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THE EXISTENCE OF A COADJOINT EQLTVARIANT MOMENTUM

MAPPING FOR A SEMIDIRECT PRODUCT

KENTARO MJKAMI

Abstract. We consider a symplectic action of a group G on a symplectic manifold

P, which admits a momentum mapping. Assume that G is a semidirect product of

Gx by G2. We prove that if the symplectic action of Gx has a coadjoint equivariant

momentum mapping, and if //'(J-j : R) ■ ^(Sh.: *) ~ 0, then the symplectic

action of G has a coadjoint equivariant momentum mapping, where J, and J^ are

the Lie algebras of G, and G2 respectively.

1. Introduction and statement of result. Let (F, a) be a finite dimensional

connected symplectic manifold, that is, F is a finite dimensional connected smooth

manifold with a nondegenerate closed 2-form w.

Let G be a finite dimensional Lie group and $: CxP->Pbea symplectic

action of G on P, that is, for each g G G the map

%:P^P,   xv+9(g,x)

is symplectic, that is, 4>*« = w.

J.-M. Souriau defined momentum mappings for the symplectic action, which are

the group theoretical analogue of the linear and angular momentum associated

with the translational and rotational invariance. The importance of momentum

mappings in mechanics can easily be seen. For example, let / be a Hamiltonian,

and assume that/is (G, $)-invariant, that is, for each g G G, $*/ = /holds. Then

the momentum mapping is constant along the integral curves of the Hamiltonian

vector field off.

Not every symplectic action has a momentum mapping (cf. [5, p. 18]), and we

have some exotic examples where momentum mappings are not coadjoint equi-

variant (cf. [5, p. 19]). On the other hand, we find some conditions which guarantee

the existence of a coadjoint equivariant momentum mapping. For example, if the

symplectic form is an exact form of a (G, 4>)-invariant 1-form (that is a case which

we encounter frequently in mechanics) or if G is connected and semisimple (only if

H x(f : R) = H2(f : R) = 0), then the symplectic action (G, $) has a coadjoint

equivariant momentum mapping (cf. [1], [4]). Under some suitable global condi-

tions, a (coadjoint equivariant) momentum mapping supplies a reduced phase

space, where we can eliminate some of the variables of the Hamiltonian system (cf.

[1], [2]). G.-M. Marie [2] proved that if the symplectic action (G, $>) has a
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466 KENTARO MIKAM1

momentum mapping and the group G is a semidirect product of closed subgroups

G and H, then the reduced phase space Q of Marie is symplecto-diffeomorphic to

the product of symplectic manifolds J ~x( /t)/G/l and G • u, where Gß and G • u are

the isotropy group at ix and the orbit through u of the left affine action on ¡£*

determined by the momentum mapping. If the momentum mapping is coadjoint

equivariant, then this action is just the coadjoint action, and the isotropy group G

and the orbit G • fi are the familiar ones. And we have that a Lie algebra which is

neither simple nor 1-dimensional abelian, is a semidirect product of two Lie

algebras of smaller dimension. So we consider the problem of the existence of

coadjoint equivariant momentum mappings when the group G is a semidirect

product, that is, G = Gxxa G2 where a is a homomorphism of G2 into the

automorphism group Aut(G,) of G,. Let <t>(f) be the restriction of $ to the subgroup

G, (i = 1, 2). If (G, Í») is a symplectic action, then (G„ $(0) is also a symplectic

action (/ = 1, 2).

Our result is the following

Theorem. Let (P, w) be a connected symplectic manifold and (G, $) be a sym-

plectic action on (P, u) admitting a momentum mapping. Assume that G is connected

and a semidirect product of Gx by G2 determined by o, that is, G = G, Xa G2 where

o G Hom(G2, Aut(G,)). If (Gx, $(1)) has a coadjoint equivariant momentum mapping

and H x(fx : R) = H2^ : R) = 0, then (G, Í») has a coadjoint equivariant momentum

mapping.

2. Preliminaries. In the exact sequence of Lie algebra homomorphisms

0 -^ R ~> <S(P) 4. %(P : <o) -^ HX(P : R) ->0,

^(P) is the space of all R-valued smooth functions on P. %(P : u>) is the Lie

algebra of all smooth vector fields A' on F satisfying Lxu> = 0, where Lx is the Lie

differentiation with respect to X. ß is a mapping defined by

ß(f)Ju = -df   for each/ G f (F),

where ß(f)J(c is the inner product of the vector field ß(f) and u. For each /, « in

<3(P) we define the Poisson bracket {/, «} by

{/,«}= «(/?(/),/?(«))•

Then ^(F) becomes a Lie algebra with respect to the Poisson bracket, and ß is a

Lie algebra homomorphism of ^(P) into %(P : w). ß(f) is called the Hamiltonian

vector field of the Hamiltonian / For each X in %(P : w) we define y(X) by the

de Rham cohomology class of XAu. Since y([Ar, Y]) = 0 for each X, Y in %(P : u),

let us introduce in the first cohomology group HX(P : R) the trivial Lie algebra

structure. Then y is a Lie algebra homomorphism of %(P : w) into HX(P : R), and

the above sequence is exact.

Let (G, 4>) be a left action on F and \ be the Lie algebra of G. For each | G f,

we mean by p(£) the fundamental vector field on P corresponding to -£,
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Then p is a Lie algebra homomorphism of $- into the algebra of all vector fields on

F. In particular, if (G, 4>) is a symplectic action, then Im(p) c %(P : u), and p is a

Lie algebra homomorphism of $- into %(P : u).

Definition 1. A mapping /: F -» %* (= the dual space of the Lie algebra % of

G) is called a momentum mapping for the symplectic action (G, <1>), provided that

for every £ G f

d[j(&] = -p(OM

where /(£): F -* R is defined by ./(|)(x) = <£, 7(x)>.

This Definition 1 is equivalent to /: f —» ̂(F), the linear mapping satisfying

ß ° J = p. We call such / a linear lift of p.

Definition 2. A momentum mapping J for the symplectic action (G, 3>) is called

Ad*-equivariant (coadjoint equivariant) provided

J °% = Ad*-, o J   for every g G G.

The equation in Definition 2 is equivalent to

J(Adgl7¡) = y(n) » dj>g   for every g G G and tj g %.

Differentiating the above equation in g, we have that J is a Lie algebra homomor-

phism of fy into ^(F). The converse is also true if G is connected, that is, we have

the following lemma which makes it possible for us to prove our theorem in the Lie

algebra category instead of the group category.

Lemma. For a symplectic action (G, 4>) on a connected symplectic manifold (P, «),

assume that there is a Lie algebra homomorphic lift X of p, that is, X is a Lie algebra

homomorphism of §■ into 'S(P) satisfying ß ° X = p. If G is connected, then (G, $)

has an Ad*-equivariant momentum mapping J defined by J = X.

Proof. For each g G G and | G %

(*) fi(*îM&) = p(Adg-,£)

Take any tj G §■ and fix it. We consider a mapping \p: G X F —» R defined by

Hg, x) = (*;\(i,))i>) - A(Adg-,i,)(x)

for each g G G and x G F. \p is an expression of the obstruction of Ad*-equivari-

ance of / defined by J = X. By using the relation (*) we have

ß°4>g = 0(*;x(î,)) - ß » x(Adr,i,)

= p(Adg->7}) - p(Adr.T/)

= 0,
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where i//g: P -» R, x h-» ¡pg(x) = \p(g, x). This implies that \}/(g, x) is independent of

x. For each g e G and £ G f, we have

j-t*(g exp ffc x)|,_0 = rf[X(i,)](p(Ad4i))|^,>x) + X(adîAdr,T,)(x)

= *;{X(i,), X(Adg£)}(x) + X(adfAdr,7,)(x)

= {*;X(i,), $*X(Adg£)}(x) + X(ad£Adrlr,)(x)

= {X(Adg.T,), X(0}(x) + X([l Adr,T,])(x)

= 0

because X is a Lie algebra homomorphism. Therefore t//(g, x) is constant on each

connected component of G X P. Since G is connected, t//(e, x) = 0 implies that

t// = 0 identically. Thus we complete the proof of the lemma.

3. Proof of the theorem. The group operation of G = G, X0 G2 where a G

Hom(G2, Aut(G,)) is as follows:

(*i»*2)(Ai> h2> = {g^gl{hx\ g2h2).

As a vector space, the Lie algebra $ of G = G] X a G2 is a direct product of %x and

$2, and the Lie algebra structure is as follows:

[(£i> ¿2). Oh. %)] = ([£i> 1/1] + <Vi ~~ <Ui' [*» Vi]),

where in iJi G $•,, £2, % G J^ and ô is a Lie algebra homomorphism of %¡. mto the

algebra of derivations of fyx determined by o. Let p, P] and p2 be the maps assigning

the fundamental vector fields of the actions (G, O), (G„ $(1)) and (G2, $(2))

respectively. Then p(£„ £2) = Pl(£,) + p2(Q for each (€„ £2) G % = £, X &¡. Since

the symplectic action (G, $) has a momentum mapping /, / is a linear lift of p. Let

\ be the restriction of j to % (i = 1, 2). Then \ is a linear lift of p, (/' = 1, 2). So X,

defines a momentum mapping for (G„ i>(0) (1 = 1, 2). Since (G„ 4>(1)) has an

Ad*-equivariant momentum mapping, there is a /¿, G $•* such that X] + [ix is a Lie

algebra homomorphic lift of p,. Since (Xt + Hi) + X2 is also a linear lift of p, we

may assume in the first decomposition J = X, + X2 that X, is a Lie algebra

homomorphic lift of px. Define a mapping v2 of ^ X ^ into ^(F) by

"2& 1?) - {X2(£), X2(n)} - X2([£, 1,])

for each £, ij in ^. Since /} ° p2 = 0, p2 is a bilinear mapping of ^ X ^ into R, and

so p2 is a 2-dimensional cochain of ^. Using the Jacobi identities of Lie and

Poisson, it is easily proved that v2 is closed. The condition H2^ : R) = 0 implies

v2 = 8fi2 for some u2 G %?, where 5 is the coboundary operator of fy?. We can

easily see that X2 — u2 is a Lie algebra homomorphic lift of p2. So we may assume

that the linear lift J is the sum of Lie algebra homomorphic lifts Xj and X2 which

correspond to p, and p2 respectively. To show that J is a Lie algebra homomor-

phism, we consider a mapping v of $ X f into ^(P) defined by

K«,. fe). (iii. i2» = [Mil, fcX An* ne) - A[(íi. fe)- (f» «fe)]).
where (£,, ¿2), (tj,, tj2) G J-, X $2 = $-. Using the fact that X, and X2 are Lie algebra
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homomorphisms, we have

K(íi. fe), Oh. %)) = (x,(U x2(t,2)} + xx(ó^x)

- {X,0?i)> X2(i2)} - Xi(ctÎ2tj,).

Since we have, for each £ G fx and tj G ^

0[{X,(£), M*)} + X,(s£)] =[ ß ° X,(£), 0 o \2(r,)] + £ o x,^)

= [P,(I),P20?)]+P>(<M)

= p([(£,0),(0,t,)]) + Pi(<L,£)

= -Pi(o,{) + p,(a,É)

= 0,

{Xj®, X2(tj)} + X,(d^£) is constant, which we denote by c(£, 17). Now we have

K(ii. ¿2). Oh. ^2)) = c(£i> V2) - c0ii. ¿2)- For each & £' G 5-, and tj G $& we have

c([£, £'], u) = {*,([€, £']), X2(tj)} + X,(á,[¿ £'])

= {{X1(£),X1(£')},X2(T,)} + X1(âr£,£'])

= - {{x,(£0,x2(tj)},x,(£)} - {{Un),UQ), *.«')}

+ X,(<Tr£,£'])

= -{-X1(âT?£') + c(£',T,),X1(£)}

+ {-X.(o^) + c(£, tj), X,(£')} + X,(o,[£, £'])

= {X.^'XX.œ} - {X,(á,íU.(f)} +X1(Ô,[£,£'])

= X1([â,r,£])-X1([â,£,£'])+X1(â,[£,£'])

= 0

by using the Jacobi identity of Poisson bracket and the facts that X, is a Lie algebra

homomorphism and that ôv is a derivation of $-,. Since we assumed that H '($-, ; R)

= 0, that is, [fx, £,]«&, we have c(£, tj) = 0 for every (£, tj) G %x X %¿. Therefore

v = 0 identically, which means that J isa Lie algebra homomorphic lift of p. From

the lemma we have completed the proof of the theorem.

Acknowledgement. The author would like to thank the referee for his helpful

suggestions which brought improvement to the presentation of this paper. The

author also expresses his thanks to Professors Y. Hatakeyama, H. Kitahara and S.

Yorozu for their gentle proddings.

References

1. R. Abraham and J. E. Marsden, Foundations of mechanics, Benjamin, New York, 1978.

2. G.-M. Marie, Symplectic manifolds, dynamical groups and Hamiltonian mechanics, Differential

Geometry and Relativity, Reidel, Dordrecht, 1976, pp. 249-269.

3. J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970.

4. N. R. Wallach, Symplectic geometry and Fourier analysis, Math. Sei. Press, 1977.

5. A. Weinstein, Lectures on symplectic manifolds, CBMS Regional Conf. Ser. in Math., no. 29, Amer.

Math. Soc., Providence, R.I., 1977.

Department of Mathematics, Akita University, Akita 010, Japan

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


