Czechoslovak Mathematical Journal

Yousef Alavi; Gary Chartrand
The existence of 2-factors in squares of graphs
Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 1, 79-83

Persistent URL: http://dml.cz/dmlcz/101296

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101296
http://dml.cz

Czechoslovak Mathematical Journal, 25 (100) 1975, Praha
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The square G* of a connected graph G is that graph having the same vertex set
as G and such that two vertices of G? are adjacent if and only if the distance between
these vertices in G is at most two. Figure 1 shows two graphs Y and Z and their
squares.
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An n-factor of a graph G is a spanning subgraph of G which is regular of degree n.
A 2-factor of G, then, is a collection of disjoint cycles which spans G. FLEISCHNER
[3] proved that the square of every cyclic block is hamiltonian and hence contains
a 2-factor. In [5] NEUMAN proved that the square T2 of a tree T with at least three
vertices is hamiltonian if and only if T does not contain the graph Y(of Fig. 1) as
a subgraph. HoBas [4] proved that if every vertex of a graph G has degree at least
two, then G? has a 2-factor. By Neuman’s result, neither Y2 nor Z2 is hamiltonian;
however, it is not difficult to show that Z? contains a 2-factor while Y2 does not.

It is the object of this paper to present a necessary and sufficient condition for the
square G? of a graph G to possess a 2-factor. Before stating this result, we give one
additional definition; all other definitions not given here may be found in [1]. An
end-path is a path in which at least one end-vertex of the path has degree one and all
vertices which are not end-vertices have degree two.

The following lemma will prove convenient.

Lemma. Let G be any cyclic block, and let v be any vertex of G. Then there
exists a vertex u in G adjacent with v such that G — v — u is connected.

Proof. Since blocks contain no cut-vertices, the graph G — v is connected. Sup-
pose for every vertex u of G adjacent with » that G — v — u is disconnected. This
implies that every vertex adjacent with v is a cut-vertex of G — v. Let B be an end-
block of G — v (a block of G — v containing exactly one cut-vertex of G), and let w
be the cut-vertex of G — v belonging to B. No vertex of B, except possibly w, is
adjacent to v in G. Hence, w is a cut-vertex of G; this contradicts the fact that G is
a block and establishes the lemma.

We now present our main result.

Theorem. Let G be a connected graph having at least three vertices. A necessary
and sufficient condition for the square G* of G to contain a 2-factor is that there
exists in G no vertex which is the end-vertex of three end-paths of length two.

Proof. Suppose G is a connected graph containing a vertex v which is the end-
vertex of three end-paths of length two. Let the three vertices of degree onein these
three end-paths be denoted ‘by v;, v,, and v;. Assume G? contains a 2-factor F.
Foreach i = 1, 2, 3, the vertex v;is incident with two edges in G2, one of which s the
edge v;v. Now each vertex v; and thus each edge v;v belongs to F; however, this implies
that v is incident with three edges in F. This is impossible since every vertex in F has
degree two. Therefore, our assumption is incorrect, and G* does not contain a 2-factor.

For the converse, we proceed by induction on the number p of vertices of G. The
result follows immediately for p = 3, 4, and 5. Assume that if H is a connected graph
of order at least three but less than p(=6) such that H contains no vertex which is
the end-vertex of three end-paths of length two, then H? has a 2-factor. Let G be
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a connected graph of order p such that G contains no vertex which is the end-vertex
of three end-paths of length two.

If G is a block, then by Fleischner’s theorem, G* is hamiltonian so that G? has
a 2-factor. Hence, we may assume G to have cut-vertices and two or more blocks.
An end-block of G is a block of G containing exactly one cut-vertex of G. Among
all end-blocks of G, we consider those end-blocks B with the property that, with at
most one exception, every block containing the cut-vertex in B is an end-block. We
refer to such end-blocks as terminal end-blocks.

Three cases are now considered, depending on the number of vertices in terminal
end-blocks.

Case 1. Suppose G contains a terminal end-block B having four or more vertices.
Let v be the cut-vertex of G belonging to B. Denote by G, the connected graph
obtained by deleting from G all vertices of B different from v.

If G, contains a vertex which is the end-vertex of three end-paths of length two,
then, necessarily, v is a vertex of degree one on one of these three end-paths. By
Fleischner’s Theorem, B? contains a hamiltonian cycle F,, and by the induction
hypothesis, (G, — v)* contains a 2-factor F,. Thus, F; U F, is a 2-factor of G>.

We henceforth assume that G, contains no vertex which is the end-vertex of three
end-paths of length two. Suppose, first, that G, has at least three vertices. Then, by
the induction hypothesis, G; contains a 2-factor Fy. In [2] it was shown that if H
is a cyclic block with at least four vertices, then H> — x is hamiltonian for every
vertex x of H. By applying this result, we arrive at a hamiltonian cycle F, in the graph
B? — v. Hence F, U F, is a 2-factor of G>.

Next assume that G, has two vertices. Let u be the vertex of G, different from v.
We investigate two subcases.

Sub-case A. Assume B — v contains a vertex which is the end-vertex of three or
more end-paths of length two. Let vy, v,, ..., v, k = 3, be all vertices of degree one
on all end-paths of length two in B — v. Since B has no vertices of degree one, v is
adjacent to each of the vertices v,,v,,...,v, in B. Hence B — {v, vy, v, ..., 0}
is connected, contains more than three vertices, and has no vertex which is the end-
vertex of three end-paths of length two; thus, by the induction hypothesis, the
square of B — {v, vy, v,, ..., v} has a 2-factor F,. The subgraph of G* induced by

the vertices in the set {u, U, Uy, Ugy vves uk} contains a hamiltonian cycle F,. Then
F, U F, is a 2-factor of G2,

Sub-case B. Assume B — v contains no vertex which is the end-vertex of three
or more end-paths of length two. By the lemma, there exists a vertex w in B which is
adjacent with v such that B — v — w is connected. Suppose there exists no vertex
in B — v — w which is the end-vertex of three or more end-paths of length two.
Since p = 6, B — v — w contains at least three vertices. Therefore, by the induction
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hypothesis, (B — v — w)? contains a 2-factor F,. Furthermore, the subgraph induced
by the vertices u, v, and w in G? is a triangle F,, and F; U F, is a 2-factor in G*.

Now suppose that there exists in B — v — w a vertex which is the end-vertex of
three or more end-paths of length two, and let wy, w,, ..., w,, k = 3, be all vertices
of degree one on all end-paths of length two in B — v — w. Then B — {v, w, wy,
W, ..., W} is a connected graph with at least three vertices which does not contain
a vertex which is the end-vertex of three end-paths of length two. Hence the square
of B — {v, w, wy, w,, ..., w,} contains a 2-factor F,. Moreover, in G* the subgraph
induced by {u, v, w, w;, w,, ..., w,} contains a 2-factor F, so that F; U F, is a 2-
factor of G2.

Case 2. Suppose G contains to terminal end-block having four or more vertices
but does contain terminal end-blocks with exactly three vertices. Let B be a triangle
which is a terminal end-block of G, and let v be the cut-vertex of G in B. If all blocks
containing v are end-blocks, then it follows immediately that G? is hamiltonian and
hence has a 2-factor. We therefore assume that not all blocks containing v are end-blocks.

If G has other end-blocks containing v, then define H, to be the graph obtained
from G by deleting those vertices different from v in the end-blocks containing v.
Also, define H, = H, — v. Necessarily, each of H, and H, is connected, and at
least one of H, and H, has order at least three and contains no vertex which is the
end-vertex of three end-paths of length two. Let H denote whichever of H, and H,
has the above property. Then H? contains a 2-factor F,, and the remaining vertices
of G induce in G* a hamiltonian cycle F,. Thus, F, U F, is a 2-factor of G*.

Assume now that B is the only end-block of G containing v, and define G, to be
the graph obtained by deleting the vertices of B from G. If G, contains no vertex
which is the end-vertex of three end-paths of length two, then G? has a 2-factor F
and F, U B is a 2-factor of G*. Otherwise, let vy, v, ..., v, k = 3, be the vertices of
degree one in all end-paths of length two in G,. If G, is the graph obtained by
removing the vertices of B and the vertices vy, v,, ..., v from G, it follows, by the
induction hypothesis, that G2 has a 2-factor F’. In G? the subgraph induced by the
vertices of B and {vy, v, ..., v;} contains a hamiltonian cycle F". Therefore, F' U F”
is a 2-factor in G*.

Case 3. Suppose that the only terminal end-blocks in G are acyclic. Let B, be
a terminal end-block containing the vertices » and v,, where v is the cut-vertex.
If all blocks containing v are end-blocks, then G is a star graph and G2 is hamiltonian
and thus contains a 2-factor. Hence, we assume not all blocks containing v are
end-blocks.

If G contains at least three vertices of degree one adjacent with v, say vy, v,, ..., v,
(k = 3), then at least one of Hy, = G — {v;, v5, ..., v} and H, = H, — v is a con-
nected graph of order at least three containing no vertex which is the end-vertex of
three end-paths of length two. Such a graph H has the property that H? contains

82



a 2-factor F, while the remaining vertices of G induce in G* a hamiltonian cycle F,.
Thus, F; U F, is a 2-factor of G

Suppose next that the only vertices of degree one adjacent with v are v, and v,.
Define G; = G — {v, vy, v,}. If G, has no vertex which is the end-vertex of three
end-paths of length two, then G? has a 2-factor F,. The subgraph of G? induced by
{v, vy, v,} is a 2-factor F,, and F, U F, is a 2-factor of G2. If, on the other hand,
G, contains a vertex which is the end-vertex of three or more end-paths of length
two, we let uy, uy, ..., Uy, k = 3, be all vertices of degree one on all end-paths of
length two in G,. Here the subgraph of G? induced by {v, vy, vy, uy, Uy, ..., Uy}
has a hamiltonian cycle F’ while the square of G, = G, — {uy, u,, ..., u;} has
a 2-factor F”. Then F' U F” is a 2-factor of G

Finally, suppose that v, is the only vertex of degree one adjacent with v. Then we
have a situation analogous to that considered in Case 1. The graph G* can be shown
to have a 2-factor by essentially the same argument made in Subcases A and B.

This completes the proof.

We conclude by presenting a corollary. The subdivision graph S(G) of a graph G
is that graph in which every edge e = uv is replaced by a new vertex w and two new
edges uw and wv. The total graph T(G) of G is that graph whose vertex set can be
put in one-to-one correspondence with the set of vertices and edges of G in such
a way that two vertices of T(G) are adjacent if and only if the corresponding elements
of G are adjacent or incident. It is a consequence of the definitions, that for every
graph G, T(G) = [S(G)]*. From this, we arrive at the following.

Corollary. A necessary and sufficient condition for the total graph T(G) of
a connected graph G having at least two vertices to possess a 2-factor is that G
does not contain three vertices of degree one which are adjacent with the same
vertex.
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