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ABSTRAÇT

This paper generalizes the "Haskind Relations" forthe exciting forces

in. waves, to include the éffècts 'of cbtthtant: forward. spéed.. The analysis

asSumes the flud to be ideäl. ànd incompressible,, and the 4isturbance óf

the free surface to be' auÏ. . The analytical rélations. are derived fór

thé exciting forces in regular waves., 1h terms of the radiation potential

associated with the forced harmOnie oscillatIons of the, same., body.. in. calm

water. For 'this. purpose it is sufficient, to' know the fa-fie1dasymptoc

form..'o,f the radiation potential. . 'The results are applied to the case.. of

a submerged ellipsoid., t'o give the 'six exciting forces .and moments as

functions of. the wave length, heading angle, and forward ve1ocIty
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A Wave amplitude

(a1, a2, a3) Semi-axis of ellipsoid

B.. Damping coefficients

C Exciting force coefficientsX]

c Forward velocity

Virtual-mass. coefficients .of..theei1ipsoid

g Gravitational accelération constant

H. Kotchine functions,, defined by equation (27)

Depth of submergence

i =t/l -

j Index referrng.. to direct ton of force or motion

Sphèrical Bessel function

K Wave number, .
K =

n Unit normal into body.

P. Functions defining the far,f1eld radiation

R Polar coord-inate

S .. Subthergéd.suxface.. of.body

t Time . .

v Vélocity components

X. Exciting force in j 'th direction
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H

X

p

Cartesian coordinates

Displaçement vector of the body

Green's integrals for the ellipsoid

Angle of incident wave system

Polar coordinate

Wavelength

Fluid density

Circular
syStem

T =wc/g

Velocity potential

W Circular frequency of encbunter.

frequency of inidefit waves in fixed coordiri.te
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O INTRODUCTION

In analysing the motions Of a ship or submerged body In regular waves,

it is customary to decompose the overall problem into two parts,.one being

the prediction of the exciting forces experienced by the body due to the

waves, and the other being the prediction ofthe restoring forces experi-

enced by the body due toits own mot-ion In thè. linearized theory the

exciting forces 'can è foun4 with the unstea4y motions of the body supprese,d,..,

while the réstoring forces can be found:. f.or the, oscillating body with..... the.....

incident:waves suppressed. Superposition of the two separate problems wil,Ï

ultimately lead to a complete linear theory formotions in waves.

The present investigation is concernedprimarily with the exciting

forçes in waves. A significant contribution 'to this aspect of the overall

problem was made by Haskind [l]2 , who derived certain new relations for

the exciting forces acting on a fixed body in waves. These relations re-

quire only the sólution of the forced oscillation problem in calm water,

and thus circumvent the necessity of solving the problem of wave diffraction

past the body. Haskind's relations have been used to solve certain two-

and three-dimensiOnal problems and to derive relations betwéen the.exciting

and damping forces [2]. The utility of 'Haskind's relations is limited

however by 'the restrictiOn of zero forward speed, and it is to the removal

of this limitation that the present work is directed. In the analysis to

2Numbers in square brackets denote references ät end of paper.



follow it will be shown that such an extension is possible,, provided the

body is such as to make In its forward motion only a small disturbanc-. ..

the free surfacei,e. to be consistent.with the linearized free surface

theory). Thus the present work is applicable to.thinor slender shi s and

to deeply-submerged bodies.

The analysis and the. limitations of the present theory closely parallel

the work Of Timman and Newman [3] on cross-coupling. In fact, a sidelight of

the present analysis is the derivation of the same .symme.try...or reciprocity-...

relations which were established,..in.3],..withou.t..assuming...the. existence of

a particular Green fuñctioú

There.is however an additional complication in the context of..exciting.

forces, namely the appropriate...b.o.undary.. condition.. on.,the.free. sur.face. The.

total velocity potential..can...be, de.composed.into: .a. s.teady. term., dueto..the.

steady state forward velocity of the..ship,. andan. unsteady. .term...inclu.d.ing.;,

both the incident: wave system..and the .&if.fractipn.affec.ts.. of the .ship.. In

some cases the diffraction potential will be .of .the.sane. order. oî.,..magnitude

as the product of the steady. and incident .wave.terms.,.and....as a.result the

non-linear effects 'associated. with this .p.roduc.t can notbe.negi.ecte&.-. ....

This is in fact the case for the thin..shi.p.1.n head waves., ...as..was..shown by.

Newman. [4]. In such a situation the.diffraction.po.tential.wìl.l satisfy..

not the conventional: linearized free ,s.urface condition, but an. inhomo-

geneous boundary condition,
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The present paper is restricted to diffraçtion potentials which satisfy

the homogeneous. free surface condition. Nevertheless there are two

significant reasons for considering this case. Some of the important mathe-

matical models for ships do lead to a homogeneous free surface condition;

these include slender ships, deeply submerged ships, and thin ships in

oblique waves. Secondly, if one is faced with the inhomogeneous situation,

as in [4], the generalized Haskind relations as derived, here 'can be applied

to the homogeneous solution for the diffraction potential, leaving only a

particular solution of the inhomogeneous free surface condition to be fôund

from direct methods.

The final expressions derived here. differ very little from the zero-speed

relations of Hskind. It is only necessary to replace the: incident wave

potential P0 by the corresponding potential in a moving coordinate system,.

and the forced-oscillation radiation potential 4 by the corresponding

solution for a moving body,'but wth the direction of forward mot-ion rever-sed.

Moreover,, as in the case of zero-speed, the exciting forces can be found in

terms of the far-field radiation potentials and can be related to the damping

coefficients of the body. Detailed results are presented for an ellipsoid

moving under.. a free surface with oblique wavès-, à'nd. theseresuits are shown

to be a generalization of Havelock"s theory [5] for the exciting forces on

a submerged spheroid.
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We introduce two separate boundary value problems, in which the re-

spective directions of forward motion are reversed.. In.the first problem,

we consider radiation from an oscillating rigid body,moving with mean

velocity ç in the direction of, + x-axis ,. parallel., to the.. plane of

the free surface. If (x, y, z) is a coordinate. systemmoving with the

mean position of the body.,. the total velocity potential can be written .in

the form

=

Here is the potential of the steady flow, due to the forward velocity

of the body, and

v+=

is the steady velocity field. The potentials represent the un-

steady disturbance due to oscillatory motion in each.of the six ..degrees..of

freedom with velocity amplitude

partis understood in expressions involving

six modes of oscillation the displacement vector of point on the body.. is

denoted by the vector etky) and tr is the unit normal vector.

into the body, then the potential satisfies the. boundary condition [3]

v= + (xV)]. (2)

REVERSE FLOW RELATIONS

L

4

and frequency C) ,. and the real

¿We . If in each of the

(1)



on the mean position of the body. The term íi Itl denotes the usual

òscillatory normal veiociy, while thé remaining cöntribution on the

right-hand-side includes the difference in thè normal component of the

steady velocity field between the exact and mean positions. of the body0

In addition the potentials satisfy Laplace's equation, a radiation

condition at infinity and the linearized free surfacecön4ition

where O is the plane of the undisturbed free surface and. g .i the

gravitational constant.

Now we consider a second problem with the direction of forward motion

reversed, so that the body moves in the -x direction. Thevelocity

potantial is then of the form

where the pOtential

of frequency , and satisfies the free surface condition

- --o
- e2,;jc

à.ir
-c -

The steady velpcity field is

x2 -

on (3.)

Qtl ? b (5)

(x,y)) e' ) (4)

represents, an arbitrary oscillatory disturbance,



where the symbol S denotes that the integration is over the submerged

surface of thebody, and f. is thé appropriate direction .cosine

=
Ç4 cos(i,) -

COS

-çç - -o('i)
CO

I x c-c's C,y) - y cos(,x)

These can be expessed in terms of the displacement. vectors
.

since

Thus, using the boundáry condition.(2)

=

6

(7)

and the linearized unsteady fluid pressure is

/ pe1 [0- ;Y-. caj
(6)

where second-order terms in the oscillatory disturbance are. neglected

If the body iS fixed in space, the j'th oscillatory force or moment
- prfsSirc.- -

excited by thé fluidon the bOdy, due to the disturbance , is



f f
's

fE(vv'

{ (y - -) - (

vj('ir) 0s

(9)

± Vx(xV*) oiS

LJ
Cp (v).2

V
42(

o1'

Substituting .baç in. (7), we obtain, the expression

_reff{voX (8)

SS

Using Stokes1 theorem and well-known vetbr identities together with the

boundary condition (2.),. the second surfàce integral í.r equation (8) can be

reduced as follows

v.JJ í(v°')
s



where the line integral is over. thé intersection, if any, of the body with

the free surface. In the last. equality we have used the boundary condition

that oh the body surface. Follpwingthe hyppthesis of [3]

we assUmé that to leading order on the body,

V-

and on the intersection of. the bo4y with the free surfacé,

(xV)cJ2 O

Although these hypotheses have not been proven, they appear to be consistent

ith .the linearized free surface .conditiòn, añd can bé vérffied in the

special cases of a thin, slender, br deeply submerged body. It follows

that equatiön (9) is identically zerO, and thus from equatj.on (8),

-LLJ1O e
l:(4t

Epiatton (10) forms the basis for various reverse-flow relätioñs.

First we note that if is a radiation potential for forced oscillations

in the ith mode, say , then the cross-coupling force in the fth
direction is

_iwp íç_



Now frOm Green's theorem, and the :façt that the potentials and

CP satisfy a radiation condition at infinity and the adjoint free

surface. conditions (3) and (5), it follows that

fC(t+2f M)

9

(4cp +c2)j4.

(e-. c1)]+

(12)

where FS denotes intégatioui over the plane of the undisturbed free

surface, exteriOr to the body surface S , and the contour integral is

over, the intersection of these two surfaces. For ubmerged bodies the

line integral vanishes identically, and for slender Or thin bodies it is

- (r(4tr 4)C- _2. J7

s

= _
cpo )

o



small of the same order as ehe. beam. Thus it follows that

r

or, from (li),

Equation (14).was established by T1an and Newman [3] after assuming. the.

existence of a certain Greens function. The present proof overcomes the

need for such an assuption.

It should be noted that the forces FjJ± were obtained from. inte-

gration. of the pressure over the mean position of the body, and as such

they are not the complete oscillatory hydrodynamic restoring forces

acting on the body. In addition. there are forces in phase with the. dis-

placement and otherwise independent of the frequency w , -due. to the

unsteady movement of the body,in the steady velocity field. Thus the..

symmetry relations (12) apply to the damping coefficients. (and. in...fact

to the entire frequency-dependent forces). but not to t,he total restoring

forces.
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IlL THE EXCITING FORCES IN WAVES.

In order to apply the basic reversé flöw relation. (10) to the problem

of determining, the excititig forces in.wavös, we now consider the càse where

the potential P corresponds to the diffraction problem of a. plaie

progressive wae system incident upon the steadily moving body. Thus

whére (ÇÇ is the potential of a plane progressive wave of given ampli-

tude and arbitrary angle of incidence, and 'P7 is the scattering poten-

tial, representing the disturbance of the inci4ent wave .by the .bo4y, Both

and satisfy the free surface condition (5) and C4 satis-

fies a radiation conditiön at infinity. On the bOdy the total(unsteady)

normal velocity must vanish, or

=0 on S, . (16)

From Greerkus. theorem (13),

(

(17)

Substituting the pctential (15) in 'equation (10), the exciting force



jn the j'th mode is obtained in the form

î (_ cp,

Using Green's theorem (17). it follows that

the "adjoint" radiatioñ potential

12

is
(18)

Equation (20) re.resents the desired generalization of the Haskin4 relations

for bodies moving with constant forward velocity. Thé exciting forces in

waves are expressed in terms of the incident wave.potential and

thus permitting the evaluation

of the. exciting forces without solving the diffraction problem for

Clearly, the direction of forward motion can be reversed, and the correspond-

ing forces for a body moving, in the +x diection are given by the

analogous expression

(21)

r- (fr cP )cS (19)

and making use of the boundary condition (16.) we obtain the expression

)ds (20)



At- zero speed the superscripts are superfluous and these results reduce3

to the original expression derived by.Haskind [110

As in the case of zero speed,Green's theorem maybe used to replace

the surface of. integtation S in equations (20) and (21) by any. closed

surface surrounding the body, but now there is an additional contribution

from a line integral along the free surface. Let . S. be-a suitable

control surface at..infinity. (e.g. a vertical cylinder.passing from the

free surface down to an. infinite depth). Then, following the analysis

of equation (12),. -

Cf-

= - cc

= . {((P ;-

-- t cj(po- -

)

(û+/
T (iPD )J J7

3The difference in sign of the present equàtionswith respect to refer-
ences [1] and [2] results fröm the opposite convention in defining the
direction of the unit norma-1 vector.

- 13
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Here the contours C and C denote the intersections of the plane z = O

with the surfaces S, and S , respectively Once more we have assumed

that the contour integral over C , or the intersection of the body with

the undisturbed free surface,.will .vanish, but now there are contributions

both from S and C since the incident:wave potential does not

satisfy a radiation condition. Thus it follows that the exciting forces

can be.expressed entirely inthe terms of the far-field asymptotic be-

haviour of the radiation potential together with.the known

incident, wave potential:

¿L.Jt 1
çç- uÇe.

Sithilar1y

rt f - (f

r
,

(p40o*j
coo

- C.
1 -i-C.. 1, ---

X oX

n order to proceed ftirther we must substitute the appropriate func-

tions for the potentials ça and The necessary integrals can

cflcr

(O
- Ti i

-. cç_*]
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be evaluated by the method of stationary phase, but the details of this

analysis are lengthyand have been placéd in the Appendix. The results

are very simple:

or

15
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A nj 7r-

(26)

(25)

Here denotes the frequency of the incident wave system in a stationary

reference frame, and is its angle of incidence.with respect to the

x-axis. The functions .P. and H.± characterize the far-field behaviour

of the potentials and can be defined in various ways. The function

is definedby equation (A3) whjch gives the far-field representation

+
of cp. , and this function is known for submerged ellipsoids, thin

ships, and slender ships. The functions H are the !'Kochin" functions,

defined by the integrals

= - cl

We. note that (26) and (27) are essentially identical to (20-21), Clearly,

from (25-26), the functions. P. and H. can. .be related to each other

by the formula

(28).



A relation between the exciting forces and the damping coefficients

can be obtained.with.the aid öf the equation

,

2: C)
lT(t SM(\'Ì2Yi (IC.O.4)

wh4ch.was derived in..[6]. Here B.. denotes the damping cOefficient

for forced excitation in the f th mode, and

ira)

OSLA

C=.

4.
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The summation should be interpreted.to include both possible wavelengths

for a given angle of incidence and. frequency of encoqnter.

(29)

(30)

r-Cor t-'/- -t, 14-
It follows that by direct subStitution of (34) that



IV, . THE EXCITING FORCE ON A. SUBRCED ELLIPSOID

It s clear from the results of the preceding section.that.the ex-

citing forces can. be determined for. any. body, provided the far-field

characteristics of the radiation potentials, are known for.the body. Those

classes of bodies .for which this is the case include thin ships. (longitudi-

nal motions only), slender ships, and submerged ellipsoids. The.last is

a particularly interesting application for Our results since in this case...

only the far-field potential is known, and thus. the direct method-for-

obtaining the exciting forces from integration of the near-field pressure

is not practical. (However HavelQCk. [51 has successfully dealt with this

problem for the special case of an ellipsoid of revolution.) Thus we

shall study the exciting forces on a submerged ellipsoid, using the

functions P. which were derived in [6].

We consider an ellipsoid which is defined by the equation

XL:-z --- m

Thus (a1, a2, a3). are the semi-lengths of. the ellipsoi4 along its princi-

pal axes, which are taken to be parallel to the (x, y, z)ais, and the

a
ellipsoid isAdistance h below the undisturbed free surface. Frotn.refer-

ence [6] the functions P. are then given by

17



kcos1 (« j0i(7)/7

- 2i 1a3e1 k ft('c4- k- si)/(;)/

2Le"' (Q2)

(Ci) iP1 - - D), ía (j-) /-

e_

(1e) =
- 2a,a3 -K

(-csfl)8'J)/
- C /( g ( - D1);; y) /?

where ) is the spherical Bessel function,

18
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and

where

00

o'.

r[-

The coefficients D. are related to the virtual mass coefficients of

the ellipsoid in .an infinite fluid, and are defined by

2-°

2 (aJ - + + -

19

+

(j = 1,2,3)

(j = i2,3)

Here we.have.utilizèd.the cyclic convention, i.e.

a4:a, «g « o't- 0(?

Substituting the above results in..(25) we can obtain analytic expressions

for the six exciting f örces, as functions of the speed, frequency,

heading angle, depth.of submergence, and the semi-lengths (a1, a2, a3).

If a2 =a3 the ellipsoid reduces to an ellipsoid of. révolutión

(spheroid) an4 our results reduce to those obtained by. Havelock [5].



In order to present graphical results in a form similar to Havelocks,

we define non-dimensional force coefficients equal to the amplitude of

the exciting forces divided by the product of the ellipsoid ts displacement,

a1a2a3 , and the amplitude of the effective wave slope at the

ellipsoid!s axis, KAe . The moment coeffiiet-s are non-4imensiona1-

ized with the product Of the same factor and the length 2a, Thus

>6

+

or, substituting for the functions P.

t

r
Cx. e''')

20

i) a

(32)

ç2- Se'y L + (- 'ì]/i (33)

CA-3 LI + í(D3- ,) ]i(p,/
(34)



c;.1- 3K

cx6
(2)

+ - D3

c4D
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(35)

(36)

--- Str( (Pa- Dj1'c/1
(37)

It is important to note that does not depend òn the forward velocity

e , and thus the excicing force coefficients depend linearly on the

forward velocity; I in fact the surge force coefficient is inde.-

pendent of the forward velocity. For .. beam waves (
= 900

) the

coefficient for surge is zero, aS is suggested from symmetry consider-

ations, and the heavé, sway, and roll coefficients are independent, of

forward veiôcity, but. the pitchandyaw cOefficients are non-zero and

depend linearly on the forward velocity:



cxg -(D-LD, - (K4

(
()

- I(;-Jû I::L '12.

(39)

These qualittive conclusions are in agreeiaexit with Hayelocks results

for a spheroid, but in one respect Havelocks conclusions, do not carry

over. ths is with regard to the effect of the angle of incidence

For the spheroid the functional dependence of the pitch and heave exciting

forces on can be inferred from thé case = O by replacing K ocI

with K 'cos $ and cciy/g cos B . However for the ellipsoid2 with a2 + a3

the function will have a more complicated dependence on ,B and this

simple foreshortenirig" relationship breaks down.

Finally we note the obvious relations

cx, (-/)
(40)

(41)
=

,C (ir!?)
(42)

G4 = £ g) (43)

Gr (,g) - Cr tfr -(a)
(44)

C,ç ¿a') = ci-7 (r-,&) (45)

which are valid for any body with longitudinal symmetry.
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Figures 1-11 illustrate, the above equations. These show the six

exciting force coefficients c. for the two ellipsoids /,'/7 3/q 1/iq.-

and /4,: /f ., /e,: 1/7. ('7'he same ellipsoids were used for the damping

calculations of reference.[5].). In these figures the abscissa is the

wavelength ratio /L , and different curves represent thé different

heading angles 0°, 30°, 600, 90°, 120°, 150°,. and 180° . The .soli4

curves represent zero forward speed and the dashed curves represent.a

Froude number of 1.0. In each figure the..el1ipse indicates tba.or.jenta.ton.

of a typical transverse section. Since equations (32-7) ae,Iinear in

the forward velocity c, Figures 1-1.1 can be used for any Froude number

employing linear interpolation or extrapolation. (As a result the dirves

for 120°, 150°, and 180° ae in fact redundant, since those could be

found from equations (40-45) with extrapolatioñ to a Froude number of -1.0,)

Figures 1-6 are for the "flat" ellipsoid, while Figures 7-11 are for

the "thin" one, The surge force for the thin ellipsoid is deleted since,

within the limits of graphical accuracy, the values are identical to

those ofFigure l

Figure 1 shows Only the zero speed curves since the surge exciting

force is independent of the forward velocity. The same' is true in

'sway, heave, and roll for the case of beam waves (900).

Comparing the respective forces for the two ellipsoids, there is

clearly a qualitative similarity in all cases, with quantitative differ

ences roughly proportional to the difference in the projected areas

23



for each còmponent0 Inrolithe only important differnce between tIie

two ellipsoids is in the sign of the exciting moment,
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APPENDIX

Evaluation.of the Far-Field Integrals

Equation (23) is an expression f pr the exciting .forces in terms

of surface and line integrals over a. control surface at infinity. Fiere

we shall evaluate these integrals. First we require the incident, wave

potential
O

and the far-field form of the. radiation potential cp.+

The in'ci4ent wave potential is given by

cp v Q.)cP( ¡<z csfl_'/9 s,g)
Jo -

where .A is the.wave' ampIitude o is the frequency ix a stationary

coordinate system, K = is the.wa\e number, and is the.angle of

incidence with respect to the x-axis.. The frequency... of encounter in the

moving (x, y,. z) coordinate system is = c + c K cos Solving this

equation for o gives

Q =. &D (A2)

where wc/g . We. note that there are two' possible values of o

corresponding to the fact. that there are always two possible wavelengths

which give the same frequency of encounter. in a moving. coødinate system,

Al

(Al)



the sme value of cos

Turning t the radiation potential th desired farfield

expansión has been eriyed for a submerged ellipsoid in réference [5]

and the general forni of this expression is valid f ör any body Thus

for large values of the polar radius R = x +y2

*

-
ìg)Ya {m) s9

where

exp {;L() Ntie T

c.os».
I cos L.. /

S2 (

and the (,j) sign in (27) is chosen to agree with the sign of

dGt-

)+2eo
L4_

A2

(A3)



The second sunimatiori is over the N-roots of the equation

se,, (, 1-r-4 '4

-

SL'ii L oS 4,,

(A4)

satisfying the inequality

The functions P.(u) in (A3) depend on the body groe.try as well as

the frequency and speed parameters. These functions, which. are related

to the !tKochinfl functions, are known for certain.bodies including sub

merged ellipsoids slender. bodies, and,fór j = 1,.. 3, 5 for thin

ships. -

We now substitute the potentials (Al) and .(A3) in equatiOn

(23), taking as the control surface S a circular cylinder of large

radius R. about the x-axis. Thus

xii- Hi: d
Jr

o
r

or, after substituting for and. and performing. the z-integration,

A3

cp;
R. o ''

Ji.
(A5)



L S5'h2 8

r
_', L(,

(h S - (fi-

;h(»:) -
(A7)

since, inaccordance with (A4) the rootsu are already determined.from

the condition c.o- P) Q Clearly one point of

A4

S() (U) exp

'rs'
4

f 2 9) +i'I< C.cS ( )1

4 39[ _iI9 saJ

(A6)

Since R i a large parameter the integral can be evaluated by the

method of stationary phase. Thus the only finite contribution as R

is from values of G such that

(qe) Cc(-&) J_J:
d8

or

o ( * ) L
- 1 -



stationary phase is obaied w1en O, m and n take the values such that

and (u). K From the.relatlon(A2) this i pössible, since

Ii- oí tk
2-r'-e.o?

(Á8.)

Moreover this is the only root of (A7) which gives a contribution o the

integral (A6), since for other possible roots of (A7) the integrand of

(A6) will vanÍsh In order tô valuate (A6) wé also, n'ed. the rèla.tion

(
-

r

L

r i -2.. -aJfde '\ --

d )

c-o

L
u9)]]

g

-

A5

Substituting in (A6) wé obtain by the method of. stationary phase

xi-
A e

/ j s Çq) i { fl-



òr, after substituting (M) and performing sme straightforward reduction,
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