University Press

https://doi.org/10.1557/mrs.2019.69


THE EVOLVING LANDSCAPE FOR ALLOY DESIGN

244 MRS BULLETIN • VOLUME 44 • APRIL 2019 • www.mrs.org/bulletin 

processing paths.104 Systems that address the data challenge  
in 3D printing are under development105 and require close col-
laboration between interdisciplinary teams. Insights from this 
type of data promise to deliver critical information needed 
for development of a whole new suite of alloys that can be 
printed on demand. Extensions to other classes of processing 
also promises improvements in our ability to rapidly optimize 
new materials.

Tomography is another area of materials faced with a 
big data challenge. Serial sectioning data sets such as those 
shown in Figure 3b are 10–15 TB in size if raw EBSD pat-
terns are saved (which is typically required for high-quality 
reconstruction). When multimodal information is collected 
(EBSD, EDS, and backscattered electrons [BSE]), there  
is an added complexity of merging data from different 
detectors with different distortions and resolutions. Many 
synchrotron beamlines generate on the orders of 1 TB/day 
of data; advanced detectors such as the GigaFRoST detec-
tor at the Swiss Light Source now generate 8.8 GB/s.106 
The rate-limiting step is no longer acquisition of materials 
information, but reconstruction and analysis of that infor-
mation. Collaborative efforts across beamline facilities are 
underway to deploy massively parallel codes and real-time 
algorithms.107,108 Machine-learning algorithms are already 
proving useful for 3D reconstruction,109 but nevertheless, the  
challenges of storing, transporting, sharing, and analyzing 
tomography data are still immense.

A recent study110 has considered the needs in terms of 
repositories, tools, and e-collaboration platforms for materials 
data and prioritized strategies in terms of potential impact and 
probability of success. While data efforts in materials are still 
in their infancy, it is clear that as the infrastructure matures 
to the point where AI and informatics tools can be applied 
across the PSP space,111,112 the impact on alloy design will be 
profound.

Future needs
While the payoff for the discovery and rapid development of 
new alloys is high, there remain challenges and gaps. Specific 
areas that could have high impact include: 
	•	 	The	development	of	databases	of	first-principles	finite	tem-

perature free-energy descriptions and diffusion coefficients 
that complement, augment, and are integrated with existing 
CALPHAD descriptions.

	•	 	New	 theoretical	 and	 computational	 tools	with	which	
to predict and rationalize nucleation events in the solid  
state.

	•	 	Advances	in	statistical	mechanics	methods	that	chart	out	
rigorous links between thermodynamic and kinetic ingre-
dients of phase-field models and the underlying electronic 
structure of materials.

	•	 	A	larger	suite	of	automated	characterization	and	property	
measurement tools that generate experimental data across 
unexplored compositional spaces and accompanying data 
workflows for analysis.

	•	 	A	materials	data	 infrastructure	 that	 supports	planning,	
acquisition, storage, analysis, and sharing of unstructured 
as well as large volumes of structured materials data.

	•	 	Development	of	materials-science-specific	data	science	tools	
and greater interaction between the materials science and 
computer science communities for development of cross-
disciplinary tools and training of students with skills in both 
domains.

	•	 	Improved	theoretical	understanding	of	materials	behavior	
across the length scales and embodiment of this under-
standing in models and simulation tools that predict 
material properties, particularly those that are strongly 
influenced by rare features and events at the mesoscale.

Summary
We anticipate rapid progress in the next decade toward the 
goal of designing alloys “on demand” with properties that 
can be tailored to the needs of specific engineering systems. 
This article and accompanying articles in this issue highlight 
progress in theory, computation, data and advanced experi-
mental techniques, applied across the length scales that sup-
port exploration and design across broad composition spaces. 
We hope these emerging approaches will motivate and inspire 
future innovations that further enhance and accelerate the dis-
covery and design process.
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