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Abstract. When enough matter is condensed in a small region, gravitational
effects will be strong enough to cause collapse and a black hole will be formed.
We formulate and prove here such a statement in the language of general
relativity. (This is Theorem 2 of this paper.)

The main result of this paper is that for an asymptotically flat initial data set, with
the mass density large on a large region, there is an apparent horizon (and a
closed trapped surface) in the initial data. It was shown by Penrose [2] and
Hawking [1] that under physically reasonable assumptions, the existence of a
closed trapped surface implies that the spacetime which evolves from the initial
data contains a black hole. Simple examples show that the mass density can be
large on a set of arbitrarily large diameter without the existence of an apparent
horizon in the initial data. Therefore, the notion of a "large region" must be
suitably defined. We formulate a notion which measures more than one direction
in Ω.

Definition. Let Γ be a simple closed curve in Ω which bounds a disk in Ω. We let
Nr(Γ) denote the set of points within a distance r of Γ. Define the H-radius of Ω
with respect to Γ by

0 = sup{r:dist(Γ,3ί2)>r, Γ does not bound a disk in Nr(Γ)}.

We define the H-radius of Ω, denoted Rad(Ω), by

Rad(Ω) = sup {Rad(Ω, Γ): Γ as above}.

Remark 1. Note that if Ω were a ball of radius R in 1R3, then Rad(Ω) = R/2 on the
other hand if Ω is the cross product of S2(R) with an interval ( —L,L), then

{
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Remark 2. One can alternatively replace homotopy by homology in the above
definition and define a homology radius of Ω with respect to a curve (or family of
curves).

Now suppose (N9 g, P) is an initial data set. We define μ, Jl by

where R is the scalar curvature of the Riemannian metric g and Ptj is the second
fundamental form of N in the space-time. Our first result deals with the case of a
maximal initial data set.

Theorem 1. Suppose Tr (P) = Σ 9lJPίj = 0. // Ω is any open set in N such that for some

number yl>0 we have μ^A on Ω, then we have the inequality

2π

ϊ/fj/T
Remarks. There is no requirement that N be asymptotically flat in Theorem 1.
The result is purely local.

Theorem 1 will be an immediate consequence of the following result.

Proposition 1. Suppose N is a three dimensional Riemannian manifold and ΩcN is a
bounded region such that the first Dirichlet eigenvalue on Ω of the operator — Δ + ̂ R

1 /3 π
is at least A. Then Rad(Ω)^ /--

Proof. Let />0 be the first Dirichlet eigenfunction of — Δ + ̂ R on Ω. Thus we have

Af+(λ-$R)f=0, λ^Λ. (1)

Let ρ be any positive number less than Rad(ί2), and let Γ be a curve such that
Rad(ί2,Γ)>ρ. Without loss of generality we may assume AT is a complete manifold
and />0 is defined on AT; no requirement is made on N~Ω. For any disk Σ
spanning Γ, define Af(Σ) by

Af(Σ) = J fdσ , dσ = area element .
Σ

Let Σ be an immersed disk in N with dΣ = Γ such that Σ minimizes Af(Σ). Since Σ
minimizes Af, it has nonnegative second variation of Af. This implies, by a
calculation, that the first Dirichlet eigenvalue of the operator L given below is
nonnegative on Σ

where A, V are taken on Σ and we have used AN to denote the three-dimensional
Laplace operator; K is twice the usual Gauss curvature of Σ. Substituting (1) into
this expression, we get on ΣnΩ,
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Let g>0 on Σ be the first eigenfunction of L. Thus g satisfies the inequality

Δ9+ΓlVf Vg + gf-lΔf+(λ-LK)g^Q. (2)

Since Rad(Ω,Γ)>ρ, there is a point xeΣr\dNρ(Γ). Consider curves y lying in Σ
which connect x to Γ = dΣ, and define /[y] by

where ds is arclength along y. Let 7 be a curve which minimizes I(y) over all curves
from x to Γ. By replacing Γ by a terminal segment of y if necessary, we construct a
curve y connecting a point ΣπdNρ(Γ) to Γ which minimizes / and is contained in
Nβ(Γ). In particular, we have

Length(y) = fds£ρ. (3)
y

The fact that y has nonnegative second variation for / implies, by a calculation,
that the operator L0 on y has nonnegative first eigenvalue

T- J_ /" ~ \ τ J I — 1 -" T- "-»

^^""t5"1"-7 rf7^+& rf7^

Combining this with (2) and letting h(s) denote the first eigenfunction of L0 on
[0,/], / = Length(y\ we then have h>0 and

on [0, /], where we use primes to denote — . Let φ be any function vanishing at
ds

s = Q and s = l, and multiply both sides of the above inequality by φ2, and integrate
by parts to get

(4)

where we have done a rearrangement on the left. The following inequality is easily
checked

ds

Thus we finally get

φφ'-—\ogfgh ^ - (φ')2 + [First two terms of (4)] . (5)

φ2ds^l l(φ')2dS,
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which implies the operator —-y — -λ has nonnegative first eigenvalue on [0, /].
as 3

This clearly implies

By (3) and the fact that ρ is any number less than Rad(ί2), we get the conclusion of
Proposition 1.

Proof of Theorem 1. Theorem 1 is essentially the case of Proposition 1 with the
function /constant. (Note that Λ^μ^R.) We then observe that the coefficient of
(φf)2 in (5) can be improved to f, which then gives the conclusion of Theorem 1.

Our main theorem will rely on the following existence result which was proved
in [4].

Proposition 2. Suppose Ω^CN is a bounded region. Assume that H± denotes the
mean curvature of dΩl taken relative to the inward normal Assume that on 8Ω± the
inequality H1>\ΎτdΩί(P)\ holds at each point. Here Tr5Ωι(P) refers to the trace
relative to the induced metric on dΩί of the restriction of P to dΩΓ If Ω1 contains no
apparent horizons, then there is a unique solution f on Ω^ to the equation

Remark 4. In our convention the unit ball in IR3 has boundary of positive mean
curvature relative to the inward normal. If N is asymptotically flat and Ωί is the
interior of a large ball, then the boundary condition assumed in Proposition 2 is
satisfied.

We now state our main theorem.

Theorem 2. Let ΩcN be a bounded region on which the inequality μ — \J\^ A holds.
Assume either that N is asymptotically flat or, more generally, that ΩcΩ19 where Ω1

is as in Proposition i. If Rad(ί2)^ /-— ̂ =,f/ιew N (respectively Ω1) contains an

apparent horizon Σ, that is a closed two sphere satisfying HΣ=±ΎτΣ(P). [In
particular, there is a closed (future or past) trapped surface.] Moreover, any such

apparent horizon Σ lying entirely within Ω has diameter at most Γ __ Any such Σ

intersecting dΩ has the property that Ωr\Σ lies everywhere within a distance

ofdΩ.

Proof. By Proposition 2, if such an apparent horizon does not exist, then (6) is
solvable on Ωv If such a solution / of (6) exists, then by inequality (2.29) of [4] we
have on Ω
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where R denotes the scalar curvature of N with metric g given by gij = g i j + f ί f j , and
the other terms are defined in [3]. This inequality easily implies that for φ
vanishing on dΩ we have

In other words, the first Dirichlet eigenvalue of the operator — A+^R is at least Λ.

Since the metric g is larger than g, it follows that Rad(Ώ) is greater than /

relative to both g and g. This is a contradiction to Proposition 1. Therefore no
solution / to (6) can exist on Ω15 and an apparent horizon Σ exists in Ωr The
statements about the diameter of Σ follow also from Proposition 1 because such Σ
have the property (see [5]) that the operator —A+^KΣ has first eigenvalue at
least A, and hence any curve γ which minimizes the functional J[y] considered in

Proposition 1 cannot have a segment longer than lying within Ω. This
]/3 J/M

completes the proof of Theorem 2.

Note. In [4], we mentioned the classification of asymptotically flat space which
satisfies the local energy condition. We should point out that in the classification
mentioned there, we assume the initial data set does not contain any apparent
horizon. In this regard, we have proved that a compact three-dimensional
manifold which admits a metric with positive scalar curvature is diffeomorphic to
the connected sum of copies of S2 x S1 and copies of three dimensional manifolds
with finite fundamental group.
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