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Abstract. NMAC is a mode of operation which turns a fixed input-length
keyed hash function f into a variable input-length function. A practical
single-key variant of NMAC called HMAC is a very popular and widely de-
ployed message authentication code (MAC). Security proofs and attacks
for NMAC can typically be lifted to HMAC.

NMAC was introduced by Bellare, Canetti and Krawczyk [Crypto’96],
who proved it to be a secure pseudorandom function (PRF), and thus also
a MAC, assuming that (1) f is a PRF and (2) the function we get when
cascading f is weakly collision-resistant. Unfortunately,HMAC is typically
instantiated with cryptographic hash functions like MD5 or SHA-1 for
which (2) has been found to be wrong. To restore the provable guarantees
for NMAC, Bellare [Crypto’06] showed its security based solely on the as-
sumption that f is a PRF, albeit via a non-uniform reduction.
– Our first contribution is a simpler and uniform proof for this fact: If

f is an ε-secure PRF (against q queries) and a δ-non-adaptively se-
cure PRF (against q queries), then NMACf is an (ε+�qδ)-secure PRF
against q queries of length at most � blocks each.

– We then show that this ε+ �qδ bound is basically tight. For the most
interesting case where �qδ ≥ ε we prove this by constructing an f
for which an attack with advantage �qδ exists. This also violates the
bound O(�ε) on the PRF-security of NMAC recently claimed by
Koblitz and Menezes.

– Finally, we analyze the PRF-security of a modification of NMAC
called NI [An and Bellare, Crypto’99] that differs mainly by using
a compression function with an additional keying input. This avoids
the constant rekeying on multi-block messages in NMAC and allows
for a security proof starting by the standard switch from a PRF to a
random function, followed by an information-theoretic analysis. We
carry out such an analysis, obtaining a tight �q2/2c bound for this
step, improving over the trivial bound of �2q2/2c. The proof borrows
combinatorial techniques originally developed for proving the security
of CBC-MAC [Bellare et al., Crypto’05].

Keywords: Message authentication codes, pseudorandom functions,
NMAC, HMAC, NI.

1 Introduction

NMAC is a mode of operation which transforms a keyed fixed input-length func-
tion f : {0, 1}c×{0, 1}b → {0, 1}c (with b ≥ c) into a keyed variable input-length
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function NMACf : {0, 1}2c × {0, 1}b∗ → {0, 1}c (where {0, 1}b∗ denotes all bit
strings whose length is a multiple of b) as

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

where Cascf : {0, 1}c × {0, 1}b∗ → {0, 1}c is the cascade (also known as Merkle-
Damg̊ard) construction

Cascf(K1,m1‖ . . . ‖m�) := f(. . . f(f(K1,m1),m2) . . .m�) .

HMAC is a variant of NMAC (we postpone its exact definition to Section 2.2)
tweaked for applicability in practice. As security proofs for NMAC can typically
be lifted to HMAC, it is usually sufficient to analyse the security of the cleaner
NMAC construction, we will discuss this point further in Section 1.2.

NMAC and HMAC were introduced by Bellare, Canetti and Krawczyk in 1996
[4] and later standardized [18]. HMAC has also become very popular and widely
used, being implemented in SSL, SSH, IPsec and TLS amongst other places. Al-
though originally designed as a MAC, it is also often employed more broadly, as
a pseudorandom function (PRF). This is the case for example when used for key-
derivation in TLS and IKE (the Internet Key Exchange protocol of IPsec). This
proliferation into practice motivates the need for a good understanding of the ex-
act security guarantees provided by NMAC and HMAC when used as a PRF.

PRF-Security of NMAC.Bellare et al. [4] prove that NMAC is a secure PRF
if (1) f is a PRF and (2) Cascf is weakly collision-resistant (WCR). This is a
relaxed notion of collision resistance, where one requires that it is hard to find
a pair of messages M �= M ′ such that Cascf(K,M) = Cascf(K,M ′) under a
random key K, given oracle access to Cascf(K, .) (but not K, as in the standard
definition of collision resistance).

HMAC is typically instantiated with cryptographic hash functions like MD5
or SHA-1 playing the role of Cascf . However, both of these have been found not
to satisfy the WCR notion [26,27], which renders the security proof from [4]
irrelevant for this case. Despite that, no attacks (better than standard birthday
attacks) are known for NMAC or HMAC when instantiated with MD5 or SHA-1
(though attacks on reduced round versions exist [16]).

Security without Collision-Resistance. To restore the provable security
of NMAC, Bellare [3] investigates the security of NMAC dropping assumption (2),
that is, assuming only that f is a secure PRF. The exact security statement from
[3] is a bit technical, but it roughly states that if f is an ε-secure PRF (against an
adversary running in time t and asking q queries) and a γ-secure PRF (against
time O(�) and 2 queries), then NMACf is an (ε+ �q2γ)-secure PRF against time
t and q queries of length at most � (in b-bit blocks). The security reduction
is non-uniform, which means one has to be careful when deducing what this



The Exact PRF-Security of NMAC and HMAC 115

bound exactly means when instantiated in practice, we will discuss this further
in Section 1.2.1

1.1 Our Contributions

PRF-Security Proof for NMAC.Our first contribution is a simpler, uni-
form, and as we will show, basically tight proof for the PRF-security of NMACf

assuming only that f is a PRF: If f is an ε-secure PRF against q queries, then
NMACf is roughly �qε-secure against q queries of length at most � blocks each.

Our actual result is more fine-grained, and expresses the security in terms
of both the adaptive and non-adaptive security of f. Let δ denote the PRF-
security of f against q non-adaptive queries. Then our Theorem 1 states that
NMACf is roughly (ε + �qδ)-secure (against q queries, each at most � blocks).
As non-adaptive adversaries are a subset of adaptive ones we have δ ≤ ε, and if
δ � ε, then our fine-grained bound is much better than the simpler �qε bound.
The reduction works in the best running time one could hope for, its overhead
being Õ(�q).

The main technical part of our proof closely follows a proof by Bellare et
al. [5] who show that if f is a secure fixed input-length PRF, then Cascf is a
secure PRF if queried on prefix-free queries. We first observe that their proof
also holds in the non-adaptive setting. Then we reduce the security of NMACf

against arbitrary adaptive queries to the security of Cascf against non-adaptive
prefix-free queries.

Matching Attack for NMAC. In Section 3.2 we prove that the above lower
bound is basically tight. From any PRF, we construct another PRF f for which
NMACf can be broken with advantage Θ(�qδ). This shows that our bound is
tight for the practically most important case when �qδ is larger (or at least
comparable) to ε.

We also consider the case where ε � �qδ, that is, when the PRF has much
better security against non-adaptive than adaptive distinguishers. We observe
that for any ε, we can use a result due to Pietrzak [23] who shows that cascading
non-adaptively secure PRFs does not give an adaptively secure PRF in general,
to construct an ε-secure f where NMACf can be broken with advantage Θ(ε2).
This only shows the ε term is necessary if ε is constant as then Θ(ε) = Θ(ε2) =
Θ(1). We conjecture that Θ(ε2) is the correct value, and the ε term in the lower
bound can be improved to Θ(ε2) using security amplification techniques along
the lines of [22,25].

PRF-Security Proof for NI. The main difficulty in security analyses of
NMACf and HMACf based on the PRF-security of the underlying compression
function f is that both these constructions are constantly rekeying f during the
evaluation of Cascf , using the output from the last invocation as the key for the

1 We note that in a very recent update of the ePrint version of [3], Bellare observes
that the proof in [3] can also give a uniform reduction, differing from the non-uniform
case only in the running time of the 2-query adversary which then becomes t. The
uniform bound given in this paper is better for most reasonable parameters.
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next one. This prevents the proof approach typically applied to constructions
that use a PRF f under a fixed random secret key, where the analysis starts by
replacing the PRF with an ideal random function (introducing an error that is
upper-bounded by the PRF-security of f) and proceeds by a fully information-
theoretic argument.

To circumvent this issue, as our third contribution we investigate the PRF-
security of the nested iterated (NI) construction introduced in [2]. The construc-
tion NIh is very similar to NMACf , but is based on a compression function h that
(compared to f) takes an additional k-bit input which is used for keying instead
of the chaining input: NIh uses h under the same key throughout the whole cas-
cade. Additionally, it includes the length of the message in the input to the final,
outer h-call. The modified keying allows for the simple switching argument from
PRF to a random function. We focus on enhancing the information-theoretic
analysis that follows this switch and prove an essentially tight �q2/2c bound for
this step, improving significantly over the trivial bound of �2q2/2c. For complete-
ness, we also consider the modification of NI that does not include the message
length in the last h-call and show a security bound of �d′(�)q2/2c for this case,
where d′(�) ≈ �1/ ln ln � denotes the maximum number of divisors of any positive
integer not greater than �. Our proofs employ combinatorial techniques origi-
nally developed for proving the security of CBC-MAC [7], considerably adapted
for our setting.

1.2 More Related Work

Indifferentiability. In practice, the HMAC construction is sometimes used in
a setting where stronger guarantees than PRF-security are needed. Motivated
by this, recent work [12] investigates the indifferentiability [21,10] of HMAC from
a (keyed) random oracle. This result is incomparable to ours: While the stronger
notion of indifferentiability covers the settings where HMAC is not used as a PRF,
the bound achieved in [12] is understandably much weaker, being Θ(�2q2/2c).

Another look at [17].As already mentioned, Bellare [3] proved that NMACf

is an (ε+�q2γ)-secure PRF against q queries if f is ε-secure against q queries, and
γ-secure against 2 queries. In a recent paper [17], Koblitz and Menezes present
a criticism of the way [3] discusses the practical implications of this result. In a
nutshell, Bellare estimates that for a well-designed PRF the γ term is roughly
t/2c (for a 2-query adversary running in time t), but as this γ is derived in a
non-uniform way, it is in the order of 2−c/2 already for constant t.

At the time when [3] appeared, the fact that non-uniform attacks can
distinguish any pseudorandom object generated using a c-bit key with advan-
tage 2−c/2 in constant time was not widely known in the crypto community2 and
overoptimistic estimates for the exact security implied by non-uniform

2 Let us stress that this only holds for pseudorandom objects which do not require
additional public randomness, such as PRFs. This does not extend to weak PRFs,
which are defined like PRFs but the adversary only sees the output on random
inputs.
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reductions have appeared in numerous papers.3 This changed at the latest with
the Crypto 2010 paper [11], who discuss this issue in detail and attribute such
generic non-uniform attacks to the 1992 paper by Alon et al. [1].

The paper [17] also claimed that HMAC is an ε�-secure PRF, a bound that
is falsified by an attack given in this paper. In response, [17] was updated to
take account of this by employing a non-standard definition of a PRF for the
underlying compression function. We believe that the updated claim can be
obtained via a simpler proof from [5].

HMAC vs NMAC.The proofs in this paper considerNMAC. There is a standard
reduction of HMAC-to-NMAC PRF-security given by Bellare [3], albeit under
some additional requirements on the underlying compression function f. Infor-
mally, one needs to assume that f is a PRF even when keyed through the b-bit
data input, as opposed to being keyed by the c-bit chaining variable. Moreover,
security of the single-key version of HMAC requires the PRF to be secure under
a specific class of related-key attacks. Formally, the reductions are given in Lem-
mas 5.1 and 5.2 in the full version of [3] for the case of double- and single-keyed
HMAC, respectively. Since these reductions only relate to NMAC via its PRF-
security, they apply to our result in a blackbox way, thus giving clear statements
also for HMAC.

2 Preliminaries

Basic Definitions.We reserve the letter λ do denote the empty string. With
{0, 1}b∗ :=

⋃
z≥0{0, 1}bz we denote the set of all bitstrings whose length is a

multiple of b. F(b, c) (resp. F(b∗, c)) denotes the sets of all functions from {0, 1}b
to {0, 1}c (resp. from {0, 1}b∗ to {0, 1}c). We denote by Pow(S) the power set of
the set S. For an integer n, d(n) = |{i ∈ N : i | n}| is the number of its positive
divisors and d′(n) := maxn′∈{1,...,n} |{d ∈ N : d | n′}| ≈ n1/ ln lnnis the maximum,
over all positive integers n′ ≤ n, of the number of positive divisors of n′. More
precisely, we have ∀ε > 0 ∃n0 ∀n > n0 : d(n) < n(1+ε)/ ln lnn [13]. All logarithms
considered in the paper are base 2 unless indicated otherwise.

Random Variables and Experiments.Random variables and concrete values
they can take are usually denoted by upper-case letters X,Y, . . . and lower-
case letters x, y, . . ., respectively. If M is a distribution (respectively, a set),
then we denote by X ← M sampling the random variable X according to M
(respectively, choosing it uniformly at random from M). For events A and B
and random variables U and V with ranges U and V , respectively, we denote

3 This should not be confused with the (less trivial, but in the crypto community long
well-known) fact that non-uniform generic attacks beating simple brute-force key
search exist for “large” running times, as shown in a classical result by Hellman [14].
Hellman’s result for example implies that there almost certainly exist key-recovery
attacks against AES with a k bit key (k being 128, 192 or 256) which succeed with
probability at least 1/2 and run in time ≈ 22k/3, and in particular much less than
2k required for brute-force key search.
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by PUA|V B the corresponding conditional probability distribution, seen as a
(partial) function U × V → [0, 1]. The value PUA|V B(u, v) = P[U = u ∧ A|V =
v ∧ B] is well-defined for all u ∈ U and v ∈ V such that PV B(v) > 0 and
undefined otherwise. Two probability distributions PU and PU ′ on the same set
U are equal, denoted PU = PU ′ , if PU (u) = PU ′(u) for all u ∈ U . Conditional
probability distributions are equal if the equality holds for all arguments for
which both of them are defined. To emphasize the random experiment E in
consideration, we sometimes write it in the superscript, e.g. PE

U|V (u, v). If the
distribution of a random variable U is clear from the context, we also sometimes
write PU to refer to the random experiment where U is chosen according to its
distribution.

2.1 Random Systems

To present our results we make use of Maurer’s random systems framework [20],
which we now introduce in a self-contained exposition sufficient to follow the
rest of the paper. This choice is a matter of authors’ taste, we believe that the
results could also be obtained using the game-playing framework [8].

We start by observing that the input-output behavior of any kind of reactive
discrete system with inputs in X and outputs in Y can be described by an infinite
family of functions specifying, for each i ≥ 1, the probability distribution of the
system’s i-th output Yi ∈ Y, given the values of the first i inputs X i ∈ X i and
the previous i − 1 outputs Y i−1 ∈ Yi−1. Using this viewpoint, we say that an
(X ,Y)-(random) system F is an infinite sequence of functions pFYi|XiY i−1 : Y ×
X i × Yi−1 → [0, 1] such that

∑
yi
pFYi|XiY i−1(yi, x

i, yi−1) = 1 for all i ≥ 1,

xi ∈ X i and yi−1 ∈ Yi−1. Note that pFYi|XiY i−1 by itself does not represent a

(conditional) probability distribution in any particular random experiment with
well-defined random variables Yi, X

i, Y i−1 until the system is connected to a
distinguisher (see below), in which case these random variables will exist and
take the role of the transcript. We shall typically define discrete systems by a high
level description, as long as the resulting conditional probability distributions
could be derived easily from this description. Two systems F and G are called
equivalent (denoted F ≡ G) if their input-output behaviors are the same, i.e.,
pFYi|XiY i−1 = pGYi|XiY i−1 for all i ≥ 1.

A system F might often be used as a component (subsystem) in a construction
C(·), resulting in the composed system CF. F�G denotes the serial composition
of systems: every input to F�G is fed to F, its output is fed to G and the output
of G is used as the output of F �G. In case G takes as inputs longer bitstrings
than F outputs (as will be the case in the definition of NMAC), the construction
F �G pads the outputs of F with trailing zeroes before passing them to G.

Examples.We denote by R a system that provides access to a function chosen
uniformly at random from the set of all functions with domain {0, 1}b∗ and range
{0, 1}c. (This unusual domain slightly deviates from the standard definition of R
in the random-systems literature, but will be advantageous for our exposition.)
Similarly, for a finite domain {0, 1}b we denote by r a system realizing a function
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chosen uniformly from F(b, c). Finally, we also consider a system f realizing a
function chosen uniformly from F(c+b, c). We refer to R, r and f as a uniformly
random function (URF), a fixed input-length URF, and an ideal compression
function, respectively. In each case the parameters b and c will be clear from the
context.

Distinguishers and Adversaries. A distinguisher D for an (X ,Y)-random
system asking q queries is a (Y,X )-random system which is “one query ahead:”
its input-output behavior is defined by the conditional probability distributions
of its queries pDXi|Xi−1Y i−1 for all 1 ≤ i ≤ q. (Its first query is determined by

pDX1
.) After the distinguisher asks all q queries, it outputs a bit Wq depending

on the transcript (Xq, Y q). Given a random system F and a distinguisher D,
we denote by DF the random experiment where D interacts with F, with the
distributions of the transcript (Xq, Y q) and of the bit Wq being uniquely defined
by their conditional probability distributions. For two (X ,Y)-random systems
F and G, the distinguishing advantage of D in distinguishing systems F and G
by q queries is the quantity ΔD(F,G) = |PDF

Wq
(1) − PDG

Wq
(1)| and the maximal

distinguishing advantage over all distinguishers asking q queries is denoted by
Δq(F,G) = maxD ΔD(F,G) (with D ranging over all such distinguishers).

As opposed to the information-theoretic notion of a distinguisher, we often
need to consider an attacker with restricted computational resources. Although
such an attacker also participates in a distinguishing experiment, to emphasize
this restriction we call it an adversary and denote using a sans-serif symbol
(e.g. A). Note that a computationally restricted adversary implicitly defines a
random system by its input-output behavior and hence any notation defined for
information-theoretic distinguishers is also well-defined for such an adversary.
We often restrict the computational power of an adversary by its running time,
for this we assume some reasonable fixed model of computation.

Monotone Conditions. For a random system F, we often consider an in-
ternal monotone condition defined on it. Such a condition is initially satisfied
(true), but once it gets violated, it cannot become true again (hence the name
monotone). We use such conditions to capture whether the behavior of the sys-
tem meets some additional requirement (e.g. distinct outputs, consistent out-
puts) or this was already violated during the interaction that occurred so far.
A monotone condition is formalized by a sequence of events A = A0, A1, . . .
such that A0 always holds, and Ai holds if the condition holds after answering
the i-th query. The probability that a distinguisher D issuing q queries to F
makes a monotone condition A fail in the random experiment DF is denoted
by νD(F, Aq) = PDF(Aq) and maximum over all such distinguishers is denoted
by ν(F, Aq) = maxD νD(F, Aq). We also define μ(F, Aq) = maxxq PF

Aq|Xq
(xq)

to be the maximal probability of violating the condition A by a sequence of q
non-adaptive queries.

For a random system F with a monotone condition A = A0, A1, . . . and a
random system G, we say that F conditioned on A is equivalent to G, denoted
F|A ≡ G, if pFYi|XiY i−1Ai

= pGYi|XiY i−1 for i ≥ 1, for all arguments for which
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pFYi|XiY i−1Ai
is defined. Intuitively, this captures the fact that as long as the

condition A holds in F, it behaves the same as G. The following useful claims
were given in [20], see also [15] for the proof of claim (ii) and [19] for further
discussion.

Lemma 1. Let F and G be random systems, let A be a monotone condition
defined on F, let D be a distinguisher asking q queries. Then:

(i) [20, Lemma 7] If F|A ≡ G then ΔD(F,G) ≤ νD(F, Aq).
(ii) [20, Theorem 2] If pFAi|XiY i−1Ai−1

= pFAi|XiAi−1
for all i ≥ 1, then ν(F, Aq) =

μ(F, Aq).

2.2 Message Authentication Codes and PRFs

The standard security requirement for a MAC is unforgeability under chosen-
message attack. However, it is well-known that any PRF attains this property [6],
hence in this paper we focus on PRF-security of the analyzed constructions.

If the first component of the input to a function f is to be seen as a key,
we sometimes call f a keyed function to emphasize this. For a keyed function
f : K × D → R under a key k ∈ K we often write fk(·) instead of f(k, ·). A
variable input-length keyed function G : {0, 1}c × {0, 1}b∗ → {0, 1}c is an:
– (ε, t, q, �)-secure PRF, if for any adversary A running in time t and mak-

ing at most q queries, each of length at most � (in b-bit blocks), a URF
R : {0, 1}b∗ → {0, 1}c and a uniformly random key K ← {0, 1}c, we have
ΔA(GK ,R) ≤ ε.

– (ε, t, q, �)-NA-secure PRF, if the above is true for all adversaries A that
choose their queries non-adaptively (i.e., A has to choose its q queries before
seeing any of the outputs).

– (ε, t, q, �)-PF-secure PRF, if the above is true for all adversaries A that choose
their queries to be prefix-free (i.e., no query is a prefix of another query).

– (ε, t, q, �)-NA-PF-secure PRF, if the above is true for all adversaries A that
choose queries both non-adaptively and prefix-free.

For fixed input-length functions, we define analogous notions by omitting the
parameter � and distinguishing from r instead of R. Moreover, we refer to an
adversary A as an (ε, t, q, �)-PRF adversary against G if it runs in time t, asks at
most q queries each consisting of at most � blocks, and achieves the advantage
ΔA(GK ,R) = ε. We refer analogously to adversaries for the other PRF-notions
defined above.

For a keyed function f : {0, 1}c × {0, 1}b → {0, 1}c we denote with Cascf :
{0, 1}c × {0, 1}b∗ → {0, 1}c the cascade construction (also known as Merkle-
Damg̊ard) built from f as Cascf(K,m1‖ . . . ‖m�) := y� where y0 := K and for
i ≥ 1 we have yi := f(yi−1,mi), in particular Cascf(K,λ) := K.

The construction NMACf : ({0, 1}c)2×{0, 1}b∗ → {0, 1}c is derived from Cascf

by adding an additional, independently keyed application of f at the end. It
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assumes that the domain sizes of f satisfy b ≥ c and the output of the cascade
is padded with zeroes before the last f-call. Formally,

NMACf((K1,K2),M) := f(K2,Casc
f(K1,M)‖0b−c)

or NMACf
K1,K2

:= CascfK1
� fK2 . Note that practical MD-based hash functions

take as input arbitrary-length bitstrings and then pad them to a multiple of the
block length, often including the message length in the so-called MD-strength-
ening. This padding then also appears in NMAC (and HMAC) but since it does
not affect any of our arguments, we take the customary shortcut and our def-
inition above actually corresponds to the generalized construction denoted as
GNMAC in [3] where this step is also justified in detail.

HMACf is a practice-oriented version of NMACf , where the two keys (K1,K2)
are derived from a single key K ∈ {0, 1}b by xor-ing it with two fixed b-bit
strings ipad and opad. In addition, the keys are not given through the key-input
of the compression function f, but are prepended to the message instead. This
allows for the usage of existing implementations of hash functions that contain
a hard-coded initialization vector IV. Formally:

HMACf(K,m) := Cascf(IV,K2‖Cascf(IV,K1‖m)‖fpad)
where (K1,K2) := (K ⊕ ipad,K ⊕ opad)

and fpad is a fixed (b− c)-bit padding not affecting the security analysis. (Tech-
nically, [18] allows for arbitrary length of the key K: a key shorter than b bits
is padded with zeroes before applying the xor transformations, a longer key is
first hashed.) As discussed in Section 1.2, we can focus on the PRF-security of
NMAC as it translates to analogous results for HMAC under the assumptions
stated in [3].

Finally, we also introduce the nested iterated (NI) construction defined in [2].
For this, we consider a keyed compression function h : {0, 1}k×{0, 1}c×{0, 1}b →
{0, 1}c. When such h is used in a cascading construction, its c-bit and b-bit in-
puts are used for the chaining value and the next block, respectively. In con-
trast to the function f considered above, h has an additional k-bit input that is
used for keying. Formally, for such h we define the nested iterated construction
NIh : ({0, 1}k)2 × {0, 1}b∗ → {0, 1}c as

NIhK1,K2
(m) := hK2(Casc

hK1

0 (m), |m|)
where 0 denotes the all zero bitstring 0c and |m| is the length of m encoded as
a b-bit string. Alternatively, for a function f : {0, 1}c × {0, 1}b → {0, 1}c and a
key K we will denote by LenCascfK a system that given a message m outputs the
pair (CascfK(m), |m|). This allows us to describe NI equivalently as NIhK1,K2

:=

LenCasc
hK1

0 � hK2 . For a detailed discussion of the relationship of NI to NMAC,
see [2].

3 PRF-Security of NMAC

In this section we analyze the PRF security of NMACf in terms of the PRF-
security of the underlying function f.
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3.1 Security Lower Bound

Before moving to the NMACf construction, we start by stating a lower bound on
the security of the cascade Cascf when queried on prefix-free inputs. A similar
statement has already been proven in [5], and we follow their proof, modifying it
where necessary to obtain security against non-adaptive adversaries, assuming
only non-adaptive security of the underlying compression function f. The proof
of Proposition 1 is postponed to the full version due to space constraints.

Proposition 1 (Cascf as a NA-PF-PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c
be a compression function. There exists an explicit reduction T (described in the
proof) such that for any (ε′, t′, q, �)-NA-PF-PRF adversary A against Cascf , TA

is an (εna, t, q)-NA-PRF adversary against f such that

ε′ ≤ �qεna and t = t′ + Õ(�q) .

This allows us to present our main result in this section, which relates the adap-
tive PRF-security of the construction NMACf to both the adaptive and non-
adaptive PRF-security of f.

Theorem 1 (NMACf as a PRF). Let f : {0, 1}c × {0, 1}b → {0, 1}c be a com-
pression function. There exist explicit reductions T1 and T2 (described in the
proof) such that for any (ε′, t′, q, �)-PRF adversary A against NMACf ,

1. TA
1 is an (ε, t, q)-PRF adversary against f,

2. TA
2 is an (εna, t, q)-NA-PRF adversary against f,

and their parameters satisfy

ε′ ≤ ε+ (�+ 1)qεna +
q2

2c
and t = t′ + Õ(�q) .

Proof. Let A be a PRF-adversary running in time t′ and asking q queries, each
of length at most � blocks. Let r : {0, 1}b → {0, 1}c, R : {0, 1}b∗ → {0, 1}c and
K = (K1,K2) ← {0, 1}c × {0, 1}c denote a fixed input-length URF, a URF and
a key pair chosen independently at random, respectively.

We turn A into an adversary TA
1 against the PRF-security of fK as follows:

Given access to g (which is either fK or r), sample some key K1 at random, and
then invoke A, answering its queries with CascfK1

�g. Finally, output the decision

bit of A. Clearly we have ΔA(CascfK1
� fK2 ,Casc

f
K1

� r) = ΔTA
1 (fK , r) and if we

denote ΔTA
1 (fK , r) by ε then using triangle inequality we get

ΔA(NMACf
K ,R) = ΔA(CascfK1

� fK2 ,R) ≤ ε+ΔA(CascfK1
� r,R) .

In the experiment where A interacts with CascfK1
� r, let Ci denote the event

that during the first i queries to CascfK1
� r, for any two distinct queries M and

M ′ the values CascfK1
(M) and CascfK1

(M ′) (inputs to the final r-call) are also
distinct. As long as the monotone condition C = C0, C1, . . . remains satisfied, the
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responses of CascfK1
�r to distinct queries are equivalent to outputs of r on distinct

inputs, and thus independent, uniformly random values, in particular (CascfK1
�

r)|C ≡ R. We can therefore apply Lemma 1(i) to conclude that distinguishing
Cascf � r from a URF R is at least as hard as making the condition C fail, i.e.,

ΔA(CascfK1
� r,R) ≤ νA(CascfK1

� r, Cq) .

Below we explain how to use the adversary A to construct4 a non-adaptive
adversary Ana such that

νA(CascfK1
� r, Cq) = νAna(CascfK1

� r, Cq) . (1)

Ana simply runs A and responds to all its fresh queries by fresh random values,
while answering repeated queries consistently. In the end, Ana (non-adaptively)
asks all the queries that A asked during this simulated interaction. The equa-
tion (1) follows from the fact that the simulation for A is perfect as long as its
queries do not violate C. Since C is defined on CascfK1

and Ana is non-adaptive,
we additionally have

νAna(CascfK1
� r, Cq) = νAna(CascfK1

, Cq) .

Next, for Ana we can construct another non-adaptive adversary Apf that vio-

lates the condition C (i.e., creates a collision in the outputs of CascfK1
) with the

same probability as Ana, but all its queries are prefix-free. This can be done, for
example, by simply appending an additional block to all queries asked by Ana,
such that this block does not appear in the original queries. Hence we have

νAna(CascfK1
, Cq) = νApf (CascfK1

, Cq)

for a non-adaptive adversary Apf asking prefix-free queries of length at most �+1.
Finally, consider the non-adaptive adversary A∗ that simply asks the same

prefix-free queries as Apf and then outputs 1 if and only if the responses to

these queries contain a collision. Then A∗ interacting with CascfK1
outputs 1

with probability νApf (CascfK1
, Cq), while in an interaction with R it outputs 1

with probability at most q2/2c via the well-known birthday bound. Hence, by
the definition of ΔA∗

(CascfK1
,R), we have

νApf (CascfK1
, Cq) ≤ ΔA∗

(CascfK1
,R) +

q2

2c
.

Since A∗ is non-adaptive and prefix-free, we can now employ the reduction T
guaranteed by Proposition 1 to obtain an NA-PRF adversary TA∗

against f such
that

ΔA∗
(CascfK1

,R) ≤ (� + 1)q ·ΔTA∗
(f, r) .

Putting TA
2 := TA∗

hence concludes the proof of Theorem 1. ��
4 One could use a lemma from the random system framework [20] in the spirit of
Lemma 1(ii) to switch to non-adaptivity. We prefer to spell out the actual construc-
tion to emphasize the uniformity of our reduction.
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Corollary 1. If f : {0, 1}c × {0, 1}b → {0, 1}c is an (ε, t, q)-secure PRF and an
(εna, t, q)-NA-secure PRF, then NMACf is an (ε′, t′, q, �)-secure PRF with

ε′ = ε+ (�+ 1)qεna +
q2

2c
and t = t′ + Õ(�q) .

3.2 Matching Attacks

We now argue that the bound obtained in Theorem 1 is essentially tight. First, we
show that the term �qεna is unavoidable (up to a constant factor) by constructing
a particular compression function f, which is an (εna, t, q)-NA-secure PRF, yet
there is a simple attack against the PRF-security of NMACf achieving advantage
roughly �qεna.

Proposition 2. Let b, c, � be positive integers such that b ≥ c, let εna ∈ (0, 1),
and moreover, assume that pseudo-random functions exist. Then there exists a
function f : {0, 1}c × {0, 1}b → {0, 1}c and an adversary A against NMACf such
that for any q that satisfies εna = ω(q22−b, 2−c), we have:

– f is (εna, t, q)-NA-secure PRF;
– the adversary A, when asking q queries of length � blocks each, runs in time

Õ(�q) and achieves distinguishing advantage

ΔA(NMACf
K ,R) = Θ(�qεna) .

In particular, NMACf is not an (o(�qεna), Õ(�q), q, �)-secure PRF.

Proof (sketch). Here we only describe the high-level idea for constructing f and
A and defer the discussion of the technical obstacles in implementing this idea
to the full version.

Roughly speaking, we construct an (εna, t, q)-NA-secure PRF f that behaves
pseudo-randomly for all keys except for a small, εna/2-fraction of them. We
denote the set of these keys by K and refer to them as the weak keys. Under any
weak key k, the function f(k, ·) outputs some constant value w ∈ K irrespective
of its input.

To attack the NA-PRF security of NMACf
K=(K1,K2), consider a pair of mes-

sages M1,M2 chosen by sampling M ← {0, 1}b(�−1) at random and then set-
ting M1 = M‖x1 and M2 = M‖x2 for some distinct blocks x1, x2 ∈ {0, 1}b.
If some of the � − 1 intermediate values in the evaluation of the inner func-
tion Cascf(K1,M) is in K, then all following intermediate values are w, and
in particular we have Cascf(K1,Mi) = w for both i ∈ {1, 2}, and hence also
NMACf(K,M1) = NMACf(K,M2) = fK2(w). This implies that it is much more
likely to get a collision for a pair of messages as described above for NMACf

K than
for R. Our adversary A simply choses q/2 message pairs at random as above,
and it outputs 1 if it observes a collision for at least one of those pairs. As there
are q/2 message pairs, each of length �, we have a total of �q/2 possibilities to
“hit” a weak key, each having probability εna. By the union bound this gives us
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a total probability of Θ(�qεna) for observing a collision when querying NMACf
K .

On the other hand the probability of observing a colliding pair in R is only
O(q/2c). ��

We now consider the tightness of the bound in Theorem 1 when ε � �qεna is
the dominating term. This is the case when the best adaptive attack against f
is by more than a factor �q better than any non-adaptive attack.

In [23] a pair g1, g2 of PRFs is constructed such that g1 and g2 are εna-secure
non-adaptive PRFs for some negligible εna, and the serial composition g1�g2 with
independent keys can be broken by an adaptive attack (in a constant number of
queries) with advantage almost 1.5 From such g1, g2 we can get a single PRF f
which is an εna-secure NA-PRF for a negligible εna, an ε-secure PRF for any ε of
our choice, and where f �f is not Θ(ε2)-secure, by setting f := g1 and f := g2 with
probability ε/2, respectively, and some strong standard PRF with probability
1 − ε (over the choice of the key). We now observe that NMACf

K computed on
single-block messages is simply a cascade of two f’s with independent keys. Thus,
when using the above ε-secure PRF f, we can break NMACf

K with advantage
Θ(ε2). This shows that the ε term in Theorem 1 is necessary if ε is constant
as then Θ(ε) = Θ(ε2) = Θ(1). We conjecture that Θ(ε2) is the correct value,
and the ε term in the lower bound can be improved to Θ(ε2) using security
amplification techniques along the lines of [22,25].

4 PRF-Security of the NI Construction

In this section we analyze the PRF-security of the NIh construction under the
assumption that the keyed compression function h is a PRF (when keyed via its
k-bit input).

Theorem 2. If h : {0, 1}k×{0, 1}c×{0, 1}b → {0, 1}c is an (ε1, t, q)-secure PRF
and an (ε2, t, �q)-secure PRF, then NIh is an (ε′, t′, q, �)-secure PRF with

ε′ = ε1 + ε2 +
q2

2c
·
(

�+
64�4

2c

)

and t = t′ + Õ(�q) .

Proof. We prove Theorem 2 in four consecutive steps. First, we use the PRF-
security of h to replace it by an ideal compression function, making the rest of
our analysis information-theoretic. Second, we observe that the resulting system
behaves identically toR as long as no non-trivial collision occurs in the outputs of
the initial cascade. Third, we reduce estimating the probability of such a collision
to a counting problem of upper-bounding the number of graphs satisfying certain
properties (modeling the computation of the cascade). Finally, we give a bound
on the number of these graphs, hence concluding the argument.

5 The NA-PRF security of this construction relies on the DDH assumption, [9] con-
struct such a PRF under the weaker assumption that “uniform transcript key-
agreement” exists, and this assumption is necessary [24].
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From a PRF to a Random Function. Let A be a PRF-adversary against
NIh running in time t and asking q queries, each of length at most � blocks. To
simplify the notation let 0 := 0c. By a standard argument as in the proof of
Theorem 1, we have

ΔA(NIhK ,R) = ΔA
(
LenCasc

hK1
0 � hK2 ,R

)
≤ ε1 + ε2 +ΔA

(
LenCascf10 � f2,R

)

(2)
where K = (K1,K2) ← ({0, 1}k)2 is a uniformly random key and f1 and
f2 are two independent ideal compression functions. Interestingly, the system
LenCascf10 � f2 is very similar to NMAC with an ideal compression function and
(0, |m|) being used instead of the key pair.

Bound via Collision Probability.Let CColl(�) denote the probability that a
random choice of the compression function f1 results in a collision in Cascf10 , maxi-
mized over the choice of the two distinct, equal-length inputsm1,m2 consisting of
at most � blocks each. (Note that we require length equality |m1| = |m2| to obtain
a collision also for LenCascf10 .) Formally, for uniformly random f1 ← F(c + b, c)
we define

CColl(�) := max
m1 �=m2

|m1|=|m2|≤�b

Pf1
[
Cascf10 (m1) = Cascf10 (m2)

]
. (3)

In the experiment where A interacts with LenCascf10 � f2, let Ei denote the event
that during the first i queries to LenCascf10 � f2, for any two distinct queries
M and M ′ the values LenCascf10 (M) and LenCascf10 (M ′) (inputs to the final
f2-call) were also distinct. As long as the monotone condition E = E0, E1, . . .
remains satisfied, the responses of LenCascf10 � f2 to distinct queries are clearly
independent, uniformly random values thanks to f2. Hence, we have (LenCasc

f1
0 �

f2)|E ≡ R and p
LenCasc

f1
0 �f2

Ei|XiY i−1Ei−1
= p

LenCasc
f1
0 �f2

Ei|XiEi−1
and can therefore consecutively

apply Lemma 1(i), Lemma 1(ii), and finally the union bound to get

ΔA(LenCascf10 �f2,R) ≤ν(LenCascf10 �f2, Eq) ≤ μ(LenCascf10 �f2, Eq) ≤ q2·CColl(�) .
(4)

Graph-Based Representation of Casc.The probability CColl(�) could triv-
ially be upper-bounded by O(�2/2c) using a union-bound argument, achieving
a non-trivial and significantly better bound on CColl(�) is the central part of
our proof. To this end, we use an approach inspired by [7] and represent the
computation of Cascf10 on various inputs by directed graphs.

Let m1 and m2 be two distinct, equal-length messages that can be parsed
into b-bit blocks as mi = m1

i ‖ · · · ‖m�′
i for some �′ ≤ �, and let Λ := 2�′. For

convenience, we use the notation m(i) as a reference to the block mi
1 if i ≤ �′,

otherwise it denotes the block mi−�′
2 . For any fixed compression function f ∈

F(c + b, c) and a pair of such messages M = (m1,m2), we define the structure
graph GM

f to be the triple GM
f = (V , E ,L), such that:
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– (V , E) is a directed graph. To describe it, let

si :=

⎧
⎪⎪⎨

⎪⎪⎩

0 for i = 0
f(si−1,m

i
1) for 1 ≤ i ≤ �′

f(0,m1
2) for i = �′ + 1

f(si−1,m
i−�′
2 ) for �′ + 2 ≤ i ≤ Λ

(5)

and consider the mappings [·]G and [·]′G defined on {0, . . . , Λ} such that
[i]G := min{j : si = sj} (so [i]G = i if and only if si is “fresh”) and
[i]′G := [i]G for i �= �′, while [�′]′G := 0. Now we let

V := {[i]G : 0 ≤ i ≤ Λ} and E := {([i− 1]′G, [i]G) : 1 ≤ i ≤ Λ} .

– L : V2 → Pow({0, 1}b) is a labeling function that labels every edge (u, v) ∈ E
with the set {m(i) : [i − 1]′G = u ∧ [i]G = v} and every pair of vertices that
do not form an edge with the empty set ∅ (to simplify our notation later).

Intuitively, if all the values si are distinct, GM
f simply consists of two directed

paths starting in the root vertex 0, representing the evaluation of Cascf10 on the
messagesm1 and m2 (the edges are labeled by the corresponding blocks). If some
collisions among the values si occur, one can obtain the graph GM

f by collapsing
every pair of vertices i, j where si = sj into one vertex labeled min{i, j}, as well
as merging the edge labels in the natural way.

Let G(M) := {GM
f : f ∈ F(c + b, c)} denote the set of all structure graphs

associated with the message pairM. Note that the uniformly distributed random
variable F ← F(c+b, c) also induces a distribution on G(M), therefore we denote
by GM

F the resulting random variable (taking on structure graphs as values).
Similarly, F also induces a distribution on the values si defined above and we
denote the resulting random variables Si.

For a fixed structure graph G = GM
f we denote by Gi = (Vi, Ei,Li) the

graph that is obtained after processing only the first i out of Λ blocks of M.
More formally, Gi := GM′

f where M′ := (m1
1‖ · · · ‖mi

1, λ) if i ≤ �′ and M′ :=

(m1,m
1
2‖ · · · ‖mi−�′

2 ) otherwise. Building on this notion, we call fColl(G) the set
of f -collisions that occurred in G:

fColl(G) :=
{
(i, [i]G) : [i]G < i ∧m(i) �∈ Li−1([i − 1]′G, [i]G)

}
. (6)

Informally, imagine we reveal the structure graph G step by step, i.e., by a
sequence of transitions from Gi−1 to Gi, for i = 1, . . . , Λ. The pair (i, [i]G)
belongs to fColl(G) (and we say that the i-th step caused an f -collision), if
during this step, instead of adding a new vertex, we arrive at a vertex already
visited, while not following an existing edge already labeled with m(i) (i.e., not
repeating a step we have made before).

Properties of Structure Graphs.We first upper-bound the probability of
GM

F taking the form of any particular fixed structure graph g ∈ G(M). The
following result is inspired by Lemma 8 from [7]. Due to space constraints, we
postpone the proofs of all technical lemmas below to the full version of this
paper.
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Lemma 2. Let F ← F(c + b, c) be chosen uniformly at random. For a fixed
graph g ∈ G(M) we have

PF
[
GM

F = g
] ≤ 2−c·|fColl(g)| .

Using Lemma 2, it is easy to see that the event that at least two f -collisions
occur in G is highly unlikely.

Lemma 3. Let F ← F(c+ b, c) be chosen uniformly at random. Then

PF
[∣
∣fColl

(
GM

F

)∣
∣ ≥ 2

] ≤ 4Λ4

22c
.

From Collision Probability to Counting Graphs.We can now proceed
to upper-bounding the value CColl(�). Let M := (m1,m2) be the two distinct,
equal-length messages of length at most � blocks that maximize the probability

CColl(�) := maxm1 �=m2 P
F
[
CascF0 (m1) = CascF0 (m2)

]
. For j ∈ {1, 2} let V i

j be

the random variable denoting the i-th vertex (counting from 0) in the path
corresponding to mj in GM

F (randomness taken over the uniform choice of F ).
Formally, V i

1 := [i]G and V i
2 := [�′+ i]′G. Using this notation, we have CColl(�) =

P[V �′
1 = V �′

2 ]. Since m1 �= m2, V
�′
1 = V �′

2 cannot occur without any f -collision,
hence we can split CColl(�) into

P
[
V �′
1 = V �′

2 ∧ |fColl(GM
F )| = 1

]
+ P

[
V �′
1 = V �′

2 ∧ |fColl(GM
F )| ≥ 2

]
. (7)

The latter probability can be readily upper-bounded by 4Λ4/22c using Lemma 3.
As for the former, let us denote by H(M) the set of structure graphs for M that
contain exactly one f -collision and where the vertices V �′

1 and V �′
2 coincide. The

first term in (7) can then be upper-bounded by |H(M)|/2c using Lemma 2,
hence it remains to bound the size of the set H(M).

Counting the Structure Graphs.We give such a bound in the following
lemma, proven in the full version of this paper.

Lemma 4. For two distinct, equal-length messages M = {m1,m2} each of
length at most � blocks, we have |H(M)| ≤ �.

Finally, combining the equations (2), (4), (7), and the bounds obtained in
Lemma 3 and Lemma 4, we get

ΔA(NIhK ,R) ≤ ε1 + ε2 + q2 ·
(

�

2c
+

4Λ4

22c

)

≤ ε1 + ε2 +
q2

2c
·
(

�+
64�4

2c

)

and conclude the proof of Theorem 2. ��
In the full version we also show that Lemma 4 is tight, and discuss the im-

plications for the tightness of Theorem 2. Moreover, we show a generalization
of Lemma 4 that does not require the messages in M to have the same length,
in which case we prove |H(M)| ≤ �d′(�). This translates directly into a PRF-
security statement for a variant of NI that does not include the message length
in its last h-call, giving a bound that is equivalent to Theorem 2 except for the
term �q2/2c that is replaced by �d′(�)q2/2c.
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