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Abstract

I discuss a numerical scheme for computing the Banzhaf swing probability when votes
are not equiprobable and independent. Examples indicate a substantial bias in the Banzhaf
measure of voting power if either assumption is not met. The analytical part derives the
exact magnitude of the bias due to the common probability of an affirmative vote deviating
from one half and due to common correlation in unweighted simple-majority games. The
former bias is polynomial, whereas the latter is linear. I derive a modified square-root rule
for two-tier voting systems which takes into account both the homogeneity and the size of
constituencies. The numerical scheme can be used to calibrate an accurate empirical model
of a heterogeneous voting body, or to estimate such a model from ballot data.
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1 Introduction

Despite their respectable age, power indices by Banzhaf (1965) and Shapley and Shubik (1954),

henceforth Bz and SSI, remain a popular choice in empirical work. Both indices measure the

distribution of a priori voting power, the distribution of power that follows from the consti-

tution and rules of a voting body alone. Despite this similarity there exist voting situations,

hypothetical and real, in which the two indices yield markedly different results. Which index to

use therefore becomes a question of practical importance in the empirical work.

To answer this question, Straffin (1977) derives probabilistic models consistent with each of

the two indices. He shows that, depending on the distribution of the voting poll, the expected

individual effect of each member of a voting body on the outcome of voting numerically coincides

with either the SSI or Bz measure. Straffin’s prescription for empirical work is as follows: “If we

believe that voters in a certain body have such common standards, the Shapley-Shubik index

might be most appropriate; if we believe voters behave independently, the Banzhaf index is the

instrument of choice” (Straffin 1994, ch. 32, p. 1137). The question explored in this paper is:

What is the error of an empirical researcher who, following Straffin’s prescription, applies the

Bz measure to a voting body in which Straffin’s Independence Assumption is not met?

To answer this question, I compute the bias of the Bz absolute measure of power, which

results from the votes not being equiprobable and independent – the bias being the numerical

inaccuracy in reflecting a voter’s probability of being decisive. I use a numerical scheme to

construct a probability distribution on the set of coalitions for given probabilities and correlation

coefficients, and compare the Bz measure for this distribution to its equivalent in the case of

independent votes.1 Section 2 argues that pairwise correlation as a simple model of stochastic
1The numerical scheme has been introduced in Kaniovski and Pflug (2005) for modeling financial default risk.

In this paper I provide an analytical solution to a slightly less general version of the scheme, and use it to model
dependent voting.
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dependence is sufficiently general for most empirical applications including voting by blocs.

Section 3 discusses a numerical scheme for computing the Bz swing probability when the votes are

not equally probable and correlated, and shows how to estimate the probabilities and correlation

coefficients from ballot data. Section 4 presents an analytical derivation of the exact magnitude

of the bias due to the common probability of a YES vote deviating from one half and due

to common correlation in unweighted simple-majority games, and derives a modified Penrose’s

square-root rule in the case of correlated votes.

2 Probabilistic voting assumptions

Let pi be the probability of the i-th member voting YES. Straffin (1977) introduces two proba-

bilistic assumptions: “Independence Assumption: The pi’s are selected independently from the

uniform distribution on [0, 1]. or: Homogeneity Assumption: A number p is selected from the

uniform distribution on [0, 1], and pi = p for all i” (p. 112). He then proceeds to prove two well-

known characterization theorems. Theorem 1 states that under the Independence Assumption

the probability of the i-th member’s vote being decisive, or the i-th expected individual effect

on the outcome of voting, coincides with the Banzhaf measure of voting power for i

βi =
ηi

2n−1
. (1)

Here ηi is the number of coalitions in which i is decisive, and n the total number of members.

The Banzhaf index is obtained by normalization of βi’s to add up to unity, which unfortunately

destroys its probabilistic meaning. Theorem 2 makes a similar statement for the Homogeneity

Assumption and the SSI.

The crucial assumption in both models is that each member votes independently. This is
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evident from the proofs, both of which rely on multilinear extensions of a game introduced by

Owen (1972). A multilinear extension of a game played by N = {1, 2, . . . , n} members is

f(x1, . . . , xn) =
∑

S⊆N

∏

j∈S

xj

∏

j∈N\S
(1 − xj)v(S) , where 0 ≤ xj ≤ 1 for all j . (2)

The characteristic function, v(S), takes the value of 1 if S is a winning coalition and the value

of 0 otherwise. It is completely defined by the voting rule (quota) and the weights assigned to

each member. The increment in the multilinear extension incurred by the addition of the i-th

member’s vote to the voting poll gives the effect of the i-th member on the outcome

∆if(x1, . . . , xn) =
∑

S⊆Wi

∏

j∈S\{i}
xj

∏

j∈N\S
(1 − xj) , (3)

where Wi is the set of winning coalitions in which member i is decisive (critical).

Let xi be the probability that member i votes YES. The assumption of independent votes

endows an increment in the multilinear extension with a unique probabilistic interpretation.

Then and only then does ∆if(x1, . . . , xn) become the probability that the i-th vote is decisive.

Taking this fact as a point of departure, Straffin shows that the Independence Assumption

leads to the Bz measure, whereas the Homogeneity Assumption leads to the SSI. In the general

case of possibly dependent votes this probability takes the form Pi =
∑

S⊆Wi

πS, where πS is

the probability of the occurrence of coalition S. It is given by a joint probability distribution

function on the set of all coalitions. While summation remains valid due to the coalitions being

mutually exclusive, the product only applies to independent votes.

It is important to note that while assigning different weights to different members of a voting

body, or changing the quota, may change the characteristic function of the game, stochastic
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properties of the votes have no effect on the characteristic function. Coalitions that have been

winning under equally probable and independent votes continue to do so when the votes lose

either property – what changes are the probabilities of their occurrence. Straffin’s Independence

Assumption implies that all voting outcomes have an equal probability of occurrence. Computing

the probabilities if one departs from this assumption is the focus of the present paper.

For all empirical purposes Straffin’s Independence Assumption is equivalent to the “equiprob-

ability of each member voting either way; and independence between members” (Felsenthal and

Machover 1998, p. 37). Note that “equiprobability either way” means two things: First, all

members vote YES with equal probability and, second, this probability equals one half. The

Independence Assumption thus leads to a binomial distribution with one half as the probability

of success.

As argued in Felsenthal and Machover (1998), Straffin’s Independence Assumption can be

defended on the Principle of Insufficient Reason. As an assumption it is rational in the absence

of prior knowledge about the future issues on the ballot and how divided over these issues the

voting body will be. It suits the intended purpose of measuring the a priori distribution of

voting power, the distribution that follows from the constitution and rules of the voting body,

provided that all coalitions are equiprobable.

In Straffin’s Homogeneity Assumption, equal probability of acceptance may be interpreted

as reflecting the fact that members of a voting body have common standards when evaluating a

proposal on ballot. The Homogeneity Assumption thus seems to abandon the a priori approach

in favor of a more realistic model. The implied individual voting behavior is nevertheless very

rigid. In the words of Felsenthal and Machover: “the model . . . is appropriate if we assume

that all the voters are identical clones, with the same interests and identical [probabilistic]

propensities, formalized by the common random variable P, which in each division produces the
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same probability p for all of them” (p. 201). To an external observer who does not know the

true value of a common p, decisions by voting bodies with p close to zero or one would appear

highly correlated, as near unanimous outcomes would be frequent in either case.

One possibility is to combine the two models (Widgrén 1995). As Kirman and Widgrén

(1995) define it: “the voters are said to be ‘partially homogeneous’ when they can be partitioned

into groups within which voters are homogeneous, whereas the groups vote independently of

each other” (p. 430). However, partial homogeneity suffers from all the limitations of both

probabilistic models. In the next section I argue that working directly with correlated votes is

a more satisfactory way of modeling truly heterogeneous voting bodies.

2.1 Correlated votes

The crucial assumption in both models is that each member votes independently of all other

members. Unfortunately, this assumption is untenable in most voting situations. First, as noted

by many authors, including Straffin, members of a voting body may follow common standards

when evaluating a proposal on ballot, to the effect that the votes in favor any one such proposal

will positively correlate. One example of a common standard is common information or the lack

thereof. The more the members communicate with each other, the less their votes are likely to

be independent. Second, voting may be strategic. Strategic voting is contingent on how other

members are expected to vote and is thus, by definition, not independent. Third, and closely

related, there may be tacit collusion between certain members of a voting body, so that an

outsider to the group will in effect be facing a voting bloc. Secret negotiations among a group of

members prior to voting may lead to bloc formation. The existence and behavior of tacit voting

blocs may appear probabilistic to an outsider. Fourth, members may have similar or different

preferences, which could lead to correlated voting patterns. All of the above factors suggest that
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dependent voting must be the norm rather than the exception, and that correlations may either

be positive, reflecting a degree of commonality or conformism, or negative, reflecting a degree

of rivalry. It is therefore only natural to expect a member’s a priori power to differ from her

actual ability to change the outcome of the voting at any point after the constitutional stage.

This expectation is all the more applicable when one considers that the former does not change

as long as the rules stay the same, while the latter may change from one issue to another. A

realistic model of a voting body should therefore be able to accommodate varying probabilities

and correlations between votes.

Correlation between votes provides a general way of taking voters’ preferences into account,

and the need to do so has been repeatedly stressed in the literature.2 It is common to represent

voter’s preferences as points in Euclidean space.3 Clearly, spatial representations are determin-

istic, whereas correlations suggest only a probabilistic tendency of a member toward certain

positions. Also, correlations can easily be estimated from ballot data, whereas choosing ideal

points for members of a real voting body is largely ad hoc.

I shall assume that the votes of n−1 (n ≥ 3) members of a voting body are correlated, whereas

the n-th member votes independently of all others. The independent member is arbitrarily

selected. She is independent because she has already made her choice. Her vote is assumed to

be deterministic. This is necessary in order to calculate the n-th swing probability and the bias

resulting from the application of the Bz measure. The assumption of pairwise correlation implies

the existence of a degree of commonality (positive correlation) or a degree of rivalry (negative

correlation) between n − 1 members of a voting body, including their mutual independence
2For a recent debate see Napel and Widgrén (2004) and a critique of Napel and Widgrén in Braham and Holler

(2005), as well as a reply and a rejoinder in the same issue of the Journal of Theoretical Politics. For particularly
ardent criticism of preference free measures of voting power in the context of the European Union see Garrett
and Tsebelis (1999), and Garrett and Tsebelis (2001).

3As in Steunenberg, Schmidtchen and Koboldt (1999), Napel and Widgrén (2004), the veto player theory of
Tsebelis (1995), and in a general theory of voting of Merrill III and Grofman (1999), among others.
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as a special case.4 Note that pairwise correlations cannot capture correlations between an

individual member and a bloc of members, but this entails no loss of generality if voting blocs

are deterministic, in the sense that each insider votes in unison with all other insiders with

probability one. In this case, pairwise correlation between an outsider and a bloc is equivalent

to pairwise correlation between the outsider and a hypothetical member holding the total weight

of the bloc in votes. The voting blocs typically discussed in the literature are deterministic (e.g.,

Leech and Leech (2004)).

However, the above is not the only way to model probabilistic dependence between votes.

Several alternatives have been proposed in the literature, including the urn model by Berg (1985)

and the branching process model by Gelman, Katz and Tuerlinckx (2002). The urn approach

has been most extensively developed in the generalizations of Condorcet’s Jury Theorem found

in Boland (1989) and Berg (1993). The proposed approach has the advantage of extending

the probabilistic setting of Straffin’s theorem to correlated votes without making explicit or

implicit assumptions about the dynamics of a voting procedure or the nature of probabilistic

dependence. On the contrary, by virtue of an urn process the voting in Berg’s model is sequential.

The sequential nature of events follows by construction of an urn scheme, in which colored balls

are drawn one at a time and are then replaced by one or several balls of a given color. A model

based on an urn process implicitly assumes that the probability of being correct changes every

time a vote is cast. Such a model would imply state-dependence in the process of reaching a

decision, with the possibility of a lock-in on an alternative (Page 2006). Gelman et al.’s (2002)

approach is based on the Ising model from statistical mechanics. In this model correlations

are not explicitly defined, but follow implicitly follow from a parameter of spatial proximity.

Moreover, the model assumes equiprobable votes. They derive a specification for the variance
4With some abuse of terminology, as zero correlation does not imply stochastic independence in general.
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of proportional vote differentials between constituencies of different sizes and test it, as well

as Penrose’s (1946) square-root rule of equal representation in two-tier voting systems which

follows from the Bernoulli model in Straffin’s Independence Assumption using the data from

U.S. Presidential elections. Both specification find little empirical support.

I show that positive correlation between some members of a voting body is likely to reduce the

voting power of an independent member, while negative correlation due to contrarian strategies

applied by some members is likely to increase her power. The intuition behind this result is that

by increasing the probability of ties or near-ties, negative correlation increases probabilities of

those voting outcomes in which the independent member is decisive, while positive correlation

decreases these probabilities. In any case, the distribution of voting power will change once the

independence assumption is relaxed.

3 A numerical scheme for computing the swing probability

3.1 A voting body of two

To fix the ideas, consider a voting body comprised of two members, i and j. Independently of

each other, i would vote YES with probability pi, and j would vote YES with probability pj.

Suppose that i and j do not vote independently, but rather that their votes are correlated with

a coefficient of correlation cij . Define the probabilities of the four possible voting outcomes as:

P{Xi = 1,Xj = 1} = π1, P{Xi = 1,Xj = 0} = π2, P{Xi = 0,Xj = 1} = π3, P{Xi = 0,Xj =

0} = π4, where 1 and 0 respectively indicate the YES and NO vote. We have: π1 + π2 = pi,

π1 + π3 = pj and π1 + π2 + π3 + π4 = 1. As the covariance cov[Xi,Xj ] between the two

Bernoulli random variables Xi and Xj is E[XiXj ] − E[Xi]E[Xj ] = π1 − pipj , the coefficient of

correlation cij = cov[Xi,Xj ]/
√

var[Xi]var[Xj ] must satisfy π1 = pipj+cij

√
pi(1 − pi)pj(1 − pj).
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Combining these four equalities recovers the sought distribution subject to two constraints: first,

π1 ∈ [0, 1] as a probability and, second, π1 ≤ min(pi, pj) as a probability of an intersection of

two events. The inputs must satisfy pi, pj ∈ [0, 1] and cij ∈ [−1, 1].

3.2 The general case

3.2.1 Notation

With n ≥ 3 members the aim is to compute the n-th member swing probability and the bias

resulting from the application of the Bz measure to n, assuming that n votes independently but

the remaining m = n− 1 votes correlate. In the general case, the Bz measure can be written as

Bzn(m,p, c), where p is the vector of m probabilities and c the vector of
(m

2

)
possibly distinct

correlation coefficients. If pi = p and cij = c, we would write Bzn(m, p, c). This case will be

studied analytically. In the above notation Bzn(m, 0.5, 0) = βn, the original Bz measure.

A voting outcome in the subset of m = n − 1 members can be represented by binary vector

s = (v1, v2, . . . , vm) of length m, whose i-th coordinate vi = 1 if member i votes YES, and vi = 0

otherwise. Define the following sets: S the set of all voting outcomes; S(i) the set of voting

outcomes in which member i votes YES, that is the set of all binary vectors s such that vi = 1;

S(i, j) = S(i)∩S(j) the set of voting outcomes in which members i and j both vote YES, that is

the set of all binary vectors s such that vi = vj = 1. Sets S, S(i) and S(i, j) respectively contain

2m, 2m−1 and 2m−2 elements. For example, for m = 3 there will be eight voting outcomes

1:(1,1,1), 2:(1,1,0), 3:(1,0,1), 4:(1,0,0), 5:(0,1,1), 6:(0,1,0), 7:(0,0,1), and 8:(0,0,0). The set S

contains all eight vectors. The set S(2) contains the four vectors 1, 2, 5 and 6, as only they have

1 in the second coordinate. The set S(2, 3) contains two vectors 1 and 5, as only they have 1

in the second and third coordinates. It will be convenient to index the voting outcomes in the
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descending order of the decimals represented by the corresponding binary vectors, starting from

the vector of m 1’s.

3.2.2 Optimization problem

In the general case we have the following set of equations involving the probabilities

∑

s⊆S

πs = 1 and
∑

s⊆S(i)

πs = pi , (4)

and correlation coefficients

∑

s⊆S(ij)

πs = pipj + cij

√
pi(1 − pi)pj(1 − pj) for 1 ≤ i < j ≤ m . (5)

The inputs must satisfy pi ∈ [0, 1], cij ∈ [−1, 1], the correlation matrix constructed from cij’s

must be non-negative definite, and πs ∈ [0, 1] for the solution to define a probability distribution.

Given m probabilities and
(m

2

)
coefficients of correlation, the above system comprises 1 +

m+
(m

2

)
equations with 2m unknowns and hence may not have a unique solution for m ≥ 3. For

a particular solution, Kaniovski and Pflug (2005) propose to choose the one which is closest in

the sense of least squares to the probability distribution in the case of independent votes. This

solution can be obtained by solving the following quadratic optimization problem

min
πs

1
2

∑

πs

[
πs −

m∏

i=1

pvi
i (1 − pi)(1−vi)

]2

for s ⊆ S , (6)

subject to all above constraints. The values of vi’s are tied to s and πs via the index function

(7), without which the above definition would be incomplete.

The strict convexity of the objective function ensures a unique solution. In principle, any
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probability vector of length 2m can be used as a criterion for computing the smallest sum of

squared deviations. This vector is chosen because it corresponds to the probability distribution

in the case of independent votes, so that the resulting optimization problem can be used to

compute the numerical bias in the vicinity of the input vector corresponding to the Bz ideal

case, if the votes are equiprobable.

The formulation of the numerical scheme is essentially independent of the assignment of

probabilities. Defining pi, the probability of i voting YES, and pj, the probabilities of j voting

NO, leads to a similar system of equations. This is clear with respect to constraints involving

the probabilities, while the following simple Lemma shows it also to be true with respect to

constraints involving the correlation coefficients.

Lemma 1. Let x and y be the indicators of events X and Y , and x̄, ȳ the indicators of the

complementary events X̄ and Ȳ . The following equalities on the correlation coefficients hold

cx,y = −cx̄,y = −cx,ȳ = cx̄,ȳ .

Consequently, each of the four alternative assignments of probabilities leads to systems of

equations identical except, perhaps, for the sign on the correlation coefficient. I will use this

fact in estimating the probabilities and correlation coefficients from ballot data (Section 3.3).

A numerical solution of the general problem is feasible but can be computationally intensive

for a large m.5 In Appendix A, I analytically solve a slightly less general problem, in which all

the probabilities are identical but the correlation coefficients may vary.

Proposition 1. Let pi = p ∈ [0, 1] for all i = 1, 2, . . . ,m be the probability of i-th member voting

YES and cij ∈ [−1, 1], 1 ≤ i < j ≤ m, the correlation coefficient between any two such votes.

5An R script by the author is available upon request.
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Setting q = 1− p, the probability of occurrence of a voting outcome defined by the index function

i(s) =
m∑

i=1

2m−i(1 − vi) + 1 , where s = (v1, v2, . . . , vm) , (7)

is given by

πs = p
∑m

i=1 viqm−∑m
i=1 vi + 22−mpq

m−1∑

i=1

m∑

j=i+1

cij − 23−mpq

m∑

i=1

vi




i−1∑

j=1

cji +
m∑

j=i+1

cij



 +

+ 24−mpq

m−1∑

i=1

m∑

j=i+1

cijvivj , (8)

provided πs ∈ [0, 1].

Proposition 1 can be used to compute the probability of occurrence of any of the 2m voting

outcomes indexed by (7). The requirement πs ∈ [0, 1] makes the numerical scheme best ap-

plicable to moderate values of m, moderate and positive correlation coefficients, and marginal

probabilities close to 0.5. Although the optimization problem admits negative correlations, nega-

tive coefficients of high absolute value cause the constraints involving the correlation coefficients

to be very tight, as their right-hand sides must remain non-negative. When cij = c, substituting

cij = c into πs yields

πs = p
∑m

i=1 viqm−∑m
i=1 vi + 22−mpqc

(
m(m − 1)

2
− 2(m − 1)

m∑

i=1

vi + 4
m−1∑

i=1

m∑

j=i+1

vivj

)
. (9)

3.3 Estimating the probabilities and correlation coefficients

The proposed methodology allows calibrating an accurate model of the voting body given one’s

prior beliefs about the preferences of the members and the degree of commonality or rivalry

among them. Expressed in terms of the probabilities and correlation coefficients, these beliefs
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could be used to forecast the probabilities of different voting outcomes. Or one can estimate

probabilities and correlation coefficients based on ballot data. For any pair of members i and j

there are four equations connecting pi, pj and cij

P{Xi = 1,Xj = 1} = pipj + cij

√
pi(1 − pi)pj(1 − pj) ;

P{Xi = 1,Xj = 0} = (1 − pi)pj − cij

√
pi(1 − pi)pj(1 − pj) ;

P{Xi = 0,Xj = 1} = pi(1 − pj) − cij

√
pi(1 − pi)pj(1 − pj) ;

P{Xi = 0,Xj = 0} = (1 − pi)(1 − pj) + cij

√
pi(1 − pi)pj(1 − pj) .

An estimate of θ = (pi, pj , cij) can be obtained by minimizing the goodness of fit statistic

GFT (θ) = T

4∑

k=1

(fk − hk(θ))2

fk
, (10)

where f1, f2, f3, f4, the relative frequencies of the four possible voting outcomes in a sample of

size T , and h1(θ), h2(θ), h3(θ), h4(θ), the four equations above. The value that minimizes (10)

is the Minimum χ2 estimator of Nayman and Pearson (1928). In a voting body of n members

there will be
(n
2

)
distinct pairs of members and hence that many minimization problems to solve.

The independence assumption can be tested using Fisher’s exact test based on a hypogeometric

distribution (Everitt 1992, chs. 2.4 and 3.6.1).

3.4 Examples

The following three examples illustrate the effect of the probabilities and correlation coefficients

on the Bz measure. In all examples, it is assumed that the independent member votes YES.

Example 1 (Table 1): Consider an unweighted simple-majority game with four members,
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or {2.5; 1, 1, 1, 1}. Fixing an independent member, if all other members also vote independently,

each of the 23 = 8 possible coalitions that can be joined by the independent member would occur

with the probability 0.53 = 0.125. The independent member is decisive in 3 of the 8 coalitions.

The Bz measure of voting power is equal to 3 · 0.53 = 0.375 (Case 1).

Fixing a member, let any two of the remaining three votes correlate with c = 0.2 (Case 2).

Positive correlation makes broad coalitions more probable, tight coalitions less probable. The

opposite is true of negative correlation (Case 3). Increasing p shifts the probabilities of occur-

rence toward coalitions with a high percentage of 1’s (Case 4). Introducing positive correlation

negates some of this shift due to an increase in the probability of occurrence of all high consensus

outcomes, including those with a high percentage of 0’s (Case 5).

Case 4 documents an increase in the voting power of the independent member due to other

members being more likely to vote in concordance with her. In the next section I show that a

departure from equiprobability can increase or decrease the power of the independent member.

Cases 2 and 3 show that positive correlation between members of a voting body will reduce

the voting power of the independent member; negative correlation will have the opposite effect.

By increasing the probability of ties or near-ties, negative correlation increases probabilities of

those voting outcomes in which the independent member is decisive, while positive correlation

decreases these probabilities.

In sum, the above examples show that the application of the Bz measure to these voting

situations will result in substantial biases when compared to the case of equiprobable and inde-

pendent votes. The absolute and the relative biases are computed as:

Bz(m, 0.5, 0) − Bz(m, p, c) and
Bz(m, 0.5, 0) − Bz(m, p, c)

Bz(m, 0.5, 0)
. (11)
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Before moving on to a weighted voting game, note that the distribution of voting power in an

unweighted simple majority game ceases to be trivial when the votes are not equiprobable and

independent, and that even small departures from either assumption may generate a substantial

discrepancy between the Bz measure and the probability of casting a decisive vote. The following

example of a weighted voting game shows the versatility of the numerical scheme.

TABLE 1 ABOUT HERE

Example 2 (Table 2): Consider the weighted simple majority game {4.5; 4, 2, 2, 1}. When

all members vote independently, the Bz vector reads (0.75, 0.25, 0.25, 0.00).

Let c12 = c13 = c14 = 0.1, c23 = 0.3, c24 = c34 = 0.5. This is a situation in which small

members are more likely to cooperate with each other than with the large member. Now the

Bz vector reads (0.425, 0.325, 0.325, 0.000), allocating considerably less power to the large

member, and more power to medium members. The smallest member is a dummy regardless of

the stochastic properties of the votes, as the characteristic function is independent of them.

TABLE 2 ABOUT HERE

Example 3 (Figure 1): The final example illustrates the effect of a change in p and c on

the Bz measure of voting power an in unweighted simple-majority game with m = 3 and m = 4.

Figure 1 shows that the bias incurred by p deviating from 0.5 is larger than that incurred by c

deviating from 0, which appears to vary linearly with the magnitude of the correlation coefficient.

This is established rigorously in the next section.

FIGURE 1 ABOUT HERE
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4 Assessing the bias of the Bz measure

The examples of the previous section show the Bz measure to be biased when the votes are not

independent and identically distributed. This section presents a proposition and two corollaries

on the magnitude and the direction of the probability and correlation biases in unweighted

simple-majority games. The model studied will be that of a homogeneous voting body in which

each vote has an equal probability of being affirmative, and each pair of votes is correlated with

the same coefficient of correlation; formally, pi = p for all i = 1, 2, . . . ,m, and cij = c for all

1 ≤ i < j ≤ m, as in the last example of the previous section.

In an unweighted simple majority game a vote is decisive when it breaks or creates an exact

tie. Assuming that the independent member votes YES, the Banzhaf absolute measure of voting

power for the independent member is given by

Bzn(m, p, c) =
∑

s s.t.
m∑

i=1
vi=

m+1
2

πs for s ⊆ S when n is even, m is odd , (12)

and

Bzn(m, p, c) =
∑

s s.t.
m∑

i=1
vi=

m
2

πs for s ⊆ S when n is odd, m is even . (13)

Proposition 2. In a simple-majority game with m + 1 members, in which: (1) the probabilities

of a YES vote equal p for all members, q = 1− p, and (2) the correlation coefficients equal c for

any pair of members, Banzhaf absolute measure of voting power is given by

(
m

m+1
2

)[
p

m+1
2 q

m−1
2 − 21−mpqc(m − 1)

]
when m is odd ; (14)

(
m
m
2

)[
(pq)

m
2 − 21−mpqcm

]
when m is even . (15)
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Proof. When m is odd, there will be
( m

m+1
2

)
voting outcomes in which the independent member is

decisive by voting YES. The expression for Bzn(m, p, c) is obtained by adding the probabilities

of the relevant voting outcomes, whose general expression is given by Proposition 1 and indexed

by (7). For each voting outcome we have
m∑

i=1
vi = (m−1)

2 and
m−1∑
i=1

m∑
j=i+1

vivj =
(m−1

2
2

)
. Since all

relevant voting outcomes have equal probabilities of occurrence,

Bzn(m, p, c) =
(

m
m+1

2

)[
p

m+1
2 q

m−1
2 − 21−mpqc(m − 1)

]
. (16)

When m is even, there are
(m

m
2

)
voting outcomes in which the independent member, n, is a

tie-breaker. We have
m∑

i=1
vi = m

2 and
m−1∑
i=1

m∑
j=i+1

vivj =
(m

2
2

)
. Consequently,

Bzn(m, p, c) =
(

m
m
2

)[
(pq)

m
2 − 21−mpqcm

]
, (17)

which completes the proof.

Proposition 2 can be adapted to fit any weighted supermajority game by replacing the above

combinatorial analysis with a listing of coalitions in which the independent member is decisive,

such as the one in Table 2. The number of such coalitions may differ from
( m

m+1
2

)
and

(m
m
2

)
.

Corollary 1. In a simple-majority game with m+1 members, in which: (1) the probabilities of

a YES vote equal p for all members, and (2) the votes are uncorrelated, the relative bias equals

Bzn(m, 0.5, 0) − Bzn(m, p, 0)
Bzn(m, 0.5, 0)

= 1 − 2mp
m+1

2 q
m−1

2 when m is odd ; (18)

Bzn(m, 0.5, 0) − Bzn(m, p, 0)
Bzn(m, 0.5, 0)

= 1 − 2mp
m
2 q

m
2 when m is even , (19)

In a simple-majority game with m + 1 members, in which: (1) the probabilities of a YES vote
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equal p = 0.5 for all members, and (2) the correlation coefficients equal c for any pair of members,

the relative bias equals

Bzn(m, 0.5, 0) − Bzn(m, 0.5, c)
Bzn(m, 0.5, 0)

=
c(m − 1)

2
when m is odd ; (20)

Bzn(m, 0.5, 0) − Bzn(m, 0.5, c)
Bzn(m, 0.5, 0)

= c
m

2
when m is even . (21)

The above corollary furnishes the relative bias due to p deviating from 0.5 when c = 0 is

maintained, and due to c deviating from 0 when p = 0.5 is maintained.

Whether the probability bias is positive or negative depends on p and the parity of m. When

m is even, the bias is always positive, as 2mp
m
2 q

m
2 < 1 for all p �= 0.5. Let x = p − 0.5, then

2mp
m
2 q

m
2 = 2m[(x+0.5)(0.5−x)]

m
2 is polynomial. Although the bias is also polynomial when m is

odd, it can be positive or negative, as 2mp
m+1

2 q
m−1

2 can be smaller or larger than 1 for p �= 0.5. To

see this, note that for x ∈ [0, 1] and m = 2k, k = 1, 2, . . . , the function f(x) = 2mx
m+1

2 (1−x)
m−1

2

attains a unique maximum at x∗ = m+1
2m and f(x∗) = (1 − 1

m2 )
m
2

√
1 + 2

m−1 . As m → ∞,

(1 − 1
m2 )

m
2 → 1 from below, while

√
1 + 2

m−1 → 1 from above. However, the probability bias

can be negative only if p > 0.5.

Turning to the correlation bias, as 21−mpq(m − 1) > 0, positive correlation will bias the Bz

measure upwards, negative correlation will have the opposite effect. The absolute and relative

biases increase linearly in c. The relative bias increases linearly in m. The bias incurred by the

common correlation coefficient deviating from 0 is less severe than that incurred by the common

probability deviating from 0.5.
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4.1 An application to Penrose’s square-root rule (SRR)

SRR gives an approximate answer to the following question: How can voting power be dis-

tributed in a council of elected delegates so that each citizen – regardless of the size of her

constituency – has an equal a priori power in the sense of Banzhaf? The following assump-

tions lead to a two-stage Bernoulli model: (i) each citizen has one vote, (ii) all citizens’ and all

delegates’ votes are independent and equiprobable, and (iii) the universal voting rule is simple

majority. The probability of a citizen being decisive in bringing about her preferred outcome in

the council equals the probability that the delegate is decisive in bringing about this outcome,

times the probability that the citizen is decisive in electing the delegate. In light of Straffin’s

characterization, this model has a direct analogy in terms of Banzhaf absolute measures.

Let N be the number of constituencies, each having ni citizens. Let i and di denote, respec-

tively, a citizen and the delegate of the i-th constituency. Then, β̂i = βdi
(N)βi(ni), where βi(ni)

is the voting power of the citizen i in her constituency, βdi(N) is the voting power of the delegate

di in the council, and β̂i is the indirect voting power of the citizen i. To find the ratio of delegate

powers that will equilibrate the citizens’ indirect powers, set the left side to unity and apply

Stirling’s approximation to the exact probability of casting a decisive vote under the binomial

model.6 This leads to the well-known result that the citizens’ indirect powers are approximately

equal if the powers of the delegates in the council are proportional to the square root of the size

of their constituencies, or βdi
(N)/βdj

(N) ≈ √
ni/nj = (

√
h)−1. The last step assumes, without

any loss of generality, that the constituencies differ in size by the fraction h > 0 so that nj = hni.

Leech (2003) shows how to implement a SRR by solving the inverse problem of finding weights
6Depending on whether the number of voters is even or odd, the appropriate distribution will be given by

Bin(0.5ni, ni − 1, 0.5) or Bin(0.5(ni − 1), ni − 1, 0.5). By Stirling’s approximation x! ≈ √
2π(xx+0.5e−x). For

background information and an exposition of Penrose’s SRR see Felsenthal and Machover (1998, ch. 3.4). Gelman
et al. (2002) offer a critical discussion and an empirical test of the SRR in U.S. Presidential Elections. See also,
Gelman, Katz and Bafumi (2004).
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which produce a desired power ratio.

To obtain a SRR when the citizens’ votes are correlated, I assume that in each constituency

i the votes are equiprobable but correlated, with the coefficient of correlation ci.7 A high positive

coefficient of correlation implies a more homogeneous constituency. The larger and the more

homogeneous a constituency is, the less power its citizens have. Differences of opinion with

respect to the candidates on the ballot should lead to closer outcomes, thus increasing the

efficacy of a vote. Construct the ratio of Bz measures for citizens i and j of two different

constituencies according to Proposition 2.8 Setting nj = hni and dropping the subscript on ni

βi

βj
=

2−1−n
(

n
n
2

)
(2 − cin)

2−1−[hn]
([hn]

[hn]
2

)
(2 − cj [hn])

. (22)

where [x] denotes the integer part of x. Then, by Stirling’s approximation

βdi

βdj

≈ (
√

h)−1 2 − cjhn

2 − cin
. (23)

I thus arrive at a modification of SRR which takes into account both the homogeneity and the

size of constituencies. All other things being equal, the more homogeneous the constituency

is, the lower the voting power of its citizens will be, and the higher the voting power of their

delegate ought to be if all citizens were to have equal powers. Setting ci = cj = 0 leads to

the original SRR in Penrose (1946). The above SRR can be applied to moderate constituencies

with moderate correlations, in which cin and cjhn are small. This is because βdi
and βdj

are

probabilities, so that 2 − cin ∈ (0, 1] and 2 − cjhn ∈ [0, 1].

7Proposition 2 allows relaxing both assumptions. The consequences of relaxing the equiprobability assumption
have been discussed before, so I focus on correlation. Chamberlain and Rothschild (1981) show that the probability
of being decisive falls sharply when the votes are not equiprobable. See also, Good and Mayer (1975).

8Whether ni is even or odd does not substantially alter the analysis that follows; hence, the simpler expression
in Proposition 2 is taken.
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5 Summary

The crucial assumption underlying the classical measures of voting power in probabilistic models

is that each member of the voting body votes independently of all other members. In the case

of the Banzhaf measure, this assumption is supplemented by that of equal probabilities of YES

and NO votes.

By means of a numerical scheme for computing the Banzhaf swing probability when the

votes are not equiprobable and independent, this paper studies the magnitude of numerical

error or bias in the Banzhaf absolute measure, which occurs if either assumption is not met.

The model is general in that it admits varying probabilities and correlation coefficients. An

analytical solution provided for a voting body in which the former are identical while the latter

can vary. The generality of the model makes it suitable for empirical implementation, such as

the calibration of an accurate model of a voting body based on beliefs about the preferences of

individual members and the degree of commonality or rivalry between them, or the estimation

of such a model from ballot data.

The analytical part derives the exact magnitude of the bias for an unweighted simple-majority

game in which the probability of an affirmative vote is the same for all members and the cor-

relation coefficients are the same for any pair of members. The bias incurred by the common

probability deviating from one half can be positive or negative depending on the probability and

the size of the voting body, although it is always positive when the number of members is odd.

The probability bias is stronger than that incurred by the common coefficient of correlation

deviating from zero. The former is a polynomial function and the latter is a linear function of

the deviation. Positive correlation between members of a voting body will reduce the voting

power of the independent member, negative correlation will have the opposite effect. In any
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case, the magnitude of the bias increases with the size of the voting body.

The magnitude of the bias in a weighted voting game cannot be studied analytically due to

the characteristic function of such a game not being amenable to combinatorial methods, despite

it being independent of the stochastic properties of the votes. The approach to general weighted

voting games has to remain that of listing all voting outcomes in which the independent voter is

decisive and summing their probabilities of occurrence. However, the proposed method allows

the bias in any weighted voting game to be computed numerically.

As a further result I derive a modified square-root rule for the representation in two-tier

voting systems that takes into account the sizes of the constituencies and the heterogeneity

of their electorates. Since in a homogeneous electorate the votes are positively correlated, the

larger and the more homogeneous the electorate, the less power a vote has.

The main conclusion of this paper is that, despite the Banzhaf measure being a valid measure

of a priori voting power and thus useful for evaluating the rules at the constitutional stage of a

voting body, it is a poor measure of the actual probability of being decisive at any time past that

stage. The Banzhaf measure cannot be used to forecast how frequent a voter will be decisive.

A Appendix: Solution to the optimization problem

Write the Lagrangian L(x) as

Φ(x) + λ




∑

s⊆S

xi(s) − 1



 +
m∑

i=1

µi




∑

s⊆S(i)

xi(s) − p



 +
m−1∑

i=1

m∑

j=i+1

κij




∑

s⊆S(i,j)

xi(s) − (p2 + pqcij)





(24)
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where the objective function is defined as

Φ(x) =
1
2

∑

s⊆S

[
xi(s) − p

∑m
i=1 viqm−∑m

i=1 vi

]2
. (25)

Vector x is a probability vector of length 2m. The subscript i(s) =
m∑

i=1
2m−i(1− vi)+1 indicates

the coordinate of x that corresponds to the probability of the voting outcome s = (v1, v2, . . . , vm),

so that the coordinates of x are indexed in the descending order of the decimals represented by

the corresponding binary vectors of voting outcomes, starting from the vector of m ones.

Setting ∂L(x)/∂x = 0 implies for every s ⊆ S

xi(s) = p
∑m

i=1 viqm−∑m
i=1 vi − λ −

m∑

i=1

µivi −
m−1∑

i=1

m∑

j=i+1

κijvivj , (26)

where vi and vj are the i-th and j-th coordinates of s.

Next substitute (26) into each of the three sets of constraints

∑

s⊆S

xi(s) = 1,
∑

s⊆S(i)

xi(s) = p,
∑

s⊆S(i,j)

xi(s) = p2 + pqcij . (27)

When evaluating the sums use the fact that sets S, S(i) and S(i, j) respectively contain 2m,

2m−1 and 2m−2 elements, whence

∑

s⊆S

pm = 1,
∑

s⊆S(i)

pm = p,
∑

s⊆S(i,j)

pm = p2 . (28)

Substitution into the first constraint yields

4λ + 2
m∑

i=1

µi +
m−1∑

i=1

m∑

j=i+1

κij = 0 . (29)
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When substituting (26) into the second set of constraints note that the sum is now taken over the

set of all vectors having 1 as their i-th coordinate. We need to distinguish between coordinates

to the left and the right of the i-th coordinate. Upon the substitution of (26) we have

4(λ + µi) + 2




m∑

j=1
j �=i

µj +
i−1∑

j=1

κji +
m∑

j=i+1

κij



 +
m−1∑

k=1
k �=i

m∑

l=k+1
l �=i

κkl = 0 , (30)

which in view of (29) simplifies to

2µi +
i−1∑

j=1

κji +
m∑

j=i+1

κij = 0 . (31)

Similarly, the sum in the third set of constraints is taken over the set of all vectors having 1 as

their i-th and j-th coordinates. Now we need to distinguish between coordinates to the left of

the i-th coordinate, to the right of the j-th coordinate, and in between the two. Thus,

24−mpqcij + 4(λ + µi + µj + κij) +

+2




m∑

k=1
k �=i,j

µk +
m∑

k=i+1
k �=j

κik +
i−1∑

k=1

κki +
m∑

l=j+1

κjl +
j−1∑

l=1
l �=i

κlj



 +
m−1∑

k=1
k �=i,j

m∑

l=k+1
l �=i,j

κkl = 0 . (32)

In view of (29) and (31) the above expression simplifies to

κ∗
ij = −24−mpqcij . (33)
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Plugging (33) into (29) and (31) yields all other Lagrangian multipliers and the solution x∗
i(s)

µ∗
i = 23−mpq




i−1∑

j=1

cji +
m∑

j=i+1

cij



 ; (34)

λ∗
i = −22−mpq

m−1∑

i=1

m∑

j=i+1

cij (after some algebraic manipulations) ; (35)

x∗
i(s) = p

∑m
i=1 viqm−∑m

i=1 vi + 22−mpq

m−1∑

i=1

m∑

j=i+1

cij − 23−mpq

m∑

i=1

vi




i−1∑

j=1

cji +
m∑

j=i+1

cij



 +

+ 24−mpq

m−1∑

i=1

m∑

j=i+1

cijvivj for s ⊆ S and 1 ≤ i < j ≤ m . (36)

The i(s)-th coordinate of x∗
i(s) represents the probability of occurrence of voting outcome s.

When cij = c for all 1 ≤ i < j ≤ m, substituting cij = c into x∗
i(s) and simplifying it using

m−1∑

i=1

m∑

j=i+1

c = c
m(m − 1)

2
and

i−1∑

j=1

c +
m∑

j=i+1

c = c(m − 1) (37)

yields

x∗
i(s) = p

∑m
i=1 viqm−∑m

i=1 vi + 22−mpqc

(
m(m − 1)

2
− 2(m − 1)

m∑

i=1

vi + 4
m−1∑

i=1

m∑

j=i+1

vivj

)
. (38)
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Table 1: Game: {2.5; 1, 1, 1, 1}

Case No. 1 2 3 4 5

Coalitions Decisive p = 0.5 p = 0.5 p = 0.5 p = 0.75 p = 0.75

c = 0 c = 0.2 c = −0.2 c = 0 c = 0.2

1 1 1 - 0.125 0.200 0.050 0.422 0.478

1 1 0
√

0.125 0.100 0.150 0.141 0.122

1 0 1
√

0.125 0.100 0.150 0.141 0.122

1 0 0 - 0.125 0.100 0.150 0.047 0.028

0 1 1
√

0.125 0.100 0.150 0.141 0.122

0 1 0 - 0.125 0.100 0.150 0.047 0.028

0 0 1 - 0.125 0.100 0.150 0.047 0.028

0 0 0 - 0.125 0.200 0.050 0.016 0.072

Bz 0.375 0.300 0.450 0.422 0.366

Absolute bias 0.000 0.075 -0.075 -0.047 0.009

Relative bias - 0.200 -0.200 -0.125 0.025



Table 2: Game: {4.5; 4, 2, 2, 1}

Coalitions Decisive c = 0 c∗

VOTER 1

1 1 1 - 0.125 0.2875

1 1 0
√

0.125 0.0375

1 0 1
√

0.125 0.0875

1 0 0
√

0.125 0.0875

0 1 1
√

0.125 0.0875

0 1 0
√

0.125 0.0875

0 0 1
√

0.125 0.0375

0 0 0 - 0.125 0.2875

Bz1=0.750 Bz1=0.425

VOTERS 2 AND 3

1 1 1 - 0.125 0.2125

1 1 0 - 0.125 0.0625

1 0 1 - 0.125 0.0625

1 0 0
√

0.125 0.1625

0 1 1
√

0.125 0.1625

0 1 0 - 0.125 0.0625

0 0 1 - 0.125 0.0625

0 0 0 - 0.125 0.2125

Bz2 = Bz3=0.250 Bz2 = Bz3=0.325

VOTER 4

1 1 1 - 0.125 0.1875

1 1 0 - 0.125 0.0875

1 0 1 - 0.125 0.0875

1 0 0 - 0.125 0.1375

0 1 1 - 0.125 0.1375

0 1 0 - 0.125 0.0875

0 0 1 - 0.125 0.0875

0 0 0 - 0.125 0.1875

Bz4=0.000 Bz4=0.000

*c12 = c13 = c14 = 0.1, c23 = 0.3, c24 = c34 = 0.5



Figure 1: The absolute Bz measure of voting power in unweighted simple-majority games

Marginal Prob. of YES−Vote
0.0

0.2

0.4

0.6

0.8
1.0

Coe
ff.

 o
f C

or
re

la
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

B
z M

easure

0.0

0.1

0.2

0.3

0.4

3 voters

Marginal Prob. of YES−Vote
0.0

0.2

0.4

0.6

0.8
1.0

Coe
ff.

 o
f C

or
re

la
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

B
z M

easure

0.0

0.1

0.2

0.3

0.4

4 voters

The probability of a YES and coefficients of correlation are positive and identical for all voters. Only in
the case p = 0.5 and c = 0 is the Bz measure unbiased. The bias incurred by p deviating from 0.5 is larger
than that incurred by c deviating from 0. The former is polynomial, whereas the latter is linear. Note how
successively larger portions of the surface disappear due to solutions violating the constraints involved in
the optimization problem.
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