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Abstract

We connected the two ends of a finite spin-1/2 antiferromagnetic Ising chain
with a magnetic impurity at one end to form a closed ring, and studied the magnetic
susceptibility of it exactly by using the transfer matrix method. We calculated the
magnetic susceptibility in the whole temperature range and gave the phase diagram at
ground state of the system about the anisotropy of the impurity and strength of the
connection exchange interaction for spin-1 and 3/2 impurities. We also gave the
ground state entropy of system and derived the asymptotic expression of the magnetic
susceptibility multiplied by temperature at zero temperature limit and high
temperature limit. It is found that degenerate phase may exist in some parameter
region at zero temperature for the spin number of system being odd, and the ground
state entropy 1s In (2) in the nondegenerate phase and is dependent on the number of
spin in the degenerate phase. The magnetic susceptibility of the system at low
temperature exhibits ferromagnetic behavior, and the Curie constant is related to the

spin configuration at ground state. When the ground state is nondegenerate, the Curie
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constant is equal to the square of the net spin, regardless of the parity of the number of
the spin. When the number of spin is odd and the ground state is degenerate, the Curie
constant may be related to the total number of spin. In high temperature limit, the
magnetic susceptibility multiplied by temperature is related to the spin quantum

number of impurity and the number of spin in the ring.

Keywords: transfer matrix method, magnetic susceptibility, magnetic impurity,

Ising ring, Curie's law
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1.Introduction

In condensed matter physics, the variants of low dimensional quantum
antiferromagnetic system have received much attention due to its low dimensionality
and novel phenomenon arising from the quantum fluctuations[1,2]. In theory, The
magnetic properties of antiferromagnetic chain with impurity have been widely
studied. It is found that the result of the convergence of magnetic susceptibility for
antiferromagnetic chain decorated with spin pendant in the low temperature is very
different from that of the pure antiferromagnetic chain [1]. The magnetic
susceptibility of antiferromagnetic chain with ferromagnetic sawteeth (Delta chain)
shows Curie law behavior at low temperature, the Curie constant in zero temperature
limit is related to the degeneracy of the system, and the specific heat in the ultra-low
temperature shows obvious size effect [2]. By doping impurities, an antiferromagnetic
spin chain can be divided into many finite parts, thus the boundary effect on the
magnetic behavior of the system may appear. For example, in a finite anisotropic
Heisenberg antiferromagnetic chain, it is discovered that the magnetic susceptibility
multiplied by temperature in low temperature is related to the length of the chain[3].
In the semi-infinite XXZ antiferromagnetic chain, the boundary magnetic
susceptibility of system shows divergence in zero temperature limit[4]. In a finite
Ising antiferromagnetic chain with a impurity at one end, the magnetic susceptibility
multiplied by temperature in zero temperature limit is found proportional to the square
of net spin and has nothing to do with the value of the impurity anisotropy and the

exchange interaction between impurity and the host[5]. For a part of
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antiferromagnetic chain, the behavior of the magnetic susceptibility in low
temperature is found to be related to the parity of the number of the spin and the
defect position[6,7]. When the two dimensional antiferromagnet is doped by defects
or impurities, the susceptibility of system in low temperature limit shows some
abnormal behaviors[8,9]. And for the mixed-spin bathroom tile lattice, the
magnetization was found to be influenced by the spin quantum number and single-ion
anisotropy strength[10].

Experiments indeed found the effect of the magnetic or nonmagnetic impurity on
the antiferromagnet. The quasi one-dimensional Cu,MSiOs (M =Co, Ni)
antiferromagnet synthesized recently, doped Co or Ni, shows different magnetic
susceptibility in low temperature[11]. As the Co ion in the low-dimensional CoTa,Og
antiferromagnet is replaced by Mg ion to an extent, the ferromagnetic behavior of the
system in the low temperature can be explained by the anisotropic Heisenberg model
or Ising model[12]. In quasi one-dimensional Sr,CuO; antiferromagnet, it is found
that the external magnetic field can induce the local magnetic moment near the
nonmagnetic impurity, and local magnetic susceptibility shows a high peak in the low
temperature, reflecting the obvious ferromagnetic characteristics and confirmed by
theory[3,13,14]. Doping Mg ion into one-dimensional SrCuQO, antiferromagnetic
chain to get SrCu;,Mg,0, chain, the magnetic susceptibility of the system in low
temperature converges to different finite values when x get different value[15].

In many low-dimensional antiferromagnets, the energy of each bond cannot

reach the minimum at the same time due to the geometric structure, this is the
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so-called frustration phenomenon, such as Delta chain and the triangle structure in
azurite and in K,;MnS,,Se,[2,16-19]. Because of the energy gap between the ground
state and the excited state, the specific heat of the frustrated system usually shows
peak in the low temperature, and the magnetic susceptibility is also different from that
of antiferromagnetic system without frustration [17-19]. If we connect the two ends of
the finite antiferromagnetic spin chain with an impurity through antiferromagnetic
interaction to form a closed ring, the boundary effect may be eliminated, but it will
bring geometric frustration effect when the number of spin is odd. The behavior of the
magnetic susceptibility of the system compared with the open chain is worth studying
[5]. In two-ring structure [19], multi-ring structure[20] and Ising-Heisenberg diamond
chain[21], the specific heat and susceptibility are found to show double peaks with
temperature in some parameter range. For the Ising and Ising-like models, the
approximate and exact solution have been given in the reference[22].

In this paper we will study the finite length defective antiferromagnetic Ising
closed ring. Using the transfer matrix method[5,6,22,23], we will calculate exactly the
magnetic susceptibility of the system, and discuss the effect of impurity anisotropy,
host-impurity exchange interaction, and spin quantum number of impurity on the
magnetic susceptibility. The arrangement of the paper is as follows: Sec. II presents
the exact solution for the finite spin-1/2 Ising ring with a magnetic impurity. In Sec.
III we describe its ground-state properties, and the behavior of magnetic
susceptibility, especially the value in the zero temperature limit. In Sec. IV we make a

brief summary.
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2. model and method

We set up a spin-1/2 antiferromagnetic finite Ising ring by connecting the two ends
of a Ising chain with a impurity on one end, S denotes the host spin, u%
represents the magnetic impurity spin at site N, as shown in Fig.1. The

Hamiltonian is given by,

N—2 N—-1
2
H=] Y, SISt 1+ Sk otk + Juiist —h ) 57 — huf — D(f)
i=1 i=1
(D
where S% =+ ! and u%=-1,0,1o0r _3_113 representing the impurity spin state
I —= 2 UN 'Y 2 s IEP g p Y Sp

with spin quantum number 4, of I or 3/2 respectively. The host-impurity exchange
interaction (connecting exchange interaction) is J, at the closed place, and the other
antiferromagnetic exchange interaction between the nearest-neighbor spins is j. Dis

the single-ion anisotropy of the impurity, and /4 is the external magnetic field.

© The Author(s) or their Institution(s)
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Fig.1. Antiferromagnetic Ising spin ring with a impurity spin at site N.

By using the transfer matrix method, the partition function of the system can be
expressed as follow,
Z =Tr(e ") = Tr(P" ~2P,P,) )

here B =1/(ksT) and the matrix elements of P, P; and P, are given respectively by,

1
—B(JS7S% 1 = 3h(S? + 5Fi 1)

Psist., =e (3a)
—_8(1s% _ Z_}hsz_ i —ED 7)2
P15ﬁ_1,MIZV —e ,3(] R 1k —h(ST 1 + 1) - 3D (uh) ) (3b)
_ 76z _Ypoz 4 o7y _ 1p(,2)?
Pzﬂﬁ's{ —e ﬁ(]l#N 172 (uf + 57) 2 (uf) ) (30)

By introducing the unitary matrix V, we can diagonalize the matrix P, thus the
partition function is written as,
Z=Tr(AN=2V=1P,P,V) = AY ~2Ry1 + 1Y ~2R,, (4)

and the entropy of system can be given by,

© The Author(s) or their Institution(s)
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S = kgln (2) + kpTae?

where V1 is the inverse matrix of matrix V, A is a diagonal matrix,

A0
—_v-lpv —
A=V PV—(O /12)
R R
a1 _(R11 Rz
R=V P1P2V—(R21 Rzz)
here[5],
1 1 1
A12=e”Pcosh (381) + \/e‘zﬁf sinh?(381) + ¢!
Vit Vo2
V= (V21 sz)
with
v 1
o 1ﬁ] 1[3(] h) i
1+ (/he ¥ _e 2 )
v 1
o 1ﬁ] 1[3(] ) i
1+ (xlze ¥ _e 2 )
}ﬁ/ lﬁU h)
(/119 4T _e 2 )
Vor =
! 1.3] }ﬁ(] h) i
1+ (Ale ¥ _e 2 )
}ﬁ/ lﬁU h)
(Aze 4T _e 2 )
Vo=

1 12
1+(Aze_4ﬁ]—e_zﬁ(]_ ))

The magnetization m per spin of the system is defined as,

N—1
M) 1
W%W(Zsf”ﬁ)

i=1

8
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(10)
. - (M)
The magnetic susceptibility of system, y = —;~ o
1
X = igrUMM) — (MKM)) (an

When the external magnetic field % is 0, the magnetization m of the system is 0,
thus
(M)=0

The magnetic susceptibility multiplied by temperature becomes,

N —1 N—1
AT = (Z S?+uﬁ)(2 S?+ uf

i=1 i=1

(12)

here we take the Boltzmann's constant kg =1 .
The right hand of Equation (12) can be divided into single-point correlation

function F1 and two-points correlation function F2, where

F1=((s9)* + (53) + (59" + - + (Sh_1)* + (uB)°) (13)

F2 = 2(S{% + 518§ + S1S% + -+ + 518§ 1 + S{uf)
+2(5%5% + S55% + - + S58% _ 1 + Shu%)

+2(S% _ 2% _ 1 + % _uk)
+2(S% _ k)
(14)

By using transfer matrix method, single-point correlation function F1 can be
written as,

© The Author(s) or their Institution(s)
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PL=( )

N -1 1 )
YR ZTr(PN ~2v P4 (uf) ’P2V)
N —1+/111V_2Q11+112V_2Q22

4 A 72R11 + A 7 %Ry,

(15)
where,
o—ip (.72\20 v (@11 le)
Q=V'P(pf) PV = (Q21 02 (16)
where p% is a diagonal matrix whose eigenvalues are the diagonal elements,
UN 0 0 0 0
0 (u—1 0 0 0
ni=|0 0 0 0
0 0 0 —(uw—1 0
0 0 0 0 — U
17)
In the zero temperature limit T—0, the matrix V can be simplified as,
11 1
Thus the diagonal matrix S?
50
S7 = (2 1) (19)
0 —3
can be transformed to a new diagonal form,
VoIsivakv isiv
1o ny(2F 0\l 1
B 5(1 0) 0 A5 5(1 0)
_1pt o0
—4\0 A
(20)

Any term in two-points correlation function F2 can be written as,

10
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(S7Sy 1+ SISFi o+ SFSF s+ -+ + SESF_ 1 + SPuk)
1 . . . .
= ZTr(P‘ —1g7ps?, ,pN—3-(-Dp.p, + pi—1§7p2§7, ,pN —4-(-Dp,p,

+ Pi—1s7p3s? ,pN—>—(=Vp,p, ... 4 pi—1g7pN-2-(-DgZ .p,P,
+ P 17PN 2= (= Dp,pfp,)

1
ZTF(
A lsfy av ISz VAN —3-(—DR 4 pAi-ly —1gZypa2y —1s7, ,vAN —4- (- DR

+ AV ISEVASY SIS VAN —S (DR 4

+A-ly —1siZV)_JV —2-(-Dy-igf _,VR
+ A -y IsZvaAN — 2= =Dy —lp ufp,v)

1 1
1 1/111\1 _3/12R11 0 Z/lllv _4/1%1?11 0
Z 0 111/112\] 3Ry, 0 Zﬂ%ﬂlzv ~*Ry,
1, N—2—(i—1)
1/11 A5 R11 0
* 1 N—2—(i—1)9(—1)
0 1/11 /15 RZZ
1, N—2—(i—1)
5/11 A2 Y21 0
+ 1 . .
0 5/111\1—2—(1—1)/151—1))/12
1 AN 2= =D
_9N =3 =
1 b 7\2(1 (/11)
= ON-2 N—2 1 Ri1
AM T R11+ A2 7Ry 2
1__
A
1/1 . AN 2= =D
e (= 1, )
"%

1. . 1 . .
+§/111_1/112V_2_(l_1)y21+§/111V_2_(l_1)/19_1)Y12]

€2y

where,i = 1,2,---,N — 1, the matrix Y is defined as,

11
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Yiu Y
-1 (Y11 Y12
Y=V Pluszv = (Y21 YZZ) (22)
By summation of the correlation function of spins, F1 and F2, we can get
lim T
T-0
M\t (7)
PR 1 1
fﬂ'_l (N—-2) 1,
4
1 1 R 1
= -2 |2 Py 1+3
Ry + (/1—1) Ry 1- A1
A AV 2
J— 1 | —
PRUEE Az (/12)
il —72)— 23
f(ll) N=2) A \ PN 3)
1-o A2
i Ry, + 1, Y12
1— /1—2 1— /1—1

In high temperature limit T—oo, the matrix V also satisfy the eq.(18), therefore

the form of the yT in eq. (23) still holds. By using A1 =2,4,=0,Y1,=0,Y,;=0
12
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and when Un = 1, R11 =3, Q11 =2, when Un = ;, R11 =4, Q11 = 5. The )(T

can be written as,

3N+5( N

im gy =1, Qu ] 12 oy
Tl—T;ZLOX 4 +R11_ N+4 _E
) MN_Z

4

(24)

In the following section, we will give the magnetic susceptibility of system for
different parameter of system and temperature. For convenience, the single-ion

anisotropy D, host-impurity exchange interaction j;, temperature 7" and external

magnetic field 4 are reduced by [(D=D/].J1=]1/]-T=T/], h=h/])

3.Results and discussions

13
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Fig.2. The temperature dependence of y7 for different anisotropy of impurity and

host-impurity exchange interaction. N = 21,uy = 1. (a) D/ J= 0.3, (b) D/ J= —0.24,

©P/ =04, @/ [ =—0s6.
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Fig.3. The temperature dependence of y7 for different anisotropy of impurity and
. . . . D D
host-impurity exchange interaction. N = 21,uy = 3/2. (a) /] =04, (b) /] =—0.1, (c)

D/] =02, (d) D/] =—0.6.

Firstly, we take the number of the spin N to be an odd number. Because of the
antiferromagnetic coupling, all the spin bonds cannot reach the minimum energy at

the same time, system exhibits geometric frustration phenomenon and the behavior of
15
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magnetic susceptibility will be more interesting. In Figs. 2 and 3 they show the
temperature dependence of the magnetic susceptibility multiplied by temperature yT'
for the spin quantum numbers of impurity being 1 and 3/2 respectively and N = 21.
Under the different anisotropy of impurity and different host-impurity exchange
interaction, it is found that the y7 increases almost linearly with temperature in the
higher temperature, which is consistent with the result of open chain, but it is
significantly different with that of the open chain in the low temperature [5]. The yT'
shows three obvious variation behaviors with temperature decreasing. In the first case,
the yT rapidly increases and tends to a finite value as temperature approaches to zero.
In the second case, the 7 tends to a finite value almost horizontally with the
temperature decreasing, which is consistent with the result of Delta chain [2]. In the
third case, the 7 decreases rapidly and tends to a finite value with the temperature
closing zero. In addition, we find that the value of y7 in zero temperature limit is
related to the value of impurity anisotropy and host-impurity exchange interaction.
Comparing Fig. 2 and Fig. 3 we also find that the values of 7 in zero temperature
limit are different for spin quantum numbers of the impurity taking 1 and 3/2,
indicating that the limit value of y7 is related to the spin quantum number of the

impurity, which is consistent with the open chain.

16
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Fig.4. The value of yT in the parameter space of strength D of anisotropy of impurity

and host-impurity exchange interaction J; as T—0.
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J,/J=-2D1J
XT=(N-3)/(2(N-1))

J,1J=2D/J+1
xT=1/2

xT=(N-3)/(2(N-2))

J,/J=-2D1J=1]2
xT=(N-1)/(2N)

Jid=1/2
XT=1/2

-0.5

uy = 1.
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py =312

J,1J=-4D/J-1
XT=(6N-15)/(8N-12) XT=(5N-14)/(4(N-2))

25

J1d

J,/J=-4D/J-1=-2D/J 7
xT=(3N-7)/(4(N-1))

J,IJ=-2D1J
L xT=(5N-13)/(4(N-1))

J,/Jd=-2D1J=1/3 J,1J =113
XT=(5N-4)/(4N) xT=5/4

I
05 -

:

xT=1/4

J1/J=4D/J+1 |
\T=5/4 xT=9/4

Fig.5. The value of yT in the parameter space of strength D of anisotropy of impurity
and host-impurity exchange interaction J; as T—0. uy=3/2.

Because the system has no long-range magnetic order in the finite temperature,
the transition temperature is zero. According to Curie's law, yT = C, in zero
temperature limit the values of y7 for various anisotropy of impurity and
host-impurity exchange interaction are different, indicating that the Curie constant
associates with the anisotropy of impurity and host-impurity exchange interaction. In
order to determine the Curie constant of the system, we take the zero temperature
limit of formula (23) to obtain the Curie constants of the system for different
parameters. The specific results are shown in Fig. 4 and Fig. 5. It can be seen that for

the impurity with spin quantum number 1 and 3/2, although the values of Curie
18
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constant are different, the values are all distributed in three regions, the boundary line
and intersection points of the regions. In three regions, the value of the y7 in zero

temperature limit can be expressed as,

r (,uN)z, phase |
(M%)fmn ) phase II
(u)® + ()
lim xT = —— — ,, the boundary of phase I and phase II (25)
T-0 (20u)?* + 1)(N = 2) + 21 = N) + 1
2IN=2) , phase Il

k(‘u,\,)z —uyt % the boundary of phase I and phase III

It is found that the Curie constant in each region is independent of the value of
the anisotropy of the impurity and the host-impurity exchange interaction, and is
related to the spin quantum number of impurity. In particular, in the phase III, the
Curie constant is also related to the total number of spin.

To clarify this issue, we determine the ground state of the system in each

region. Using the up and down arrows to represent the directions of the host spin

31 3 .
and the number + 1,0, - 1 and +3, +3, —3, —5 represent the spin states of the
impurity with spin quantum number of 1 and 3/2 respectively, the ground state of the

system can be expressed as follows,

For Un = 1,
[+ T4T — 14T!--), phasel
B [+~ TITOLTL--+), phase Il
ground state = {1201 — 1101 11e), [ NT — 1L Ldoe) (26)

, phase III

due to the upper and lower symmetry of Ising spin, the antisymmetric state is also the
ground state of the system.

For uy=3/2,
19
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r |~-m - 3U71--), phase
|11 = 341--), phase 11
1 1
|---m L1 L0 D B A s NA O
ground state = |---TlT —%Ti~-TT--->,|-~TlT —%Tl---ll---) @7
, phase 112
|1 =310t Jand [ 101 = 51000l
t , phase III

the ground state of the system also includes the antisymmetric state.

Here, the Curie constant of phase 111 and phase 112 in the system of uy = 3/2
are equivalent, so we separate them with a dashed line in Fig. 5.

In phase I, due to the weak host-impurity exchange interaction, the impurity spin
and connected spin shows ferromagnetic arrangement, and the magnetic susceptibility
of the system shows ferromagnetic temperature behavior similar to that of an open
chain, and the Curie constant equals to the square of the net spin [5]. In phase II1, the
frustration of the exchange interaction and the easy-plane anisotropy of the impurity
are superposed in the same direction to minimize the value of spin of the impurity,
and the ground state of the system is in nondegenerate. In phase 112, for uy = 3/2,
the value of the spin state of impurity is same to that of the host spin, so the ground
state of the system is degenerate. In region III, when the anisotropy of the impurity is
positive, the large host-impurity exchange interaction and anisotropy demand the spin
of impurity taking the maximum value to ensure the anti-parallel arrangement of the
spin of the impurity and the neighboring spin of the host. When the anisotropy of the
impurity is negative, the larger host-impurity exchange interaction is dominant in the

competition with the anisotropy of the impurity, which also leads to the impurity
20
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taking the maximum spin value and the anti-parallel arrangement of the spin of the
impurity and the neighboring spin of the host. In this case, the frustration leads to the
spins in the ring cannot get simultaneously the minimum energy, and the spin pair
with same direction can appear at any position in the ring, indicating that the ground
state of system is degenerate, which may be the reason that the magnetic susceptibility
multiplied by temperature y7 is related to the total number of spin N. At the boundary
line between phase I and phase II, the magnetic susceptibility multiplied by
temperature y7 equals to the average value of the values in the two phases.

Since the Curie constant is related to the spin configuration of system at ground
state, we can discuss the ground state entropy of system. Using equation (5) and the
transfer matrix calculation, we find the ground state entropy of the system can be

expressed as,

For uy =1,
In (2), phase I and phase II
In (2(N — 2)),phase III
S= In (4), the boundary of phase I and phase II (28)

In (2(N — 1)),the boundary of phase I and phase IIl,phase Il and phase III
In (2N), the intersection of phase I, phase Il and phase III

For uy=3/2,
f In (2), phase I and phase 111

In (2(N — 1)), phase 112

In (2(N — 2)),phase 11

In (4), the boundary of phase I and phase II1

In (2(N — 1)),the boundary of phase I and phase Ill,phase II1 and phase 19
In (2(2N — 3)),the boundary of phase I12 and phase III

In (2N), the intersection of phase I, phase I11 and phase III

\ In (4(N — 1)), the intersection of phase 111, phase 112 and phase III

In phases I and phase II, for uy =1 and phases I and II1, the ground state
entropy 1s In (2), indicating the system is in the upper and lower symmetric state. In
21
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phase 112, for uy = 3/2, the number of state is 2 more than that in phase III because
of the impurity spin being in 1/2 state and the ground state entropy is
In (2(N — 1)). And on the boundary line between the two phases, the ground state
entropy equals the natural logarithm of the sum of all the ground states in the two
phases. In the intersection of phases, the ground state entropy equals the natural
logarithm of the sum of all the ground states in the neighboring phases.

When the number N of spin of the ring is even, the system does not have the
frustrated phenomenon, but the system may also shows the ferromagnetic
characteristics, and the magnetic susceptibility shows similar behaviors to those in
Fig. 2 and Fig. 3. Compared with the number of spin N being old, in zero temperature
limit the Curie constant is also determined by the ground state of the system, namely,
by the anisotropy of impurity and the host-impurity exchange interaction. Since there
is no frustrated effect and degeneracy in the ground state of the system, the magnetic
susceptibility multiplied by temperature y7 in zero temperature limit is equal to the
square of the net spin in each phase, independent of the number of spin, N, which is
consistent with the conclusion about the open chain [5].

In puy =1 system, the ground state can be divided into two regions,

AT =1, T4 2 >
ground state = 71 2D (30)
|- TTOTT), T+ 5 <—1

where due to the upper and lower symmetry of Ising spin, the antisymmetric state is
also the ground state of the system.
Since the absolute value of the net spin in both phases is 1/2, the Curie constant
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of the system is 1/4 in both phases and at boundary between the two phases.
In uy=3/2 system, the ground state can also be divided into two regions,

|1t =30, 4+ >
J
r]

€2y

ground state = ‘

S = N, T < -1

the ground state of the system also includes the antisymmetric state.

Since the absolute value of the net spin is 1 and 0 in the two phases, the Curie
constant of the system is 1 and 0 in the two phases, respectively, and it is 1/2 on the
boundary line between the two phases.

For uy=1 and uy=3/2, the ground state entropy is In (2) in the two

phases, and it is In (4) on the boundary line between the two phases.

4 . Conclusion

Although the finite antiferromagnetic Ising closed ring doped with spin-1 and
-3/2 impurities has no spontaneous magnetization at finite temperature, it shows
ferromagnetic characteristics at low temperature. Due to the anisotropy of the
impurity and host-impurity exchange interaction, its magnetic susceptibility
multiplied by temperature y7 presents three types of behavior with temperature
decreasing in the low temperature, bending upward, horizontally and downward tends
to a finite value at zero temperature. In the parameter space of the anisotropy of the
impurity and host-impurity exchange interaction, when the number of spin is even, the
ground state of the system has two nondegenerate phases. When the number of spin is
odd, the system is frustrated, and there are nondegenerate phases and degenerate
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phases in the ground state. In the nondegenerate phase, the Curie constant is equal to
the square of the net spin of the system and the ground state entropy is In (2), and on
the boundary line of two nondegenerate phases, the Curie constant is equal to the
average value of the values in the two neighboring phases and the ground state
entropy is In (4). In the degenerate phase, the Curie constant and ground state
entropy are dependent on the number of spin in the ring, except for the Curie constant
being a constant in degenerate state [12 for uy = 3/2. According to the results of this
paper, we speculate that for any finite Ising antiferromagnetic system, when the
ground state is nondegenerate, the magnetic susceptibility multiplied by temperature
xT in the zero temperature limit equals the square of the net spin, and when the
ground state is degenerate, it is related to the number of spins in the system. In high
temperature limit, the y7 is related to not only the number of spin but also spin
quantum number of impurity.
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