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The Existence and Dimension of the Attractor for a 3D Flow of a

Non-Newtonian Fluid subject to Dynamic Boundary Conditions ∗

Dalibor Pražák † Buddhika Priyasad ‡

Abstract

We consider non-Newtonian incompressible 3D fluid of Ladyzhenskaya type, in the setting of the
dynamic boundary condition. Assuming sufficient growth rate of the stress tensor with respect
to the velocity gradient, we establish explicit dimension estimate of the global attractor in terms
of the physical parameters of the problem.

1 Introduction.

The existence of global attractor, its finite-dimensionality, and possibly even the construction of a
finite-dimensional exponential attractor belong to prototypical results of the dynamical theory of
nonlinear evolutionary PDEs. These goals are often attained, as long as the system is well-posed
and dissipative. The literature being too extensive to quote, let us mention the basic monographs
[7], [8], [9], [22], [23]. On the other hand, an explicit dimension estimate of the attractor is a different
matter, requiring additional tools from functional analysis, and considerably more demanding in
view of the regularity of the underlying solution semigroup.

Focusing to the incompressible Navier-Stokes equations as a model problem, one can say that in
2D, the problem of the attractor dimension is rather well understood. Reasonable upper estimates
are available for various domains, even unbounded ones, and the results are known to be sharp
for the torus, see recent paper [12] and the references therein. For the 3D case, weak solutions
exist globally, but the uniqueness remains a famous open problem even for the torus. One can
still define (sort of) an attractor, but nothing can be said about its dimension. Consequently,
various regularizations of the problem, more or less well-motivated physically, have been proposed,
for which these problems were then successfully addressed, cf. for example [11] for the so-called
Euler-Bardina regularization.

In the present paper, we consider one such classical modification, going back to Ladyzhenskaya
[14], where additional gradient integrability is induced by a non-linear modification of the viscous
stress tensor via the r-Laplacian type term |Du|r−2

Du. Thus, one the one hand, the problem
becomes well-posed in 3D for values only slightly above the NSE-critical value r = 2. On the
other hand, such a highest order nonlinearity brings additional complications to the analysis, as in
particular higher regularity of weak solutions is difficult to obtain in dimensions other than two.
Note that this so-called Ladyzhenskaya model is well-motivated physically [17].
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The problem of the attractor dimension, and more generally, the structural complexity of the
dynamics, is presumable highly sensitive to the adopted boundary condition. Motivated by this,
we further generalize our setting to allow for a non-linear evolution on ∂Ω, which is driven by
the normal stress force of the fluid, exerted across the boundary. Our result is new in particular
by providing an explicit (asymptotic) dimension estimate for 3D fully non-linear problem, while
remaining in the setting of weak solutions only.

Let us finally mention some related publications and results concerning our model, i.e. the
Ladyzhenskaya r-fluid. For basic existence and uniqueness theory of weak solutions under dynamic
boundary conditions, see recent paper [1], cf. also [18]. Existence of finite-dimensional exponential
attractors was recently established in a rather general setting, but without explicit dimension
estimates [21]. Concerning the Dirichlet boundary conditions, explicit dimension estimates in
3D setting were previously obtained in [4], to which the current paper is a direct generalization.
Improved dimension estimates, based on the volume contraction method, were also obtained in the
2D setting by [13], and for suitably regularized problem again in 3D setting [19].

2 Formulation of the Problem and the Main Result.

We consider generalized Navier-Stokes equations with dynamic boundary condition on a bounded
domain Ω ⊂ R

3, Ω ∈ C0,1 and bounded time interval (0, T ). We denote space-time domain by
Q := (0, T ) × Ω, and by Γ := (0, T ) × ∂Ω the space-time boundary. We further denote unknown
velocity by v : Q→ R

3 and unknown pressure of the fluid by π : Q → R. The quantity S is called
the extra stress tensor and here it is assumed to be a function of the symmetric velocity gradient
2Dv = ∇v + (∇v)T . The external body force f : Q→ R

3 is independent of time.
An essential feature of our model is that we incorporate the so-called dynamic boundary condi-

tion, so that the tangential velocity component is subject to a certain non-linear response s = s(v)
on Γ. Our system thus reads

∂tv − div S + div (v ⊗ v) +∇π = f in Q, (2.1a)

div v = 0 in Q, (2.1b)

v · n = 0 on Γ, (2.1c)

−(Sn)τ = αs+ β∂tv on Γ, (2.1d)

v(0) = v0 in Ω ∪ ∂Ω. (2.1e)

Concerning the constitutive functions S = S(Dv) and s = s(v), we assume polynomial growth in
terms of certain r and q ≥ 2. More precisely: for all D1,D2 ∈ R

3×3
sym

S(0) = 0,

|S(D1)− S(D2)| ≤ c1

(
ν1 + ν2 (|D1|+ |D2|)r−2

)
|D1 −D2| ,

(S(D1)− S(D2)) : (D1 −D2) ≥ c2

(
ν1 + ν2 (|D1|+ |D2|)r−2

)
|D1 −D2|2 .

(2.2)

Furthermore, it is assumed that S has a potential,

S(D) = ∂DΦ
(
|D|2

)
,

c3

(
ν1 + ν2 |D|r−2

)
|D|2 ≤ Φ (D) ≤ c4

(
ν1 + ν2 |D|r−2

)
|D|2 .

(2.3)
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Typical example is the so-called Ladyzhenskaya fluid

S(D) = ν1Dv + ν2 |Dv|r−2
Dv (2.4)

Regarding the boundary nonlinearity s, we require that for all v1, v2 ∈ R
3

s(0) = 0,

|s(v1)− s(v2)| ≤ c5 |v1 − v2| ,
(s(v1)− s(v2)) · (v1 − v2) ≥ c6 |v1 − v2|2 ,

s(v)v≥ c7
(
|s|q̄ + |v|q

)
, where 1/q +

1/q̄ = 1.

(2.5)

Here, we also impose the existence of a potential, i.e.

s(v) = ∂vS(v) (2.6)

Without loss of generality, let S(0) = 0. It is obvious that S obeys upper and lower q-growth
bounds, in view of (2.5).

Our main result, stated somewhat informally, reads as follows.

Main Theorem. Let r > 12/5 and f ∈ L2(Ω). Then the system (2.1a – 2.1e) has a global at-
tractor in L2(Ω)×L2(∂Ω). Moreover, its dimension can be explicitly estimated in terms of the data.

See Theorem 4.1 below for a precise statement and proof. We note that the solutions are not
uniquely determined by initial conditions in L2 only. Yet they immediately become more regular
(and hence unique), as follows from Theorems 3.2 and 3.3. This issue of initial nonuniqueness is
easily avoided in our setting of short trajectories.

As a by-product of the time regularity, we obtain that the attractor is bounded inW 1,r, and the
solutions on attractor are 1/2-Hölder continuous with values in L2. One can expect that additional,
i.e. spatial regularity is also available, so that the solutions would be in fact strong. We leave this
problem to the forthcoming paper.

3 Well-posedness and Additional Time Regularity.

We carry out our analysis with dynamical boundary condition which includes the time derivative
of the velocity v of the fluid weighted by the parameter β. This set up demands a specific type
function spaces. First we introduce such function spaces and later we define the Gelfand triplet.
We essentially follow the functional set up used in [1, Section 3].

For Ω a Lipschitz domain in R
d, i.e., Ω ∈ C0,1, β ≥ 0 and r ∈ (0,∞), we define V ⊂ C0,1(Ω) ×

C0,1(∂Ω) as

V :=
{
(v,g) ∈ C0,1(Ω)× C0,1(∂Ω) : div v = 0 in Ω, v · n = 0, and v = g on ∂Ω

}

With the help of V, we define

Vr := V‖·‖Vr , where ‖(v,g)‖Vr
:= ‖v‖W 1,r(Ω) + ‖v‖L2(Ω) + ‖g‖L2(∂Ω) , (3.1)
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H := V‖·‖H , where ‖(v,g)‖2H := ‖v‖2L2(Ω) + β ‖g‖2L2(∂Ω) (3.2)

Note that H is a Hilbert space with respect to the above norm. We also remark that if (v,g) ∈ Vr,
then necessarily g = tr v. With some abuse of notation, Vr can thus be identified with its first
component v.

Theorem 3.1. Let v0 ∈ H, f ∈ Lr′(0, T ;V ′
r ), T > 0 be given, and let r ≥ 11/5. Then there exists

at least one weak solution v to (2.1),

v ∈ L∞(0, T ;H) ∩ Lr(0, T ;Vr),

∂tv ∈ Lr′(0, T ;V ′
r ).

(3.3)

The solution satisfies energy equality, and the initial condition v(0) = v0 holds for the representative
v ∈ C([0, T ];H).

Proof. We only sketch the proof, referring to [1] for details. Take the scalar product of (2.1a) with
an arbitrary ϕ ∈ Vr, integrate the result over Ω, and use integration by parts to obtain
∫

Ω
[∂tv · ϕ+ (S − v ⊗ v) : ∇ϕ− πdivϕ] dx+

∫

∂Ω
[πI + v ⊗ v − S]n ·ϕ dS =

∫

Ω
f ·ϕ dx (3.4)

By utilizing the symmetry of S, (2.1c), (2.1d), and the properties of ϕ (divϕ = 0 in Ω, ϕ · n = 0
on ∂Ω), we deduce the weak formulation

∫

Ω
∂tv ·ϕ dx+ β

∫

∂Ω
∂tv · ϕ dS +

∫

Ω
[S(Dv)− v ⊗ v] : ∇ϕ dx+ α

∫

∂Ω
s(v) ·ϕ dS

=

∫

Ω
f · ϕ dx (3.5)

Formally, we set ϕ := v in (3.5), and use

∫

Ω
(v ⊗ v) : ∇vdx =

∫

Ω

d∑

i,j=1

vivj∂ivjdx =
1

2

∫

Ω

d∑

i,j=1

vi∂i |vj|2 dx, (3.6)

=
1

2

(
−
∫

Ω
divv |v|2 dx+

∫

∂Ω
v · n |v|2 dS

)
= 0, (3.7)

where we have used (2.1b), (2.1c). Thus we obtain,

1

2

d

dt

(∫

Ω
|v|2 dx+ β

∫

∂Ω
|v|2 dS

)
+

∫

Ω
S(Dv) : Dv dx+ α

∫

∂Ω
s(v) · v dS = 〈f ,v〉V ′

r ,Vr
. (3.8)

For the right hand side of (3.8), we obtain by utilizing Korn’s and Young’s inequalities,

〈f ,v〉V ′

r ,Vr
≤ ‖f‖V ′

r
‖v‖Vr

≤ c1 ‖f‖V ′

r
‖v‖W 1,r ≤ c2(ε) ‖f‖r

′

V ′

r
+

ε

c3
‖v‖rW 1,r , (ε > 0)

≤ c2(ε) ‖f‖r
′

V ′

r
+ ε ‖Dv‖rr + ε ‖v‖rH .

Then by (2.2) and (2.5), we deduce,

1

2

d

dt
‖v‖2H + c5

[
ν1 ‖Dv‖22 + ν2 ‖Dv‖rr

]
+c4α ‖v‖q

Lq(Γ)
≤ c2(ε) ‖f‖r

′

V ′

r
+ ε ‖v‖rH . (3.9)
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We combine compactness and monotonicity arguments to obtain the existence of a solution as a
limit of a suitable approximate problem, e.g. the Galerkin scheme. Remark that r = 11/5 is the
critical value which ensures that the convective term belongs to the proper dual space. Hence in
particular, any weak solution is an admissible test function and the energy equality (3.8) holds.
See [18] or [1].

Weak solutions are non-unique in general, unless additional regularity is assumed. In particular,
analogously to [4, Theorem 3.2], one proves:

Theorem 3.2. Let u,v be weak solutions with u(0) = v(0), and furthermore, let v ∈ L
2r

2r−3 (0, T ;Vr).
Then u = v.

Proof. Test the equation for w := u− v by w. Using the identity

∫

Ω
(u⊗ u− v ⊗ v) : ∇w =

∫

Ω
(u⊗w −w ⊗ v) : ∇w =

∫

Ω
(w · ∇v) ·w (3.10)

(in view of div (u⊗ u) = (∇ · u)u+ (u · ∇)u) as well as (2.2), one obtains

1

2

d

dt

(
‖w‖22 + β ‖w‖2L2(∂Ω)

)
+ c2

∫

Ω
I2(Du,Dv) dx+ α

∫

∂Ω
(s(u)− s(v))w dS ≤

∫

Ω
|w|2 |∇v| dx,

(3.11)
where

I2(Du,Dv) :=
(
ν1 + ν2 (|Du|+ |Dv|)r−2

)
|Dw|2 (3.12)

By monotonicity we have

α

∫

∂Ω
(s(u)− s(v))w dS ≥ 0.

This yields

1

2

d

dt

(
‖w‖22 + β ‖w‖2L2(∂Ω)

)
+ c2

∫

Ω
I2(Du,Dv) dx ≤

∫

Ω
|w|2 |∇v| dx (3.13)

By Korn inequality (Lemma B.2 in the Appendix), we have

∫

Ω
I2(Du,Dv) dx ≥ ν1

∫

Ω
|Dw|2 dx+ ν2

∫

Ω
|Dw|r dx ≥ cν1

(
‖w‖2W 1,2(Ω) − ‖w‖2L2(∂Ω)

)
. (3.14)

We further estimate, using (B.2), cf. the Appendix,

∫

Ω
|w|2 |∇v| dx ≤ ‖∇v‖r ‖w‖22r

r−1
≤ c3 ‖∇v‖r ‖w‖

2r−3
r

2 ‖w‖
3
r

W 1,2(Ω)
,

≤ c2
4
ν1 ‖w‖2W 1,2(Ω) + c4ν

− 3
2r−3

1 ‖∇v‖
3

2r−3
r ‖w‖22 .

Then with (3.14) we obtain,

d

dt
‖w‖2H + c5ν1 ‖w‖2W 1,2(Ω) + c5

∫

Ω
I2(Du,Dv) dx

≤ c4ν
− 3

2r−3

1 ‖v‖
3

2r−3

W 1,r(Ω)
‖w‖22 + c6 ‖w‖2L2(∂Ω) ,
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≤ c4ν
− 3

2r−3

1 ‖v‖
3

2r−3

W 1,r(Ω)
‖w‖22 + c6 ‖w‖2L2(∂Ω) ,

≤ c7

(
ν
− 3

2r−3

1 ‖v‖
3

2r−3

W 1,r(Ω)
+ 1

)
‖w‖2H . (3.15)

Finally we apply Grönwall’s lemma to deduce

‖w(t)‖22 ≤ K ‖w(s)‖22 , 0 ≤ s ≤ t ≤ T. (3.16)

In particular, we have uniqueness.

Now, we obtain additional time regularity of the solutions, together with an explicit estimate
of the relevant norms, cf. [4, Theorem 3.3]. Symbol “ . ” means an inequality up to some generic
(i.e., independent of the data) constant ci > 0.

Theorem 3.3. Let r > 12/5, f ∈ L2(Ω). Then the weak solution has additional time regularity

v ∈ L∞(τ, T ;Vr),

∂tv ∈ L2(τ, T ;L2(Ω)).

Here τ ∈ (0, T ) is arbitrary, and one can take τ = 0 if v(0) ∈ Vr.

Now let ϕ := ∂tv

∫

Ω
|∂tv|2 dx+ β

∫

∂Ω
|∂tv|2 dS +

∫

Ω

[
ν1Dv + ν2 |Dv|r−2

Dv − v ⊗ v
]
: ∇∂tv dx

+ α

∫

∂Ω
s(v) · ∂tv dS =

∫

Ω
f · ∂tv dx

‖∂tv‖2H +

∫

Ω

[
ν1Dv + ν2 |Dv|r−2Dv

]
: ∂tDv dx+

∫

Ω
(v · ∇v) · ∂tv dx+ α

∫

∂Ω
s(v) · ∂tv dS

=

∫

Ω
f · ∂tv dx

We estimate, ∫

Ω
(v · ∇v) · ∂tv dx ≤ ‖v‖22r

r−2
‖v‖2W 1,r(Ω) +

1

4
‖∂tv‖22 . (3.17)

Now by (2.6), we obtain,

∫

∂Ω
s(v) · ∂tv dS =

d

dt

(∫

∂Ω
S(v) dS

)
.

Then we obtain the following inequality,

1

2
‖∂tv‖2H +

d

dt

∫

Ω
Φ(Dv) dx+

d

dt

(∫

∂Ω
S(v) dS

)
≤ c8 ‖v‖22r

r−2
‖v‖2W 1,r(Ω) + ‖f‖22 (3.18)

This can be more compactly written as

1

2
‖∂tv‖2H +

d

dt
U ≤ c8 ‖v‖22r

r−2
‖v‖2W 1,r(Ω) + ‖f‖22 , (3.19)
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where

U = U(t) := 1 +

∫

Ω
Φ(Dv) dx+

∫

∂Ω
S(v) dS,

and hence U ∼ 1 + ν1 ‖Dv‖22 + ν2 ‖Dv‖rr + ‖S(v)‖L1(∂Ω) , (3.20)

by (2.3) and Korn’s inequality (B.2). Now we distinguish two cases:

(i) case r ∈ (12/5, 3]. We claim

‖v‖ 2r
r−2

≤ c9 ‖v‖a2 ‖v‖1−a
W 1,r(Ω) , a =

5r − 12

5r − 6
. (3.21)

Note that a > 0 as r > 12/5. Then for r ≤ 3, the embedding W 1,r(Ω) ⊂ L
3r
3−r (Ω) holds. We

obtain
‖v‖ 2r

r−2
≤ ‖v‖a2 ‖v‖

1−a
3r
3−r

≤ c9 ‖v‖a2 ‖v‖
1−a
W 1,r(Ω) . (3.22)

Then we estimate the first term on the right hand side of (3.19) and obtain

‖v‖
2(5r−12)

5r−6

2 ‖v‖
10r
5r−6

W 1,r(Ω)
≤ ν

− 10
5r−6

2 ‖v‖
2(5r−12)

5r−6

2

[
ν2 ‖v‖rW 1,r(Ω)

] 10
5r−6

,

. ν
− 10

5r−6

2 ‖v‖
2(5r−12)

5r−6

2 [ν2 ‖Dv‖rr + ν2 ‖v‖r2]
10

5r−6 ,

. ν
− 10

5r−6

2 ‖v‖
2(5r−12)

5r−6

2 U
10

5r−6 + ‖v‖42 .

This yields
d

dt
U ≤ c10ν

− 10
5r−6

2 ‖v‖
2(5r−12)

5r−6

2 U
10

5r−6 + ‖v‖42 + ‖f‖22 . (3.23)

Dividing by U1−µ, where µ = 2(5r−12)
5r−6 yields,

d

dt
Uµ ≤ c10ν

− 10
5r−6

2 ‖v‖
2(5r−12)

5r−6

2 U + ‖v‖42 + ‖f‖22 . (3.24)

Then we apply Grönwall’s lemma to obtain the necessary bounds on U . It is worthwhile to
note that [

‖v‖42 + ‖f‖22
]
Uµ−1 =

[
‖v‖42 + ‖f‖22

]
U

5r−16
5r−6 ≤ ‖v‖42 + ‖f‖22 .

The above property holds true because U ≥ 1 and for r ≤ 3, we have 5r−16
5r−6 < 0.

(ii) case r > 3. Since
2r

r − 2
∈ (2, 6), we use the interpolation Lemma B.1 to obtain,

‖v‖ 2r
r−2

. ‖v‖
r−3
r

2 ‖v‖
3
r

6 . (3.25)

Again by Lemma B.3 we obtain,

‖v‖ 2r
r−2

. ‖v‖
r−2
r

2 ‖v‖
2
r

W 1,3(Ω)
≤ c11 ‖v‖

r−2
r

2 ‖v‖
2
r

W 1,r(Ω)
. (3.26)
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Then right hand side of (3.19) can be estimated as

‖v‖
2(r−2)

r

2 ‖v‖
2r+4

r

W 1,r(Ω)
≤ ‖v‖

2(r−2)
r

2 [‖Dv‖rr + ‖v‖r2]
2r+4
r2 ,

≤ ν
− r2

2r+4

2 ‖v‖
2(r−2)

r

2 U
2r+4
r2 + ‖v‖42 . (3.27)

This yields
d

dt
U ≤ c12ν

− r2

2r+4

2 ‖v‖
2(r−2)

r

2 U
2r+4

r2 + ‖v‖42 + ‖f‖22 . (3.28)

Take µ =
2r + 4

r2
− 1. Then we consider two cases.

If
2r + 4

r2
> 1, i.e. µ > 0, we divide (3.28) by Uµ. Thus we obtain

d

dt
U1−µ ≤ c12ν

− r2

2r+4

2 ‖v‖
2(r−2)

r

2 U + ‖v‖42 + ‖f‖22 .

Similar to the previous case where r ∈ (12/5, 3], we observe that

[
‖v‖42 + ‖f‖22

]
Uµ ≤ ‖v‖42 + ‖f‖22 .

If
2r + 4

r2
≤ 1, i.e. µ ≤ 0, we obtain by (3.28),

d

dt
U ≤ c12ν

− r2

2r+4

2 ‖v‖
2(r−2)

r

2 U + ‖v‖42 + ‖f‖22 . (3.29)

Then in both cases, we invoke Grönwall’s lemma to obtain bounds on U .

4 Dimension of the Attractor

We follow the general scheme of method of trajectories presented in [16]. The main modification
here is that we explicitly keep track of all a priori estimates.

Lemma 4.1. There exists an absorbing, positively invariant set B̂ ⊂ H such that

B0 := sup
v∈B̂

‖v‖H ≤ c1 min

{
κ−1
1 ‖f‖2 ,

[
κ−1
2 ‖f‖2

] 1
s−1

}
, (4.1)

where s = min{r, q}, and κ = min{ν2, α}.

Proof. As in Theorem 3.1, we obtain

d

dt
‖v‖2H + c2

[
ν1 ‖Dv‖22 + ν2 ‖Dv‖rr + α ‖v‖qLq(Γ)

]
≤ c3 ‖f‖2 ‖v‖H . (4.2)

Then by dropping the term ‖Dv‖rr, we compute by Korn’s inequality in Lemma B.2,

d

dt
‖v‖2H + c2κ1 ‖v‖2H ≤ c3 ‖f‖2 ‖v‖H , where κ1 = min{ν1, α} (4.3)
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Thus
d

dt
‖v‖2H ≤ −γ ‖v‖2H if ‖v‖H > c4κ

−1
1 ‖f‖2 for some γ > 0. Now we drop the term ‖Dv‖22

and obtain,
d

dt
‖v‖2H + c2

[
ν2 ‖Dv‖rr + α ‖v‖qLq(Γ)

]
≤ c3 ‖f‖2 ‖v‖H . (4.4)

Then we use the following estimate for ‖v‖H ≥ 1,

ν2 ‖Dv‖rr + α ‖v‖qLq(Γ) ≥ c5κ ‖v‖sH , where s = min{r, q}, and κ2 = min{ν2, α}.

Thus we obtain
d

dt
‖v‖2H ≤ −γ ‖v‖2H if ‖v‖H > c6

[
κ−1 ‖f‖2

] 1
s−1 for some γ > 0. Hence the

conclusion follows.

Lemma 4.2. There exists an absorbing, positively invariant B ⊂ B̂ such that B is closed in H, and

Br := sup
v∈B̂

‖v‖W 1,r ≤




c12B

5(5r−6)
2(5r−11)

0 , r ∈ (12/5, 3],

c12B
5
0 , r > 3.

(4.5)

Proof. Set

B :=
{
v(2T ); v is a weak solution on [0, 2T ], and v(0) ∈ B̂

}
,

and we take T = B0. Recalling (4.3) and taking U = ν1 ‖Dv‖22 + ν2 ‖Dv‖rr
∫ T

0
U(t) dt .

∫ T

0

[
‖f‖2 ‖v‖H +

d

dt
‖v‖2H

]
dt,

. B2
0 + TB0 ≤ 2c1B

2
0 . (4.6)

By the mean value theorem of integrals, we obtain for τ ∈ (0, T ) such that

U(τ) ≤ c2B0. (4.7)

Assume r ≤ 3. Integrating (3.24) over (τ, 2T ) yields

Uµ(2T ) ≤ c3ν
− 10

5r−6

2 B
2(5r−12)

5r−6

0

∫ 2T

τ
U(t) dt+

∫ 2T

τ

[
‖v‖42 + ‖f‖22

]
dt+ Uµ(τ),

≤ c4ν
− 10

5r−6

2 B
4(5r−9)
5r−6

0 + c5B
µ
0 + c6B

5
0 + c7B0 ‖f‖22 .

Here µ = 2(5r−11)
5r−6 . It is reasonable to assume that B0 > 1, and ν1, ν2 < 1, hence the largest term

is B
5/µ
0 -term. The above estimate only gives an upper bound for ‖Dv‖r. But by adding ‖v‖2 to

both sides we obtain an upper bound for ‖v‖W 1,r . Then the desired estimate for Br holds.

Then we compute for r > 3. Integrating

U(2T ) ≤ c7ν
− r2

2r+4

2 B
2(r−2)

r

0

∫ 2T

τ
U(t) dt+

∫ 2T

τ

[
‖v‖42 + ‖f‖22

]
dt+ U(τ),

≤ c8ν
− r2

2r+4

2 B
4(r−1)

r

0 + c9B
5
0 + c10B0 ‖f‖22 + c11B0.

The largest term is the B5
0-term. Hence the estimate follows. The closedness of B follows from the

compactness of the set of weak solutions, which is part of the existence theory. See the reference
for Theorem 3.1.
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4.1 Attractors and Method of Trajectories.

Observe that by Theorems 3.2, 3.3, the solution operator S(t) : v0 → v(t) is well-defined for v0 ∈ B.
It follows that

A = ω(B) =
⋂

τ≥0

⋃

t≥τ

S(t)BH
(4.8)

is the so-called global attractor. Our ultimate goal is to estimate its fractal dimension, defined as

dHf (A) = lim sup
ε→0+

lnNH(A, ε)
− ln ε

(4.9)

where NH(A, ε) is the smallest number of ε-balls in the space H that cover A. We employ the
method of trajectories. Since the argument is very similar to [4], we only briefly sketch the main
points. We refer to [16] for a more detailed description of the method; see also the introduction for
other related references.

Let ℓ > 0 be fixed; the exact value will specified in (4.12) below. The space of trajectories is
defined as

Bℓ = {χ ∈ Hℓ; χ is a weak solution on [0, ℓ], χ(0) ∈ B} , (4.10)

with the underlying metric of Hℓ = L2(0, ℓ;H). Note however that any trajectory χ has additional
regularity, cf. Theorem 3.1. In particular, we always work with the representative χ ∈ C([0, ℓ];H),
so that the value χ(t) is well-defined for any t ∈ [0, ℓ]. The operators L : Bℓ → Bℓ, b : B → Bℓ and
e : Bℓ → B are defined via the conditions

L(χ) = ψ ⇐⇒ χ(ℓ) = ψ(0) ,

e(χ) = χ(ℓ) ,

b(v0) = χ ⇐⇒ χ(0) = v0 .

Observe that S(ℓ) = e ◦ b and b ◦ e = L, hence L is an equivalent (discrete) description of the
dynamics of S(t) on Bℓ = b(B). In particular, one has Aℓ = b(A), A = e(Aℓ), where Aℓ is the
global attractor for the dynamical system (Ln,Bℓ).

In view of the Lipschitz continuity of operators e, b (see for example [16, Lemma 2.1], [16,
Lemma 1.2])

dHf (A) = d
L2(0,ℓ;H)
f (Aℓ) (4.11)

Thus, it suffices to estimate the last quantity. This will be done using the so-called smoothing
property, see [16, Lemma 1.3]; see also [4, Theorem 4.1]. It remains to explicitly estimate the
appropriate Lipschitz constants, which is done in the following lemma. Finally, the asymptotics of
covering numbers is investigated in the Appendix.

Lemma 4.3. Set

ℓ :=

[
ν
− 3

2r−3

1 B
2r

2r−3
r + 1

]−1

. (4.12)

Then for all χ,ψ ∈ Aℓ

‖Lχ− Lψ‖L2(0,ℓ;V2)
≤ L1 ‖χ− ψ‖Hℓ

, (4.13)

‖∂tLχ− ∂tLψ‖L2(0,ℓ;V ′

r )
≤ L2 ‖χ− ψ‖Hℓ

, (4.14)
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where

L1 = c1ν1
− 1

2 ℓ−
1
2 , (4.15)

L2 = U +W+Q, (4.16)

U = c2ν1L1(1 +Mr), (4.17)

Mr = ν
− 1

2
1 ν

1
2
2 B

r−2
2

r , (4.18)

W =




c4B

5r−12
5r−6

0 B
6

5r−6
r , r ∈ (12/5, 3],

c4B
r−2
r

0 B
2
r
r , r > 3.

(4.19)

Proof. Let u,v be two weak solutions on [0, 2ℓ] such that u|[0,ℓ] = χ,u|[0,ℓ] = ψ, and set w := u−v.
In view of (4.12), (3.15) is rewritten as

d

dt
‖w‖2H + c5ν1 ‖w‖2W 1,2(Ω) + c5

∫

Ω
I2(Du,Dv) dx ≤ c7

[
ν
− 3

2r−3

1 B
2r

2r−3
r + 1

]
‖w‖2H .

We replace norm of the second term of the left hand side with the equivalent norm ‖ ‖V2
.This

yields,

d

dt
‖w‖2H + c8ν1 ‖w‖2V2

+ c8

∫

Ω
I2(Du,Dv) dx ≤ c7

[
ν
− 3

2r−3

1 B
2r

2r−3
r + 1

]
‖w‖2H .

Then by (4.12) we obtain,

d

dt
‖w‖2H + c8ν1 ‖w‖2V2

+ c8

∫

Ω
I2(Du,Dv) dx ≤ c7ℓ

−1 ‖w‖2H . (4.20)

Neglecting the positive terms of the left hand side, we obtain from Grönwall’s Lemma

‖w(t)‖2H ≤ c9 ‖w(s)‖2H , 0 < s < t < 2ℓ, (4.21)

where c9 = exp
(
(t− s)ℓ−1

)
≤ exp(2c7). In other words, the smallness of ℓ eliminates the (expo-

nential) dependence of the Lipschitz constant of S(t) on the viscosities.

Integrating (4.20) over (s, 2ℓ), where s ∈ (0, ℓ) is fixed, one further derives

c8ν1

∫ 2ℓ

s
‖w(t)‖2V2

dt+ c8

∫ 2ℓ

s

∫

Ω
I2(Du,Dv) dxdt ≤ ‖w(s)‖2H + c7ℓ

−1

∫ 2ℓ

s
‖w(t)‖2H dt.

By (4.21), we obtain

∫ 2ℓ

s
‖w(t)‖2H dt ≤ 2c9ℓ ‖w(s)‖2H . By substituting this back in the above

inequality, we obtain,

c8ν1

∫ 2ℓ

s
‖w(t)‖2V2

dt+ c8

∫ 2ℓ

s

∫

Ω
I2(Du,Dv) dxdt ≤ c10 ‖w(s)‖2H .

Integrating over s ∈ (0, ℓ) yields,

ℓν1

∫ 2ℓ

s
‖w(t)‖2V2

dt+ ℓ

∫ 2ℓ

s

∫

Ω
I2(Du,Dv) dxdt ≤ c11

∫ ℓ

0
‖w(s)‖2H ds.
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This proves (4.13). We also note here that

[∫ 2ℓ

s

∫

Ω
I2(Du,Dv) dxdt

]1/2

≤ c12ν
1
2
1 L1

[∫ ℓ

0
‖w(s)‖2H ds

]1/2

. (4.22)

To prove (4.14), (2.1) is used to get

‖∂tw‖L2(ℓ,2ℓ;V ′

r)
= sup

ϕ

∫ 2ℓ

ℓ
〈∂tw, ϕ〉dt,

= sup
ϕ

[ ∫ 2ℓ

ℓ

∫

Ω
(S(Du)− S(Dv)) : Dϕdxdt

︸ ︷︷ ︸
I1

+

∫ 2ℓ

ℓ

∫

Ω
(u⊗ u− v ⊗ v) : ∇ϕdxdt

︸ ︷︷ ︸
I2

+α

∫ 2ℓ

ℓ

∫

∂Ω
(s(u)− s(v))w : ϕdSdt

︸ ︷︷ ︸
I3

]

where the supremum is taken over ϕ ∈ L2(ℓ, 2ℓ;Vr) with ‖ϕ‖ = 1. By Hölder inequality

I1 ≤
[∫ 2ℓ

ℓ
‖S(Du)− S(Dv)‖2r′ dt

]1/2

.

Then by (2.2), (3.12) we obtain

|S(Du)− S(Dv)| ≤ I(Du,Dv)
(
ν1 + ν2 (|Du|+ |Du|)r−2

)1/2
,

hence

‖S(Du)− S(Dv)‖r′ =
[∫

Ω
|S(Du)− S(Dv)|r′ dx

]1/r′

,

≤
[∫

Ω
Ir

′

(Du,Dv)
(
ν1 + ν2 (|Du|+ |Du|)r−2

)r′/2
dx

]1/r′

,

≤
[∫

Ω
Isr

′

(Du,Dv)dx

]1/sr′
[∫

Ω

(
ν1 + ν2 (|Du|+ |Du|)r−2

)s′r′/2
dx

]1/s′r′

.

We choose s, s′ such that 1/s +
1/s′ = 1, r′s = 2 and r′s′ = 2r/r−2. Then we obtain

‖S(Du)− S(Dv)‖r′ ≤
[∫

Ω
I2(Du,Dv)dx

]1/2 [∫

Ω

(
ν1 + ν2 (|Du|+ |Du|)r−2

)r/r−2

dx

]r−2/2r

︸ ︷︷ ︸
M

.

Now we compute,

M = ν
1/2
1

[∫

Ω

(
1 + ν−1

1 ν2 (|Du|+ |Du|)r−2
)r/r−2

dx

]r−2/2r

,

12



≤ c13ν
1/2
1

[
1 + ν−1

1 ν2

∫

Ω
(|Du|r + |Du|r) dx

]r−2/2r

,

≤ c14ν1 (1 +Mr) ,

cf (4.18). Note that the integral above cannot be bounded directly by Br in (4.5). But U in Lemma
4.2 is bounded by Br. Combining (4.15), (4.22)

I1 ≤ U ‖χ− ψ‖Hℓ
.

Now we proceed to the estimate

I2 ≤
∫ 2ℓ

ℓ

∫

Ω
|w| (|u|+ |v|) |∇ϕ| dxdt ≤

[∫ 2ℓ

ℓ
‖|w| (|u|+ |v|)‖ dt

]1/r′

.

Then we compute

‖|w| (|u|+ |v|)‖r′ =
[∫

Ω
|w|r′ (|u|+ |v|)r′ dx

]1/r′

,

≤ c15 ‖w‖2
(
‖u‖ 2r

r−2
+ ‖v‖ 2r

r−2

)
.

We consider two cases

(i) case r ∈ (12/5, 3]. Using (3.21), (4.5), we obtain

I2 ≤ c16

[∫ 2ℓ

ℓ
‖w‖22 dt

]1/2

sup
t∈(ℓ,2ℓ)

[
‖u‖ 2r

r−2
+ ‖v‖ 2r

r−2

]
,

≤ c17B
5r−12
5r−6

0 B
6

5r−6
r

[∫ 2ℓ

ℓ
‖w‖22 dt

]1/2

,

≤W ‖χ− ψ‖Hℓ
.

satisfying the first part of (4.19).

(ii) case r > 3. Using (3.26), (4.5), we obtain

I2 ≤ c16

[∫ 2ℓ

ℓ
‖w‖22 dt

]1/2

sup
t∈(ℓ,2ℓ)

[
‖u‖ 2r

r−2
+ ‖v‖ 2r

r−2

]
,

≤ c18B
r−2
r

0 B
2
r
r

[∫ 2ℓ

ℓ
‖w‖22 dt

]1/2

,

≤W ‖χ− ψ‖Hℓ
.

satisfying the second part of (4.19). Finally, we estimate

I3 ≤ Q ‖χ− ψ‖Hℓ
,

with (2.5). This concludes the proof of the Lemma.
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Now we formulate the main result.

Theorem 4.1. Let the stress tensor satisfy (2.2), (2.3) with r > 12/5. Then (2.1) has a global
attractor A, and its dimension can be estimated as

dHf (A) ≤ c19

(
L4
1 + ℓL

2(11r−6)
3r

1 L2

)
lnL1, (4.23)

where L1, L2 and ℓ are given in Lemma 4.3.

Proof. Follows exactly along the arguments of [4, Theorem 4.1], using the estimates of Lemma 4.3
above and Lemma A.3 below.

A Coverings and Fractal Dimension.

Now we present an elementary description of a class of Sobolev and Bochner spaces with fractional
derivatives. These formulations will be used to obtain covering numbers for compact embeddings.
We follow a similar technique used in [4, Section 7: Appendix], or [5, Secion 4]. Consider the
following inhomogeneous Stokes problem,





∂tv − div Dv +∇π = f , div v = 0 in Q,

v · n = 0, −(Dv)n+ αv = β∂tv on Γ,

v(0) = v0 in Ω.

(A.1a)

(A.1b)

(A.1c)

Then the above dynamical system defines the operator A which generates a strongly continuous
analytic semigroup on H with a compact resolvent with domain D(A) ⊂⊂ V , see [20, Theorem 1,
p. 7]. We thus have linear (unbounded) operator A : D(A) → H satisfying,

(u,ϕ)V = (Au,ϕ)H , ∀u ∈ D(A), ∀ϕ ∈ V. (A.2)

Moreover, from the same reference we have that A is surjective, and is also symmetric on its domain,
i.e. for any u,v ∈ D(A) we have

(Au,v)H = (u,Av)H . (A.3)

Then by virtue of [2, Section 5, p. 168], we can define the domains fractional powers of the operator
A. Then by [24, Theorem 1.15.3, p. 114] for 0 ≤ θ ≤ 1,

D(Aθ) ⊂
[
L2(Ω)× L2(∂Ω),H2(Ω)× L2(∂Ω)

]
θ
→֒ H2θ(Ω)× L2(∂Ω), (A.4)

where Hs(Ω) =W s,2(Ω), s ∈ R. For more details on domains of fractional powers of matrix-valued
operators, we refer to [15] and references therein. Let wj, λj = 1, 2, . . . be the eigenfunctions and
eigenvalues of the operator A respectively.

−div Dwj = λjwj , in Ω (A.5a)

div wj = 0, in Ω (A.5b)

Dwjn+ αwj = λjβwj in Γ (A.5c)
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Note that we have taken ∂tv = −λiv for λi to be nonnegative. One can show that {wj}j∈N is a basis
for V and H, it is orthogonal in V and orthonormal in H. Moreover, we have limi→∞ λi = +∞.
See [18, Lemma 3.1]. We also have

Cj
1/2 ≤ λj ≤ C̃j

2/3 , (A.6)

for dimension d = 3 by [20, Section 3.2], and Lemma B.4 for some positive constants C, C̃. For
b ∈ R, one introduces the space H

b := Hb(Ω)× L2(∂Ω) as

H
b = Hb(Ω)× L2(∂Ω). (A.7)

Let us define, H−b :=
(
Hb(Ω)

)′ ×L2(∂Ω), with the duality given by the generalized scalar product

in H. Further, we define H
b as a class of interpolation spaces in the sense that

[
H

b1 ,Hb2
]
α
= H

b,

where b = (1− α)b1 + αb2. To relate H
b to classical Sobolev spaces (product), observe that

‖(u,g)‖2
H0 = ‖(u,g)‖2H = ‖u‖22 + β ‖g‖2L2(∂Ω) ,

(Au,u)H =
∥∥∥A1/2u

∥∥∥
2

H
=

∑

j

a2jλj,

= ‖v‖2H1(Ω) + β ‖tr u‖2L2(∂Ω) ∼ ‖u‖2
H1 ∼ ‖u‖2V , and

compute Au =
∑

j

ajAwj =
∑

j

ajλjwj , hence ‖Au‖2H = ‖u‖2
H2 .

Similarly, an orthonormal basis for L2(0, ℓ) will be defined as

ϕ0(t) = ℓ−
1/2 , ϕk(t) = 2

1/2ℓ−
1/2 cos(kπtℓ−1), k ≥ 1. (A.8)

One sets µ0 = ℓ−2, µk = k2π2ℓ−2. The space Ha(0, ℓ) is defined as

‖φ‖2Ha(0,ℓ) =
∑

k

a2kµ
a
k, ak =

∫ ℓ

0
φ(t)ϕk(t)dt.

The seminorm Ḣa(0, ℓ) will also be used,

‖φ‖2
Ḣa(0,ℓ)

=
∑

k 6=0

a2kµ
a
k,

and the space Ha
0 (0, ℓ), in the definition of which ϕk(t)s are replaced by

ψk(t) = 2
1/2ℓ−

1/2 sin(kπtℓ−1), k ≥ 0.

Note that
µk ∼ k2ℓ−2,

|ϕk(t)| , |ψk(t)| ≤ c1ℓ
−1/2 .

(A.9)

The dependence on ℓ has to be carefully traced down, since ℓ << 1 in the applications.

15



Now we combine wj , ϕk to describe certain norms of fractional Bochner spaces. For u(x, t) :
Ω× (0, ℓ) −→ R

3, one sets

‖u‖2Ha(0,ℓ;Hb) =
∑

j,k

a2jλ
b
jµ

a
k,

‖u‖2
Ḣa(0,ℓ;Hb)

=
∑

j,k 6=0

a2jλ
b
jµ

a
k,

where ajk =

∫

Ω×∂Ω×(0,ℓ)
v(x, t) ·wj(x)ϕk(t)dxdt.

As above, there is the introduction Ha
0 (0, ℓ;H

b) using ψk in place of ϕk. It is straightforward to
verify that

‖u‖L2(0,ℓ;Hb) = ‖u‖H0(0,ℓ;Hb) = ‖u‖H0
0 (0,ℓ;H

b) . (A.10)

In the following Lemma from [4, Lemma 7.1], it is proven that the seminorm Ḣ1(0, ℓ) can be
estimated in terms of the time derivative. The value of b given in (A.11) is obtained by (B.3).

Lemma A.1. Let r ≥ 2 and let b be given by

b =
5r − 6

2r
, i.e. b ≥ 1. (A.11)

Then
‖u‖Ḣ1(0,ℓ;H−b) ≤ c1 ‖∂tu‖L2(0,ℓ;V ′

r )

Here ∂t stands for the distributional derivative in Ω× (0, ℓ).

Then we obtain the following two Lemmas from [4, Lemma 7.2, Lemma 7.3] by devising similar
computations.

Lemma A.2. Let r ≥ 2, ℓ > 0 and C1, C2 >> 1. Denote

M =
{
u : ‖u‖L2(0,ℓ;V2)

≤ C1, ‖∂tu‖L2(0,ℓ;V ′

r )
≤ C2

}
.

There exists orthonormal projection P in L2(0, ℓ;H) such that

dist (M,P(M)) ≤ 1√
8
, (A.12)

and

rank P ≤ c2

(
C4
1 + ℓC

2(11r−6)
3r

1 C2

)
(A.13)

Proof. The proof of this lemma follows similar argumentation as [4, Lemma 7.2]. By virtue of
(A.10) and Lemma A.1, M can described by H0(0, ℓ;H1) and H0(0, ℓ;H−b), where b = (5r−6)/2r.
Then the Fourier coefficients of u ∈ M satisfy

∑

j,k

a2jkλj ≤ c3C
2
1 ,

∑

j,k 6=0

a2jkλ
−b
j µk ≤ c4C

2
2 . (A.14)

16



Hence it is enough to take P as the projection to the span of

{
wjϕk : λj ≤ 8c3C

2
1 and µk ≤ 8c4λ

b
jC

2
2

}
.

First, we show that (A.12) holds. First observe that, for u ∈ M,

u =
∑

j,k

ajkwjϕk, and Pu =
∑

{λj≤8c3C2
1 , µk≤8c4λb

jC
2
2}
ajkwjϕk.

Now we estimate
‖u− Pu‖2H =

∑

{λj>8c3C2
1 , or µk>8c4λb

jC
2
2}
a2jk.

We further estimate above two different cases separately,

‖u− Pu‖2H =
∑

{λj>8c3C2
1}
a2jk, or ‖u−Pu‖2H =

∑

{µk>8c4λb
jC

2
2}
a2jk.

Furthermore,

‖u− Pu‖2H =
∑

{λj>8c3C2
1}
a2jkλj

1

λj
, or ‖u− Pu‖2H =

∑

{µk>8c4λb
jC

2
2}
a2jkλ

−b
j µk

λbj
µk
,

combining both cases, we obtain

‖u− Pu‖2H ≤ 1

8
. (A.15)

Hence (A.12). Now we recall (A.6) and (A.9), we estimate

rank P ≤
∑

{j ≤ c5C4
1}

(
1 + C2ℓj

b/3
)
≤ c6

(
C4
1 + ℓC2C

4(b+3)
3

1

)
,

= c6

(
C4
1 + ℓC

2(11r−6)
3r

1 C2

)
, (A.16)

Lemma A.3. The set M from Lemma A.2 can be covered by K balls of radii 1/2 in L2(0, ℓ;H),
where

lnK ≤ c7

(
C4
1 + ℓC

2(11r−6)
3r

1 C2

)
lnC1. (A.17)

Remark A.1. The difference between the estimate obtained in [4, Lemma 7.2] and (A.13) is due
to the difference between the lower and upper bounds of the eigenvalues in two cases. In the former,
the authors had λj ∼ c1j

2/3 , and in our case we have Cj
1/2 ≤ λj ≤ C̃j

2/3 . This difference is also
evident in the estimate (A.17).
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B Appendix

Lemma B.1. [3, Lemma II.2.33, p. 66] Let Ω be any open set of Rd and let u ∈ Lp(Ω) ∩ Lq(Ω)
with 1 ≤ p, q ≤ ∞. Then for all r such that

1

r
=
θ

p
+

1− θ

q
, 0 < θ < 1.

we have u ∈ Lr(Ω), and
‖u‖r ≤ ‖u‖θp ‖u‖

1−θ
q . (B.1)

Theorem B.1. [3, p. 173] Let Ω be a Lipschitz domain in R
d with compact boundary. Let

p ∈ [1,∞] and q ∈
[
p,

pd

d− p

]
. There exists a C > 0 such that

‖ϕ‖Lq(Ω) ≤ C ‖ϕ‖1+
d/q−d/p

Lp(Ω) ‖ϕ‖
d/p−d/q
W 1,p(Ω)

, for all ϕ ∈W 1,p(Ω). (B.2)

Lemma B.2. [6, Lemma 1.11, p. 63] Let Ω ∈ C0,1 and q ∈ (0,+∞). Then there exists a
positive constant C, depending only on Ω and q, such that for all v ∈ W 1,q(Ω) which has the
trace tr v ∈ L2(∂Ω), the following inequality hold,

‖w‖W 1,q(Ω) ≤ C
(
‖Dv‖Lq(Ω) + ‖tr v‖L2(∂Ω)

)
,

‖w‖W 1,q(Ω) ≤ C
(
‖Dv‖Lq(Ω) + ‖v‖L2(Ω)

)
.

Theorem B.2. [24, p328] Let Ω be an arbitrary bounded domain, Ω ⊂ R
d. Let 0 ≤ t ≤ s < ∞

and ∞ > q ≥ q̃ > 1. Then, the following embedding holds true:

W s,q̃(Ω) ⊂W t,q(Ω), s− d

q̃
≥ t− d

q
(B.3)

Lemma B.3. Let Ω ⊂ R
3 be a bounded domain. Then

‖u‖6 ≤ c0 ‖u‖
1
3
2 ‖u‖

2
3

W 1,3(Ω)
, (B.4)

for any function u ∈W 1,3(Ω).

Proof. By interpolation result (B.2), we obtain

‖u‖6 ≤ c1 ‖u‖
1
2
3 ‖u‖

1
2

W 1,3(Ω)
. (B.5)

Then by (B.1), we obtain

‖u‖3 ≤ ‖u‖
1
2
2 ‖u‖

1
2
6 . (B.6)

By combining above two inequalities, we obtain the result.

Lemma B.4. Let the dimension of Ω be d. Then the eigenvalues {λj} of the problem (A.5) are

bounded above by cj
2/d where c > 0.
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Proof. The asymptotic behavior of the eigenvalues λj as j → ∞ can be estimated using the Rayleigh
quotient

R(u) =

∫

Ω
|Du|2 dx+ α

∫

∂Ω
|u|2 dS

∫

Ω
|u|2 dx+ β

∫

∂Ω
|u|2 dS

. (B.7)

With this notion we have
λj = inf

M∈Xj(V )
sup

u∈M\{0}
R(u), (B.8)

where Xj(V ) is the j-dimensional subspaces of the space V with divergence free condition and zero
normal component. Then we estimate

R(u) ≤ c
‖u‖2W 1,2(Ω)

‖u‖22
. (B.9)

Therefore

λj ≤ c inf
M∈Xj(W )

sup
u∈M\{0}

‖u‖2W 1,2(Ω)

‖u‖22
= cµk, (B.10)

where space W with divergence free and zero boundary conditions, i.e. W ⊂ V . Now this upper-
bound cµk is related to the following Stokes-eigenvalue problem

∆u+∇π = µku in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

It is shown in [10] that µk ∼ k
2/d . Hence we have λj ≤ cj

2/d .
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