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Abstract

We connected the two ends of a finite spin-1/2 antiferromagnetic Ising chain 

with a magnetic impurity at one end to form a closed ring, and studied the magnetic 

susceptibility of it exactly by using the transfer matrix method. We calculated the 

magnetic susceptibility in the whole temperature range and gave the phase diagram at 

ground state of the system about the anisotropy of the impurity and strength of the 

connection exchange interaction for spin-1 and 3/2 impurities. We also gave the 

ground state entropy of system and derived the asymptotic expression of the magnetic 

susceptibility multiplied by temperature at zero temperature limit and high 

temperature limit. It is found that degenerate phase may exist in some parameter 

region at zero temperature for the spin number of system being odd, and the ground 

state entropy is  in the nondegenerate phase and is dependent on the number of ln (2)

spin in the degenerate phase. The magnetic susceptibility of the system at low 

temperature exhibits ferromagnetic behavior, and the Curie constant is related to the 

spin configuration at ground state. When the ground state is nondegenerate, the Curie 
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constant is equal to the square of the net spin, regardless of the parity of the number of 

the spin. When the number of spin is odd and the ground state is degenerate, the Curie 

constant may be related to the total number of spin. In high temperature limit, the 

magnetic susceptibility multiplied by temperature is related to the spin quantum 

number of impurity and the number of spin in the ring.

Keywords: transfer matrix method, magnetic susceptibility, magnetic impurity,

Ising ring, Curie's law
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1.Introduction

In condensed matter physics, the variants of low dimensional quantum 

antiferromagnetic system have received much attention due to its low dimensionality 

and novel phenomenon arising from the quantum fluctuations[1,2]. In theory, The 

magnetic properties of antiferromagnetic chain with impurity have been widely 

studied. It is found that the result of the convergence of magnetic susceptibility for 

antiferromagnetic chain decorated with spin pendant in the low temperature is very 

different from that of the pure antiferromagnetic chain [1]. The magnetic 

susceptibility of antiferromagnetic chain with ferromagnetic sawteeth (Delta chain) 

shows Curie law behavior at low temperature, the Curie constant in zero temperature 

limit is related to the degeneracy of the system, and the specific heat in the ultra-low 

temperature shows obvious size effect [2]. By doping impurities, an antiferromagnetic 

spin chain can be divided into many finite parts, thus the boundary effect on the 

magnetic behavior of the system may appear. For example, in a finite anisotropic 

Heisenberg antiferromagnetic chain, it is discovered that the magnetic susceptibility 

multiplied by temperature in low temperature is related to the length of the chain[3]. 

In the semi-infinite XXZ antiferromagnetic chain, the boundary magnetic 

susceptibility of system shows divergence in zero temperature limit[4]. In a finite 

Ising antiferromagnetic chain with a impurity at one end, the magnetic susceptibility 

multiplied by temperature in zero temperature limit is found proportional to the square 

of net spin and has nothing to do with the value of the impurity anisotropy and the 

exchange interaction between impurity and the host[5]. For a part of 
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antiferromagnetic chain, the behavior of the magnetic susceptibility in low 

temperature is found to be related to the parity of the number of the spin and the 

defect position[6,7]. When the two dimensional antiferromagnet is doped by defects 

or impurities, the susceptibility of system in low temperature limit shows some 

abnormal behaviors[8,9]. And for the mixed-spin bathroom tile lattice, the 

magnetization was found to be influenced by the spin quantum number and single-ion 

anisotropy strength[10].

Experiments indeed found the effect of the magnetic or nonmagnetic impurity on 

the antiferromagnet. The quasi one-dimensional Cu2MSiO5 (M =Co, Ni) 

antiferromagnet synthesized recently, doped Co or Ni, shows different magnetic 

susceptibility in low temperature[11]. As the Co ion in the low-dimensional CoTa2O6 

antiferromagnet is replaced by Mg ion to an extent, the ferromagnetic behavior of the 

system in the low temperature can be explained by the anisotropic Heisenberg model 

or Ising model[12]. In quasi one-dimensional Sr2CuO3 antiferromagnet, it is found 

that the external magnetic field can induce the local magnetic moment near the 

nonmagnetic impurity, and local magnetic susceptibility shows a high peak in the low 

temperature, reflecting the obvious ferromagnetic characteristics and confirmed by 

theory[3,13,14]. Doping Mg ion into one-dimensional SrCuO2 antiferromagnetic 

chain to get SrCu1-xMgxO2 chain, the magnetic susceptibility of the system in low 

temperature converges to different finite values when x get different value[15].

In many low-dimensional antiferromagnets, the energy of each bond cannot 

reach the minimum at the same time due to the geometric structure, this is the 
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so-called frustration phenomenon, such as Delta chain and the triangle structure in 

azurite and in K2MnS2-xSex[2,16-19]. Because of the energy gap between the ground 

state and the excited state, the specific heat of the frustrated system usually shows 

peak in the low temperature, and the magnetic susceptibility is also different from that 

of antiferromagnetic system without frustration [17-19]. If we connect the two ends of 

the finite antiferromagnetic spin chain with an impurity through antiferromagnetic 

interaction to form a closed ring, the boundary effect may be eliminated, but it will 

bring geometric frustration effect when the number of spin is odd. The behavior of the 

magnetic susceptibility of the system compared with the open chain is worth studying 

[5]. In two-ring structure [19], multi-ring structure[20] and Ising-Heisenberg diamond 

chain[21], the specific heat and susceptibility are found to show double peaks with 

temperature in some parameter range. For the Ising and Ising-like models, the 

approximate and exact solution have been given in the reference[22].

In this paper we will study the finite length defective antiferromagnetic Ising 

closed ring. Using the transfer matrix method[5,6,22,23], we will calculate exactly the 

magnetic susceptibility of the system, and discuss the effect of impurity anisotropy, 

host-impurity exchange interaction, and spin quantum number of impurity on the 

magnetic susceptibility. The arrangement of the paper is as follows: Sec. II presents 

the exact solution for the finite spin-1/2 Ising ring with a magnetic impurity. In Sec. 

III we describe its ground-state properties, and the behavior of magnetic 

susceptibility, especially the value in the zero temperature limit. In Sec. IV we make a 

brief summary.
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2. model and method

We set up a spin-1/2 antiferromagnetic finite Ising ring by connecting the two ends 

of a Ising chain with a impurity on one end,  denotes the host spin,  𝑆𝑍
𝑖 𝜇𝑍

𝑁

represents the magnetic impurity spin at site N, as shown in Fig.1. The 

Hamiltonian is given by,

𝐻 = 𝐽
𝑁 ― 2

∑
𝑖 = 1

𝑆𝑍
𝑖 𝑆𝑍

𝑖 + 1 + 𝐽𝑆𝑍
𝑁 ― 1𝜇𝑍

𝑁 + 𝐽1𝜇𝑍
𝑁𝑆𝑍

1 ― ℎ
𝑁 ― 1

∑
𝑖 = 1

𝑆𝑍
𝑖 ― ℎ𝜇𝑍

𝑁 ― 𝐷(𝜇𝑍
𝑁)2

(1)

where , and , representing the impurity spin state 𝑆𝑍
𝑖 =±

1
2 𝜇𝑍

𝑁 = ―1,0,1 or ―
3
2, ―

1
2,

1
2,

3
2

with spin quantum number  of 1 or 3/2 respectively. The host-impurity exchange 𝜇𝑁

interaction (connecting exchange interaction) is  at the closed place, and the other 𝐽1

antiferromagnetic exchange interaction between the nearest-neighbor spins is . D is 𝐽

the single-ion anisotropy of the impurity, and h is the external magnetic field.
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. 

Fig.1. Antiferromagnetic Ising spin ring with a impurity spin at site N.

By using the transfer matrix method, the partition function of the system can be 

expressed as follow,

(2)𝑍 = Tr(𝑒 ―𝛽𝐻) = Tr(𝐏𝑁 ― 2𝐏1𝐏2)

here  and the matrix elements of ,  and  are given respectively by,𝛽 = 1 (𝑘𝐵𝑇) 𝐏 𝐏1 𝐏2

(3a)𝑃𝑆𝑍
𝑖 ,𝑆𝑍

𝑖 + 1 = 𝑒
―𝛽(𝐽𝑆𝑍

𝑖 𝑆𝑍
𝑖 + 1 ―

1
2ℎ(𝑆𝑍

𝑖 + 𝑆𝑍
𝑖 + 1))

(3b)𝑃1𝑆𝑍
𝑁 ― 1,𝜇𝑍

𝑁
= 𝑒

―𝛽(𝐽𝑆𝑍
𝑁 ― 1𝜇𝑍

𝑁 ―
1
2ℎ(𝑆𝑍

𝑁 ― 1 + 𝜇𝑍
𝑁) -

1
2𝐷(𝜇𝑍

𝑁)𝟐)

(3c)𝑃2𝜇𝑍
𝑁,𝑆𝑍

1
= 𝑒

―𝛽(𝐽1𝜇𝑍
𝑁𝑆𝑍

1 ―
1
2ℎ(𝜇𝑍

𝑁 + 𝑆𝑍
1) -

1
2𝐷(𝜇𝑍

𝑁)2)

By introducing the unitary matrix V, we can diagonalize the matrix P, thus the 

partition function is written as,

(4)𝑍 = Tr(𝛌𝑁 ― 2𝐕 ―1𝐏1𝐏2𝐕) = 𝜆𝑁 ― 2
1 𝑅11 + 𝜆𝑁 ― 2

2 𝑅22

and the entropy of system can be given by,
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(5)𝑆 = 𝑘𝐵ln (𝑍) + 𝑘𝐵𝑇
∂ln(𝑍)

∂𝑇

where is the inverse matrix of matrix V,  is a diagonal matrix,𝐕 ―1 

(6)𝛌 = 𝐕 ―1𝐏𝐕 = (𝜆1 0
0 𝜆2)

(7)𝐑 = 𝐕 ―1𝐏1𝐏2𝐕 = (𝑅11 𝑅12
𝑅21 𝑅22)

here[5],

(8)𝜆1,2 = 𝑒 ―
1
4𝛽𝐽cosh (1

2𝛽ℎ) ± 𝑒 ―
1
2𝛽𝐽sinh2(1

2𝛽ℎ) + 𝑒
1
2𝛽𝐽 

(9)𝐕 = (𝑉11 𝑉12
𝑉21 𝑉22)

with

𝑉11 =
1

1 + (𝜆1𝑒
―

1
4𝛽𝐽

― 𝑒
―

1
2𝛽(𝐽 ― ℎ))

2

 

𝑉12 =
1

1 + (𝜆2𝑒
―

1
4𝛽𝐽

― 𝑒
―

1
2𝛽(𝐽 ― ℎ))

2

 

𝑉21 =
(𝜆1𝑒

―
1
4𝛽𝐽

― 𝑒
―

1
2𝛽(𝐽 ― ℎ))

1 + (𝜆1𝑒
―

1
4𝛽𝐽

― 𝑒
―

1
2𝛽(𝐽 ― ℎ))

2

 

𝑉22 =
(𝜆2𝑒

―
1
4𝛽𝐽

― 𝑒
―

1
2𝛽(𝐽 ― ℎ))

1 + (𝜆2𝑒
―

1
4𝛽𝐽

― 𝑒
―

1
2𝛽(𝐽 ― ℎ))

2

 

The magnetization m per spin of the system is defined as,

𝑚 =
〈𝑀〉
𝑁 =

1
𝑁〈(𝑁 ― 1

∑
𝑖 = 1

𝑆𝑧
𝑖 + 𝜇𝑍

𝑁)〉    
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(10)

The magnetic susceptibility of system, ,𝜒 =
∂〈𝑀〉

∂ℎ |
ℎ = 0

(11)𝜒 =
1

𝑘𝐵𝑇(〈𝑀𝑀〉 ― 〈𝑀〉〈𝑀〉)

When the external magnetic field h is 0, the magnetization m of the system is 0, 

thus

〈𝑀〉 = 0

The magnetic susceptibility multiplied by temperature becomes,

(12)𝜒𝑇 = 〈(𝑁 ― 1

∑
𝑖 = 1

SZ
i + 𝜇𝑍

𝑁)(𝑁 ― 1

∑
𝑖 = 1

𝑆𝑍
𝑖 + 𝜇𝑍

𝑁)〉
here we take the Boltzmann's constant  .𝑘𝐵 = 1

The right hand of Equation (12) can be divided into single-point correlation 

function  and two-points correlation function , where𝐹1 𝐹2

(13)𝐹1 = 〈(𝑆𝑍
1)2 + (𝑆𝑍

2)2 + (𝑆𝑍
3)2 + ⋯ + (𝑆𝑍

𝑁 ― 1)2 + (𝜇𝑍
𝑁)2〉

𝐹2 = 2〈𝑆𝑍
1𝑆𝑍

2 + 𝑆𝑍
1𝑆𝑍

3 + 𝑆𝑍
1𝑆𝑍

4 + ⋯ + 𝑆𝑍
1𝑆𝑍

𝑁 ― 1 + 𝑆𝑍
1𝜇𝑍

𝑁〉  

+2〈𝑆𝑍
2𝑆𝑍

3 + 𝑆𝑍
2𝑆𝑍

4 + ⋯ + 𝑆𝑍
2𝑆𝑍

𝑁 ― 1 + 𝑆𝑍
2𝜇𝑍

𝑁〉  
+⋯⋯⋯⋯⋯
+2〈𝑆𝑍

𝑁 ― 2𝑆𝑍
𝑁 ― 1 + 𝑆𝑍

𝑁 ― 2𝜇𝑍
𝑁〉

+2〈𝑆𝑍
𝑁 ― 1𝜇𝑍

𝑁〉
(14)

By using transfer matrix method, single-point correlation function  can be  𝐹1
written as,
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𝐹1 = 〈𝑁 - 1
4 + (𝜇𝑍

𝑁)2〉
=

𝑁 - 1
4 +

1
𝑍Tr(𝐏𝑁 ― 2𝐕 ―1𝐏𝟏(𝛍𝑍

𝑁)2𝐏𝟐𝐕)

=
𝑁 - 1

4 +
𝜆𝑁 ― 2

1 𝑄11 + 𝜆𝑁 ― 2
2 𝑄22

𝜆𝑁 ― 2
1 𝑅11 + 𝜆𝑁 ― 2

2 𝑅22

(15)
where, 

(16)𝐐 = 𝐕 ―1𝐏1(𝛍𝑍
𝑁)2𝐏2𝐕 = (𝑄11 𝑄12

𝑄21 𝑄22)
where  is a diagonal matrix whose eigenvalues are the diagonal elements,𝛍𝑍

𝑁

𝛍𝑍
𝑁 = (𝜇𝑁 0 0 0 0

0 (𝜇𝑁 ― 1) 0 0 0
0 0 ⋱ 0 0
0 0 0 ― (𝜇𝑁 ― 1) 0
0 0 0 0 ― 𝜇𝑁

)
(17)

In the zero temperature limit , the matrix V can be simplified as,𝑇→0

(18)𝐕 =
1
2(1 1

1 ―1)
Thus the diagonal matrix 𝐒𝑍

𝑖

(19)𝐒𝑍
𝑖 = (1

2 0

0 ―
1
2
)

can be transformed to a new diagonal form, 

𝐕 ―1𝐒𝑍
𝑖 𝐕𝛌𝑘𝐕 ―1𝐒𝑍

𝑗 𝐕

=
1
2(0 1

1 0)(𝜆𝑘
1 0

0 𝜆𝑘
2)1

2(0 1
1 0)

=
1
4(𝜆𝑘

2 0
0 𝜆𝑘

1)
(20)

Any term in two-points correlation function  can be written as,𝐹2
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〈S𝑍
𝑖 S𝑍

𝑖 + 1 + S𝑍
𝑖 S𝑍

𝑖 + 2 + S𝑍
𝑖 S𝑍

𝑖 + 3 + ⋯ + S𝑍
𝑖 S𝑍

𝑁 ― 1 + S𝑍
𝑖 μ𝑍

𝑁〉

=
1
𝑍Tr(𝐏𝑖 ― 1𝐒𝑍

𝑖 𝐏𝐒𝑍
𝑖 + 1𝐏𝑁 ― 3 ― (𝑖 ― 1)𝐏1𝐏2 + 𝐏𝑖 ― 1𝐒𝑍

𝑖 𝐏2𝐒𝑍
𝑖 + 2𝐏𝑁 ― 4 ― (𝑖 ― 1)𝐏1𝐏2

+ 𝐏𝑖 ― 1𝐒𝑍
𝑖 𝐏3𝐒𝑍

𝑖 + 3𝐏𝑁 ― 5 ― (𝑖 ― 1)𝐏1𝐏2 + ⋯ + 𝐏𝑖 ― 1𝐒𝑍
𝑖 𝐏𝑁 ― 2 ― (𝑖 ― 1)𝐒𝑍

𝑁 ― 1𝐏1𝐏2

+ 𝐏𝑖 ― 1𝐒𝑍
𝑖 𝐏𝑁 ― 2 ― (𝑖 ― 1)𝐏1𝛍𝑍

𝑁𝐏2)

=
1
𝑍Tr(

𝛌𝑖 ― 1𝐕 ―1𝐒𝑍
𝑖 𝐕 𝛌𝐕 ―1𝐒𝑍

𝑖 + 1𝐕𝛌𝑁 ― 3 ― (𝑖 ― 1)𝐑 + 𝛌𝑖 ― 1𝐕 ―1𝐒𝑍
𝑖 𝐕𝛌2𝐕 ―1𝐒𝑍

𝑖 + 2𝐕𝛌𝑁 ― 4 ― (𝑖 ― 1)𝐑

+ 𝛌𝑖 ― 1𝐕 ―1𝐒𝑍
𝑖 𝐕𝛌3𝐕 ―1𝐒𝑍

𝑖 + 3𝐕𝛌𝑁 ― 5 ― (𝑖 ― 1)𝐑 + ⋯

+ 𝛌𝑖 ― 1𝐕 ―1𝐒𝑍
𝑖 𝑽𝛌𝑁 ― 2 ― (𝑖 ― 1)𝐕 ―1𝐒𝑍

𝑁 ― 1𝐕 𝐑
+ 𝛌𝑖 ― 1𝐕 ―1𝐒𝑍

𝑖 𝐕𝛌𝑁 ― 2 ― (𝑖 ― 1)𝐕 ―1𝐏1𝛍𝑍
𝑁𝐏2𝐕)

=
1
𝑍Tr{(1

4𝜆𝑁 ― 3
1 𝜆2𝑅11 0

0
1
4𝜆1𝜆𝑁 ― 3

2 𝑅22) + (1
4𝜆𝑁 ― 4

1 𝜆2
2𝑅11 0

0
1
4𝜆2

1𝜆𝑁 ― 4
2 𝑅22) + ⋯

+ (1
4𝜆𝑖 ― 1

1 𝜆𝑁 ― 2 ― (𝑖 ― 1)
2 𝑅11 0

0
1
4𝜆𝑁 ― 2 ― (𝑖 ― 1)

1 𝜆(𝑖 ― 1)
2 𝑅22)

+ (1
2𝜆𝑖 ― 1

1 𝜆𝑁 ― 2 ― (𝑖 ― 1)
2 𝑌21 0

0
1
2𝜆𝑁 ― 2 ― (𝑖 ― 1)

1 𝜆(𝑖 ― 1)
2 𝑌12)}

=
1

𝜆𝑁 ― 2
1 𝑅11 + 𝜆𝑁 ― 2

2 𝑅22[
1
4𝜆𝑁 ― 3

1 λ2(1 ― (𝜆2

𝜆1)𝑁 ― 2 ― (𝑖 ― 1))
1 ―

𝜆2

𝜆1

𝑅11

+

1
4𝜆1𝜆𝑁 ― 3

2 ((1 ― (𝜆1

𝜆2)𝑁 ― 2 ― (𝑖 ― 1)

)

1 ―
𝜆1

𝜆2

𝑅22

+
1
2𝜆𝑖 ― 1

1 𝜆𝑁 ― 2 ― (𝑖 ― 1)
2 𝑌21 +

1
2𝜆𝑁 ― 2 ― (𝑖 ― 1)

1 𝜆(𝑖 ― 1)
2 𝑌12]

(21)
where, , the matrix Y is defined as,𝑖 = 1,2,⋯,𝑁 ― 1
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(22) 𝐘 = 𝐕 ―1𝐏1𝛍𝑁𝐏2𝐕 = (𝑌11 𝑌12
𝑌21 𝑌22)

By summation of the correlation function of spins,  and , we can get𝐹1  𝐹2

 (23) 

lim
𝑇→0

𝜒𝑇

=
1

𝑅11 + (𝜆2

𝜆1)𝑁 ― 2

𝑅22{1
2(

𝜆2

𝜆1((𝑁 ― 2) ―

𝜆2

𝜆1(1 ― (𝜆2

𝜆1)𝑁 ― 2)
1 ―

𝜆2

𝜆1
)

1 ―
𝜆2

𝜆1 )𝑅11 +
1
2

((𝜆2

𝜆1)𝑁 ― 3((𝑁 ― 2) ―

𝜆1

𝜆2(1 ― (𝜆1

𝜆2)𝑁 ― 2)
1 ―

𝜆1

𝜆2
)

1 ―
𝜆1

𝜆2 )𝑅22 + ((1 ― (𝜆2

𝜆1)𝑁 ― 1)
1 ―

𝜆2

𝜆1
)𝑌12

+ ((𝜆2

𝜆1)𝑁 ― 2(1 ― (𝜆1

𝜆2)𝑁 ― 1)
1 ―

𝜆1

𝜆2
)𝑌21

+ 𝑄11 + (𝜆2

𝜆1)𝑁 ― 2

𝑄22 +
𝑁 ― 1

4 (𝑅11 + (𝜆2

𝜆1)𝑁 ― 2

𝑅22)}
In high temperature limit , the matrix V also satisfy the eq.(18), therefore 𝑇→∞

the form of the  in eq. (23) still holds. By using , , ,  𝜒𝑇  𝜆1 = 2  𝜆2 = 0  𝑌12 = 0  𝑌21 = 0
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and when , , , when , , . The  𝜇𝑁 = 1  𝑅11 = 3  𝑄11 = 2 𝜇𝑁 =
3
2 𝑅11 = 4 𝑄11 = 5 𝜒𝑇

can be written as,

𝑙𝑖𝑚
𝑇→∞

𝜒𝑇 =
𝑁 ― 1

4 +
𝑄11

𝑅11
= {3𝑁 + 5

12 ,  (𝜇𝑁 = 1)
𝑁 + 4

4 ,  (𝜇𝑁 =
3
2)

(24)

In the following section, we will give the magnetic susceptibility of system for 

different parameter of system and temperature. For convenience, the single-ion 

anisotropy D, host-impurity exchange interaction , temperature T and external 𝐽1

magnetic field h are reduced by ( , , , )𝐽 𝐷⇒𝐷/𝐽 𝐽1⇒𝐽1/𝐽 𝑇⇒𝑇/𝐽  ℎ⇒ℎ/𝐽

3.Results and discussions
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Fig.2. The temperature dependence of χT for different anisotropy of impurity and 

host-impurity exchange interaction. . (a) , (b) , 𝑁 = 21,𝜇𝑁 = 1 𝐷
𝐽 = 0.3  𝐷 𝐽 = ―0.24

(c) , (d) .𝐷
𝐽 = ―0.4 𝐷

𝐽 = ―0.6
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Fig.3. The temperature dependence of χT for different anisotropy of impurity and 

host-impurity exchange interaction. . (a) , (b) , (c)𝑁 = 21,𝜇𝑁 = 3/2 𝐷
𝐽 = 0.4 𝐷

𝐽 = ―0.1  

,  (d) .
𝐷

𝐽 = ―0.2  𝐷 𝐽 = ―0.6

Firstly, we take the number of the spin N to be an odd number. Because of the 

antiferromagnetic coupling, all the spin bonds cannot reach the minimum energy at 

the same time, system exhibits geometric frustration phenomenon and the behavior of 
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magnetic susceptibility will be more interesting. In Figs. 2 and 3 they show the 

temperature dependence of the magnetic susceptibility multiplied by temperature χT 

for the spin quantum numbers of impurity being 1 and 3/2 respectively and . 𝑁 = 21

Under the different anisotropy of impurity and different host-impurity exchange 

interaction, it is found that the χT increases almost linearly with temperature in the 

higher temperature, which is consistent with the result of open chain, but it is 

significantly different with that of the open chain in the low temperature [5]. The χT 

shows three obvious variation behaviors with temperature decreasing. In the first case, 

the χT rapidly increases and tends to a finite value as temperature approaches to zero. 

In the second case, the χT tends to a finite value almost horizontally with the 

temperature decreasing, which is consistent with the result of Delta chain [2]. In the 

third case, the χT decreases rapidly and tends to a finite value with the temperature 

closing zero. In addition, we find that the value of χT in zero temperature limit is 

related to the value of impurity anisotropy and host-impurity exchange interaction. 

Comparing Fig. 2 and Fig. 3 we also find that the values of χT in zero temperature 

limit are different for spin quantum numbers of the impurity taking 1 and 3/2, 

indicating that the limit value of χT is related to the spin quantum number of the 

impurity, which is consistent with the open chain.
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1.8

2
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1 /
J

μN = 1

I

III

J1 / J = 1 / 2

T = 1 / 2

T = ( N - 3 ) / ( 2 ( N - 2 ) )J1 / J = - 2 D / J

T = ( N - 3 ) / ( 2 ( N - 1 ) )

J1 / J = - 2 D / J = 1 / 2

T = ( N - 1 ) / ( 2 N )T = 0

II

T = 1

J1 / J = 2 D / J + 1

T = 1 / 2

Fig.4. The value of χT in the parameter space of strength  of anisotropy of impurity 𝐷

and host-impurity exchange interaction  as .  .𝐽1  𝑇→0  𝜇𝑁 = 1
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-1 -0.5 -0.25 0 0.5
 D / J

0

0.5

1

1.5

2

2.5

3
 J

1 /
J

μN = 3 / 2

T = ( 5 N - 14 ) / ( 4 (N - 2 ) )

II 2

T = 9 / 4

J1 / J  = 1 / 3

T = 5 / 4

J1 / J  = - 2 D / J = 1 / 3

T = ( 5 N - 4 ) / ( 4 N )

J1 / J = - 4 D / J - 1 = - 2 D / J

T = ( 3 N - 7 ) / ( 4 (N - 1 ) )

J1 / J = 4 D / J + 1

T = 5 / 4

T = 1 / 4

II 1

III

I

J1 / J  = - 2 D / J

T = ( 5 N - 13 ) / ( 4 (N - 1 ) )

J1 / J = - 4 D / J - 1

T = ( 6 N - 15 ) / ( 8 N - 12 )

Fig.5. The value of χT in the parameter space of strength  of anisotropy of impurity 𝐷

and host-impurity exchange interaction  as .  .𝐽1  𝑇→0  𝜇𝑁 = 3/2

Because the system has no long-range magnetic order in the finite temperature, 

the transition temperature is zero. According to Curie's law, , in zero  𝜒𝑇 = 𝐶

temperature limit the values of χT for various anisotropy of impurity and 

host-impurity exchange interaction are different, indicating that the Curie constant 

associates with the anisotropy of impurity and host-impurity exchange interaction. In 

order to determine the Curie constant of the system, we take the zero temperature 

limit of formula (23) to obtain the Curie constants of the system for different 

parameters. The specific results are shown in Fig. 4 and Fig. 5. It can be seen that for 

the impurity with spin quantum number 1 and 3/2, although the values of Curie 
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constant are different, the values are all distributed in three regions, the boundary line 

and intersection points of the regions. In three regions, the value of the χT in zero 

temperature limit can be expressed as,

(25)lim
𝑇→0

𝜒𝑇 = {
(𝜇𝑁)2,                                          phase I

(𝜇𝑍
𝑁)2

𝑚𝑖𝑛   ,                                   phase II
(𝜇𝑁)2 + (𝜇𝑍

𝑁)2
𝑚𝑖𝑛

2 ,, the boundary of phase I and phase II
(2(𝜇𝑁)2 + 1)(𝑁 ― 2) + 2𝜇𝑁(1 ― 𝑁) + 1

2(𝑁 ― 2) ,   phase III
(𝜇𝑁)2 ― 𝜇𝑁 +

1
2, the boundary of phase I and phase III

It is found that the Curie constant in each region is independent of the value of 

the anisotropy of the impurity and the host-impurity exchange interaction, and is 

related to the spin quantum number of impurity. In particular, in the phase , the  III

Curie constant is also related to the total number of spin.

To clarify this issue, we determine the ground state of the system in each 

region. Using the up and down arrows to represent the directions of the host spin 

and the number ,0,  and , , ,  represent the spin states of the + 1 - 1 +
3
2  +

1
2 ―

1
2 ―

3
2

impurity with spin quantum number of 1 and 3/2 respectively, the ground state of the 

system can be expressed as follows,

For ， 𝜇𝑁 = 1

(26)ground state = { |⋯↑↓↑ ― 1↓↑↓⋯⟩,  phase I
|⋯↑↓↑0↓↑↓⋯⟩,  phase II

|⋯↑↓↑ ― 1↑↓↑⋯↑↑⋯⟩ , |⋯↑↓↑ ― 1↑↓↑⋯↓↓⋯⟩
                                ,   phase III

due to the upper and lower symmetry of Ising spin, the antisymmetric state is also the 

ground state of the system.

For , 𝜇𝑁 = 3/2
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(27) ground state = { |⋯↑↓↑ -
3
2↓↑↓⋯⟩,  phase I

|⋯↑↓↑ -
1
2↓↑↓⋯⟩,  phase II1

|⋯↓↑↓ -
1
2↑↓↑⋯⟩ ,|⋯↑↓↑ -

1
2↑↓↑⋯⟩

|⋯↑↓↑ ―
1
2↑↓⋯↑↑⋯⟩,|⋯↑↓↑ ―

1
2↑↓⋯↓↓⋯⟩

                                     , phase II2
|⋯↑↓↑ ―

3
2↑↓↑⋯↑↑⋯⟩and |⋯↑↓↑ ―

3
2↑↓↑⋯↓↓⋯⟩

                                     , phase III

the ground state of the system also includes the antisymmetric state. 

Here, the Curie constant of phase  and phase  in the system of  II1 II2 𝜇𝑁 = 3/2

are equivalent, so we separate them with a dashed line in Fig. 5.

In phase I, due to the weak host-impurity exchange interaction, the impurity spin 

and connected spin shows ferromagnetic arrangement, and the magnetic susceptibility 

of the system shows ferromagnetic temperature behavior similar to that of an open 

chain, and the Curie constant equals to the square of the net spin [5]. In phase II1, the 

frustration of the exchange interaction and the easy-plane anisotropy of the impurity 

are superposed in the same direction to minimize the value of spin of the impurity, 

and the ground state of the system is in nondegenerate. In phase II2, for , 𝜇𝑁 = 3/2

the value of the spin state of impurity is same to that of the host spin, so the ground 

state of the system is degenerate. In region III, when the anisotropy of the impurity is 

positive, the large host-impurity exchange interaction and anisotropy demand the spin 

of impurity taking the maximum value to ensure the anti-parallel arrangement of the 

spin of the impurity and the neighboring spin of the host. When the anisotropy of the 

impurity is negative, the larger host-impurity exchange interaction is dominant in the 

competition with the anisotropy of the impurity, which also leads to the impurity 
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taking the maximum spin value and the anti-parallel arrangement of the spin of the 

impurity and the neighboring spin of the host. In this case, the frustration leads to the 

spins in the ring cannot get simultaneously the minimum energy, and the spin pair 

with same direction can appear at any position in the ring, indicating that the ground 

state of system is degenerate, which may be the reason that the magnetic susceptibility 

multiplied by temperature χT is related to the total number of spin N. At the boundary 

line between phase I and phase II, the magnetic susceptibility multiplied by 

temperature χT equals to the average value of the values in the two phases.

Since the Curie constant is related to the spin configuration of system at ground 

state, we can discuss the ground state entropy of system. Using equation (5) and the 

transfer matrix calculation, we find the ground state entropy of the system can be 

expressed as, 

For ,𝜇𝑁 = 1

(28)𝑆 = { ln (2),                phase I and phase II
ln (2(𝑁 ― 2)),phase III

ln (4),                the boundary of phase I and phase II
ln (2(𝑁 ― 1)),the boundary of phase I and phase III,phase II and phase III

ln (2𝑁),             the intersection of phase I , phase II and phase III

For ,𝜇𝑁 = 3/2

(29)𝑆 = {
ln (2),                phase I and phase II1

ln (2(𝑁 ― 1)), phase II2
ln (2(𝑁 ― 2)),phase III

ln (4),                the boundary of phase I and phase II1
ln (2(𝑁 ― 1)),the boundary of phase I and phase III,phase II1 and phase III

ln (2(2𝑁 ― 3)),the boundary of phase II2 and phase III
ln (2𝑁),             the intersection of phase I , phase II1 and phase III

ln (4(𝑁 ― 1)), the intersection of phase II1 , phase II2 and phase III

In phases  and phase , for  and phases  and , the ground state  I II 𝜇𝑁 = 1 I II1

entropy is , indicating the system is in the upper and lower symmetric state. In ln (2)
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phase , for , the number of state is 2 more than that in phase  because II2 𝜇𝑁 = 3/2 III

of the impurity spin being in  state and the ground state entropy is 1/2

. And on the boundary line between the two phases, the ground state ln (2(𝑁 ― 1))

entropy equals the natural logarithm of the sum of all the ground states in the two 

phases. In the intersection of phases, the ground state entropy equals the natural 

logarithm of the sum of all the ground states in the neighboring phases.

When the number N of spin of the ring is even, the system does not have the 

frustrated phenomenon, but the system may also shows the ferromagnetic 

characteristics, and the magnetic susceptibility shows similar behaviors to those in 

Fig. 2 and Fig. 3. Compared with the number of spin N being old, in zero temperature 

limit the Curie constant is also determined by the ground state of the system, namely, 

by the anisotropy of impurity and the host-impurity exchange interaction. Since there 

is no frustrated effect and degeneracy in the ground state of the system, the magnetic 

susceptibility multiplied by temperature χT in zero temperature limit is equal to the 

square of the net spin in each phase, independent of the number of spin, N, which is 

consistent with the conclusion about the open chain [5].

In  system，the ground state can be divided into two regions, 𝜇𝑁 = 1

(30)ground state = {|⋯↑↓↑ ― 1↑↓↑⋯⟩,  
𝐽1

𝐽 +
2𝐷
𝐽  > ―1

|⋯↑↓↑0↑↓↑⋯⟩,   
𝐽1

𝐽 +
2𝐷
𝐽 < ―1

where due to the upper and lower symmetry of Ising spin, the antisymmetric state is 

also the ground state of the system.

Since the absolute value of the net spin in both phases is 1/2, the Curie constant 
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of the system is 1/4 in both phases and at boundary between the two phases.

In  system, the ground state can also be divided into two regions, 𝜇𝑁 = 3/2

 (31)ground state = {|⋯↑↓↑ ―
3
2↑↓↑⋯⟩,  

𝐽1

𝐽 +
4𝐷
𝐽  > ―1

|⋯↑↓↑ -
1
2↑↓↑⋯⟩,  

𝐽1

𝐽 +
4𝐷
𝐽 < ―1

the ground state of the system also includes the antisymmetric state.

Since the absolute value of the net spin is 1 and 0 in the two phases, the Curie 

constant of the system is 1 and 0 in the two phases, respectively, and it is 1/2 on the 

boundary line between the two phases. 

For  and , the ground state entropy is  in the two 𝜇𝑁 = 1 𝜇𝑁 = 3/2 ln (2)

phases, and it is  on the boundary line between the two phases.ln (4)

4 . Conclusion

Although the finite antiferromagnetic Ising closed ring doped with spin-1 and 

-3/2 impurities has no spontaneous magnetization at finite temperature, it shows 

ferromagnetic characteristics at low temperature. Due to the anisotropy of the 

impurity and host-impurity exchange interaction, its magnetic susceptibility 

multiplied by temperature χT presents three types of behavior with temperature 

decreasing in the low temperature, bending upward, horizontally and downward tends 

to a finite value at zero temperature. In the parameter space of the anisotropy of the 

impurity and host-impurity exchange interaction, when the number of spin is even, the 

ground state of the system has two nondegenerate phases. When the number of spin is 

odd, the system is frustrated, and there are nondegenerate phases and degenerate 
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phases in the ground state. In the nondegenerate phase, the Curie constant is equal to 

the square of the net spin of the system and the ground state entropy is , and on ln (2)

the boundary line of two nondegenerate phases, the Curie constant is equal to the 

average value of the values in the two neighboring phases and the ground state 

entropy is . In the degenerate phase, the Curie constant and ground state ln (4)

entropy are dependent on the number of spin in the ring, except for the Curie constant 

being a constant in degenerate state for . According to the results of this  II2 𝜇𝑁 = 3/2

paper, we speculate that for any finite Ising antiferromagnetic system, when the 

ground state is nondegenerate, the magnetic susceptibility multiplied by temperature 

χT in the zero temperature limit equals the square of the net spin, and when the 

ground state is degenerate, it is related to the number of spins in the system. In high 

temperature limit, the χT is related to not only the number of spin but also spin 

quantum number of impurity.
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