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The theory of gravity is considered from the little group viewpoint. This leads to a theory with 
a constraint, which is equivalent to general relativity with an arbitrary cosmological term. With 
this framework (i) the cosmological constant cannot be put into the Lagrangian but it appears as 
an integration constant. (ii) The gravitational Lagrangian automatically takes the form of a finite 
polynomial of the metric. (iii) The so-called conformal factor is fixed, which removes an apparent 
difficulty in carrying out path integrals. 

1. Introduction 

The quantum description of massless particles of spin 1 and higher leads in 
general to the introduction of gauge invariance. This is due to the fact that the 
subgroup of the Poincart group which leaves the four momentum of a free 
massless particle invariant (the so called little group) is not compact. In this 
paper we discuss the quantum description of the graviton from the point of 
view of the little group. 

In section 2, we show, starting from the description of massless spin two 
particles, as given by Wigner’), that one is led to consider gauge trans- 
formations of the form h,, + h,, + a,& + a,&;,, with & constrained to a,& = 0. 
The usual approach? lacks this constraint. 

On the basis of invariance for these constrained gauge transformations we 
derive in section 3 a Lagrangian for the free graviton. We contrast this 
Lagrangian with that of the linearized theory of gravity. 

In section 4 we derive a propagator for the graviton from this Lagrangian. 
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Using this propagator, we show that only massless spin two particles are 
exchanged by gauge-invariant sources, so that the theory is free of ghosts. In 
a surprising way, these sources can only differ from the energy-momentum 
tensor for matter by an arbitrary constant factor. The exchange can be written 
exactly as in the usual linearized theory of gravity and leads to confirmation 
of the local tests of that theory. 

In section 5 we extend the gauge transformation of the linearized theory to 
the group of volume-preserving general coordinate transformations and we 
give a Lagrangian for the full theory. The solutions to these equations all 
satisfy the constraint -det(g,,) = 1 and Einstein’s equation for some value of 
the cosmological constant A (different values of A, in general, for different 
solutions). In the framework presented this cosmological constant A enters as 
an arbitrary constant of integration, rather than as a term in the action. This 
provides a somewhat different point of view which may be an advantage, for 
instance, in handling vacuum expectation values of the energy-momentum 
tensor, such as occur for Higgs fields3). We finish section 5 with an argument 
that any solution to Einstein’s equations allows one to choose a coordinate 
system in which det g,, = - 1. 

In section 6 we discuss several furtherproperties of the proposed frame- 
work. Among which: 

a) There is no negative and arbitrarily large conformal factor contribution 
to the Euclidean Action. 

b) The Lagrangian has the form of a finite polynomial in the metric, with a 
constraint, providing a link with u-models. 

c) From our point of view the disagreement over the measure in the space 
of all metrics, which exists in the literature, seems to be irrelevant. 

2. The quantum description of a single massless particle of spin 2, gauge 
transformations: the little group viewpoint. 

Within the framework of invariance for the Poincare group (in- 
homogeneous proper orthochronous Lorentz group) the description of a 
particle with definite mass and spin was completely determined by Wigner’). 
For a massless particle the appropriate unitary representation of the covering 
group of the “little group” of the fourvector 

k = (0, 0, E, iE), E > 0. (1) 

This little group is the subgroup of the Lorentzgroup which leaves the 
fourvector (1) invariant, its generators are the rotation around the z-axis, 
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i 

0 1 0 0 
-1 0 0 0 

I12 = 
0 0 0 0 
0 0 0 0 1 (24 

and the “translations” 

These three generators generate a group which is isomorphic to the group of 
the two-dimensional Euclidean plane. That is the reason for calling two of the 
generators “translations”. Unless these translations are represented trivially, 
the unitary representation of the covering group is infinite dimensional. Such 
an infinite-dimensional representation would mean that for given fourmomen- 
turn k there are an infinite number of orthogonal states, i.e. an infinite spin 
and an infinite specific heat. In this way one is led to the demand that the 
translation like generators of the little group leave the states of fixed k 
invariant. This demand is the source of the “gauge invariance”q, we illustrate 
it for spin 1 and for spin 2. 

Consider first a massless spin-l particle (say, the photon) with momentum 
given by (1) and polarization vectors e”’ = (LO, 0,O) and e”) = (0, 1, ($0). 

Under II2 e”’ and ec2) rotate into each other; but e”’ changes under II3 - II4 and 
e(” changes under I23 - 24 I , they “gauge” according to 

e”’ + A(0 0 E iE) ,,, , e(‘)+ ec2)+ A’(0 0 E iE) ,9, * (3) 

Hence, the two polarization states of a photon cannot be described by two 
unit vectors. They can, however, be described by the equivalence classes of 
two unit vectors: 

{e”’ + A(0, 0, E, iE)}, {ec2) + h'(0, 0, E, iE,)}. (4) 

For a general value of k, the two polarization states of the photon are 
described by two equivalence classes of two unit vectors: 

{et’(k) + h(k)k, 1 f or all A(k) such that k’A(k) = 0}, @a) 

where i = 1,2, and where 

k e(‘) = 0 = k P P ec2) P P’ 
eWe(2) = 0 

PP * WI 

The mass shell constraint q A = 0, contained in (5a), is too restrictive for 
interaction and is dropped, leading to the usual gauge invariance under the 
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transformation 

A, + A, + 8,X, 

where h(x) is an arbitrary function. 

(6) 

Consider next a massless spin two particle. Naively one might want to 
describe the two polarization states of a massless spin-two particle, with 
fourmomentum given by (l), by the two symmetric tensors 

For the rotations II2 these two states have the correct spin-two behavior. 
However, they are not invariant for II3 - 114, or for IZ3 - 114, in fact by these 

the e$ are changed into 

( 

1 0 A ih 

i ( 

0 1 A’ ih’ 

0 -1 A’ -iA’ 
A2 - A’* i(A2 - A”) 

and 
1 0 A i A 

. (8) 
A -A’ A’ A 2AA’ 2iAA’ 

i A -iA’ i(A*- Ar2) _(A* _ A’*) ih’ ih 2iAA’ -2AA’ 1 

Note that the tensors (8) are still traceless. The states of the massless spin-two 
particle are described not by (7), but by the two equivalence classes 

{et?(k) + V,k, + V,k, 1 f or all V so that k,V, = 0 and k*V,, = 0}, (9a) 

where i = 1,2, 

k,e$,(k) = 0, eEi(k)e$(k) = 0, e:?(k) = e:;(k), (9b) 

and where the et; are traceless: 

e:‘,(k) = 0. (9c) 

This tracelessness is a property of all the members of the equivalence class of 
(9a), the trace is preserved by the little group transformations (2). 

Hence we describe the states of the particle by the traceless symmetric 
tensor field h,,(k), which satisfies h,,(k) = 0 = k,h,,, and which has a gauge 
invariance 

k,,(k) + h,,(k) + k&v + k&v (10) 

with two constraints, k*&,(k) = 0, and 

k,& = 0. (11) 

The first of these constraints is analogous to the single constraint which 
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appeared for the spin-one case. It has to be dropped as, again, it is too 
restrictive for interaction. At this point one usually drops this constraint as 
well as the constraint (11) and is then lead, fairly straightforwardly, to general 
relativity5). We see no immediate reason to drop (1 l), which means we have 
three free functions instead of the usual four. Unlike the mass shell con- 
straint, (11) has a geometric meaning (it suppresses a compression mode). 

3. Lagrangian in weak field approximation (linearized theory) 

This linearized theory is just a first approximation, interaction changes the 
commutative gauge group (lo), (1 l), into the noncommutative “group” of 

(volume-preserving) general coordinate transformations with determinant 1. 
The full theory will be discussed in section 5, here we limit ourselves to the 
linearized first order theory. 

First, let us recall the action for the linearized theory of gravity, it is given 

by PI 

ZE= -hrh,d~h,,- ~,kd,h,,)-- al,hpdvho,u 
+ ~@&~Av + &hpdpW+ K~,mh,w. (12) 

This Lagrangian is invariant for h,, + &y + &,w + hp,,, with 5, free and not 
restricted by (1 l), provided that 

a,T,, = 0. (13) 

To be more specific, let us consider the interaction with a scalar field 4, then 
one must add to & the Lagrangian for that field: 

p4 = - i a,++$ - V(4), (14) 

where for the moment V(4) = $n*~$*, and where Twy in (12) is given by 

TPy = i a,4a,+ - 1 s,,(!a,da,4 + V(d)) (15) 

That TPy satisfies (13) follows from the equation of motion for C#J up to first 
order in K: 

04 - v’(4) = 0 + g(K). (16) 

The alternative theory which we wish to consider may be obtained by 
varying h,, in (12) not freely, but restricted to h,, = 0, which is done most 
easily by adding a Lagrange multiplier. One may also start instead of with (12) 
with 

2 = - ~a,h,,a,h,, + ; (&h~,)* + Kh,&, + [Lh,,]. (17) 
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Here the term in square brackets is a Lagrange multiplier. The action obtained 
from the first two terms on the right-hand side of (17) is invariant for (10) with 
constraint (11). Gauge invariance for the contribution to the action of the third 
term on the right-hand side implies that for some scalar A(x) 

apSpv= a+4. (18) 

For the interaction with a scalar field one adds the Lagrangian Zb of (14) and 
substitutes e.g. 

s,, = &+a,+ (19) 

Then by varying 4, h,, and L independently, the equations of motion of C#J are 

again (16), and those for h are 

- Oh,, + ar%hAv + auaAhh, - f GcLvd,aPh,B = K($v -a S$LA (20) 

where S,, is given by (19). With (16) one calculates 

a,& = i V’(@,+ + a,@,@,@ + o(K); (21) 

this ensures invariance for (lo), (1 l), up to first order in K. 

Note that whereas the equations of motion of linearized gravity when 
coupled to 4 involve V(4) itself through (15) in (12), the eqs. (19), (20) and 
(16) involve only V’(4). 

4. Propagator, particle content 

For the linearized Einstein Lagrangian (12) the calculation of the pro- 
pagator is straightforward?. The exchange of a single graviton between two 
conserved sources T,,, and trra is given by’*? 

c& = K2 hLlA”8 + t&d&a - iuh?) 
k2-ie TJk)t,,(-k). Cm 

The residue at the pole k2 = 0 gives one that the particles exchanged are the 
two polarization states of a massless spin two-particle. Also (22) explains all 
the local tests of general relativity: bending of light by the sun, delay of radar 
echoes, perihelion processions), and also the gyroscope precession@). 

Let us now investigate the restricted theory of Lagrangian (17). The gauge 
invariance of (17) is characterized by three functions instead of by the four of 
(12). However as the trace of h is zero for (16) both theories (12), (17) allow a 
“zerodiagonal gauge”: 

h,,=O, cu=1,2,3,4, (23) 
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where one does not sum over a. To calculate the propagator corresponding to 
(17) in this zero diagonal gauge we add to (17) a gauge breaking term: 
b 2:=, hiihii, b +CQ. In the limit b +M calculating the propagator consists of 

taking the inverse of a 6 x 6 symmetric matrix?, Vae,pv, where (Y, p, CL, v = 1,2, 
3, 4, a # p, lo # v. The elements of this matrix follow by permutation from 

2v ,*,,* = k* - k: - k:; 2V,2,,3 = - k,k,; VI234 = 0. (24) 

For instance, V12,23 = V21,23 = -klk3, etc. Thus for b +CQ, the propagator 
P pv,ap may be given by a 10 x 10 matrix of which all elements p = v, and/or 
(Y = p are zero. The elements of the remaining 6 x 6 symmetric matrix may be 
obtained by permutation from 

2p * k k2k2 ’ 
12 ,* = 4 (k: + k;)* 

1 2 

2P 
1 1 

12.13 = - s;L k:k2k3 [(k: + ka(k: + k3 - 2k:k:], (25) 

2P 
1 (k: + ka(k: + k:) 

1234 = - jp 
hk2kh ’ 

For instance, PI*,% = P21,23 is obtained from P12,13 by l-2, etc. 
To find out what is being exchanged between two sources S,,, and s,~ by 

(29, we calculate the residue at the pole k2 = 0 of Sr-lgr-u,olBs,8, where 
because of Lorentz invariance we may take k to be given by (l), and where 

k&v = k,A(k), k,s,, = k+(k), (26) 

with k given by (l), (26) reduces to 

S12 + i& = 0, S23 + iSX = 0, 

s33 + 64 ’ =A, S,,+iS,=iA, 
(27) 

and similarly for s and a. With (27) and (25) we find for the residue 
Slrsll + S22s22+ 2S~s,~, which equals S,,(k) s,,(-k)(Xf=, e$?(k)ez&(k)), with 
e:?(k) given by (7). Hence what is being exchanged between S and s are the 
two polarization states of a massless spin two-particle. 

For arbitrary values of k* the propagator with sources S,,(k), s&-k) is 

S,,(k)P,,,,(k)s,,(-k) 

= 2Sfivspv - S,,IL~aa + 2(As,, + as,,) - 8Aa 
2(k2 - ie) 

= 2(S,, - A&)(s,, - as,,) - (S,, - A&,&, + as,,) 
2(k2 - ie) (2% 

Note that with A from (18) 
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TW” = S,, - AqpLV is conserved: &fW, = 0. (29) 

In fact r?;Ly = TPy + c&, where c is an arbitrary integration constant from 
solving (18) for A. 

Eq. (28) shows that instead of coupling to the rather arbitrary S,, one 
should couple to fWU from the beginning, where TP,y differs from the energy 
momentum tensor by a constant factor ~6,“. 

5. Non-weak field case (full theory) 

The linearized theory of gravity is just a first approximation. Starting from 
(12) and by introducing gP, = 6,” + KhPv, one can bootstrap oneself to the full 
Einstein theory’). One can proceed with the Lagrangian (17) in a similar way. 
Along the way the commutative gauge transformations are changed into the 
infinitesimal (volume-preserving) general coordinate transformations of 
determinant 1. 

The simplest way to obtain the full theory is, however, to take the action of 
Einstein’s theory and to limit the variations of g,, to-det (gPy) = g = 1. (At this 

point we change notation from the metric S,, to g,, used in the context of 
general relativity). 

Let us next compare explicitly, first, Einstein’s theory of gravity, interac- 
ting with a scalar field and, second, the formulation proposed here interacting 
with a scalar field. A comparison similar to that made in section four for the 
linearized theories. 

First, for Einstein’s equations one has the action 

S = 
I 

dx Y&[R -1 g““~,qf&$ - V(4)], (30) 

where V(4) can be -&TI*c#J~, or some more complicated function of 4. The 
equations of motion which follow from (30) are 

D”D,+ - V’(4) = 0, 

R”” _ fgWR _ T’” = 0. (31) 

where 

T’” = ;a%##4 - ;g’“a?$a,&b - ;g”“v(+). (32) 

The identity D,(R’“” - $g““R) = 0 gives the conservation law DWTBY = 0 which 

is also a consequence of the first equation in (31). 
Second, for the equations proposed here, we propose to take as an action 

S = 
I 

dx q/g[R - $ g““a,#,+ - V(4) + L(dg - l)], (33) 
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where L(x) is a Lagrange multiplier, which is to be varied independently of 
g,, and 4. Varying L(x), 4(x) and g,,(x) independently in (33) gives the 
equations 

g = - det(g& = 1, (34) 

POP4 - V’(4) = 0, (35) 

R” _ ig’““R _ T”” = jLgPy, (36) 

where T’” is given by (32). One may now solve for L(x) by taking the trace of 
(36), which gives 

-R-T=2L. 

Substituting back into (36) gives us the field equations for the action (33) with 

P= a%pav4 (37) 

as 

PDF4 - V’(4) = 0 or apaw+ - V’(4) = 0 (r;, = O), 

- det (g,,) = 1, (38) 

RF’ -_fg”“R _ SPY +;g’“S = 0. 

It is of use for our later considerations (polynomial form of Lagrangian) to 
replace the action (33) with an equivalent action which gives the same 
equations of motion (38), (37), it is 

S = 
I 

dx [R -; g““Q#d,+ - V(4) + L(g - l)]. (39) 

An important difference between (31) and (38) is that (via (32)) (31) contains 

V(4), whereas (38) contains only V’(4). This is important, for instance, for 
Higgs fields, where V(4) develops a vacuum expectation value, a constant 
(V(4)). In (31) this introduces a cosmological constant, a term g”“(V(4)), in 
the last equation. From the constants involved, the universe shouId shrink to 
the size of an orange3). This shrinking could be countered by adding to the 

Lagrangian in (30) a term d/gA, with 211 = - (V(4)), i.e. by adding an 
opposite cosmological constant from the beginning. Such a procedure seems, 
however, artificial. For eq. (38), which contains only V’(4) such a shrinking 
does not occur. This is true even if one replaces S”” in (38) by T”” of (32), 
which is allowed as S”” and T’” differ by a term proportional to g’” which is 
filtered out in (38). 

Because of the Lagrange multiplier in that action, one cannot add a term 
into (39) which represents a cosmological constant. However, in solving 
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equations (38) an integration constant A appears which plays the role of a 
cosmological constant in the equations*. 

Using the identity 

D,(R’” - &‘“R) = 0. 

and with 

~,sfiu = ;D”(v(+) + $D~+D~+), 

from (37), (38), one finds 

(40) 

D”(R - S - 2V($)) = 0. 

With the general solution 

(41) 

R-S-2V(+)=A, (42) 

where A is an arbitrary constant. Substituting into (38) the third equation may 
now be written as 

R”” _ &‘R _ Tk“’ _ Agllv = 0, (43) 

where T’” is determined by (32), up to an arbitrary term g*“c, which may be 
absorbed in the free constant of integration A in (43). This integration constant 
is, in principle, not related to the vacuum expectation value of Y‘“. Our entire 
derivation was based on the validity of the Poincare group, which means that 
space time must be asymptotically flat (but not necessarily locally flat!). 
Therefore the only choice for A consistent with that derivation is that one which 
cancels whatever constant xg’“’ is contained in ‘I”“. 

The equations (38) of which, as we have seen, the third one may be replaced 
with (43), but with an arbitrary free constant A, are just Einstein’s equations with 
an arbitrary cosmological constant A and with the additional condition 
det(g,,) = - 1. For any solution to Einstein’s equations one may always locally 
choose coordinates for which this latter condition is satisfied. Several familiar 
solutions allow coordinates which globally satisfy det(g,,) = - 1. An example is 
the Schwarzschild solution, written in Cartesian coordinates it has g = 
- det(g,,) = 1 and thus it is a solution to (38) with T”” = 0 = A. Similarly, the 
Friedmann solution allows a set of coordinates for which g = 1. This appears to 
be a general property of solutions to Einstein’s equations. To be specific: under 
very general conditions any solution can be covered with coordinate patches in 
each of which the constraint g = 1 is satisfied, this may be shown as follows’?. 

*That a parameter which is not present in the original Lagrangian finds its way into a theory is 
not new. Such theories include the massive Schwinger model, and quantum chromodynamics in 
four dimensions (When instanton effects are taken into account). See e.g., S. Coleman’s 1977 Erice 
lectures, ed. by A. Zichichi (Plenum Press, N.Y., 1979). 
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Suppose that the {x+} are some given set of coordinates for which dz # 1, 
and one wants to find coordinates {xp} for which v/s = 1. We can, for example, 
take t = t(t’, x’~) and xi = x”(i = 1,2,3) such that 

t = 
I 
I’ dg’(t”, xri) dt”. 

d\/g is a scalar density, so it transforms as 

GW 

(Mb) 

For the change of coordinates from x’ to x, given by (44a), one has 

Substituting this in (44b) gives .\/g = 1. 

6. Discussion, three further aspects of our point of view 

To summarize, the starting point of this work is based on the validity of the 
PoincarC group and is deeply rooted in the particle concept of the graviton. 
Invariance of quantum mechanics for the Poincare group brings to fore the 
importance of the little group. While the little group consideration yields the 
conventional gauge concept for a massless spin-l particle, it gives rise to a more 
restricted form of gauge transformations for the massless spin-2 case. In short, 
one is led to a theory with a constraint. But one can show’? that, under general 
conditions, the constraint can be satisfied. 

For pure gravity, our theory appears to be equivalent to the standard 
theory.“). But even for this case the little group consideration has been valuable 
in that it sheds light on a different view of the consmological constant (be it 
empirically found to be zero or not). Within the new framework, that constant 
appears as an integration constant (hence a free parameter) rather than in the 
Lagrangian. The difference between the usual formulation of the theory of 
gravity and the present one may perhaps be illustrated by a diagram. In this 
diagram one represents solutions to Einstein’s equations, the cosmological 
constant A is plotted horizontally and g vertically (this is an oversimplification as 
-det g,, depends on x). The usual action allows solutions with only one value of 
A, but with any value of g, i.e. it corresponds to a vertical line in the diagram. The 
action (38), however, corresponds to a horizontal line, having solutions for all A, 
but each solution in a gauge g = 1, i.e. in a coordinate system with equal unit 
cells. 
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Next, let us discuss three further aspects of the present framework. 
(a) It is instructive to view the above approach of the gravitational theory from 

another perspective. To do that let us start with the first order action of Einstein’s 
theory: 

S = 
I 

(dx) d/g(r;J”, - r;J$)g’“, (45) 

and substitute 

g p” = fl’&“, 
then the action (45) becomes’2) (det(g,,) = - S) 

(W 

S = (dx) d/s[G*ti + 6~+J@~“&.f2], (47a) 

where I? is the scalar curvature defined via gpV. R is called the conformal 
facto?). One must not regard 0 as a physical scalar field since its derivative 
term has the wrong sign. Due to that term, one can see that the Euclidean 
version of the action (47a) may be as negative, as one wants, by choosing a 
rapidly varying 0 ; and in this connection there appear some difficulties in 
carrying out the path integrals’q. In (46), one can choose det gBy = -1 without 
loss of generality so that the action (47a) becomes 

S = 
I 

(dx) [a’& + 6a,C@‘“a,fl+ L(g - l)]. (47b) 

Now one realizes that the formulation presented in this paper is obtained by 
setting J2 = l! The reference to the conformal factor is gone, so is the 
(apparent) difficulty it causes. (Indeed we could turn the argument around and 
use this reasoning to motivate the new formulation.) 

(b) Another intriguing (and potentially useful) result of the little group 
viewpoint is that the theory of gravity with the constraint can in fact be 
described by a Lagrangian that is a polynomial of g’” of order 9.* We have**, 
using the action (39), which has equations of motion (38), 

zpvit y =R+L(g-1) 
= - a,a,g’v - t g,Vg,8gm ad?a,g@ +&d,g~a,g~ +L(g - 0, (48) 

where 

g PV = $ E~,gyEvonlgB7gaUgY’I, 

* J.W. York (private communication) has already noted that @ of (47b) can be written in the 
form of a polynomial of finite order. 

** If we use g,, as the basic variable, then the Lagrangian becomes a polynomial of order 11. 
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(49) 

The first term - 8,&g”” in the Lagrangian (48) can be omitted if apg“” = 0 on 
the boundary. Formulated in this way the theory has a remarkable resem- 
blence to the nonlinear a-model”)*. 

(c) Finally, we observe that the apparent disagreement for the measure on 
the space of all metrics between some workers of relativityIs), viz. 

D[gl = lj ayb d&b, (50) 

versus 

D[gl = v Onb dg,,(g)-5’2, * 
(5 1) 

does not appear to be of a serious nature since (g)-5’2 now equals unity. 

To be complete, let us note that there is a connection to conformal 
super-gravity16). Note also that Hawking”) has used a Lagrange multiplier 
similar to the one considered in this paper. However, it seems that this was 
done for an essentially different purpose. Finally there is an interesting paper 
by Lanczos”). 
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