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Abstract

We derive the asymptotic distribution of a new backfitting procedure for
estimating the closest additive approximation to a nonparametric regression
function. The procedure employs a recent projection interpretation of popular
kernel estimators provided by Mammen, Marron, Turlach and Wand (1997),
and the asymptotic theory of our estimators is derived using the theory of
additive projections reviewed in Bickel, Klaassen, Ritov, and Wellner (1993).
Our procedure achieves the same bias and variance as the oracle estimator
based on knowing the other components, and in this sense improves on the
method analysed in Opsomer and Ruppert (1997). We provide ‘high level’
conditions independent of the sampling scheme. We then verify that these
conditions are satisfied in a regression and a time series autoregression
under weak conditions.
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1 Introduction

Separable models are important in exploratory analyses of nonparametric regression. The backfitting
technique has long been the state of the art method for estimating these models, see Hastie and
Tibshirani (1991). While backfitting has proven very useful in application and simulation studies, it
has been somewhat difficult to analyze theoretically, which has long been a drawback to its universal
acceptance. Recently, a new method, called marginal integration, has been proposed, see Linton and
Nielsen (1995), Tjgstheim and Auestad (1994) and Newey (1994) [see also earlier work by Auestad
and Tjgstheim (1991)]. This method is perhaps easier to understand for non-statisticians since it
involves averaging rather than iterative solution of nonlinear equations. Its statistical properties
are trivial to obtain, and have been established in the aforementioned papers. Although tractable,
marginal integration is not generally efficient. Linton (1997) and Fan, Hérdle, and Mammen (1998)
showed how to improve on the efficiency of the marginal integration estimator in regression — in the
former paper, this was achieved by carrying out one backfitting iteration from this initial consistent
starting point. This modification actually achieves full oracle efficiency, i.e., one achieves the same
result as if one knew the other components. This suggests that backfitting itself is also efficient in
the same sense. Moreover, backfitting, since it relies only on one-dimensional smooths is free from
the curse of dimensionality.

Recent work by Opsomer and Ruppert (1997) and Opsomer (1998) has addressed the algorithmic
and statistical properties of backfitting. Specifically, they gave sufficient conditions for the existence
and uniqueness of a version of backfitting, or rather an exact solution to the empirical projection
equations, suitable for any (recentred) smoother matrix. They also derived an expansion for the
conditional mean squared error of their version of backfitting: the asymptotic variance is equal to
the oracle bound, while the precise form of the bias, as for the integration method, depends on the
way recentering is carried out, but in any case the bias is not oracle, except when the covariates
are mutually independent. This important work confirms the efficiency, at least with respect to

variance, of [their version of] backfitting. Unfortunately, their version of backfitting is not design



adaptive, which is somewhat surprising given that they use local polynomial smoothers throughout.
Furthermore, their proof technique required one rather strong condition: specifically, the amount of
dependence in the covariates was strictly limited.

In this paper, we define a new backfitting-type estimator for additive nonparametric regression.
We make use of an interpretation of the Nadaraya-Watson estimator and the local linear estimator as
projections in an appropriate Hilbert space, which was first provided by Mammen, Marron, Turlach
and Wand (1997). Our additive estimator is defined as the further projection of these multivariate
estimators down on the space of additive functions. We examine this estimator and show how — in
both the Nadaraya-Watson case and in the local linear case — the estimator can be interpreted as
a backfitting estimator defined through iterative solution of the empirical equations. We establish
the geometric convergence of the backfitting equations to the unique solution using the theory of
additive projections, see Bickel, Klaassen, Ritov, and Wellner (1993). We use this result to establish
the limiting behaviour of the estimates: we give both the asymptotic distribution and a uniform
convergence result. Our procedure achieves the same bias and variance as the oracle estimator based
on knowing the other components, and in this sense improves on the method analyzed in Opsomer
and Ruppert (1997). Although the criterion function is defined in terms of the high-dimensional
estimates, we show that the estimator is also characterized by equations that only depend on one-
and two-dimensional marginals, so that the curse of dimensionality truly does not operate here. Our
first results are established using ideas from Hilbert space mathematics and hold under ‘high level’
conditions, which are formulated independently of specific sampling assumptions. We then verify
these conditions in an i.i.d. regression model and in a time series autoregression with strong mixing
data. Our conditions are weaker than those of Opsomer and Ruppert (1997), and do not restrict the
dependence between the covariates in any way.

The paper is organized as follows. In section 2 we show how local polynomial estimators can
be interpreted as projections. In section 3 we introduce our additive estimators in the simplest
situation, i.e., for the Nadaraya-Watson-like pilot estimator, establishing the convergence of the
backfitting algorithm and the asymptotic distribution of the estimator under high level conditions
that are suitable for a range of sampling schemes. In section 4 we extend the analysis to local

polynomials. In section 5 we give primitive conditions in a time series autoregression that imply the



high level conditions. All proofs are contained in the appendix.

2 A projection interpretation of the local polynomials

Let Y, X be random variables of dimensions 1 and d respectively and let (Y, X'), ... (Y™ X"
be a random sample drawn from (Y, X). We first provide a new interpretation of local polynomial
estimators of the regression function m(zi,...,x4) = E(Y|X = z) evaluated at the vector x =
(x1,...,24), based on Mammen, Marron, Turlach and Wand (1997). This new point of view will be
useful for interpreting our estimators of the restricted additive function m(x) = mo+my(z1) +-- -+
ma(zq)-

The full dimensional ¢** order local polynomial regression smoother which we denote by m(x) =

(m°(x), ..., m*Y(z))7T satisfies

~ . - i 0 X{ — I 1 Xciz_xd ! s—1 - i
m(l‘) = arg90m19r5171 Y —§" — 5 g —...— A 6 HKh(Xg—l'Z); (1)
- /=1

""" i=1

where Kj,(-) = K(-/h)/h with K(-) a univariate kernel and h = h(n) a positive bandwidth sequence,

L+d—1
d—1

distinct partial derivatives up to and including the ¢** order. In fact, for simplicity of notation we

while ¢ is the order of the polynomial approximation and s = Y 7_, ( ) is the total number of
will concentrate on the local linear case considered in Ruppert and Wand (1994) for which ¢ = 1 and
s =d+ 1 — the Nadaraya-Watson case, for which ¢ = 0 and s = 1, is even simpler, see below. For
simplicity of notation, we use product kernels that have the same kernel and the same bandwidth in
each component. Our results can be easily extended to the case of different kernels and bandwidths.

For the new interpretation of local linear estimators we shall think of the data Y = (Y!,..., Y™")T

as an element of the space of tuples of n(d + 1) functions
F = {(f” ci=1,...,n;5=0,...,d) : Here, f* are functions fromRR? to ]R} )

We do this by putting f*%(z) = Y* and f“(x) = 0 for j # 0. We define the following semi-norm on
F,

1£11% = / ZJ”O +Zf” HKh i) dr. (2)




Consider now the following subspaces of F:

Frar = {f € F: " does not depend on i for j =0,...,d}
Foaa = {f € Fru: fi’o(iﬂ) = g1(z1) + ...+ ga(zq) for some functions g; : R— R [j=1,...,d]
and f"(z) = ¢’(z;) for some functions ¢’ : R+—— R for j =1,...,d.}.

The estimate m(z) defines an element of F,y by putting f*(z) = m?(z), j =0,1,...,d. It is easy
to see that m is the orthogonal projection, with respect to || ||«, of Y onto Fyu. Below we introduce
our version m of the backfitting estimator as the orthogonal projection of m onto F44 [with respect
to || |l«]. For an understanding of m it will be essential that it is the orthogonal projection of Y
onto Fuqq. For the definition of such norms and linear spaces for higher order local polynomials and
for other smoothers we refer to Mammen, Marron, Turlach and Wand (1997). Each local polynomial
estimator corresponds to a specific choice of inner product in a Hilbert space, and the definition of
the corresponding additive estimators is then the projection further down on F,44. In particular, for

the local constant estimator (Nadaraya Watson-like smoothers) one chooses:

F = {(f’ :i=1,...,n): Here, f*are functions fromR? to ]R}
Frar = {f € F: f" does not depend on i}
Fadd = {f € Frur: f(x) = g1(21) + ... + ga(zq) for some functions g; : R — R}

112 = [ (@) HKh i) do.

Note that for functions m in Fyyy [ie., m :=m! = m"] we get

]2 = / m()*(z

where p(z) = n™! Z?:l{l_[?zl Ku(X? — x;)} is the kernel density estimate of the design density. In
particular, in this case m is the projection of the full dimensional Nadaraya-Watson estimate onto
the subspace of additive functions with respect to the norm of the space Lq(p). We give a slightly
different motivation for the projection estimate m in the next section, see (7). There we will discuss

the case of local constant smoothing in detail.



3 Estimation with Nadaraya Watson-Like smoothers

In this section we will discuss how our projection idea can be applied to define Nadaraya Watson back-
fitting smoothers. The first subsection will give details about the implementation for the Nadaraya
Watson smoother. In the second subsection we will discuss asymptotic properties of our backfitting
estimates. This will be done for a more general set up than Nadaraya Watson smoothing. We will
show that the backfitting algorithm converges numerically and we will give simple expansions for
the stochastic and deterministic part of the backfitting estimate. The conditions under which these
expansions hold will be verified in Section 5 for Nadaraya Watson smoothers in both an i.i.d. and
an autoregression setting. The expansions will imply that the asymptotic variance of our estimate
does not depend on the number of additive components (and that in particular, they coincide with
the case of only one component). Furthermore, the asymptotic bias is given by a simple geometric
operation. It is the projection of the usual asymptotic bias expansion of a full dimensional estimate

onto the space of additive functions.

3.1 A backfitting Nadaraya-Watson estimator

In this subsection we will motivate our backfitting estimate for Nadaraya-Watson regression smoothers

with product kernels

- S [y Enlae = XPY?

r) = &Ll o ()
> i1 oy Kn(ze — X7)

The specific choice of (3) is not so important. One can show that the discussion of this subsection

can be extended to smoothers that have the ratio form

N r(z)

m(z) = ) (4)
where p(x) is an estimator of p(z), the marginal density of X, which depends only on A" =
{X' ..., X"}. The assumption that the pilot estimate m exists [i.e., is everywhere and always
finite uniformly in n with probability tending to one] will be dropped in our asymptotic analysis in
the next section, which will allow us to include the case of high dimensions d. We assume for the
most part that

m(z) = mo+ my(z1) + ... + ma(xy), (5)
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for some functions m;(-), j = 1,...,d and constant my, although our definitions make sense more
generally i.e., when the regression function is not additive, in which case the asymptotic behaviour

of our estimate is more difficult to analyze.. For identifiability we assume that
/mj(iﬁj)pj(ﬂfj)diﬁj =0, j=1,....,4, (6)

where p;(-) is the marginal density of X,. Denote also the marginal density of (X, Xi) by pjx(-, )
respectively (j,k = 1,...,d). The vector (X}, : k # j) is denoted by X_; and its Lebesgue density

by p—j.
Recall that backfitting is motivated as solving an empirical version of the set of equations

m1<£171) = E(Y|X1 = .’131) — Mgy — E{mg(X2)|X1 = .’131}
— ... — E{md(Xd)|X1 = ZL‘l} s

md(a:d) = E(Y|Xd = $d) — Mgy — E{ml(X1)|Xd = $d}
—...—F {md_l(Xd_1)|Xd = .’Ed} .

With only sample information available, one replaces the population quantity E(Y'|X; = z;) by one-
dimensional smoothers m;(-), and iterates from some arbitrary starting values for m;(-) see Hastie
and Tibshirani (1991, p. 108). Let p(z) = n~ ' 3.0 TI\, Kn(ze — X}) be the multidimensional
kernel density estimate and let m(z) be the multidimensional Nadaraya-Watson estimate as defined
in (3). We define the ‘empirical projection’ estimates {m;(-),j = 0,...,d} as the minimizers of the

following criterion
I =l = [ (o) = mo = ma(o) = .. — mae)) o) 7)

where the minimization runs over all functions m(z) = mo+ 3 ; m;(x;), with [ m;(2;)p;(x;)dz; = 0,
where pj(z;) = [ p(x)dz_; is the marginal of the density estimate p(z). This is the one-dimensional
kernel density estimate pj(z;) = n~' " | Kp(z; — X}). A minimizer of (7) exists if the density

estimate p is non-negative. Equation (7) means that m(z) = mg + mi(x1) + ... + m;j(z4) is the
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projection in the space Ly(p) of m onto the subspace of additive functions {m € Ly(p) : m(x) =
mo+ma(x1)+...+mg(zq)}. Thisis a central point of our thesis. For projection operators backfitting
is well understood (method of alternating projections, see below). Therefore, this interpretation will
enable us to understand convergence of the backfitting algorithm and the asymptotics of m;. We
remark that not every backfitting algorithm based on iterative smoothing can be interpreted as an
alternating projection method.

The solution to (7) is characterized by the following system of equations (j = 1,...,d):

@m>=/“mp Z/ (o) dﬂ—m ®)
o:=/%mmmm% )

Straightforward algebra gives

Dl n 13" Kp(r; — XHY?
J R e ) (10
pi(z;) pi(z;)
because of []], 2 Kn(ze — X})dx_; = 1, where fhj(a:j) is exactly the corresponding univariate
Nadaraya-Watson estimator. Furthermore, mo = [ m(z)p(z)dz, and because of [ H/z L Kn(zg —

X})dz_; =1, we find, as in Hastie and Tibshirani (1991), that mo =n"'>" Y ie. that mg is the
sample mean. Therefore, mq is a \/n-consistent estimate of the population mean and the randomness

from this estimation is of smaller order and can be effectively ignored. Note also that
777,0 = /m](l'])@(lf]) dl‘j fOI'j = 1, PN ,d. (11)

We therefore define a backfitting estimator m;(z;), j = 1,...,d, as a solution to the system of

equations [j =1,...,d]

mj(z;) = /mk Th) =
k#j

0 = /my‘(iﬂj)@(fﬂd%-

d(E ﬁl(),

7



with mg defined by (11). Up to now we have assumed that multivariate estimates of the density and
of the regression function exist for all z. This assumption is not reasonable for large dimensions d
(or at least such estimates can perform very poorly). Furthermore, this assumption is not necessary.

Note that (8) can be rewritten as

m;(z;) = mj(x;) Z/m p]k m]’mwdmk — My, (12)

k#j (z;)
where pjx(z;,zx) = n~' Y0 Kp(x; — X})Kp(z, — X}) is the two-dimensional marginal of the full
dimensional kernel density estimate p(x). In this equation only one and two dimensional marginals
of p are used.

Upto now we have implicitly assumed that the support of X is unbounded or at least that the
density approaches zero at the boundary suitably fast. We now consider a generalization of the
method which takes care of the boundary effects that are present when the densities have compact
support. We do not require that (11) holds [i.e., [ m;(z;)p;(x;) da; may depend on j ], nor that p;
be a probability density, and we allow that p; is not the marginal density of p, , i.e., it may not
hold for all j # k that

i) = [ Bialas,ae) da. (13)
For instance this may be the case for kernel density estimates of a density with compact support. For

details see Section 5. For this more general setting we want to find now an appropriate modification
of (12). We rewrite (12) as

Xi, _
m(x;) = m;(z;) Z/mk ) p]k J k>d$k — Myo,j, (14)

where my ; is chosen such that [ m;(z;)p;(z;)dz; = 0 for all j. Under the assumption of (11), (13)
and [ pj(z;) dz; = 1, this gives (12). In general, (14) can be rewritten as

_ N _ X, .
mj(x;) = my;(x;) — mo; — /mk ) lpﬂi—]k) —pk,m](%)} dzxy, (15)
k#] p] (':E]>

where for k # j
-1
Prges) = [ Bl d [ 5 d:cj] , (16)

8



Mo = fffl’] $])p (‘Tj) dx] (17)
" I Dj(x;) dw;

In the next section we will discuss estimates m; that are defined by (15) along with their asymp-
totic properties In practice, our backfitting algorithm works as follows. One starts with an arbitrary
initial guess m ) for m;; for example, m[O] = m; or T?LE'O] is the marginal integration estimator of

Linton and Nielsen (1995). In the j-th step of the r-th iteration cycle one puts

~ [r 1/9\ Zj, T ~
mg.](mj) = n,(z;) Z/mk T lM_pkv[jH(xk)} dry,

oy p;(x;)

and the process is iterated until a desired convergence criterion is satisfied. The integrals are com-

puted numerically, see section 4 below for further comments.

3.2 Asymptotics for the Nadaraya-Watson-like Estimator

We now consider estimates m; that are defined by (15), where m;, Dji, and p; are some given
estimates. The next theorem gives conditions under which, with probability tending to one, there
exists a solution m; of (15) that is unique and that can be calculated by backfitting. Furthermore, the
backfitting algorithm converges with geometric rate. Our assumptions, given below, are ‘high-level’
and only refer to properties of m;, p;i, and p; [for example, we do not require that p be the underlying
density of X or that m;, p;x, and p; are kernel estimates|] — these properties can be verified for a
range of smoothers under quite general heterogeneous and dependent sampling schemes, as we show
in section 5 below. In the sequel, all integrals are taken over the support of the relevant variables.
We use the convention that 0/0 = 0.

ASSUMPTIONS. We suppose that there exists a density function p on R with marginals

pj(z;) = /p(a?)dm—j



and

Pk, T8) = /p(iﬂ) dz_(jr) forj#k.

(A1) For all j # k, it holds that

2 (xi,x
pr(wr)pi(7;)

(A2) For all j # k, it holds that

/ [ﬁj(xj) - pj(%’)} 2pj(a:j)dmj — op(1),

pi(;)
/ [ Pik(xj wr)  pin(Ts, Tr)
pr(@e)pi(z;)  pr(wr)pi(z;)

Pial@ssvn) _ By i) 17 (x;)dz;dzy, = o
/[pk(mk)ﬁj(mj)_pk(mk)pj(mjd Pr(@)p;(;)dz;dzy = 0p(1).

Furthermore, p; vanishes outside the support of p;, pjr vanishes outside the support of p; i, and

D, T) = Drj(@n, 5).

} pr(@r)pj(z;)de;dry = op(1),

(A3) There ezists a finite constant C' such that with probability tending to one for all j,
/T?Lf(ﬂ?j)pj(mj)dmj <C.

(A4) For some finite intervals S; C R that are contained in the support of p; [1 < j < d] we suppose
that there exists a finite constant C' such that with probability tending to one for all j # k,

2 (i, x
sup /};]’k(—]k)dmj <C.
aesi ) Dp(@r)p;(;))

For the statement of our next assumption we suppose that the one-dimensional smoothers m;

can be decomposed as
~  ~A ~B
m; = m; + m;.

For s = A and s = B, we define m} as the solution of the following equation:

~3 b Tj, T fon ~S
m;(z;) = mj(x;) Z/ []k—]k) — Prj+1 () | dze —mg 5, (19)

k#j p] :E])

10



where mg ; = [ m5(x;)p;(x;)dx;/ [ pj(x;)dr;. Existence and uniqueness of m# and m? is stated in
the next theorem (using the following assumption). Note that m; is defined as m; in equation (15)

with 7 replaced by m$. We get that m; = mf +m?.
(A5) There exists a finite constant C' such that with probability tending to one for all j,

/T?Lf(ffj)zpj(%)dmj <C

and

/mf(fﬁj)2pj(ﬂfj)diﬁj <C.

In the applications of our results we will put ﬁlj-‘ as the stochastic part and ﬁ”LjB as the expectation
part of m; (or in case of a random design, as the conditional expectation of m; given the design.) In
particular, in the case of Nadaraya Watson smoothing of i.i.d. tuples (X% Y?) with Y’ = m(X") +
" where € is mean zero, we will put m(z;) = n ' Y1 Ky(x; — X)e' /pj(x;) and mP(z;) =
n~' Yo Ki(z; — X)m(X?) /p;(x;). Note that (in this case) conditions on 4 and m} are easy to
verify [because only one dimensional smoothing is applied] whereas conditions on 7713-4 and fhf are
harder to treat because these variables are defined only implicitly. The next assumption states a

condition on ﬁlj‘ that can be used to treat the stochastic part ﬁlj‘.

(A6) We suppose that for a sequence A, — 0 the first component T?L;‘ satisfies for 5 ~k

ik (%5, Tk) 4
sup ————-m(x;)dz;| = op (A,), 20
2, E€S), / pr(zy) 7 (3 ) P (A) (20)
p]k ZL‘],iL‘k; A
x)dz:|| =op(A,), 21
| [ s, | = on(an) @)
where || ...||2 denotes the norm in the space Ly(py). For simplicity of notation the index k is

suppressed in the notation. The sets Sy have been introduced in (A4).

B

For the expectation term fﬁj we suppose in the following assumption that it stabilizes asymp-

totically around a nonrandom term. Below we will give assumptions on T/ijB that are easier to check

and that will imply the condition on m%.

11



(A7) We suppose that there exist (deterministic) functions p, ;(-) such that the term m? satisfies

sup [ (z5) = 5(2;)| = 0p(An),
z;E€S;

where the sets S; are introduced in Assumption (A4).

These conditions, which we discuss further below, are all straightforward to verify, except (A7).
They are weaker than those made by Opsomer and Ruppert (1997); in particular, we do not restrict
the dependence between the covariates.

The following result is crucial in establishing the asymptotic properties of the estimates.

THEOREM 1 [CONVERGENCE OF BACKFITTING|. Suppose that conditions A1-A8 hold. Then,
with probability tending to one, there exists a solution m; of (15) that is unique. Furthermore there
exist constants 0 < v < 1 and ¢ > 0 such that, with probability tending to one, the following inequality
holds

/ [T’ﬁé”] (z;) — mj(z;) 2pj($j)d$j <oy (1 + Z/{méo] (wj)}ij(mj)d$j> : (22)

Here, the functions ffL[IO](ml), o ,fngﬂ (xq) are the starting values of the backfitting algorithm. For

r > 0 the functions ﬁl[lr] (1),... ,fflg] (zq) are defined by (18).
Furthermore, for s = A and s = B under the additional assumption of A5, with probability

tending to one there exists a solution m3 of (19) that is unique.

Our next theorem states that the stochastic part of the backfitting estimate is easy to understand.
It coincides with the stochastic part of a one-dimensional smooth. Therefore, for an understanding
of the asymptotic properties of the backfitting estimate it remains to study its asymptotic bias. This

will be done after the theorem under additional assumptions.

THEOREM 2. Suppose that conditions A1 - A6 hold for a sequence A,, and intervals S; (1 < j <
n. Then, it holds that
sup [mg! (a) — [ (2;) — ;]| = op(An).

x;E€S;

12



If in addition A7 holds, then one gets

sup [my(z;) — [Mmf () — Mgy + p (2] = op(Ay).

(23)

Typically the asymptotic stochastic behaviour of T?Lf is easy to understand because it is a one-

dimensional linear smoother. So if A,, is small enough Theorem 2 gives the asymptotics of ﬁlj-‘. We

will discuss this below in detail.

We come now to the study of the expectation term fhf . The asymptotic expectation p,, ;(z;) can

be calculated by a projection under the following assumptions.

(A8) Suppose that for j #k

sup /
x;E€S;

pik(j ze)  Dik(j, zk)
pi(xi)pe(zr)  Dj(z)pr(zr)

pr(xr) drg = op(1).

(A9) There exists deterministic functions ou1(z1),...,0nd(2q), constants ang V1, -

function 3(x) [not depending on nj, such that:
[ anstas oo day < .

/ B()*p(x) do < o,

sup |B(z)] < oo,
r1€S51,...,£4ESg

[ answptu) du =1+ on(),

Sup ‘mf(%) — Hpp — ﬁn3($g)| =op(Ay),
ar;jESj

N . . 2
/ |mf(37j) — Mo — Mn,j(xj)| pj(z;)dx; = op(A2),

for a random variable 1i,, , and where

[ i (75) = Qo + amj(z5) +Z/an7k(:pk)w dy +A”/6(x>p?g )

oy pi(z;)

13
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We will discuss these assumptions after the following theorem.

THEOREM 3. Suppose that conditions A1-A6, A8, A9 hold. Define a constant 3, and functions
B; on R [with fﬁj(mj)pj(a:j) dx; = 0] by

(Bos By 80) = avg i, [ (5(a) = 6y = Bifan) = ..~ Bulea*p(o) do. (2)
Then
xSlelg |mf(xj) 'U’Th](:rj)| - OP(A”)’
where

i.e., A7 holds with this choice of p,, ;(;).

Theorems 2 and 3 give the asymptotic behaviour of m;(z;) in terms of A,, M4 (z;), an; and
B (x;), which quantities can be analyzed by standard techniques. In Section 5 we will verify conditions
A1-A6, A8, A9 for Nadaraya - Watson smoothing. In this case, as discussed in the last subsection,

m;(x;) is defined as

() = Kn(X] — 2,)Y"/p;(x;) (28)

i=1
and p; and pj, are kernel density estimates [of the densities of X; and (X, X}), respectively.) We will
show that conditions A1-A6, A8, A9 hold under the assumptions B1-B7, stated there, see Theorem
4. This will be done with h of order n~/® and kernels K with boundary corrections. It will turn out
that the conditions hold with A,, = h? and where o, ;(z;) is equal to m;(z;) plus a correction term
of order Op(h) at the boundary and where

d

Ble) = 3 i) g o)+ miapl| [ r () (20)

7=1

We remark that under strong conditions [that we do not apply here] h23(z) is the asymptotic bias

of a full dimensional Nadaraya Watson estimate. So Theorem 3 shows that the bias terms of the
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backfitting estimates are given by projections of the “theoretical” bias of a full dimensional Nadaraya
Watson estimate.

In the discussion of Section 5 we will assume that the additive model (5) holds. The discussion
of the expectation part ﬁljB becomes very complicated, when the regression function is not additive.
Then if the full dimensional kernel density estimate p exists one would expect that in first order
mP(z1) +...+mB(x,) is equivalent to the Ly(p) projection of the regression function onto the space
of additive functions. Because of the slow convergence of p to p we conjecture that this differ from

the Ly(p) projection by terms that are of larger order than Op(n=2/%).

4 Estimation with Local polynomials

For simplicity of notation we consider only local linear smoothing. All arguments and theoretical
results given for this special case can be generalized to local polynomials of higher degree.

Define the matrices [of dimension n X (d + 1) and n x n, respectively]

1 Xllf:rl o Xlz—xd
h h
X(z) = : : : (30)
1.
K(a) = —diag ( [[ Ku(X] —20), S TIEL Ku(XF —20) )

With these quantities the local linear estimate m(z) is defined as
~ _ T -1 T —v-1 R
m(z) = {X(z)'K(z)X(z)}  X(z)" K(z)Y =V '(z)R(=z), (31)

where Y = (Y1,...,Y")T, V(z) = X(2)"K(z)X(z) and R(z) = X ()T K(2)Y.
Backfitting estimators based on local polynomials can be written in the form of equation (7) by
choosing p(z) = %70(13') — {/a_o(m){/’:é’,o(m)voj_o(:E), where

> o ‘70,0(@ \Afo,—o(f) = X(2V K ()X (
V(@) = ( Foonle) Vonoe) ) = X ()" K(2)X(2),
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with the scalar 17070(:6) =nty ", H‘Ll Kn(X} — ), and \A/'_070(:E), {/_07_0(:6) defined appropriately.
This approach has two disadvantages. First, it may work only in low dimensions — since for the
asymptotics, existence of the matrix \7—:[1)7_0(3:) and convergence of \A/',O,,O(a:) is required under our
assumptions [and this may hold only for low dimensional argument x]. Second, the corresponding
backfitting algorithm does not consist in iterative local polynomial smoothing.

We now discuss another approach based on local polynomials that works in higher dimensions
and that is based on iterative local polynomial smoothing. We motivate this approach for the case
that \A/'(a:) does exist, but we will see that the definition of the backfitting estimate is based on only
one- and two-dimensional ‘marginals’ of {/(a:) So its asymptotic treatment requires only consistency
of these marginals, and the asymptotics work also for higher dimensions. This is similar to the
discussion in the last section where consistency has been needed only for one- and two- dimensional
marginals of the kernel density estimate p.

For functions f = (f°,..., f%) with components f/ : R — R and d + 1 by d + 1 positive

(semi-)definite matrix function M(-), define the (semi-)norm

There is a one-to-one correspondence between functions f and functions in Fy,;. Furthermore,
taking M = V we get that ||| 17 1s simply the semi-norm induced by |[|-||,. In Section 2 our version

m(z) = (m°(z),...,mx))? of the backfitting estimate was defined as the projection of [the function

in F .y corresponding to] m [see (1)] with respect to ||-||, onto the space F,4q4. Therefore, m coincides

with the Ly(V) projection, with respect to the (semi-)norm || f||¢, of m onto the subspace M4,

where

Madd = {ll(l') = (U’O(m)v te aud(m))T S M|
() = ug +ur(z1) + ...+ ug(2q), u'(x) = we(xy) for £=1,...,d,
where g, ..., uq4 are functions R —— R with /Wo(a:j)uj(a:j)dmj =0forj=1,...,d,
where wug is a constant and where w, : £ = 1,...,d are functions: R — R},

where for each j the (d+1) x (d+ 1) matrix {\/'j(a:j) = f{/(:v)dm_j and where @{Z,(a:j) 0<¢,0 <d]

denote the elements of V7 (x;). Note that the estimate YA/O];O coincides with the marginal kernel density
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estimate p; and that therefore the norming [ Wo(xj)uj(mj)dmj = 0 makes sense. This norming makes
the definition of the additive components u; unique. [Clearly, the definition of the set Myqq would
not change if we omit this norming.] The class M,qq contains functions that are additive in the
first component [for ¢ = 0] and where the other components [for ¢ = 1,...,d] depend only on a
one-dimensional argument. A function f in M4, is specified by a constant fy and 2d functions
R —— R. Because f*, ¢ =1,...,d, depend only on one argument, in abuse of notation we write also
ft(x,) instead of f*(z). Note that there is a one-to-one correspondence between elements of Mg
and Faq4.

We now discuss how m is calculated by backfitting. Note that m is defined as the minimizer
of |[m — m||. Recall that this is equivalent to minimizing ||Y — ml|? over F,q4q. We discuss now
minimization of this quantity with respect to the j-th components m’(z;) and mg + m;(z;). Define

for each 7,

i

d
113 = [ Zf“) +wa ]1_1 Xi ) do

and note the obvious fact that

112 = / V2 (e)day, G=1,....d.

Therefore, because such an integral is minimized by minimizing the integrand, our problem is solved
by minimizing ||'Y — m|[3(z;), for fixed x;, with respect to m/(x;) and mq +mj;(z;), for j =1,...,d.

After some standard calculations, this leads to the following first order conditions:
~ 17 ~ j RS i i~ 17
i (a;)Vio () + md () Vig(a;) = - Z Kn(Xj — 2;)Y" — moVio(z;)

—Z/mg Ty Vbo (g, xj)dx,

L£j

—Z/m Ty V;zo (¢, z;)dzy (32)
L#£5

~ D (o \T I X i

i () Vioy) + 0 () Vij(ay) = =% =2 Kn(X] =)V = gV ()

JiJ n 4 h J



_Z/mg Xy Vb] l’g,l'J)dl'[

L]

—Z/m zy)V, 12] I (g, ;) dy. (33)

L#£5

Here, we have used one- and two-dimensional marginals of the matrix V:
Vi(z,) = / V(z)dz_, (34)
V() = / V(2)dz_ (). (35)

The elements of these matrices are denoted by ‘ijq(a:,,) and ‘71)’;;;’ (2, zs) with p,g =0, ...,d. Together

with the norming condition
[ ) Vol o, =0, (30

equations (32) and (33) define mg, m; and m’ for given Y and [my,, m* : £ # j].
Equations (32), (33), and (36) can be rewritten as

1 (2
m (xj)vt)()@j) + mj(mj)v olz;) = gZKh(X] — ;)Y (39)
i=1
1 - Xl_m i i
i (x;)Viy(a;) + M (2,)V] () = - ]h S Kn(X) —z,)Y (40)
=1
i () Vo () + 1 (2)Vig(2;) = —moVio(z;) — /me ) Vo (ze, z;)dag
£y
—Z/mz(iﬁz)%if(ﬂ?z,%)diﬁe (41)
0+
i () Vig(a) + 1 () Vi(2;) = —imgVig(z;) /me 2o) Vo (x4, 2;)dey
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—Z/ (¢ V;z xg,:cj)dmg (42)

LF5
[ Violada; = = [ o) Vo) (43

Note that (7, M) is the one dimensional local linear fit of the observations Y* onto X.

Again, equations (37)-(43) define mg, m; and m? for given Y and [my,, m* : £ # j]. In the j-th step
of every cycle of the backfitting algorithm an update of mg, m; and m? will be calculated by solving
equations (37)-(43). In the next subsection we will discuss asymptotics for the backfitting estimate
in a more general set up. In particular, there we will not assume that (7, m*) is a one-dimensional
local linear fit nor that V¢ and V% are motivated by local linear smoothing. Furthermore, we will
not make any assumptions on the stochastic nature of the sample. For arbitrary choices of (1, m’),

we will define m; and m’ by

i {m; —m;}(z;) — [ Vgolz ()
M, (z; o = —my,; Sej(ze, i) | _ dx,. (44
(o —avney ) = (i ) -5 Bt (5o

t#j
[ i) olas) dz; o (4
where
M) = (ffoﬂo(m vym) 46)
VAN - -

Vie(z;) Vii(z;)

J )]
§e,j($e,$j) — ( (;(ZUZaZU]> ‘ig(ﬂ,%)) (47)

O(mfam]> ‘/g]l'g,l‘])

Note that again as for Nadaraya-Watson smoothing we allow that mg ; depends on n. In partic-

ular, this may be the case if it does not hold that
/ Vi (e, ) day = V() (48)

for r € {0,¢} and s € {0,5}.
Not m7(x;), but h m?(z;) is an estimate of the derivative m(z;) of m;(x;). The reason that in

our definition of the seminorm || . we have the linear term f*/(z)(x; — X})/h and not the term
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[ (x)(x; — X}), see (2) and see also the definition (30) of the matrix X (x). Typically, estimates

of derivatives have variance of order (nh®)~!, compared to the order (nh)~! for estimates of the

functions itself. For this reason, one can show that, because of our norming by the factor h~!,

m? (x;) has variance that is of the same asymptotic order as the variance of m;(x;). The same holds

for m?(z;). This is the reason why we have introduced the factor ~~! in || ||, and X (z).

Let us finish this section by some computational remarks.

The backfitting algorithm runs now with the following iteration step (a = 0,1,...):

fi(;) i)\ =i [a i () )
. - . — Mj T Sg’j Ly, T . dmg. 49
( mlat () ) ( m (z;) ) (z3) Z/ ( ) ( mlat (1) (49)

L£5
A ay) = Fa) — [ B Viatay) dus. (50)

For the case that (48) holds, in a faster implementation, the norming of m; done in (50) could
be omitted, i.e., one could put ﬁlg-aﬂ](mj) = fi(z;). After the final cycle all functions m;
could be replaced by m;(z;) — [ m; (mj)vcf;o(a:j) dz; and mg defined appropriately. It is easy to
see that this algorithm does the same. If one is interested only in the estimation of the sum

mo+mq(x1)+...+mg(xy) the final norming could be omitted or replaced by another norming.

A possible initialization of backfitting is given by putting mg = 0, m, = m, and m¢ = m?! for
(=1,...,d.

Note that the estimates 7, and m‘ have to be calculated only at the beginning and have not

to be updated in each backfitting iteration.

For an implementation of backfitting, all estimates [i.e., iy, M*, my, M, me, m*, V¢ and \A/'e’”]
have to be calculated on a grid and the integrals in (41) and (42) have to be replaced by
averages. It should be emphasized that the grid need not coincide with the set of design points.
In particular, for large data sets it may not be necessary or desirable that it contains the same

number of points.
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4.1 Asymptotics for Local Polynomials

We discuss now asymptotics for the backfitting local polynomials estimate. As for Nadaraya-Watson
smoothing, this will be done in a general set up. We assume that some estimates 7, m?, V¢ and
G [6,0 =1,...,d] are given and that mqy, m, and m* [( = 1,...,d] are defined by (44) - (47).
In particular, we will not assume that (7, M) is a one dimensional local linear fit and that V' and
Vi are motivated by local linear smoothing. Furthermore, we will not make any assumptions on

the stochastic nature of the sample.

ASSUMPTIONS. We suppose that there exists a density function p on RY with marginals

pi(z;) = /p(iv) dz
and
Pik(, xn) = /p(w) dv—x) forj#k
and a positive definite (d+1) x (d+1) (deterministic) matric W with elements W, :0 <r,s, < d.
We define M\j(xj) and /S\[J(ZL‘[,ZL‘]‘) as in (46) and (47) and we put

Woo Wipo Woo Wi
M (7;) = < - WJ )pj(xj)u Se (e, 25) = ( — )Pe,j($£7$j)-
0 Wi 0 Wi

We suppose that Wy o = 1.

(A1) For all j # k, it holds that

2 (.
/—pj’k(m]7mk) dzjdzy, < .
pr(wr)p;(7;)

/

Sk
Voj,o (4, zx) Pk, k)

/ pre(@i)p;(z;)  pr(ae)p;(z;)

/ [ﬁj(:ﬁj)_lgm(mk: ;) — Mﬂ‘(mﬂ‘)_ls’“j(x’“%)r

(A2') For all j # k, it holds that

Voolz;) _pj(mj>] p;(z;)dz; = op(1),

pj(z;)

] pr(zr)p;(x;)de;dry = op(1),

pk(mk)_lpj(a:j)dmjdxk =op(1).

r
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for r,s =1,2. Here [...],; denotes the (r,s) element of a matriz [...]. Furthermore, ﬁj

vanishes outside the support of p;, S;r vanishes outside the support of p; i, and Sj k(g o)t =
Sk,j(mku $j) .
(A3') There exists a constant C' such that with probability tending to one for all j
/mj(iﬂj)2pj(iﬁj)df€j <C

and
/mj(iﬁj>2pj($j)d% <C.

A4") For some finite intervals S; C R that are contained in the support of p; [1 < j < d| we suppose
j j
that there exists a finite constant C' such that with probability tending to one for all j # k

Sug /trace[gk,j(mk,:Ej)/l\Zj(mj)_2/S\k7j(xk,xj)]pk(mk)_ldxk <C.
T;€95

We decompose the smoothers m; and m/ as m; = mi +m? and m/ = m?* + m??. For s = A

and s = B we define mg ;, m; and m?* as the solution of the following equations

— g —mide) \ L Vi N B CCOR
Mj(mj)({mj’s—mjﬁ}m)) } (Vio ) RN <~“ >>d€

L#j

/ (z; Voo (zj)dx; = O.

Existence and uniqueness of m/ mB ;m74 and m?P is stated in the next theorem. Note that (m3, mo*)

is defined as (1, m7) in equations (44) and (45) with (7, m7) replaced by (m3, m’*)

(A5') There exists a constant C' such that with probability tending to one for all j

/ﬁlj(a:j)2pj(mj)dmj <C, s=ARB

and

/ﬁlj’s(a:j)2pj(mj)da:j < C, s = A, B.
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In the applications of our results we will put (fhf, m?4) as the stochastic part and (fhf ,miB)
as the expectation part of (m;,m?) (or in case of a random design, as the conditional expectation
of (mj, m?) given the desagn) In particular, in the case of local linear smoothing of i.i.d. tuples
(X% Y") with Y* = m(X") 4+ &' where ¢ is mean zero, (m, m’*) is the local linear fit to (X?,¢’) and
(mP,m?P) is the local linear fit to (X}, m(X")).

(A6") We suppose that for a sequence A,, we have

— ~ mA(x.
sup /Mk(a:k)_lsk,j(mk, )| 7A( 2 dz;|| =op(A,),
TR ESE m]7 (.'1:]) 9
— ~ fﬁA x
/Mk(wk)lsk,j($k7$j) A( 2 dz; = op (An),
mP4 () M,

where || ... |2 denotes the Ly morm in R* and where for functions g : R —— R? we define

91131,.2 = [ 9(u)" My (u)g(u) du. The sets Sy have been introduced in (A4').

For the expectation term fijB we suppose in the following assumption that it stabilizes asymp-
totically around a nonrandom term. Below we will give assumptions on (m},m7”) that are easier

to check and that will imply the condition on mf.
(AT") We suppose that there exist deterministic functions p,, ;(-) such that

sup [y’ (27) — o 5 (2)]
z;E€S;

where the sets S; have been introduced in Assumption (A4).

We remark again that these conditions are all straightforward to verify, except perhaps A7
Note that we shall not require \7(:17) to converge in probability to Wp(z), because this would be
affected by the curse of dimensionality — a necessary condition would be that nh? — oo for kernel
smoothing, which rules out the one-dimensional convergence rate when d > 4.

We state now results that are similar to the ones for Nadaraya-Watson smoothing in Section 3.
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THEOREM 1’ [CONVERGENCE OF BACKFITTING|. Suppose that conditions A1'-A3" hold. Then,
with probability tending to one, there exists a solution [ Mg, me, m* : £ =1,....d] of (44) - (47)
that is unique. Furthermore, there exist constants 0 < v < 1 and ¢ > 0 such that, with probability

tending to one, the following inequality holds
2
/ [mﬁ-}(:cj) - mj(mj)} pi(zj)de; < T,
il y 2 .
[ i) — )] ey < T
where .
~ 2 ~ 2
I' = 1—|—Z/ [m&o](xe)} pg(iEg)diL'g—l-/ [mf,[ﬂ](;ﬂgﬂ pg(l'g>d£€£.
=1

Here, for r = 0 the functions ﬁzg?]e, 777,,[30] and m%% are the starting values of the backfitting algorithm.

For r > 0 the functions fﬁy} and m®" are defined by (49) and (50).
Furthermore, provided A5’ holds also, for s = A and s = B, with probability tending to one, there

exists a solution [mg, m$ and m’* : j=1,...,d] of (51) - (52) that is unique.

Just as Theorem 2 stated for Nadaraya-Watson smoothing, the stochastic part of the backfitting
estimate coincides again with a one-dimensional local linear fit. This is stated in the following

theorem. Under conditions analogous to (59) we get the following result.

THEOREM 2'. Suppose that conditions A1' - A6" hold for a sequence A, and intervals S; (1 <
7 < n. Then, it holds that
up (775 (g) = [ (2s) = i ]| = op(An).
In addition, if AT holds, one gets
sup |my(z;) — [ (x5) — g + py ;(25)] | = 0p(Ay). (53)

Tj ESj

We show now how the asymptotic expectation y,, ;(x;) can be calculated. This can be done by a

more direct argument as for Nadaraya-Watson smoothing. We use the following assumptions.
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(A8') Suppose that for all j # k

pr(z)dxy = op(1).

sup / ‘ [Mj(iﬁj)i/s\k,j(il?k, T;) — M;l(l'j)Sk’j(,fL’k’ m])]

ijSj Ty

for r,s=1,2.

(AY') There exists deterministic functions au,1(z1),. .., ana(Tq), ak(x1),...,al(zq), constants a,p,

Ynds- s Vnd such that:

/Oén,j(iﬂj)zpj(iﬂj) dzj < oo,
/ od (2;)%p; () dr; < o,
/ e (W) V() du = 4, + 0p(An),

sup |m]B(x]) - ﬁn,O - ﬁn,j(mj)| = OP(An)y
:EjGSj

~ —~ ~ 2
/ |5 (25) = Thno — i (25)] 0 (5)dz; = op(A2),

sup |m?P(x;) — fiy, — 1 (z5)] = op(An),
x;E€S;

. . 2
/ [P (2;) = ()] py(@;)dz; = op(A7),

for random variables [i,, o and where

< ﬁnfj(a?j) > _ < Qo + Qi () > n Z/ﬁj(mj)lgk,j(mk,mj) < anl;k(a:k) ) dir.

iy, (25) o, () Py o ()

THEOREM 3'. Suppose that conditions A1'-A6’, A8", A9’ hold. Then

sup | (2;) — pn5(z5)] = op(An),
szESj
sup [ (x;) — il (z5)] = op(An),
:L'jESj
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where i, ;(2;) = o j(x;) — v, and pd(x;) = od (x;) . In particular, A7 holds with this choice of

ILLTL,j (mj>

From Theorems 2’ and 3’ we get the asymptotic behaviour of the backfitting estimates defined in
(44) - (47). Tt turns out that for the local linear estimator itself, the conditions hold with A,, = h?
o () = my(z;) + hP3m(z;) [w?K (u)du and of (z;) = hm/(z;). We remark that under strong
conditions [that we do not apply here] Z;l:l ap,j(x;)—m(x) is the asymptotic bias of a full dimensional

local linear estimate.

5 Verification of Conditions

We now provide sufficient conditions for A1-A6, A8, A9 to hold in a time series setting for the
Nadaraya-Watson smoother. We suppose that {Y? X?}>° is a jointly stationary process. This
includes autoregression, where X¢ = (Y1 ... Y ) and regular cross-sectional regression where
X' is of dimensions d and the joint process is i.i.d., as special cases. Let F° be the o-algebra of
events generated by the random variables {Y?, X% a < j < b}. The stationary processes {Y, X}
are called strongly mixing [Rosenblatt (1956)] if

sup |IP(ANB) — P(A)P(B)|=a(k) -0 ask — oo.
AeF  BeFs®

We assume that the additive model holds, i.e.,
EY|X =z =mo+my(z1) + ... + mg(xq) (54)

for z in a compact set ([0, 1]¢, say). For identifiability we suppose that Em;(X;)1(X; € [0,1]) = 0.
Let N be the number of points X* that lie in [0, 1]2. We define

m;(z;) = N“Zl(X" € [0, 1) Kn(x;, X)) Y /Pi(z;) (55)
pilz;) = N—lz1(xie[o,1]d)Kh(:cj,X;i), (56)
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n

Di(ag ) = N7V UXT € [0, 1) Kn(z, X5) Kn(an, X7, (57)

i=1
where now

Kp(u—v)
fol Kp(w —v) dw

Ky(u,v) = 1(u,v € [0,1]) (58)
with, again, K (u) = h~' K (h~'u). We will suppose that the kernel K has compact support [—Cy, Cy],
see B1. For this reason we get that Kj(u,v) = Kj(u — v) for v € [Cih,1 — C1h] or for u €
[2C1h, 1-2C1h]. So Kj(u,v) differs from K, (u—v) only on the boundary. This boundary modification
of the kernel will be needed for the verification of Assumption A9. All other assumptions can be
verified for the unmodified kernel Kj(u — v). Assumption A9 was needed to get an asymptotic
expansion for the bias of m;, see Theorem 3. The norming (58) gives that fol Kp(u,v) du = 1.
Therefore we have that fol Pik(x;, k) drg, = pj(z;) and fol pj(x;) dz; = 1. Because of these properties
m; is defined by (12).

For simplicity of notation, again we assume that the kernels and the bandwidths do not depend

on j.

(B1) The kernel K is bounded, has compact support( [—C1, C1], say), is symmetric about zero, and is
Lipschitz continuous, i.e., there exists a positive finite constant Cy such that |K(u) — K(v)| <

Cy lu — vl .

(B2) The density qo of X* and the densities qo, of (X', X)), £ =1,..., are uniformly bounded.

Furthermore, qo is bounded away from zero on [0,1].
(B3) For some 0 > 2, E(|Y]?) < oc. Let 03 (x;) = var[y — m(X)|X; = z;].

(B4) The function m" exists and is Lipschitz continuous. The derivative q) exists and is continu-

ous.

(B5) The conditional densities fx|y(z|y) of X givenY and fxi xitejyiyite (29 2%, y*) of (X, X*T)

given (YL, Y™ 1 =1,..., exist and are bounded from above.
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(B6) The process {Y*, X"} is strongly mizing with Y .o, i {a(i)}lﬂ/y < oo for some 2 < v <60 and
a>1-2/v.

(B7) The strong mizing coefficients satisfy > 2, ¢(j;c) < oo and D72, ¥(j5¢) < oo for ¢ = 1,2,
where: p(n;c) = (nLy(n) /ri(n)) (nT2 /h¢ 10gn)1/4a{7“1(n)} with r1(n) = (nh® /T, logn)l/2
and Ly(n) = (nT? /h? logn)c/2 with T,, = {nlog n(loglog n)1+5}1/0 for some 1 > 6 > 0, while
W(n:c) = (nLy(n) /ra(n)) (n /h¢logn )  a {ra(n)} with ro(n) = (nhe flogn)*? and La(n) =
(n /h+2logn)*>.

These conditions are slight modifications of assumptions used in Masry (1996a,b). We will use
results of these papers to achieve the main results of this section. We conjecture that a direct proof

works under weaker conditions.
When (Y, X*) are i.i.d., we can dispense with B5-B7, and replace B2-B4 by

(B2') The d-dimensional vector X has compact support [0,1]? and its density qo is bounded away

from zero and infinity on [0,1]%.
(B3') For some 0 >5/2, E(|Y|?) < co. Let 03(x;) = var[Y — m(X)|X; = x;].

(B4') The function m” exists and is continuous. The derivative g, exists and is continuous.

Condition B3’ ensures that sup,;, |Y;| = op(n??). The following theorem could also be stated

for the case of a stationary sequence (Y, X*) where X* has compact support.

THEOREM 4. Suppose that the model (54) applies and that conditions B1-B7 hold, or B1,B2,B3,
and B4 hold in the i.i.d. case, and that Nadaraya Watson backfitting smoothing is used, i.e., m;,
p; and p;r are defined according to (55) - (57) and m; is defined by (12). Suppose additionally that
ntl)/5h — ¢y, for a constant ¢y, withng = EN = nP(X € [0,1]%). Then, for closed subsets Sy, ..., Sq of
(0,1) conditions A1-A6, A8,A9 are satisfied with A,, = h?, with 3 as defined by (29), with o, j(z;) =
mj () +ml(w5) [ Kn(wg,w) (u—a;) du [[ Kn(z;,0) dv] ™, 7,5 =0, pa) = go(2)1(x € [0, 1)/ P(X €

28



[0,1]%), and with mH(x;) = N7VY 0 Ky, X2)(YE— E[YY X)) /p;(x;). In particular, the uniform

expansion (23) holds and the following convergence holds in distribution for any x1,...,zq4 € (0,1),
5 9 [ V1 (IEI) 0 tee 0 |
my (1) — ma(z1) hB1(z1) 0 ) :
3/5 : N E | . ) : |
: - 0
ma(zq) — mg(x c26,(x
w4) — ma(za) e L e

where (3; is defined by (27) and where vj(z;) = et ek o3 (x;)/pi(x;), j = 1,...,d with cx =
[ K(u)? du. Consequently,

3/5[ (z) — m(z) :>N<Ch2ﬂ (2;), ZUJ m])'

It is illuminating to relate the estimate m; to the corresponding infeasible estimate 1; that uses
the knowledge of the other components m; with [ # j. Specifically, let 7;(x;) be the one-dimensional
kernel smooth of the unobserved data Y = Y* —mq — 3, ., mi(X}) on X7, thus

Zz lKh( ,IJ)Y;}
Zz:lKh( ]":Ej> 7

Under standard regularity conditions [see e.g., Héirdle (1991) for the i.i.d. case],

m;(z;) = j=1,...,d. (59)

nt/ g () = my ()} = N {;(a),i5(2) ), G =1,....d, (60)

where b;(z;) = 2 {m/;(z;)p}(z;)/p;(z;) + (1/2)m/(z;)} [w?K (u)du and #;(z;) = vj(z;). Define also

the centred version of m;(x;),

mj(x;) = my(z;) — N ij XZ )1(X* € [0,1]%), (61)
=1
which has the same asymptotic variance as 1m;(z;) but bias bj( = —f b;(x)p;(z;)dz;. Because

in the construction of 7 knowledge of the other components is used thls estimate gives a target that
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we may not expect to beat by using m;. We see that m; and the theoretical target estimate 7 have
the same asymptotic variance, whereas they differ in their asymptotic bias. We will see below that
backfitting estimates based on local linear will have the same asymptotic bias and variance as their
target estimate. The basic reason is that the function 3(x) is not additive whereas the corresponding
function in the local linear case is. Recall that ((z) corresponds to the asymptotic bias of the full
dimensional estimate m(x) and that it is well known that for the Nadaraya Watson estimate the
asymptotic bias depends on the design density p whereas for the local linear estimate it does not.
We next state the theorem for the local linear estimator. We define now the marginal estimates

m;(z;) and m?(x;) by:

M. (2. m;(z;) :i - i d v X0 1 i
MJ( j) ( ﬁlj(mj) ) N;l(X € [07 1] )Kh< J’X]) < Bt [X?—mj} >Y (62)

J

where Kj,(u,v) is defined as in (58) and where

M(z;) — (Vb{.o(iﬂj) ‘Zfo(%))

Furthermore we put

Sej(ze,x;) = <
1
N

< 1 hl (X — > | (64
W XE— ] b7 XD — ] [X] — ]

J

We get now our result for this version of the backfitting local linear estimate. Now, the asymptotic

bias is explicitly given and its formula does not require a projection step.
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THEOREM 4'. Suppose that the model (54) applies and that conditions B1-B7 hold, or B1,B2’,B3’,
and B4’ hold in the i.i.d. case, and that Local Linear backfitting smoothing is used, i.e., m;j(z;),
mi (x;), ﬁj(mj) and /S\g’j are defined according to (62)-(64) and mqg;,m; and m? are defined by
(44),(45). Suppose additionally that né/5h — ¢y, for a constant ¢, with ng = EN = nP(X € [0,1]%).
Then, for closed subsets Sy, ...,Sq of (0,1) conditions A1'-A6', A8, A9 are satisfied with

A, = k2

1 0
W = )
( 0 [w*K(u)du >

( & @ > = ﬁj(xj)%Zuxie[o, 1) Kn(z;, X7) ( - [Xli_ﬂ )(Yi—E[YiIXi]),

h2

ng(ey) = mlay) + 5 (e PR () du,
oha)) = hm(r,),

h? [u?K (u)du
Tng = VnjT ! 5 / m}(z;)p;(z;)d;,

Upj = /mj(mj)Kh(mj,u)pj(u) du dz;.

In particular, the uniform expansion (53) holds and the following convergence holds in distribution

for any x1,...,2q4 € (0,1),

- ) [ vi(z1) O 0 |
ml(ml) — ml(ml) + Vni chﬁl(:nl) 0 ) .
ng” : — N L ' ' ,
: ‘. 0
ma(zy) — ma(zy) + vy, 264(x
d(za) — ma(za) + Vna nod(za) K 0wl |
where f K (u)d
u?K (u)du
8j(wj) = —F—— {m;'/(fﬁj) - /m}'(fﬁj)pj(iﬂj)diﬁj}
and where v;(z;) = ¢, cx o3 (x5)/pi(x;), 5 =1,...,d with cx = [ K(u)* du. Furthermore,

d d
ny® [(z) —m(z)) = N (Ci Z@(iﬂj)a Z%(%)) :
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In this case, the bias functions coincide with the biases bj(:cj) of the centred oracle estimate 75(x;)
for j =1,...,d. So, in this case, the asymptotic bias and the asymptotic variance are identical to the
bias and variance of the centred oracle estimator [based also on local linear estimation]|. That means
our estimate achieves the same first order asymptotics as if the other components were known. In
particular, our estimate is design adaptive. This is in contrast to Opsomer and Ruppert (1997) who

propose a backfitting estimate, based on the local linear smoother, that has design dependent bias.

Finally, the variance o7(x;) can be consistently estimated from the residuals & = Y* — m(X"),

i =1,...,n, which, along with the usual estimates of p;(z;), enables consistent estimation of v;(z;)
d
and Y, 05(ay).

A Appendix

The proofs will make use of Lemmas 1-4 which we give below. Before we come to this let us collect

some facts about iterative projections. Define the following spaces of additive functions

H = {meLyp) :m(z)=mi(z1)+...+mag(xq) (pas.) for some functions m; € Ly(p1), ...,
ma € La(pa)},

HY = {meH:m(x)=mi(z)+...+mglxq) (p as.), /m(m)p(m)dm =0},
HO" = {meH :m(z)=mi(z) +...+mg(zq) (pas.), /mj(xj)ﬁj(mj)dxj =0forj=1,...,d},

H; = {meH:m(z)=m;x;) (pas.) for a function m; € Ly(p;)},

H = {meH":m(z) =m;(z;) (pas.) for a function m; € Ly(p;)}.
The norm in the space H is denoted by ||m|j3 = [ m?*(z)p(z)dz for m € H. For m € H; we get
with m;(z;) = m(z) (p a.s.) that ||m|5 = [m?*(z)p(x)de = [m3(x;)p;(z;)dz;. Here and in the

following, for simplicity of notation we identify functions m; € H; (or in H7}) that map R? into R

with functions m; : R — R by putting m;(z;) = m;(x).
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The projection of an element of H onto H; is denoted by II;, i.e., II;m(z) = E[m(X)|X; = x;] —

E [m(X)]. The operator ¥; = I —II; gives the projection onto the linear space

Hi = {meH: /m(m)gb(a:j)p(a:)da: =0 for all ¢ € H,;}

= {meH: /m r)dr_; = /m z)dz (p; a.s.)}.
For m(z) = my(x1) + ... + ma(za) € H we get

Uim(z) = m(z) — Em(X)|X; = ;] + E [m(X)]

= m1(131> + ...+ m]‘_l(l'j_l) + m}"(m]) + mj+1(:cj+1) + ...+ md(l'd), (65)
where
p k: Z; 7$k:
Z/mk s ] k+2/mkukpkukduk (66)
k#j
For m € 'H the additive components my, ..., mg are only unique up to an additive constant. Note
however that the value of ¥;m does not depend on the special choice of my, ..., m.

For functions m € H%" with m(x) = my(z1 + ... + mq(z4), m; € H} we define the operator \le
as W; but with mJ(z;) on the right hand side of (65) replaced by
T, T N
=-> / my, [pf’i—f)k) — D) () | d, (67)
ki (3
where the function py, ;4] has been defined in (16). Note that for functions m; € H; we get ¥;m;(z) =
0, while

Upmj(z) = m;(z;) — /mj(u)wdu- (68)

pr(zr)
Put T = ¥, ---¥; and T = \T/d ces \T/l. We will see below that in our set up the backfitting
algorithm is based on iterative applications of T. A central tool for understanding backfitting will be
given by the next lemma that describes iterative applications of T'. For linear operators S : H — H

we define

IS = sup{[|Sfllz: f € H,[[fll2 < 1},
ISllo = sup{[ISfll=: f € 1", | fll2 < 1},
ISlon = sup{lISfll2: f € H™", I fll2 < 1}.
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LEMMA 1 [NORM OF THE OPERATOR T |. Suppose that condition A1 holds. Then T : H —
Ly(p) is a positive self adjoint operator with operator norm ||T||o < 1. Hence, for every m € H° we
get

[T mll> < [|T|[5]|m]l2- (69)

Furthermore, for every m € HY there exist m; € H; (1 < j < d) such that m(u) = my(u1) + ... +

mg(ug) (p a.s.) and for some constant ¢ > 0
lmlla = emax {{lmilla, .. ., [lmall2} - (70)

PROOF OF LEMMA 1. We start by proving (69). It is known that (69) holds with ||T]|3 <
1 - szl sin?(7;) where cos7; = p(H;, Hjs1 + ... + Hg) and where for two subspaces L; and Ly
the quantity p(Li, Ls) is the cosine of the minimal angle between L; and Lo, i.e., p(Li, Ly) =
sup{ [ h1(z)ha(z) p(z)dz : hj € LyN(LiNLg)™k, [|hy]l2 < 1(j = 1,2)}. This result was shown in Smith,
Solomon, and Wagner (1977). For a discussion, see Deutsch (1985) and Bickel, Klaassen, Ritov and
Wellner (1993), Appendix A.4. We will show now that for 1 < j < d the subspaces M; = Hi+...+H,
are closed subsets of Ly(p). This implies that p(H;41, M;) < 1for j =1,...,d—1, see again Deutsch
(1985), Lemma 2.5 and Bickel, Klaassen, Ritov and Wellner (1993), Appendix A.4, Proposition 2.
To prove that M is closed we will use the following two facts. For two closed subspaces L; and L,
of La(p) it holds that Ly + Lo is closed if and only if there exists a constant ¢ > 0 such that for all
m € Ly + Ly there exist my € Ly and my € Ly with m(u) = mq(u1) + me(ug) (p a.s.) and

[lmll2 = cmax(|lmal|z, [lmalla]- (71)

Furthermore, L; 4+ L is closed if the projection of L, onto L; is compact. For the proof of these two
statements see Bickel, Klaassen, Ritov and Wellner (1993), Appendix A.4, Proposition 2. Suppose
now that it has already been proved for j < j, — 1 that M is closed and that we want to show that
M, is closed. As mentioned above, for this claim it suffices to show that I, |M;, _; is compact. We
remark first that (71) implies that for every m € M, _; there exist m; € H; (j < j, — 1) such that

m(u) = my(ug) + ... +mj,_1(uj,—1) (p a.s.) and with a constant ¢ > 0
Imll2 = cmax{|malla, .. . [|mj,-1l2]. (72)
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We will prove that

Jo—1
1Ll < const. [Z [ Balosms(epi(en)dasdoy | Jml (73)

with
Pio (5,)p;(2;)
Inequality (73) implies compactness of II,; |M; _;. To see this one uses (Al) and argues as in the

Rjj (x5, 25,) =

standard proofs for compactness of Hilbert-Schmidt operators, see e.g., Example 3.2.4 in Balakrishnan
(1981).

It remains to show (73). This follows from (72) with applications of the Cauchy-Schwarz inequal-
ity.

Equation (70) follows as (72). |

The next lemma extends this result to the stochastic operator T.

LEMMA 2 [NORM OF THE OPERATOR T |. Suppose that conditions A1-A2 hold. Then

¥ — ¥llom = op(1), (74)
IT —Tlon = op(1). (75)

Choose v with ||T|lo < v < 1. Then, with probability tending to one,
Tl < 7. (76)
Furthermore, for some constant ¢ > 0 with probability tending to one it holds that for every m € H"
Imll2 = cmax {|[mallz, ..., [[mall2} , (77)
where m; € H} (1 < j < d) with m(u) =my(u1) + ... +ma(uq) (p a.s.).
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PROOF OF LEMMA 2. For a function m € H*" we get m(z) = my(x1) + ... + mg(zq) with
functions m; € ‘H%. We remark first that the distance between m} and m}, see (66)-(67) can be
bounded with [ mg(z)pr(2zx) dz, = 0 and with the help of the Cauchy-Schwarz inequality as follows.

~ Pjk\Tj, T) DT, T
| —mills < ZH/mk ) [ﬂi i ok) k(g k)] dag ||

=y (z;) pi(x;)

+Z’/mk T ) Di,[j+) (Tk) dg|

k#j
+Z|/mk($k)pk($k) dry|

pjk Zj, mk) pjk(xja mk)

- ;ﬁj | /mk {@ (z;)pr(ae) pj(‘%j)pk(xk)} prlen) ol
+Z | /mk - [pk: Tk) — Dk ,m](%)} () dal

=y Pr(Tk)

+Z’/mk ) {pk Ty) — pk(iﬂk)}pk(mw |

Pr(Tk)

< > lImalla(Us + Ry) +Z|Imk|lek=

k#j

with

U2 o /_pj,k(xjuxk) o Z/)\j:k<xj7xk)
Lok(wr)pi(T;)  pr(oe)pi(;

R2  — —ﬁk(mk)_ﬁk,[jﬂ(xk) 2 ( )d
7k T pk;(iUk) Pr T Tk,

AR S
= k(Tk) dxg.
: L pr(zr)

With T; = maxy; |Ujr + Rjx| + maxy | S| this and equation (70) imply with a constant C' (not

)] pr(wr)pj(z;)dr; dry,

depending on m)
lmj —mjllz < Cllm|T;.

Now because of (A2), U, = op(1) and @y = op(1). Furthermore,

pi(@r) — Pr (@) ]
[ | pula) da
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~ 2
Djk ZL‘],CEk) pjk(mjamk> } }
— pi(x;) dzj| pr(zk) dz
[ {pa (zj)pr(wx)  pr(or)pi(z)) i) dog | puln) doe
2
pgk iﬂg,fﬁk pjk:(iﬂj:iﬂk) }
_ xp)pi(xs:) do; dr

7

IN

= 1
therefore R;;, = op(1) and T; = op(1). This shows (74) and (75). Claim (76) follows from (75) and
IT[lo.n = [[T]lo + 0p(1). (78)

It remains to show (78). This follows immediately from

inf  sup [f—gls = op(D), (79)
FEHO™ gemO | g|l2=1 | | )
it s [ —gls = op(L). (30)

0
JERT gerom |gll2=1

For the proof of (79) and (80) note e.g., that for m; € H} one has

| [ maptay) dof = | [ myelpse) - i) dof

< lmjlizllps — B3l /psl3
= [Imyll30p(1)
because of A2. Similarly one shows (77), see also (70). |

Our next lemma builds on Lemma 2 to establish a stochastic expansion for m(z) = mi(x;) +

..+ mg(z4) in terms of m; [1 < j <d].

LEMMA 3 [STOCHASTIC EXPANSION OF ml. Suppose that conditions A1-A3 hold. Then there
exist constants 0 < v <1 and 0 < C,C" < oo such that with probability tending to one, the following

stochastic expansion holds for all s > 1:

=Y T"%(x) + R¥(a),
r=0
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where

~ ~ ~

T(z) = Yg---Uolma(x) —moa] + ...+ Vg[mg_1(x) — Mo a—1] + Ma(xq) — Mo,
and where R¥(z) = R (a1) + ... + REIS] (x4) is a function in HO™ with
IR < C. (81)
Under the additional assumption of (A4) it holds that

sup |R£-s} (z;)] < C'%°. (82)

z;E€S;

PrROOF OF LEMMA 3. We remark first that (15) can be rewritten as

~

m(z) = Vym(z) + m;(xz;) — mo,;. (83)
Iterative applications of this equation for j =1,...,d gives
m(x) = Tr(z) + 7(x). (84)

Iterative applications of (84) gives
m(z) =Y T7(z).
r=0

The operator norm ||T\||0n is smaller than v, with probability tending to one, for v < 1 large enough.
This was shown in the last lemma and it shows that the infinite series expansion in the last equation
is well defined. Furthermore, this can be used to prove that for C'; > 0 large enough, with probability
tending to one, ||R*)||; < Cyv°. This implies claim (81) because of (77).

Assume now (A4). For the proof of (82) note that for Cy > 0 large enough with probability
tending to one for all functions g in H; with ||g||2 < 1 it holds for k # j that

pjr(, Tx)
su ——— < qg(x;)dr;| < (Y, 85
kaIS)'k / pk(xk) g( J> ! 2 ( )
Dk, 1)
——— g(x;)dx; < (. 86
/pm) ooy < O (36)
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Equation (85) follows from assumption (A4) by application of the Cauchy Schwarz inequality:
/@k(x—j’xk)g(m-)dx' / Pl o) pj(x;)g(z;)dz;

Pr(wk) e (i )pj ()™ 777
ﬁjzk(xjv xk)

e /— dm'/92 zj)pj(z;) d;
T, €Sk ﬁ,%(mk)pj(xj) J (z;)pj(;) du;

For the proof of (86) one applies again the Cauchy Schwarz inequality and

sup
xkESk

sup
wkesk

1/2
<

Pho(x, wx)

m%@k)%(%) dr; dzy, < Cy (87)

for a constant C5 [with probability tending to one|. Claim (87) follows from Assumptions (A1) and
(A2).

Equations (85) and (86) imply that for Cy > 0 large enough with probability tending to one for
all functions A in H with [|h|| < 1 it holds for 1 < j < d that

sup |Th(z)| < Cy, (88)

€S

where S = {z : z; € S;}. Now, because of

R¥(z) = Y~ T"7(x) = TR (a)
r=s+1
claim (82) now follows from
sup |[R¥)(z)] < Gyl R
xS
< GO

LEMMA 4 [BEHAVIOUR OF THE STOCHASTIC COMPONENT OF m]. Suppose that A1 - A6 hold.
Then we have that
sup |77LjA(mJ) — Af(mj) + rﬁéj| =op(A,). (89)

x;E€S;
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Proor orF LEMMA 4. We will show Lemma 4 for j = 1. Proceeding as in the last lemma we get

that with probability tending to one

mi(z) =Y T (x),
r=0
where
@) = W Walimf —mi)(x) + .+ Vel — mia 1 )(x) + g (2a) — Mg,

We argue now that the statement of the lemma follows from

o0

sup =op(Ay,), (90)

z€eS

T 74 (x)
1

r=

where as above S = {x : x; € S;}. For seeing this note that (90) implies that

sup |ﬁ1A(a:) - ?A(a:)| =op(Ay). (91)

€S

Only the first summand of 74 (z , le., \Tld e \TlgﬁlA x) depends on z;. Furthermore, the operators
y 1

\T/Q, cee \Tld do not change the additive component of a function that depends on z;. Therefore /T\A(:E)
is of the form 7(z) = M (x1) + 72, (2, . .. , 24) where 72, is a function that does not depend on ;.

For this reason the claim of the lemma follows for j = 1. [Note also that [ py (z1)[m{ (z1) —m{,] dzy =

[ pr(z)mit(z1) day = 0]
For the proof of (90) note first that

1742 = 0p(Ay). (92)

This follows from (21), HT\HOM <1 and “\T’j“(),n < 1 (with probability tending to 1), see Lemma 2.
Because of || T llo.n < (with probability tending to 1 for a v < 1) (92) shows that

1> T2 = op(An). (93)
r=1
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With (88) this shows

sup| Y T77(x)| = op(An).

€S r—2

So for claim (90) it remains to show

sup [T74(z)| = op(Ay).
eSS

This can be done using (20), (21), H\T/ngm < 1 (with probability tending to 1), and (88). |

PrOOF OF THEOREM 1. For the proof note first that by definition of our backfitting algorithm,
see (18)
" (z) = Tl ~Y(z) + 7(z).

Iterative application of this equation gives

Because of Lemma 3 this shows

ml(z) — m(z) = =Y TF(@) + Tl ().

Because of (A3) and H\T/]H = ||Y,|| + op(1) = 1 + 0p(1), we have for a constant C’ that ||7]|; < C’
with probability tending to one. So with Lemma 2 we get that

P o )
I = il < |12 + 170

with probability tending to one. Claim (22) follows now by application of (70). For the proof of

existence and uniqueness of ffL;‘ and ffo one proceeds similarly. [ |

Proor Oor THEOREM 2. Theorem 2 follows from Lemma 4. [ |
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Proor or THEOREM 3. We put for 1 < j <d

R pir(Tj, x .
mf’l(mj) = Qn;(z;) +Z/ank xy) {M P jj+) (Tk) | dog,
,#] p;(z;)

iy () = /5 (@ )d —j
J 7 (Wp;(u) du g,

HB3 (. = mP(z;) — : N — mB2(r.
mj (:EJ) J :EJ) fﬁ](u) du m] (:EJ) mj (:E]):
where
ns(e) = anes) = [ ans@)psta) du
Forr:1,...,3;j:1,...,dwedeﬁnenowfﬁf’r by
sty = L7 bl b
07 S pila;) day
~ B,r ~ B,r pk(mvxk) ~ ~ B,r
mf (z;) = f (x5) Z/m l% Dr,j+] (k) dmk—mgj. (94)
k£j .7 J

By these equations the quantities fﬁf’r are uniquely defined. This has been shown in Theorem 1.

Note that m? (z;) = ﬁlf’l(:cj) + m]~B72($j) + ﬁlf’?’(mj). We will show

() = (), (95)
sup [7%(a,) = Aufly(a))| = op(A), (96)
sup |m;°(x;)] = op(An). (97)

;€S

These claims imply the statement of the theorem. For the proof of (95) note that fngf }1 = 0 and that

mP N (x;) = @nj(z;) solves the equation (94). This shows (95).

j
For r = 2,3 we get for mP"(z) = mi" (x1) + ...+ m5" (x4)
~Br ZTk:/\BT
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where
~B,r T ~B,r ~ B.r I B, ~ Br ~B,r ~ Br
7P (z) =¥y \112[7”? - moBl (@) + ...+ ‘de[mdq my g 1]( ) +mg " (Ta) — My g -

For the proof of (96) we will show that

sup [m™? () = Y T* %2 (2)| = op(Ay), (98)
zeS —0
where
P2 x) = W Wolmy? —mg P (z) + ..+ Waliig — mg %) () + g (wa) — Mg,
m? = /ﬁ da:—moj +op(A,).

By the same arguments as in the beginning of the proof of Lemma 3 (with T replaced by T') one can
see that -
A {Bi(@1) + -+ Ba(wa)} = D TP ()
k=0
Therefore (98) implies (96). For the proof of (98) we write with W = >~/ T*

B2 ZTk; B2( _ Z [Tk _ fk] ?3,2(:5) W [?B,Z(m) B 7_372(@}
k=1
oo k—1
= — Z ZTI [T . j:} j::kflflﬁ_\B,Z(x) +W [%\B,Z(x) o TB’2(.’13)}
k=1 1=0

= —TVFP(2) + [T = T| 077 (@) + W [f72(2) - 75%(a)]

where
R oo k-1 RN
Vo= Yyt -7,
k=1 I=1
U = Zf’“.
k=1
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One applies now that ||7%%||; = Op(A,) and that

itelngg(:vﬂ = Op(1), (99)
sup|[T — Tlg(x)] = op(1)

z€eS

for functions g with ||g||2 = Op(1), see the proof of (88) and apply (A8). Because of ||‘7||gn = op(1)
and ||U||o,, = Op(1) this shows SUPgeg ITVFE2(2) + [f — T} U7P2(z)| = op(A,). For the proof of
(98) it remains to show

sup |W [?B’z(x) —722(2)]| = op(Ay). (100)

€S

Claim (100) follows from (99) and

sup ‘?3’2(@ — TB’2<:E)‘ = op(A,), (101)

eSS
1752 =782, = op(An). (102)

For the proof of (101) and (102) one proceeds similarly as in the proof of (88). For the statement of

the theorem it remains to prove (97). For this claim one shows that

sup|?B’3(a:)| = op(A,),
z€S
772 = op(An).

This can be done by showing for j =1,...,d

= OP(AH),

sup ‘ﬁlf’S(CEj)
ijSj
15 lz = op(An).

PrOOFS OF THEOREMS 1’ AND 2’. The theorems follow as Theorems 1 and 2 by essentially the

same arguments. In particular, instead of Ly(p) we consider now Lo(Wp) = {f = (f°,..., f%) : f7:
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R? — R with [ fT(z)W f(z)p(z) dz < co}. Furthermore, now the spaces H, H°, H;, H*" and HY

are defined as
H = {m=m°...,m%) € Lo(Wp): m®x) = my(z1) +...+mg(zg) (pas.) for functions
my € Ly(p1), ..., mq € Ly(pg), the functions m’ depend only on z; for j =1,...,d},
H® = {mecH: /m z)dr = 0},
H; = {m € H:m°(x) depends only on z;(p a.s.) and for £ # j it holds that m‘(x) =0 (p a.s.)},
HO" = {meH:m’(x) =mi(z1) +... + ma(zq) (p as.) for functions m; € Ly(p1),...,my €
L;(pa) with /mj(uj)f/[{o(uj) du; = 0},
H} = {m e H" :m(z) depends only on z; (p a.s.)}.
For a function m € H with m®(z) = my(z1) + ... 4+ ma(z,) for some functions m; we define now
Wim:
(Oym) (z) = file) + .+ fa(@a),
[Wm* (z) = f(x),
where for k£ ~j

felze) = ma(zy),
) = mF(ay),
and where
fi(z; _ M- (s, - () — [ 1 (ur)pr(ur) duk) i
(fj( ) ;/ R ’“)< m () ‘
s ( fmj<uj>§j<uj> du; ) |

Furthermore, for a function m € H%" with m®(x) = my(x1) +. ..+ ma(zq) for some functions m;

with fmj(Uj>‘//\bj;0(Uj) duj = 0 we define now \lem:
10
[\I!jm] () = fi(z)+...+ fa(za),
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where for k£ ~j

and where

file) = gla;) — / 03 (u) Vo) du;,
gj(xj) Tro1 a my,(Ty)
= — M .’IISk Tj, Tk d.’l?k
(fj(xj)> g/ )8 >(mk<mk))

Proceeding as above one can show that the norm of the operators T' = ¥, - - - ¥y and T = \/I\/d e \/I\ll
is smaller than v < 1 [with probability tending to one]. Theorems 1’ and 2’ follow by stochastic

expansions of m. [ |

PrROOF OF THEOREM 3'. Similar to the proof of Theorems 3 and is omitted. [ |

PrOOF OF THEOREM 4. We have to verify conditions A1-A6, A8, A9. Continuity of ¢g implies
that info<,; <1 p;(z;) > 0 for all j and supg<,, <1,0<z,<1 Pjk(Tj, Tk) < 00. This shows Al.

In the proof we will make repeated use of

sup |Z/)\j7k<mj7 xk) - pj,k(xju ml€)| = OP([lOg n]1/2n73/10)7 (103)
J:jEIh,:L‘kEIh
up [ (2;) = pj(2;)| = Or(llog n]'/*n"*"), (104)
xj h
1 1
sup  |Djk(Tj, k) —/ Kp(zj,u) du / Ky (xk,v) dv pjp(z;, )| = Op(n’l/“r’), (105)
0<z;,z,<1 0 0
1
sup |pj(x;) —/ Ky (zj,u) du p;j(z;)| = Op(n_l/5), (106)
0<z;<1 0

where I, = [201h, 1 — 2C1h), I = [0,2C1h) U (1 — 2Cyh, 1] and I = (I x [0,1]) U ([0, 1] x I).
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A proof of (103) and (104) can be found in Masry (1996b). Claims (105) and (106) can be shown
by a modification of the arguments in Masry (1996b).
Note that (105) and (106) imply that

sup  [pik(xs )] = Op(1), (107)
(zj,2)ELC
sup ﬁj(mj)’l| = 0Op(1), (108)
:EjGI}CL
sup |p;(z;)| = Op(1). (109)
J:jEI;;

Assumptions A2, A4, and A8 can be easily proved by application of (103) - (109). Assumptions

A3 and A5 follow from
A logn 1/2
sup |mi(xz;)| = O , 110
xje[(l)),u‘ 7 i)l d ( nh ) (110)

sup ‘ffzf(:ﬂ]ﬂ = Op(1). (111)
x;€[0,1]

For a proof of (110) see again Masry (1996b). Claim (111) follows from

sup |7 (25) = fn;(25)| = op(h?), (112)
ijIh
sup m3 (x5) = i (z;)| = op(h). (113)
Z'J h

Note that because of (112) and (113) for the proof of A9 it suffices to check that v, ; can be chosen

as 7,,; = 0. This follows from

[ ani@)Bitas) de; = op(a,). (114)

So it remains to establish A6, (114), (112) and (113).
PRrROOF OF (114). By definition of oy, ; we get

[anst@lia) dz; = [ mi(eppias) da;
+/m;<mj)Kh(xj,u)(u ) V Kn(,0) dv} () da, du
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By standard kernel arguments one can show that the right hand side is equal to

/ m;(x;) Kn(zj,u)p;j(u) du dz;

+ [ ) Kty )

) [ / Kn(a;,v) dv} Koo, w)py(w) du duw di, + op(An).

We argue now that the second term is equivalent to

[ e Kl w) =,
_ /m;(xj)Kh(xj, u)(u —

) [ / Kn(;,0) dv] Ko, w)p () du duw di, 1 op(A)

)p;(z;) du dzj 4+ op(Ay,).

Putting these expansions together we get that

[ v da;

PrOOF OF A6. We will give only the proof of (20). Claim (21) follows from (107), (108), (110)

and (20). By the triangle inequality,

/1/\' '
0

sup
zpelp

/mj(:nj)Kh(a:j,u)pj(u) du dx;
+/m}($j)Kh(i'3jvu)(U — x;)p;(x;) du dx; + op(Ay)
/mj(u)Kh(a:j, w)p;(u) du dzj+ op(Ay)

/mj(u)pj(u) du + op(A,)
Op(An).

1
pj,k(iﬁj,iﬂk;) ~
< sup /—U(m)dm +
zr€lp 0 pj(i’fj)pk(iﬁk) T ’
1r ~
Dik(@jzr)  pixlTs, Tp) } .
sup /{A o~ — v;(x;)dx;
wel, |Jo LPi(xi)De(er)  pi(xg)pr(a) | 777
1
Pik(Ts, Tx) 9
< sup /—v(a:)da: + op(h?),
anely | Jo pj(ag)pr(ze) 77
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because of (103) - (108), (110), where

where
Jp={i: X"€[0,1]41<i<n}.

Therefore,

/0 wmf(iﬁj)dmj - % Z gigm’(mk) + 0P(h2)

Pi(zx) icd,

uniformly for x; € I, with

p]k XZ uh, Ty)
K(u du
/ p] Xl - Uh)pk(xk)

by straightforward change of variables. The argument is now quite similar to that given in Masry
(1996b). We drop the k subscript for convenience. The interval [0,1] can be covered by a finite

number ¢(n) of cubes I, with centres u, and with side length I(n). We then have

1 . 1 )
sup | — e¢,(u)| = max sup |— g€, (u
u€lp Nzezjn ( ) 1<r<c(n) u€lpNIy,r NzEZJn ( )
< S EMOEE SIS
< max sup |— e'€i(u) — = e'€,i(uy
1<r<e(n) welpNly N er N o
1 i
- 7 3t |
= Q1+ @2, say.

It is straightforward to see that |€,,;(u) — £,;(u,)| < al(n) for some constant a and that @, = O(I(n))
with probability one. To handle the second term we must use an exponential inequality and a

blocking argument as in Masry’s proof. In conclusion, by appropriate choice of ¢(n), we obtain
Q1 + Q2 = O(logn/+/n) with probability one. W
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PROOF OF (112) AND (113). Note that by definition

mf@j) = N~ ZKh rj, X )/pj(%)
i€Jn
= 1ZKMJ, ) [mo +ma(X7) + ...+ ma(X)] /Bs(;)
1€Jn

and
1

finj(x;) = my(x;) +m}($j)/Kh($jau)(u— x;) du [/01 Kn(zj,u) du}
+ Z /mk p]ka:],a:k) dy,

ks£j:k,j€Tn p]a:])

p 37737
D SR AT ”)’“)Khm, )t — )
k#£j;k,jEJIn

1
{/ Kp(xg,v) dv] du dxy,
0

+h?dgp;(z;) kzd:/[ mi( )+;p( )m'é(xk)} dz_;

with dx = [w*K(u) du. We argue now that for j =1,....,d

N~ ZKh zj, X )/%(mj)

1€Jn
() + () / K (g, 0) (u = ) du { / ' Ka(ay) du} h
1

+h2/U2K(U) du p;(a;)~ [p}(mj)m}(mj) + §pj($j)m}/($j)] + Ry (z;)  (115)

with sup, ¢y, [Rn,j(z;)| = op(h?) and SUD,, e ge | Rn,j(25)] = Op(h?). Furthermore we argue that for

j ok that
N— Z Kp(z;, X mk(Xk)/pj(xJ)

’LGJn

b/nn] Zﬁk m]:fk) dmk
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—l—/m@(mﬁ%lﬁ(mk,u)(u — x) {/01 Kp(xp,v) dv} h du dxy,

opir(x;,x 1
i) [ |2 ) g o) ot Rogale) (120

with sup, ¢y, [Rnjx(2;)| = op(h?) and sup, cje [Rnj(2;)| = Op(h?). It can be easily verified that
(115) and (116) imply (112) and (113). So it remains to show (115) and (116). The proof of (115)
is straightforward and will be omitted. For the proof of (116) note that for k # j and uniformly for
zj € [0,1]

1 i i
N > Kn(j, X))mi(X3)

1€Jn

1 ) . )
- Ly / Kon(g, X3) Ky, XEymu(XD) dag

1€Jn
= % ; /Kh(mja X;)Kh(ifkaX@ {mk(mk) + (X, — zp)my,(zr) + %(X,i —x)?mf(z) | day,
+0p(h2)
= /@'k(iﬂja zp)mi (k) dry, + % > [Uiay) + Vilwy)] + op(h?),

i€Jn

where

Uias) = [ Ky, X)), XX = o) ) i,

Vo) = [ Koy X)Ki(on X500 — o0mi(e) da. (117)
For z; € I}, claim (116) follows now from (104) and

sup
T el

EU(x;)] — /m;(mk)pj,k(mj,xk)l(h(a:k,u)(u — xy) du dxy,

_hsz/wm;(xk) dz,,

Ser = o(h?), (118)

sup
Tj el

= o(h?), (119)

1 i
EVi(z;)] — h2dK/§pj,k($jaﬂ7k)mk($k) dzy,
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1 -1
Pik(xj, k) {/ Kp(zg, w) dw}
0

[ i

sup

—pik(zj, xr)] Kn(xg, u)(u — xx) du dzg| = op(h?), (120)
Sup |Ui(;) — ElUi(x)]] = op(h?), (121)
Sup Vi(x;) = E[Vi(x;)]] = op(h?), (122)

Claims (118) and (119) follow by standard kernel arguments. For the proof of (120) one applies (103)
and (105). For the proof of (121) and (122) one proceeds similarly as in Masry(1996b), see also the

proof of A6. So it remains to show (116) for z; € I. This can be done by similar arguments. W

ProOF OF THEOREM 4'.  Theorem 4’ can be shown by similar arguments as in the proof
of Theorem 4. First one shows uniform convergence of M\j(a:j) to M;(z;) and of /S\g’j(.’lﬁg,.’lij) to

Sej(xe, x;). For the proof of AY one needs an expansion of

mJB(%’) — M.z, a1 - i d v X 1
<T/ij’B(:Ej) > - M]( ]) NZI(X = [0, 1] ) K ( ]7Xj> ( Bl [Xi—l'j} >

i=1 J
[mo + mi(X7) + ...+ ma(X])] -

For the treatment of this quantity one has to consider for k£ /&j the term

1 i d i 1 i
N;I(X € [07 1] )Kh(xijj> ( hil [Xi—mj} > mk(Xk)

J

Using [ Kp(zy, X}) dry = 1 and with V;(x;) defined as in (117) one gets that this term is equal to

1
ht X — ]

J

%Z“Xi e [o, 1]d)/Kh(xj,X;)Kh(mk,X;)( ) mp(X}) dxy,

1 - i d ) i i 1
= N;ux € [0,1] )/Kh(mj,Xj)Kh(a:k,Xk) ( W X ] )

[ (ax) + mig(w){ X5, — 2x}] day + % > < ilz;) ) +op(h?)

i€Jn 0
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_ //S\j,k(il?j,ivk)< mi (k) ) diﬁk—i-%z < Vi(Oin) ) +op(h?).

hmy, (zy) i€Jn

For a further treatment of this expansion one uses now (119) and (122) and proceeds similarly as in
the proof of Theorem 4. [ |
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