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Abstract. This paper proves that there exists a finite action solution to the
SU(2) Yang-Mills-Higgs equations on R?® in the Bogomol'nyi-Prasad-
Sommerfield Hmit which is not a solution to the first order Bogonolnyi
equations. The existence is established using Ljusternik-Snirelman theory on
non-contractible loops in the configuration space.

1. Introduction

In the first paper in this series ([ 1], to be referred to as Part I), the author stated the
following theorem :

Theorem 1.1. There exists a smooth, finite action solution to the SU(2) Yang-Mills-
Higgs equations in the Bogomol'nyi-Prasad-Sommerfield limit which does not satisfy
the first order Bogomol'nyi equations.

This sequel to Part I contains the proof of Theorem 1.1. The reader is referred
to Sects. 1.2, 3 for an introduction to Yang-Mills-Higgs theory. These sections also
define the author’s terminology and notation.

The proof of Theorem 1.1 is an application of Ljusternik-Snirelman theory on
the space of finite action field configurations with monopole number zero {denoted
%,). Part | established that a solution to the Yang-Mills-Higgs equations (1.2.2, 3)
with non-zero action exists in %, if there exists k>0, and a non-trivial generator
eeIT(Maps((S%,n); (S n), e,) such that

inf {su a(c(y))} <8, (L.1)

c(y)edfe) | yeS
Such a solution cannot satisfy the Bogomol'nyi equations (1.2.6). It is the purpose
of this paper to establish that the above criteria is satisfied and Sects. 2-5 prove
that (1.1) is satisfied for the generator of IT,(Maps((S2 n);(S* n)),e,). It is also
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proved in Sects. 4-5, Theorem 4.4, that the only solutions to Egs. (1.2.2,3) in ¥
which are local minima of (cf. Def. 4.3) are the solutions to the Bogomolnyi
equations (I.2.6). The full proof of Theorem 1.1 is exhibited in Sect. 6.

II. The Trial Loop

This section and Sects. 3-5 investigate in detail the behavior of the action
functional on loops in A(e), where e is the generator of IT,(Maps((S2, n); (52, n)), e,).
The result is the following theorem:

Theorem 2.1. Let e be the generator of I1 (Maps((S*;n),(S% n)),e,). There exists a
loop c(y)e Ale) with sup alc(y)) < 8.
yeS!

The loop ¢(y) in Theorem 2.1 represents the following physical procedure:
Create a monopole, anti-monopole pair from the vacuum (the configuration
(0, —10?)). Separate them a distance d, and then rotate the monopole with respect
to the anti-monopole by 2z about their common axis. Finally, bring them together
again. The action remains less than 8 due to the fact that monopoles and anti-
monopoles attract.

To begin, consider I7,(Maps((S%,n);(S?,n)),e,)). Let {o'}}_, be a basis for sx(2)
such that ¢'of=—6Y— ”" k (o', 09)=456". Let S be the lnterval [0, 2] with
endpoints identified. Define e(t )€ CY(S, {0}); Maps((S?;n);(S% n)),e,)) by

e(t, X)= —(cos?0+sin? 6 cost)o> +1sin0 cos (1 — cost) (cos o' +sinpa?)
+21sinfsint(cospo? —sinpat). 2.1
Here (6, ¢) are spherical coordinates.
Lemma 2.2. The map e(t;X) is a generator of I1,(Maps((S% n);(S% n)), ).

Proof of Lemma 2.2. The groups II,(S* n) and IT,(Maps(S% n);(S% n)),e,) are
isomorphic. The Hopf map H: SU(2)—S? generates I1,(S%, n). Represent a point
geSU(2) by the unitary matrix

9(%, 0, ¢) =cos y +sin y(cos o> —sinO(cos o' +sinpa?)),

for ye[0,7]. Then H(g)= —1igo®g~'eS? and e(t; 0, §)=H(g(t/2,0, P)).
As described in Sect. L4, the map e(t) defines a noncontractible loop

@) ()eCO(St, n); (€, ).

For convenience, the notation of Sect. 1.4 will be changed. Let S* denote the
interval [ — =, 3%] with endpoints identified. With this change, the construction of

Sect. L4 yields
—(1—(””) x)(o,l(ﬁ), te[—7,01;
- 2
c(e) (t) =q(1— BN (— Le(t; %), de(t; X)], e(t, %)), te0,2n]; (2.2)
_( (3 t),g()>( 3), te[3,27].
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The loop c(e)(t)=cy(t) = (A1), Dy(t)) is a generator of I1,(%, c,).

Proof of Theorem 2.1. The multi-step procedure, below, establishes the theorem.

(1) A loop a(t)=(A(t), ®(t))e C°([0,27];%,) is constructed in this section,
which has a(0) = a(2n) (#c,) and satisfies | llim @(t; x)—e(t; X), uniformly in t. The
loop a(t) and its properties are summarized in Definition 2.3 and Proposition 2.4.

(2) In Sect. 3, a loop b(t)e C°([0,27];%,) is constructed from a(t) which
satisfies Statements (1)—(3) of Definition 1.4.1 for t€[0, 2x]. In addition, b(0) = b(27)
and sup «(b(t))< 8z This is Proposition 3.1.

te[0, 2]

(3) Itis established in Sects. 4 and 5 that there exists a path d(t)e C°([0, =], €,,)
such that: (a) d(0)=>5b(0). (b) d(r)=g(0, —10?), where ge % and |g— 1| has compact
support.  (c) sup a(d(t)<8n. (d) g d(—1t), te[—mn0], and ¢ 'd(t—2n),

te[0, 7]
te[2m, 3] satisfy Statements (1)~(3) of Definition [.4.1 in their respective domains
of definition. This is Proposition 4.2.
(4) Then the loop
g_ld(_t)s te[—TE,O],
ct)=197'b(1), te[0,2x], (2.3)
g 'd(3n—1), te[2m 3n],

isin A and sup «{c(t))<8m.
€S

Construction of the Loop a(t). To simplify the construction, some coordinate
systems are needed. Let (x,, x,, x5) be the cartesian coordinates on IR?® centered at
0. Let (r,0,¢) be the spherical coordinates centered at 0, so r=|x| and
0= Arccos(x,/|x|). Define x,=(0, 0, d) and let (s, w, ¢) be the spherical coordinates,
centered at x,; so s=|x—x,| and

w=Arccos{{x— xz)5/Ix—x,).

Also needed are the cut-off functions Bg(x)=p(x/R), and Bg(x)=B((x—x,)/R),
where f(x) is given in Eq. (1.3.4).

The loop a(t) is presented by giving the following data: (1) An open cover
R*=Uj;_,V,, (2) Transition functions g,,€ C*(S x (V,nV,);SU(2)), which satisfy

the appropriate cocycle conditions, (3) Configurations a,e C*(S;I'(4)DI(g))y,|
which satisfy a,=g,5-a, in S x (V,nV)).

Definition 2.3. The loop a(t)=(A(t), #(t)): For teS, R>2, and d=8R, define
a(t)y=a(t; R, d) as follows:
I) The open cover {V,=V/(R)}:

V,={xeR>:|x|<2R},
V,={xeR>:|x—x,|<2R},

V, = {xe R?:(Jx|>R) and (jx—x,/> R) and (9 < g) and (0> 3n/4)},

7
V,= {xe R?:(|x| > R) and (|x— x,|>R) and either (0> n/8) or <a)< —g)} (2.4a)
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The cover is drawn schematically in the plane x, =0 below:

v
¢ (2.4b)
IT) The transition functions: In
SX(V,nV)): gu,(t)=cosb/2(cosp +sin o) +sinh/2(costo? —sintol),
Sx(V,nV,): g,,(t)=sinw/2(cos ¢ +sinpo’)+ cosw/26?,
Sx(VynV,): g,5(t)=cos¢+singa?,
Sx(VinV,): gy5(t) =cos8/2—sinb/2(costé? —sinté?),
Sx(VynV,): g,5(t) =sinw/2—cosw/262,
where
6'=cosdo! +singps? and 6% =cospo’—sin¢pao’. (2.5)
IIT) The configurations: Define first
h=(2-cothd+1/d)” '[(1 - B,) (cothr— 1/r) + (1 — B,) (coths— 1/s)
—(1=B,)(1—j,)(cothd —1/d). (2.6)
Let a(t)=(A4,(), @,t)). Then in
1 1
SXV,: (4,0, P,()= (E (cosw—cosé))asd}g,ihﬁ). (2.7a)
1 o1
Sx V5t (A5(t), @5(1) = 5 (2+cosw—cosB)a>dy, Eho . (2.7b)

1
SxV,: ®,(t)= Eh(~cosa)a3 +sinwdt),
1 - .
A= E(l — B (1 —cosO) [ —coswa?® +sinwé*]de

1 - .
+-{1-fr L) [sin? wodg — 62dw+sinwcoswsldg].  (2.7¢)
2 sinhs



Non-Self-Dual Gauge Fields. 1T 303

1 . .
SxV: @)= 3 h[cos0c> +sinf(costé! +sinté?)],

1(1 —B,) (1 +cosw)[cosfa® +sinb(costs! +sint6?)]do

Al(t)z )

( ﬂR )[s1n2003d¢+(eosta —sinté1)do

—sinf cos 6(cos t6! +sint6?)d¢]. (2.7d)

Loosely speaking a(t) represents the Prasad-Sommerfield [2] k= —1 solution
centered at x,, and with a z-dependent rotation, the k=1 solution centered at x,
[see Eq. (3.13)].

Proposition 2.4. Let {a,(1), g,4(1), Vac}:ﬁzl be given by Definition 2.3. This data is
smooth in the domain of definition. There exist gauge transformations

{f(DeC*(SxV,;SUQ);-,

such that : (1) f(t)a,(t) is smooth in S X V,. (2) In S x (V,"V}), f,a,= fpag. (3) The loop
a(t), defined to be f,(t)a,(t) on S x V, is in C°(S,€,). (4) Wlth a(t)=(A(2), &(t)) and e(t)
given by Eq.(9.1), llll—l’fl P(t; x)—=e(t; X) uniformly in t for te[0,2x].

Proof of Proposition 2.4. It is left to the reader to verify the cocycle conditions for
(a, g,p)- As for the smoothness, consider first a,. The only possible trouble is on the
set ({o=n}n{w=0}u{x, 0}, and this set does not intersect V,. For the same
reason the transition functions g,,, g,,, and g, are smooth. Next examine a;. The
only question arises near the x,-axis, where cosw= —1+0(lo—n|?) and cosf
=1+40(/0]?). Thus 4,(t)=0 on the x,-axis, and is smooth there. Also, in V;, sin6/2
=040(4)) and cosw/2=0+0(lr—[) so both g,; and g,; are smooth as well.
Consider a, in S x V,. The function h is 0(|x — x,|?) as X=Xy, 50 d,(t) is smooth. As
for A,(t), the first bracket is smooth as (1 —cos0) is 0(|0]?) near the ray 0=0 and
near x;, (1 —B,)=0. The second term, aside from the factor 3, which plays no role
here, is the smooth Prasad-Sommerfield solution ([3], IV.1.15 and Egq. (3.13)} in
spherical coordinates. The smoothness is guaranteed by the fact that (1 — s/sinhs)
is 0(s*) as s—0. The analysis of a,(¢) in S x ¥, is similar.

The data {Sx V,;g,,} defines a C* principal SU(2) bundle over S x R®. Every
such bundle is C* isomorphic to S x R® x SU(2). This implies the existence of f,’s
satisfying statements (1) and (2) of Proposition 2.4.

Note that |@(t)|=h is gauge invariant, and the lim h=1. Therefore Eq. (1.2.3)

|x] =0
is satisfied uniformly with r&8§. As for the action, «(a(t)) is finite for each t€S. This
calculation is done in Proposition 3.2. As «(-) is %-invariant, one can conclude
from (2.7a) that the t-dependence of «(a(t)) is due to the variations of the fields over
a bounded set. Therefore «(a(t)) is a continuous function of .
The conclusion is that a(t)e C°(S; %) given the topology of Definition 1.2.1, and
so Statement (3) of Proposition 2.4 is satisfied.

Proof of Statement 4 of Proposition 2.4. The straightforward proof of this statement
is to explicitly construct the {f,}7_, of Statements (1)-(3) of Proposition 2.4.



304 C.H.Taubes

Let [(x), I(x) be smooth cut-off functions, 0 <1, I< 1 and (1) =1 (T=1) if x, <d/4
3d - . .
(x3 > Z)’ (2) I=0 (I=0) if x5 >d/2 (x5 <d/2). Schematically

(2.8)
=0 0 I=1
In S x V,, define
=[sin(n/2 + {w/2—71/2)) — cos(n/2 + Nw/2 — 1/2))6%]
-[cos(16/2)—sin(18/2) (costé? —sinté)] . (2.9a)
For a%3, define on S x V, the matrix
q,=1. (2.9b)

The gauge transformation gy C®(S x V; ; SU(2)). Indeed, the only questionable set
is the x;-axis. As

cos(n/2 4+ Aw/2 —/2)) ~ O — )

near w=m and sin(10/2) ~ @(|0]) near 6 =0, there are no singularities.
Gauge transforming a, by g, on each SxV,, a=1,...,4, one obtains

a,(t)=q,(D)a,(t), (2.10)
and a,(t)e C*(S;I'(A)®I'(g), ). By construction,
43=¢,5; on Sx(VinV;) and g¢y=g,; on Sx(V,nV,). (211)

Due to (9.10,11) and the cocycle conditions,
a,()=as(r) on Sx(VinV;) and a,(f)=as(t) on Sx(VnV,).(2.12)
Let V=V,nV,nV; and define
a,(t;x) for xeV,,
as(t)(x)=4a,(t;x) for xeV,, (2.13)
as(t;x) for xeV].

It follows from (2.12) that a,(t;x)e C°(S; I'(A)®TI(g)ly,).
. The base manifold R*=1V,UV;. The configuration a(f) of Proposition 2.4 is
represented by the data: {(Sx V,, S x V5), 945, (a4, d5)}, where on Sx(V,NV;),

1s=(cosp+singo’)g; ', and a,=g,5as. (2.14)
The fact that g ;e C*(S x(V,nV;);SU(2)) is apparent if one knows that
(1) (cosy+singad)éi=a', <=1,2.
(2) cos(n/2+w/2—mr/2)) is O(jw—7|) near w=7. (2.15)
(3) sin(l6/2) is O(|0]) near §=0.
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Consider the following gauge transformation in C*(S x $2;SU(2)):
fult: %)= —(cos?8/2+costsin?6/2)a +sin?6/2 sin ta?
+1/2sin0[(1 —cost) (cos¢ —singpa®) —sint(cospa’ +sing)].  (2.16)
A short calculation reveals that
310 f =elt: %), 217
where e(t; %) is given in (9.1). The significance of f”4 is given by

Lemma 2.5. Statement (4) of Proposition 2.4 is true if there exists a smooth gauge
transformation f,€ C*(S x V; SU(2)) which satisfies

(1) For xeV,n{xeR3:|x|<4d}, f(t;x)=g.5(t;x), (2.18a)
(2) For xe {(xeR¥:|x|>16d}, fi(t;x)=F,(t:%). (2.18b)

Proof of Lemma 2.5. Given such an f,, set a,= f,a, for xeV,, and a;=a, for
x€ Vs. Because of (9.18a), one can define the loop a(t) by

a,(t;x) for xeV,,

alt) (x)= {

and a(t)e C%(S;%,). Using (2.7a) and (2.18b), one obtains that the
lim @(t:0= lim hx)fuo")fi " =elt: %),

[x[= o0

as(t;x) for xeVs,

Because f,(r;x)=f,(t;%) for |x|>16d, this limit is uniform in t. Therefore,
Eq. (9.18) implies Statement (4) of Proposition 2.4, as claimed.

The construction of f, satisfying (9.18) is straightforward. Let f(x) be the cut-
off function of (1.3.4). The polar angle w(x) is uniquely defined, for |x|=4d by

Xq—
[x — x| .

w(x)= Arccos
Define for |x|=4d
x5 — P(x/8d)d
bx— Blx/8d)x,|

Then @& is smooth in ¥V, and if |x|<4d, &= and if |x| =284, &=0.
Define smooth functions p, i on V, by

@(x)= Arccos (2.19)

p(x) = P(x/16d)I0+[1— f(x/16d)]6,

P(x) = P(x/16d) (m+ l(&(x) — m))+ (1 — B(x/16d))0 . (2.20)
The following facts are useful: In ¥,
(1) If |x| > 16d, p(x)=1P(x)=0.
(2) If |x| < 84, p(x)=1(x)0, and PH(x)=n+ [(d(x)—7).
(3) If 0=w=0, p(x)=ip(x)=0 and both vanish as 0(|6]%) as 6—0.
(4) If 6=w=r, p(x)=p(x)== and both approach = as 0|z —6|*) as 6—>7.

Q.21
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Consider the following map from S x V, into SU(2):

fult;x)=[sinp— cosips?] - [costy —sindy(cost6? —sinté)] [cos ¢ —sinpa].
(2.22a)

By doing the matrix multiplication in (2.22a), one has
fu(t:x)=sin3{ cosiy(cos d —sinpa>) — cos 3 cosjya?
—sindpsin 2y(costo? — sinta’)
+cos1ip siny(— cost(cos g —sin o) —sin#(cos o +sind)). (2.22b)

The only points where f, is not clearly C* are those along the x;-axis in V.
But it follows from (3) and (4) of (2.21) that near the x;-axis, f, behaves as

Lsinf(cos ¢ —sinpo®) + 0% + 5 sin B — cost(cos ¢ — sin po)
—sint(cos¢a? +sin@)) + smooth terms;
and fy(t; x)e C*(S* V,;SU(2)). Because p, p=0 for |x|>16d, f.(t;x) as given
in (2.22b) is equal to f, of (2.17). Because p =10 and F=n+lw—n) for |x|<4d,

Ju(t, x) as given in (2.22a) is equal to g, of (2.14). Appealing to Lemma 2.5 es-
tablishes Proposition 2.3.

III. Action Estimates

The proof of Theorem 2.1 requires that the loop a(t) of Definition 2.3 be modified.
The changes make the behavior at large |x| on R? better without affecting the
asymptotic limit of the Higgs field. The resulting loop, b(t)e C°(S; %), has the
following properties:

Proposition 3.1. Let c(e) (t)=(A,(t), D(t)) be the configuration in Eq.(2.2). There
exists a loop  b()=(Ay(t)+(t), Do(t) +1(t)e CS;€,) which satisfies
(1) suga a(b(t))<8n, (2) (w(t),n(t)el(¢@T*)Dy) satisfy Statements (1)-3) of

Definition 11.4.1 for te[0, 2n].

The proof of Statement (1) of Proposition 3.1 requires that «(a(t)) be bounded
by 8z also. The precise bound is given in the next proposition:

Proposition 3.2. Let a(t; R, d) be the loop of Definition 2.3. One can choose R>2 and
d>4R so that

sup z(a(t; R, d))<8n(l —d ' 4+d ¥ <8x.

teS

Proof of Proposition 3.1, assuming Proposition 3.2. Choose R and d so that a{t; R, d)
satisfies «(a(t))<8n—§ for some 6>0 and all teS. Write a(t)=(A(?), D(t)). Let
U ={xeR*:|x|>16d}. By construction [cf. Lemma 2.5 and Eq.(2.6)], when xe U,

D(t;x)—el(t; X)=5(h—e(t; %). (3.1)
Define
Ht;x)=D(t;x)— Dol x), (3.2)



Non-Self-Dual Gauge Fields. 11 307

with @, given by (2.2). Then in U

[n(t;x)| <constant-|x] !, (3.3)

and #(t; x) satisfies Statement (2) of Definition 1.4.2.
It follows from (3.1) that in U,

D(t;x)/|P(t s x) =l X). (3.4
With A,(t) given by (2.2),
(Vagne®)(x)=01in U. (3.5)
Thus, using (3.1), (3.2), and (3.5) one finds that
Vet =dh-P(t;x) in U. (3.6)
Computing |dh|, one obtains from (3.6) that
Va8 = Ve Sz Je = 11+ [x12) 71,

and therefore Statement (3) of Definition 1.4.1 is satisfied by (A(r), §(t)).

The difference, A(t)— A,(z), does not satisfy Statement (1) of Definition 1.4.1.
Fortunately, A(t) can be altered in such a way that the result satisfies both
Statement (1) of Definition 1.4.1, and the action estimate for a(r), with §/2 replacing
0. Using (2.7a) and Lemma 2.5, one finds that in Sx U, V,,®,t)=0. By
construction, V, ,@(t)=0in S x U too, so

LA(D), Po(1)] = [Ao(2), Po(1)] in U (3.7)

The conclusion is that AM(f)= A(1)— A,(f) commutes with ®(¢).
The decay of A(f) and AX(t) is estimated by the following device : Observe first
that a,(t)=(4,(t), @,(t)} as given by (2.7a) satisfies
|4,(1)) Sconstant-|x| 1,
[VA,(t) <constant-|x|~? for teS and xeU. (3.8)

The gauge transformation f,(¢) of Lemma 2.5 is a function only of ¢ and the
spherical angles (0, ¢) in S x U. As a consequence of this and (3.8),

|Al= ,f4A4f4_ ! +f4df4_ 1’ <const-|x|” ! s
[VA|<const:|x| "2 for teS and xeU. (3.9)
By construction, A4,(t) satisfies the uniform bounds of Eq. (3.9) too. Therefore AX()
also satisfies the bounds of Eq. (3.9).
Let ¢>32d. Define

B(t)= A(t)— (1 — B(x/0))AX(¢), (3.10)
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where f(x) is the cut-off function of (1.3.4). The connection B(t) satisfies

(1) w(t)=B()~ Ag(ne"({xeR%:|x|<0}; 2@ T%),

2 VB(:)(D(t) = VA(t)(p(t) >

(3) for |x|<@/2, Fpyy=F 4,

(4) for |x[>0/2, |FB(t)—FA(t)|§Z'|x|_2,
where z is independent of teS and ¢.

(5) Let b(t)=(B(t), &()). Then |a(b(t)) — alat)l sz;-0" 7,
where z, is independent of te€ S and ¢.

(3.11)

It follows from (3.11) that for g sufficiently large, Statements (1)~(3) of
Definition 1.4.1 hold for b(t)=(B(t), (t)) as does Proposition 3.1.

Proof of Proposition 3.2. The gauge invariance of «(-) allows one to compute in
any convenient gauge. Consider the following cover of R®*=U?2_ B, where
B, ={|x|<R}, B,={]x—x,/|<R}, and B, =IR*\(B,UB,).

Lemma 3.3. Let a(t;R,d)=(A(t), D(t)) be as in Proposition 3.2. Then there exists
do < oo such that if d>d, one can choose R to make

V4 @O <dn+3d 7302 (3.12)
Proof. First recall that the Prasad-Sommerfield solution [2], ¢, €% |, is given in

spherical coordinates by

1 1 . .
@, = 5(cothr— r) (£ cosbo3 +sinb(costé! +sinté)),

1 ¥ 2 3 22 ioeal
_ — —_ + b
Ay 7 <1 sinhr) [sin*0d¢o> + (costd* —sint6')db
Fsinfcosb(costé! +sinta2)de]. (3.13)

Here + refers to k= 1 1. Any te[0,2x] is allowed as ¢, with two different values
of t are gauge equivalent. It is a fact that

31V, ALll3=2m. (3.14)

Let ¢..(t) now denote (3.13) with the + sign, centered at x=0, and ¢_ denote
(3.13) with the minus sign, at =0, centered at x=x, So c_ is (3.13) with the
replacements s« and w«0. In what follows, assume d> 1 and for convenience, all

constants independent of d, R>1 are denoted by «.
By (2.7a,b), the fields are abelian in B,, and

IV 4, ®(0)1> =|dh|*> =(2— cothd + 1/d) ~ 2[|V(cothr — 1/#)| 2 +|V(coths — 1/5)2
+2(F(cothr — 1/r), Mcoths —1/s))]. (3.15)

On the other hand, V, @, is given explicitly in [3, IV.1.16], whence

V7, &.|*2|F(cothr— 1/r)? — %e*r in B,. (3.16)
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Together, (3.15) and (3.16) yield the estimate
VO =(2—cothd+1/d)" 2V, > +|V, ¢ _|? (3.18)
+2(V(cothr— 1/r), Vcoths— 1/s)) +xr~ e ").
In By, it is convenient to compute in the gauge specified in (2.7d). From (2.7d),
A—A | Sk(1/d*+e™F), (3.19)

1
sinhr

as |(14+cosw)dp|<kd™* in By and (1—fg) (Ird6|+ rsinfld¢)) < ke ® in B,.

Meanwhile in B,
(coths—cothd— 1/s+ 1/d)
(cothr—1/r)

®=(2—cothd+1/d)" 1| 1+(1—B,) d.. (320)

The second term in the brackets above is bounded by xd 2 as is its derivative.
Together (3.19, 20) imply that in B,
IV @O* (2 —cothd+1/d) 2V, @ P +k-(d > +e ™ X). (3.21)

A similar estimate with ¢, replaced by ¢_ holds in B,. Utilizing (3.21) and (3.18)
one obtains by integrating that

V@013 £Q—cothd+1/d) *[4n+kR3*(e” R+d~?)
+2 [ (Hcothr—1/r), (coths— 1/s))] . (3.22)
B,
Note that in By, cothr— 1/r is smooth, while [V(coths— 1/s)| <« -d~ 2. The recipro-

cal is true in B,. Therefore, at the expense of a new constant x in the second term in
the brackets in (3.22),

LV, @02 Q2 — cothd + 1/d)” 2[4 + kR R +d"?)
+2 | (P(cothr— 1 — 1/r), F(coths— 1/s)). (3.23)

The extra (—1) in the last term is to allow an integration by parts. Thus
[ (A(cothr—1—1/r), V(coths — 1/5)) < [ [(P(cothr — 1 = 1/r), Vcoths)|
— [ (Mcothr—1—1/r),7(1/s)), (3.24a)
<k-d”*+4n(1—cothd+1/d). (3.24b)
The contribution of the first term above is the xd ™ 2. The second term in (3.24a)
contributes 4n(1 —cothd+ 1/d) as %s' ! is the Green’s function for the Laplacian
on R3. Together (3.23,4) imply that
V@3 (2 —cothd +1/d) ™2 (4n(1 + %) + KR3(e‘R+d‘2)>

<dn+xR¥e R+d?). (3.25)

Here the last line uses the fact that (2—cothd+1/d)"2<1~2/d+xd 2 for d> 1.
By setting R=3(1+x)~*d*/® and then taking d very large, one obtains Lemma 3.3.
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Lemma 3.4, Let a(t;R,d)=(A(t), &(t)) be as in Proposition 3.2. Then there exists
dy < oo such that if d>d,, one can choose R to make (3.12) true, and in addition so
that

21 F 40l 2<4n(1-2/d)+3d**.

Proof. As in the proof of Lemma 3.3, the sets B, i=1,2,3 are considered
separately. Let c, be as before. Keep in mind that F, =+D, &, and
F, =—xD, ®_.

Using (2.7a,b) one computes F,,, in B; to be

|F 4)> =(sin0d6 A dp — sinwdw A dg))?,
B T e
r N r N

Comparing (3.26) with (3.15) and (3.18) one observes that in B,,

1 /1
lFA(,)IzélVA+<I>+|2+IVA_<D_|2—2(I7<—), V(E)> e (3.27)
r

In deriving (3.27), use has been made of the fact that in B, |Fcothr| <« -e™". Notice
that in (3.26,7) there is a minus sign in the cross term between r and s, while in
(3.15, 18) there is a plus sign.

In B, it is again convenient to compute in the gauge specified in (2.7d). One
finds that |4 — A4 | satisfies in addition to (3.19), the bound

A—A)Sk(d 2 +e™ ). (3.28)

The proof of (3.28) is straightforward. The following example indicates the
manipulations that are involved:

(1=BIV(1+cosw)dd| =(1— B,) (sinwddVw|+|(1 + cosw)Vdp|) S kd 2,

2 2y1/2 2 2
B vcoso s 022 and o is 0~ i 8, Using

(3.28) one obtains in B, that

as sinw=0<

Fyn=F 4 +D,4 (A)-A)+(AW)—A) A (A —A,),
SO
IFiol*SIF, P+x(d 2+e ®)in B, (3.29)

A similar estimate holds in B, with |F,, | replaced by |[F,_|*. Integrating (3.27,9)
over their respective domains, one finds that

1
EHFAU)H§4n+xR3(d“2+e*R)~2j

B3

<l7%, V%) (3.30)



Non-Self-Dual Gauge Fields. 1T 311

The last term in (3.30) is crucial. Note that the integration can be extended to all of
IR? at the expense of a new constant « in the second term. Using the fact that

1 1
i (V—, v_> dmd 1, (3.31)
B3 S a
one obtains the estimate
%HFA“)H§§47c(1—2/d)+;cR3(d‘2+e‘R). (3.32)

Now choose R=%(x+1)"1d"® and take d very large to obtain Lemma 10.4.
Together, Lemma 3.3 and 3.4 establish Proposition 3.2.

1V. The Subset of € with « <8n

The loop b(t) of Proposition 3.1 is homotopically non-trivial with respect to the
fixed basepoint b(0)=b(2x). In order to complete the proof of Theorem 2.1, it must
be established that b(0) and ¢, are connected by a curve d(t). The curve d(f) must be
sufficiently well-behaved asymptotically so that up to a t-independent gauge
transformation, (d ™ *e beod)(t)e A. In addition, d(t) must obey the bound «(d(¢)) < 8=
for all t. The curve d(t) will be an element of the following set:

Definition 4.1. The set & is defined to be & = {c(t)=(A(t), D(t))e C°([0,7];%,):
(1) There exists a compact set K CIR? such that supp|A(f)| CK, for te [0, x].
(2) @(1)= —%0>+n(t) and Illim [7(6)](x)—0, uniformly with te[0, z].

(3) dn(1)e C°[0, 7], L (g ® T*)).
(4) c(n)=g(0, — 1/26>) where ge % and |g— 1] has compact support in IR3}

The existence of the curve d(f), alluded to above follows from the first
proposition.
Proposition 4.2, Let c¢=(4,P)eb, Suppose that c satisfies (1) «(c)<8m,
(2) AeT(4®T*), 3) &= —1/20° +1n and IHim [71(x)—=0, (4) dne L,(g®@T™). Then

there exists a curve d(t)e & with (a) d(0)=c, (b) sup «(d(t)) = «(c).
]

te[0,m

The immediate corollary of Theorem 4.2 and Proposition 3.2 is Theorem 2.1.
This is straightforward, as b(z) from Proposition (3.2) is such that b(0)=bh(2r)
satisfies the conditions of Proposition 4.2. From b(t) and the curve d(t) of
Proposition 4.2 and Definition 4.1, one constructs the loop

g Ydn+1), for te[—n0];
c(ty=y9"'b(D), for ref0,2n];
g 'd(Bn—1), for te[2m 3],

which satisfies all of the requirements of Theorem 2.1.
The proof of Proposition 4.2 requires knowledge of the fact that local minima
of «(-) on % satisfy the Bogomol'nyi equations. An analogous theorem for the
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Yang-Mills equations on $* was proved by Bourguignon, Lawson, and Simons
[4]. For the purposes here, the term local minimum is defined as follows:

Definition 4.3. A solution ce% to Egs. (1.2.2, 3) is a local minimum of « if the
hessian %, on I'((z ® T*)@y) satisfies H#,(-)=0.

The existence of local minima of « is summarized by

Theorem 4.4. Let ce ¥, be a solution to Egs. (1.2.2, 3). Then c is a local minimum of
« iff Eq.(1.2.6) is satisfied, whence «{c)=4mn|k|.

The proof of Theorem 4.4 is the subject of Sect. 5. Its validity will be assumed
in this section.

Proof of Proposition 4.2, assuming Theorem 4.4. The intuition behind the proof is

as follows: A minimizing sequence beginning with ¢ can be translated as in

Theorem 1.7.1 so that it converges to a solution (Theorem 1.5.6). The solution must

be a local minima ; and since « <8mn, the solution must be trivial (Theorem 4.4).
The proof of Proposition 4.2 begins with

Definition 4.5. The set £,C& is &,={d(t)e& :d(0)=c and there exists ¢, >0 such
that «(d(1)) < «(c) for t(0,t,).} For d(t)eé,, define t, to be the smallest 1 >0 such
that «(d(t,)) = «(c). If no such ¢ exists, set t,= oo. Define the configuration d = d(t,),
where a(d(t,)) < 2(d(t)) for t <t,, «(d(ty) < a(d(?t)) for t,<t<t, Finally, define

ay= inf (a(d)). 4.1)

© d@es.

The next series of results establish the relevant properties of &..

Lemma 4.6. Let ¢ be given by Proposition 4.2, and suppose that «(c)>0. Then
&, £40.

) —t
Proof of Lemma 4.6. Note first that the curve d(t)= ET(A, 7)+(0, —1/20%)
connects ¢ to ¢, by a continuous path in . Now suppose that &, were empty. Then
using Proposition 1.5.2, one concludes that for all peI'((¢® T*)Dg),

d d?
Ea(c-l—ttp)[l:():O, and d?a(c—l—tw)lt:()go. 4.2)

By Theorem 4.4, this last equation is true iff «(c)=0 which is a contradiction.
Hence, the lemma is true.

Lemma 4.7. Let ¢ be given by Proposition 4.2. Then either c=(A, @) satisfies
Vio=0, 4.3)
or there exists d(t)e &, and ty,<t, such that d(t,)=(A4, ®,) satisfies (4.3).

Proof of Lemma 4.7. The lemma is a direct consequence of Propositions 1.4.8 and
[.4.14 and the fact that the Higgs part of the action is strictly convex.
Crucial to the proof of Proposition 4.2 is the following apriori knowledge of

oy



Non-Self-Dual Gauge Fields. II 313

Proposition 4.8. Let ¢ be given by Proposition 4.2. and «_, by Definition 4.5. Then

@, =0,

The proof of Proposition 4.8 is deferred until the end of this section.
Continuing with the proof of Proposition 4.2, it follows from Lemma 4.7 that there
is no loss of generality to assume that the configuration c satisfies (4.3) apriori. It is
henceforth also assumed that «(c)>0.

It follows from Theorem 1.4.5 and Lemma 4.6 that under these conditions, the
following set is nonempty:

&,={d(t)e&,:d(t) satisties (4.3) for all te [0, 7]} . 4.4)
It is also a consequence of Theorem 1.4.5 that
a,= inf a(d). (4.5)
d@t)eé .

The curve d(t)ed, required by Proposition 4.2 is constructed in a two-step
procedure. Assuming that o =0, it is established in Lemma 4.9 that given ¢>0, ¢
is connected by a path d(r) (with «(d(¢))=«(c)) to a configuration d(r,) with
a(d(t,))<e. It is then proved that d(t,) is connected to a gauge transform of ¢, by a
path with action less than 7e.

Lemma 4.9. Let c be given by Proposition 11.2. Assume that ¢ satisfies (4.3), «(c) >0
and that « , =0. Given £ >0, there exists d(t) = (A(t), P(t))e &, and t,€(0, ) such that
1) 2(d(t) < a(c) for te(0,t,].
2) ald(t,)) <e.
3) ylt,)=P(t,) + %03 el(g).
4) 1=]D()l N <e
(5) |Vaun@(ty) s <e.
Proof of Lemma 4.9. Choose a sequence {d(f)}€&, such that
(1) “(di) = @(dw 1),

(2) lim a(d) = o (4.6)

e, g,

For / sufficiently large, d(t) with ¢, such that d,=d(t,) satisfies all but possibly
Statement (3) of Lemma 4.9. In fact, Statement (4) above follows from Lemmas
[.4.7 and 1.7.4. Statement (5) is from Lemma [.4.7 also.

In order to exhibit a curve satisfying all of the requirements of Lemma 4.9,
choose d'(t)e &, to satisfy Statements (1), (2) and (4), (5) with &/2 replacing e. Let
t,€(0,7) be such that ' =d'(t,). Write d' =(4',n' —1/26%). As V0> has compact
support, it is a consequence of Propositions 1.4.8 and 1.4.14 that 'K, and
V,n'eLg. The set

K={¢peK . :V,peLs} 4.7)
is a Banach space with the norm
lz=1VedI3+ 1V, 0l5. (4.8)

By construction, I"(g) is dense in IZ._ Using Lemma 1.4.10 and the fact that
Li(R¥)— Co(IR?) [25], one infers that K—C%(R?; »).
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As I'“(g) is dense in K, one can choose ne(g) sufficiently close to %' in the
norm (4.8) so that the following curve satisfies all of the requirements of Lemma
49:

4, for te[0,¢,].
(t—t,) 7t+tl}
= (A 22— (p—n)—1/20%), f ARReN 4.9
d)=q (A1 + (n+t1)(’7 n)—1/2¢%), for tety, 5| (4.9)
An—t), | 3 7
i—1,) (A7) +(0, —1/207) for te 5 +ty, 7).

For fixed £<1/2, let d(t)e &, satisfy Statements (1)-(5) of Lemma 4.9. Let
t,€(0,7) be fixed by Lemma 4.9 and denote d(t,) by d=(4, ®). By assumption, ||
never vanishes, and there exists R < oo such that

$(x)=—1s* for |x|>R. (4.10)

As a function of se€[0,1], f(s;%)=®(sRx)/|P|(sR%) defines a homotopy between
the map e, eMaps(S?;5?) and the constant map f(0, £):S?—$(0)/|$|(0)e S*. The
homotopy lifting property of the fibration [5, Ch.2] 0-5'->SU(22)->S5>-0
implies that there is a C™ lifting of f(s; %) to SU(2). As I1,(S')=(0), there is no loss
of generality to assume that there exists g(x)e C*(R3; SU(2)) satislying

(1) go)=1 if |x[>R+1,
(2) glx)P(x)g H(x)=—130°|d]. (4.11)

Let ¢ =g(A4, ®). As the next Lemma states, ¢’ is path connected to ¢, by a curve
with small action. For convenience, write ¢ =(4', &).

Lemma 4.10. Let d()e&,, t,€(0,n) and d(t,)=(A, ) satisfy Lemma 4.9 with ¢
sufficiently small. Let g be the gauge transformation of (4.11). There is a curve
d(t)eé& satisfying (1) d(0)=c' =g(4, D), (2) d'(n)=(0, —1/25), (3) «(d(t))<Te for
te[0, 7]

Proof of Lemma 4.10. Letu=1—|®|, A"=30%c> A’)and A" = A'— A", The proof
of the Lemma requires the fact that |V,.@'|*=|Vul?+2|®|*|4"|?, from which one
concludes using Lemma 4.9 that

(1) [IVul,<e,
(2) A", <3s for pe[2,6]. 4.12)
The path d'(r) required by the lemma has three segments. For re[0, n/3], let
d’(t)z(A', — %(lf i(n/S—t)u) o3>. (4.13)
Then when te[0, z/3],
ddt)<e+ AT <4e. (4.14)

In addition, d' (g) =(4', —1/257).
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Next for te[n/3,2n/3], let

d(t)= (AL—I— (2— 3:) AT, — 1/263>. (4.15)
Then when te|— 3 2;}
, 1 3t o701 3t
ald'(t)= 3 Fj+[<2—;) —I}AT/\A 2+2(2~;> | FT||2
( ﬁ) LATI2, (4.16)

where F5 =163, F ) and F{=F ,~ F%. Using (4.12), one obtains from (4.16) that

2 , . 2
Ad (1) <66+ 9¢* <T¢ for te §’l and ¢ sufficiently small. In addition, d' (—;)

1N _g L_l}
by a0 (3 ). o).

2
Since the field are now abelian, «(d'(t))<7e, te -;,n

1 . . 2
= <AL, - 503>' Finally, define d'(t) for te ?n,n

as well. This completes the

proof of Lemma 4.10.
Assuming that « =0, the requirements of Proposition 4.2 are satisfied by

d(y), te[0,1,]
i ([t=ty)m
1d ((TE—tz)), te[tz, TC]:

where d(t) is given by Lemma 4.9 and d'(¢) is given by Lemma 4.10.
The proof of Proposition 4.2 is completed by establishing that « = 0. This is
the last topic in Sect. 4.

Proof of Proposition 4.8. The proof is by contradiction, so suppose that =, >0.
Let {d(1)}€&, be a sequence satisfying (4.6). Let Vo ()= Vaz(-) etc

Lemma 4.11. Let ¢ be as in Proposition 4.2 and satisfy (4. 3). Under the assumption
that ., >0, a sequence {d{t)}€ &, which satisfies (4.6) also satisfies hm Va0,
where H |l is the norm on Hj.

Proof of Lemma 4.11. The proof of the lemma is by contradiction. Assume that
Lemma 4.11 is false. Then there exist a sequence {d[t)} satisfying (4.6) and
lim |V al,>0>0. One can conclude that for each <, there exists

PelM(@T*)@g) with Va(p)< —0d and |ypl;=1.
Hence, for t <1, one observe, using Proposition 1.5.2, that

adi+ ) L ald)—~ 16+ 512k,
<ald)—1t5/2 for t<s=6k" 1. (4.17)

The constant x 1s independent of 7 by Proposition 1.5.2. For j sufficiently large,
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Eq. (4.17) implies that a(c?j+%wj> <a,. Let t, be such that d,=d{t,), and
consider

dft), for te[0,t,],

dn=ta 4=t o for e[ty t(n+t,)]
RGN T
2An—1) (5 + 2,40 103)) ~(0,306%), for telF(n+r,).n]. (4.18)
(n—t,) g 2%’ 2 »20°) 2 ob Tl

The curve d(t)e &, and a{d) < «,. This is a contradiction ; hence the lemma s true.
A consequence of Lemma 4.11 is that the sequence {d,} converges to a solution
to Eq. (L.2.2, 3):

Lemma 4.12. Let ¢ be given by Proposition 4.2 and satisfy (4.3). Under the
assumption that ., >0, there exists a sequence {d(t)}€ &, such that the sequence {d}
converges strongly in L |, to de%,. The configuration d is a solution to Egs.
(1.2.2, 3) and «(d)>0.

Proof of Lemma 4.12. Let {d(t)}e &, be a sequence which satisfies (4.6). It follows
from Lemma 4.11, and Theorems 1.5.6, 1.7.1, and 1.8.1 that there exists a sequence
of points {x;}€IR? such that the translated sequence { Txﬂi} converges strongly in
L} 100 t0 d€% . In addition, d is a solution to Egs. (1.2.2, 3) with «(d)>0. As IR? is
path connected, there is no loss in generality to assume that each x,=0.

It is a consequence of Theorem 4.4 that the hessian, s,(-) cannot be non-
negative definite on I'((g®T*)@4). The implications of this fact will yield a
contradiction to the assumption that @, =0. In order to establish the con-
tradiction, the following proposition is required.

Proposition 4.13. Let {c;}€% be a sequence which converges strongly in L} ., to
c=(A,P)e¥. Let wel“((g@T*)®y) and suppose that

() lpl,=1.
(2) A(p)=E. (4.19)

Then given ¢>0, there exists () such that for each (>4(e), there exists
p,e (g T*)Dg) satisfying

M i, =1,
(2) |, (w)—E|<s. (4.20)

The proof of Proposition 4.13 is deferred momentarily in order to complete the
proof of Proposition 4.8.

Proof of Proposition 4.8 assuming Proposition 4.13: Completion. One is required
to demonstrate a contradiction resulting from the assumption that «_+0. Let
{d(t)} and {d;} be the sequences of Lemma 4.12. According to Proposition 4.13
and Theorem 4.4, there exists E<0 and p,el"((¢®T*)@g) such that for all ¢
sufficiently large, {d,w;} and E satisfy (4.20) with ¢=|EJ/2. A consequence of
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Proposition 1.5.2 is that for t<1,

- _ 2
aldi+tp)Sald)+t|Vall,— ZE+2;<t3. 4.21)

Using (d(t), ;) for ¢ sufficiently large, a curve d'(t)e&, can be constructed,
which, as a consequence of Lemma 4.11 and (4.21), satisfies

a((?) <@y. (4.22)

The curve d'(t) is analogous to the curve d(z) of (4.18), and the details are left to the
reader. Equation (4.22) exhibits the required contradiction. Therefore o, =0.

Proof of Proposition 4.13. The notation of Sect. 1.5 will be used here. Let {V,}_,
be the part of the open cover of R (given by Definition 15.5) that covers
U =supply|. Let {B,}Y_, be a partition of unity, subordinate to {V,}_,. Let
{9, h,:V,—>SU(2)} be the gauge transformation of Definition 1.5.5. In V,, define
w,=h; 'wh, Soin VNV,

wa:gaﬁwﬂgzx_ﬂl H (423)
where g, is given in Definition L5.5. For, each 7, define
¥i=20; 0B, L5(U s (@ T Dyg) (4.24)

(compare with Lemma 1.5.9).

Using the gauge invariance, one can estimate the contribution to #(y}) from
V, Let g,5(0)=g,)g; (). In V,n\V, define (B,yg), ()= 0,5() 5050 (), (5,10,
=fv, and in V, define:

V(D) =(,(i), (i) = ;(ﬁgwﬁ)a(i)- (4.25)
Then the contribution to J£(y;) from V, is

JAID 10,01 + 1[0, 0, ()]I* + |I7Aa(i)7’a(i)|2

+ 2(60‘1(1) A a)rx(i)’ FAu(i)) + Z(Ewa(l)5 77050)]7 VAa(i)cpa(i))
+ 2w (), D)1V 1D)} - (4.26)

The point of this exercise is that by assumption, (4,(i), @ ,(i)) converges strongly in
LY(V) to (A4, ®,), while ¥ (i) converges strongly in I3(V,) to y,. This implies
convergence of (4.26) over cach V,, and since there are a finite number of them,

lim | #,y7) — #,(p)] 0. (4.27)

The contribution to the norm [|y}]|; over each V¥, can be shown to converge by a
similar argument, so

lim | [yi];—1}-0. (4.28)

Therefore, given >0, for all ¢/ sufficiently large, vy, =v}/|lw}l|; satisfies (4.20),
proving Proposition 4.13.
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V. Local Minima

The proof of Theorem 4.4 is presented in this section. The proof is adapted from
the proof by Bourguignon, Lawson, and Simons that all solutions to the SU(2)
Yang-Mills equations on a bundle P—S* which are local minima are self or anti-
self dual.

The fact that solutions to Eq. (1.2.6) in %, are local minima, and satisfy «(c)
=4n|k|is provedin[3,Chap.IV;seealso 6.] Thisis the “if” part of Theorem 4.4. The
“only if” part of the Theorem follows Bourguignon, Lawson, and Simons. The
noncompactness of IR? is a problem when trying to adapt their proof. This problem
is circumvented with the aid of the following apriori estimates.

Propeosition 5.1. (Taubes [3, Chap. IV]). Let (A, ®)e € be a smooth, finite action
solution to (1.2.2,3). Then V,F, and V,D,® are square integrable and
(D) (L + X1 F 4l(x)+ |V, ®|(x)) £ constant, (2) (1+|x)(1 —|D|(x)) < constant.

Assume that ce%, is a local minimum. Given a vector {=({,,{)?_, of unit

length in R*, set {={ dx'e ['(T*), define
W= #({A(+F 4+ D @) +{o(+F ,+D,P),
ﬂg=—*(C_/\(FA+*DA@)), and Wg:(wg,ﬂg)~ (5.1)

It follows from Proposition 5.1 that s#(y,) is well defined. One finds after an
explicit calculation that

%(lpg) =2<C&); ANy Fy— #D, Py, + 2<[”lga wg]a #F—DyPy,. (5.2)

By varying {, #,(yp;) defines a quadratic functional on the unit sphere in R* Let F ,
+%D @=udx and F,—=D, ®=u,dx". Then

§o10P =D A w)=5% | dx{e™([upul vy

R4 R3 “

+ 5™ [, w,, ], ) — 269y uJv, )} =0. (5.3)

Now 1, is not in I'((¢® T™)@Dg), however, let f, be a smooth cut-off function with
Br=1 when |x|<R, Br=0 1if |x|>2R and [VBg/(x)<2-R™'; then
Brw e ((g®@T*)®yg) for all R<co. In addition, the asymptotic decay given by
Proposition 5.1 implies that there exists R, such that

A Brp)— A ) <R V2 for R>R, andall (eS?. (5.4)

Therefore, since #(fry,) =0 for all R < co, Eq. (5.4) implies that #(y,) =0 as well.
But this fact and (5.3) require #(y,)=0 for all {es3.

Recall that #)(-) is, by assumption, a real, positive semi-definite quadratic
form. Hence, the polarization identity implies that

H(p+y)— A yp)=0, forall yel(g@T*)Dg). (5.5)

When written out in long hand, Eq. (5.5) means that for all {S3, and xe R?, both
e (™™, + Lou ), 0, + [, 0,1 =0,

[ u, + (g, v, ] =0. (5.6)
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Thus, since ({,,{,)e S is arbitrary, Eq. (5.6) implies that
[u,0]=0, k=123 (5.7)

Let gf¢7) denote the subalgebra’s of s«(2) generated by [Fuf(x)(I'v(x)) for

.0 . . . .
[=F i T.IR?. By Lemma (7.22) of [ 7], either 4 or g, is abelian. Without loss of
X

generality, suppose that ¢ is non-abelian at x=1IR>. This is an open condition, so
there is an open neighborhood U of x such that [4), ¢ 10 for all xeU and
hence [¢.,¢. 1=01in U. The solution (4, ) is necessarily real analytic on R? ([3],
Theorem IV.1.3) so [¢;,#: 1=0 for all xeIR*. Now v satisfies a second order
partial differential equation, derivable from (1.2.2) ([3], Proposition 1V.9.2), which
in this case is:

— P+ [, [v, #]]=0, (5.8)

2
where —V;=— Y V,V, is the trace Laplacian. Upon contracting (5.8) with v* in
=
the L, inner-product and integrating by parts one obtains

Vo, V,0p,+Lv, @][v,®]>,=0. (5.9)

The integration by parts is justified as ve L,. Using Lemma 1.4.10, one sees that
lvlle =0, so v=0. Therefore ¢ satisfies Eq. (1.2.6). The fact that «(c)=4nr|k| follows
from Theorem IV.1.5 of [3].

VI. Conclusion

The proof of Theorem 1.1 can now be completed. Indeed, the results of Sects. 1-5
are summarized by the following theorem of which Theorem 1.1 is a corollary.

Theorem 6.1. There exists a sequence of loops {c(t)}e C*(S', n); (6, c,)) which are

homotopically non-trivial and such that : (1) The induced sequence {c,}, defined so

that «(¢;)=sup a(c(1)), converges strongly in L} . to c€%,. (2) The configuration c
teS!

satisfies the Yang-Mills-Higgs equations, (1.2.2,3), and «(c)>0. (3) The
configuration ¢ does not satisfy the Bogomol'nyi equations, (1.2.6), and c is not a local
minimum of a on €.

Proof of Theorem 6.1. By Proposition 1.5.3, one can choose a good sequence of
loops, {b(t)} € A(e), where e is given in Eq. (2.1). Such loops are not null-homotopic
in C%(S*,n); (%,.c,) (Lemma 2.1 and Theorems 1.3.4 and 1.3.5). Theorem 1.4.4
states that <, >0. A consequence of Theorem 1.7.1 is that there is a sequence
{x;}eR* such that the translated sequence, {T, b;}€%,, converges strongly in
L} oo to ce%. In addition, «(c)>0 and c¢ is a solution to Egs. (I1.2.2,3). As
translation by a vector xeR3, T,:4—% is continuous, the translated sequence of
loops

{0} ={TL.b{)}e C°(S*,n); (%, c,)
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as well. By Theorem 2.1, «, <8 and Theorem 1.8.1 is applicable. The conclusion
is that ce%,. Therefore Statements (1, 2) of Theorem 6.1 have been established.

By Theorem 4.4, a solution in €, to the Bogomol’'nyi equations must have zero
action, and since «(c) >0, ¢ cannot satisfy the Bogomol’nyi equations. It is also a
consequence of Theorem 4.4 that ¢ can not be a local minimum of «(-) on %,
(Definition 4.3).
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