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Abstract

We establish the existence of a real solution y(x, T ) with no poles on the real line of the
following fourth order analogue of the Painlevé I equation,

x = Ty −
(
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6
y3 +

1

24
(y2

x
+ 2yyxx) +

1

240
yxxxx

)
.

This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by
proving the solvability of an associated Riemann-Hilbert problem through the approach of a
vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this
Riemann-Hilbert problem, we obtain the asymptotics for y(x, T ) as x → ±∞.

1 Introduction

1.1 The P 2
I equation

The first Painlevé equation is the second order differential equation

yxx = 6y2 + x. (1.1)

This equation has higher order analogues of even order 2m for m ≥ 1, which are collected,
together with the first Painlevé equation itself, in the Painlevé I hierarchy, see e.g. [25, 27]. The
second member in the hierarchy is the fourth order differential equation

x = −
(

1

6
y3 +

1

24
(y2

x + 2yyxx) +
1

240
yxxxx

)
, (1.2)

and has solutions that are meromorphic in the complex plane. In 1990, Brézin, Marinari, and
Parisi [4] argued numerically that there exists a solution y to (1.2) with no poles on the real
line, and with asymptotic behavior

y(x) ∼ ∓|6x|1/3, as x → ±∞. (1.3)

Moore [31] proved the existence of a unique real solution to (1.2) with asymptotic behavior given
by (1.3), and he gave a line of argument why this solution is probably pole-free on the real line.

A generalization of (1.2) can be obtained by introducing an additional variable T , as done
by Dubrovin in [14], so that we get the following differential equation for y = y(x, T ), which we
denote as the P 2

I equation (cf. [23] for T = 0),

x = Ty −
(

1

6
y3 +

1

24
(y2

x + 2yyxx) +
1

240
yxxxx

)
. (1.4)

In recent work [14], Dubrovin conjectured (see Section 1.2 below for more details) the existence
of a unique real solution to (1.4) with no poles on the real line. We prove the existence part of
this conjecture.

Our result is the following.
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Theorem 1.1 There exists a solution y(x, T ) to the P 2
I equation (1.4) with the following prop-

erties:

(i) y(x, T ) is real valued and pole-free for x, T ∈ R.

(ii) For fixed T ∈ R, y(x, T ) has the following asymptotic behavior,

y(x, T ) =
1

2
z0|x|1/3 + O(|x|−2), as x → ±∞, (1.5)

where z0 = z0(x, T ) is the real solution of

z3
0 = −48sgn(x) + 24z0|x|−2/3T. (1.6)

Remark 1.2 Observe that z0 is negative (positive) for x > 0 (x < 0) with the following
asymptotic behavior as x → ±∞,

z0 = ẑ0 − sgn(x)
2

3
62/3T |x|−2/3 + O(|x|−4/3), ẑ0 = −sgn(x) 2 · 61/3, (1.7)

so that the asymptotics (1.5) for y can be rewritten as, cf. (1.3)

y(x, T ) = ∓(6|x|)1/3 ∓ 1

3
62/3T |x|−1/3 + O(|x|−1), as x → ±∞. (1.8)

Power expansions for solutions of (1.2) were found in [26].

Remark 1.3 One expects, see [31, Appendix A] for T = 0, that the solution y considered in
Theorem 1.1 is uniquely determined by realness and the asymptotics (1.5).

1.2 Motivation

Hamiltonian perturbations of hyperbolic equations

Hyperbolic equations of the form

ut + a(u)ux = 0 (1.9)

can be perturbed to a Hamiltonian equation of the form

ut + a(u)ux + ε
[
b1(u)uxx + b2(u)u2

x

]

+ ε2
[
b3(u)uxxx + b4(u)uxuxx + b5(u)u3

x

]
+ · · · = 0, (1.10)

where ε is small and b1, b2, . . . are smooth functions. These equations have been studied by
Dubrovin in [14], see also [13], where he formulated the universality conjecture about the be-
havior of a generic solution to a general perturbed Hamiltonian equation (1.10) near the point
(x0, t0) of gradient catastrophe of the unperturbed solution (1.9). He argued that this behavior
is described by a special solution to the P 2

I equation (1.4). To be more precise, his conjecture is
the following.

Conjecture 1.4 (Dubrovin, [14])

(i) Let u0 = u0(x, t) be a smooth solution to the unperturbed equation (1.9), defined for all
x ∈ R and 0 ≤ t < t0, and monotone in x for any t. Then there exists a solution
u = u(x, t; ε) to the perturbed equation (1.10) defined on the same domain in the (x, t)-
plane with the asymptotics as ε → 0 of the form

u(x, t; ε) = u0(x, t) + ε2u1(x, t) + ε4u2(x, t) + o(ε4), (1.11)

where u1 and u2 can be written down explicitly.
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(ii) The ODE (1.4) has a unique solution y = y(x, T ) smooth for all real x ∈ R for all values
of the parameter T .

(iii) The generic solution u described in part (i) of the conjecture can be extended up to t = t0+δ
for sufficiently small positive δ = δ(ε); near the point (x0, t0) it behaves in the following
way

u(x, t; ε) = u0(x, t) + aε2/7y
(
bε−6/7(x − c(t − t0) − x0), dε−4/7(t − t0)

)
+ O(ε4/7),

for some constants a, b, c, d which depend on the hyperbolic equation, the solution u, and
on the choice of perturbation. Here y is the unique smooth solution described in part (ii)
of the conjecture.

So Theorem 1.1 in fact proves the existence part of part (ii) of Dubrovin’s conjecture.

In [20], numerical calculations were done for the particular example (of a perturbed Hamil-
tonian equation) of the small dispersion limit of the KdV equation, see also [28, 29, 30, 35],

ut + 6uux + ε2uxxx = 0, with initial condition u(x, 0) = u0(x).

Before the time of gradient catastrophe t0, solutions turn out to behave nicely. When approach-
ing the critical time t0, the slope of the function blows up near x0, and at the critical time, fast
oscillations near x0 set in. The transition between the monotone behavior and the oscillations
should be described in terms of the real pole-free solution to (1.4) we consider in this paper.

Random matrix theory

The local eigenvalue correlations of unitary random matrix ensembles on the space of n × n
Hermitian matrices have universal behavior (when the size n of the matrices is going to infinity)
in different regimes of the spectrum. In the bulk of the spectrum it is known, see e.g. [1, 8, 9, 32],
that the local correlations can be expressed in terms of the sine kernel, while at the soft edge
of the spectrum they generically (i.e. when the limiting mean eigenvalue density vanishes like a
square root) can be expressed in terms of the Airy kernel, see e.g. [1, 9, 18, 34].

In the presence of singular points, one observes different types of limiting kernels in double
scaling limits, see e.g. [2, 5, 6]. Near singular edge points, where the limiting mean eigenvalue
density vanishes at a higher order than a square root (the regular case) the local eigenvalue
correlations are expected [3] to be described in terms of functions associated with real pole-
free solutions of the even members of the Painlevé I hierarchy. The particular case where the
limiting mean eigenvalue density vanishes like a power 5/2, which is the lowest non-regular order
of vanishing, should correspond with the real pole-free solution of P 2

I considered in Theorem
1.1. We come back to this in [7].

1.3 Riemann-Hilbert problem and Lax pair for P 2
I

Consider the following Riemann-Hilbert (RH) problem for given complex parameters x and T ,

on a contour Σ =
(
∪6

j=0Σj

)
∪R

−, with Σj = ej 2πi
7 R

+, where each of the eight rays are orientated
from 0 to infinity.

RH problem for Ψ:

(a) Ψ is analytic in C \ Σ.

3



(b) Ψ satisfies the following jump relations on Σ, for some complex numbers s0, . . . , s6 which
do not depend on ζ, x, and T ,

Ψ+(ζ) = Ψ−(ζ)

(
1 sj

0 1

)
, for ζ ∈ Σj for even j, (1.12)

Ψ+(ζ) = Ψ−(ζ)

(
1 0
sj 1

)
, for ζ ∈ Σj for odd j, (1.13)

Ψ+(ζ) = Ψ−(ζ)

(
0 −1
1 0

)
, for ζ ∈ R

−. (1.14)

(c) There exist complex numbers y and h, which depend on x and T but not on ζ, such that
Ψ has the following asymptotic behavior as ζ → ∞,

Ψ(ζ) = ζ−
1
4
σ3N

(
I − hσ3ζ

−1/2 +
1

2

(
h2 iy
−iy h2

)
ζ−1 + O(ζ−2)

)
e−θ(ζ;x,T )σ3 , (1.15)

where

N =
1√
2

(
1 1
−1 1

)
e−

1
4
πiσ3 , θ(ζ;x, T ) =

1

105
ζ7/2 − 1

3
Tζ3/2 + xζ1/2. (1.16)

Remark 1.5 In [23], Kapaev uses a slightly modified RH problem for the P 2
I equation with

parameter T = 0. However a transformation shows that both RH problems are equivalent.

Remark 1.6 The RH problem for P 2
I is similar to the RH problem for the Painlevé I equation,

see [24]. The only differences are that, for Painlevé I, there are only six rays in the jump contour,
and that the highest exponent of ζ in θ is 5/2. For the m-th member of the Painlevé I hierarchy,
there are 4 + 2m rays in the jump contour, and the highest exponent of ζ in θ is m + 3/2.

The complex numbers s0, . . . , s6 are the Stokes multipliers and do not depend on x and
T , so that varying the parameters x and T leads to a monodromy preserving deformation
[15, 19, 21, 22]. The RH problem can only be solvable if the Stokes multipliers satisfy the
relation

(
1 0
s4 1

)(
1 s5

0 1

)(
1 0
s6 1

)(
1 s0

0 1

)(
1 0
s1 1

)(
1 s2

0 1

)(
1 0
s3 1

)
=

(
0 1
−1 0

)
. (1.17)

As we will show in Section 2.3 (in fact we only treat one particular choice of Stokes multipliers,
but the proof holds in general), a solution Ψ of the RH problem for Ψ also satisfies the following
system of differential equations, which is the Lax pair for the P 2

I equation,

∂Ψ

∂ζ
= UΨ,

∂Ψ

∂x
= WΨ, (1.18)

where

U =
1

240

(
−4yxζ − (12yyx + yxxx) 8ζ2 + 8yζ + (12y2 + 2yxx − 120T )

U21 4yxζ + (12yyx + yxxx)

)
, (1.19)

U21 = 8ζ3 − 8yζ2 − (4y2 + 2yxx + 120T )ζ + (16y3 − 2y2
x + 4yyxx + 240x), (1.20)

and

W =

(
0 1

ζ − 2y 0

)
. (1.21)
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This Lax pair appeared first in work of Moore [31] for T = 0 and was derived in [25] for
general T . The compatibility condition of the Lax pair (1.18)–(1.21) is exactly the P 2

I equation
(1.4), see e.g. [25]. Different choices of Stokes multipliers s0, . . . , s6 correspond to different
solutions of the P 2

I equation. The particular solution we are interested in, is the unique solution
with Stokes multipliers s1 = s2 = s5 = s6 = 0. It then follows by (1.17) that s0 = 1 and
s3 = s4 = −1. This choice of Stokes multipliers was suggested by Kapaev in [23], where he
proved that the solution of (1.2) with asymptotics given by (1.3), if it exists, is indeed the one
corresponding to s1 = s2 = s5 = s6 = 0, s0 = 1, and s3 = s4 = −1. This proves the uniqueness
part of Dubrovin’s conjecture for the case T = 0. One can expect that similar arguments, based
on the asymptotic solution of the direct monodromy problem, hold for T 6= 0 as well.

1.4 Outline of the rest of the paper

In the next section, we prove the first part (the existence part) of Theorem 1.1. In order to do
this, we introduce in Section 2.1 a RH problem for Φ, which is equivalent to the RH problem
for Ψ (the RH problem for P 2

I ) with Stokes multipliers s1 = s2 = s5 = s6 = 0, s0 = 1,
and s3 = s4 = −1. Afterwards, we prove in Section 2.2 the solvability of the RH problem
for Φ for real x and T by proving that the associated homogeneous RH problem has only the
trivial solution. This approach is often referred to in the literature as a vanishing lemma, see
e.g. [6, 9, 16, 17, 36]. We are only able to prove the vanishing lemma for real x and T due to
symmetries in the RH problem. In Section 2.3 we show that Ψ satisfies a Lax pair of the form
(1.18)–(1.21), with y given in terms of Φ. By compatibility of the Lax pair, it follows that y
solves the P 2

I equation, and by the solvability of the RH problem, y has no real poles.
In Section 3 we prove the second part (the asymptotics part) of Theorem 1.1. We do this

by applying the Deift/Zhou steepest-descent method [11, 12] to the RH problem for Φ. In this
method, we perform a series of transformations to reduce the RH problem for Φ to a RH problem
that we can solve approximately for large |x|. By unfolding the series of the transformations,
we obtain the asymptotics for y.

2 The existence of a real pole-free solution to P 2
I

2.1 Statement of an associated RH problem to P 2
I

Let Γ =
⋃4

j=1 Γj be the contour consisting of four straight rays,

Γ1 : arg ζ = 0, Γ2 : arg ζ =
6π

7
, Γ3 : arg ζ = π, Γ4 : arg ζ = −6π

7
,

oriented as shown in Figure 1. We seek (for x, T ∈ C) a 2×2 matrix valued function Φ(ζ;x, T ) =
Φ(ζ) (we suppress notation of x and T for brevity) satisfying the following RH problem.

RH problem for Φ:

(a) Φ is analytic in C \ Γ.

(b) Φ satisfies the following constant jump relations on Γ,

Φ+(ζ) = Φ−(ζ)

(
1 1
0 1

)
, for ζ ∈ Γ1, (2.1)

Φ+(ζ) = Φ−(ζ)

(
1 0
1 1

)
, for ζ ∈ Γ2 ∪ Γ4, (2.2)

Φ+(ζ) = Φ−(ζ)

(
0 1
−1 0

)
, for ζ ∈ Γ3. (2.3)
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Figure 1: The oriented contour Γ consisting of the four straight rays Γ1, Γ2, Γ3, and Γ4.

(c) Φ has the following behavior at infinity,

Φ(ζ) = (I + O(1/ζ))ζ−
1
4
σ3Ne−θ(ζ;x,T )σ3 , as ζ → ∞, (2.4)

where N and θ are given by (1.16).

Remark 2.1 By multiplying Φ to the left with an appropriate matrix independent of ζ, see
(2.32) below, we obtain by Proposition 2.5 the RH problem for Ψ, as stated in Section 1.3, for
the particular choice of Stokes multipliers s1 = s2 = s5 = s6 = 0, s0 = 1, and s3 = s4 = −1.

Remark 2.2 Let Φ be a solution of the RH problem. By using the jump relations (2.1)–(2.3)
one has that detΦ+ = detΦ− on Γ. This yields that detΦ is entire. From (2.4) we have that
det Φ(ζ) → 1 as ζ → ∞, and thus, by Liouville’s theorem, we have that detΦ ≡ 1.

Now, suppose that Φ̃ is a second solution of the RH problem. Then, since Φ̃ and Φ satisfy the
same jump relations on Γ, one has that Φ̃Φ−1 is entire (observe that Φ−1 exists since det Φ ≡ 1).
From (2.4) we have that Φ̃(ζ)Φ(ζ)−1 → I as ζ → ∞, and thus, by Liouville’s theorem, we have
that Φ̃Φ−1 ≡ I. We now have shown that if the RH problem for Φ has a solution, then this
solution is unique.

2.2 Solvability of the RH problem for Φ

Here, our goal is to prove that the RH problem for Φ is solvable for x, T ∈ R. Moreover, we will
also strengthen the asymptotic condition (c) of the RH problem and prove analyticity properties
in the variables x and T . In case x = T = 0, the solvability of the RH problem for Φ has been
proven by Deift et al. in [9, Section 5.3]. The general case is analogous but for the convenience
of the reader we will recall the different steps in the proof and indicate where we need the
restriction to x, T ∈ R. The result of this subsection is the following lemma.

Lemma 2.3 For every x0, T0 ∈ R, there exist complex neighborhoods V of x0 and W of T0 such
that for all x ∈ V and T ∈ W the following holds.

(i) The RH problem for Φ is solvable.

(ii) The solution Φ of the RH problem for Φ has a full asymptotic expansion in powers of ζ−1

as follows,

Φ(ζ;x, T ) ∼
(
I +

∞∑

k=1

Akζ
−k
)
ζ−

1
4
σ3Ne−θ(ζ;x,T )σ3 , (2.5)

as ζ → ∞, uniformly in C \ Γ. Here, the Ak = Ak(x, T ) are real-valued for x, T ∈ R.
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(iii) The solution Φ of the RH problem for Φ, as well as the Ak in (2.5), are analytic both as
functions of x and T .

Remark 2.4 The important feature of this lemma is the following. In the next subsection we
will show that y = 2A1,11 −A2

1,12, where A1,ij is the (i, j)-th entry of A1, is a solution to the P 2
I

equation. From the above lemma we then have that this y is real-valued and pole-free on the
real axis, so that the first part of Theorem 1.1 is proven.

In order to prove Lemma 2.3, we transform, as in [9, Section 5.3], the RH problem for Φ
into an equivalent RH problem for Φ̂ such that the jump matrix for Φ̂ is continuous on Γ and
converges exponentially to the identity matrix as ζ → ∞ on Γ, and such that the RH problem
for Φ̂ is normalized at infinity. To do this, we introduce an auxiliary 2×2 matrix valued function
M satisfying the following RH problem on a contour Γσ =

⋃4
j=1 Γσ

j consisting of four straight
rays

Γσ
1 : arg ζ = 0, Γσ

2 : arg ζ = σ, Γσ
3 : arg ζ = π, Γσ

4 : arg ζ = −σ, (2.6)

where σ ∈ (π
3 , π). We orientate the straight rays from the left to the right, as shown in Figure 1

for the contour Γ. The dependence on the parameter σ is needed in Section 3. In this section,
we take σ = 6π/7 fixed, so that Γσ = Γ.

RH problem for M :

(a) M is analytic in C \ Γσ.

(b) M satisfies the following jump relations on Γσ,

M+(ζ) = M−(ζ)

(
1 e−

4
3
ζ3/2

0 1

)
, for ζ ∈ Γσ

1 , (2.7)

M+(ζ) = M−(ζ)

(
1 0

e
4
3
ζ3/2

1

)
, for ζ ∈ Γσ

2 ∪ Γσ
4 , (2.8)

M+(ζ) = M−(ζ)

(
0 1
−1 0

)
, for ζ ∈ Γσ

3 . (2.9)

(c) M has the following behavior at infinity,

M(ζ) ∼
(
I +

∞∑

k=1

Bkζ
−k
)
ζ−

1
4
σ3N, as ζ → ∞, (2.10)

uniformly for ζ ∈ C \Γσ and σ in compact subsets of (π
3 , π). Here, N is given by equation

(1.16), and for k ≥ 1,

B3k−2 =

(
0 0

t2k−1 0

)
, B3k−1 =

(
0 t̂2k−1

0 0

)
, B3k =

(
t̂2k 0
0 t2k

)
, (2.11)

with

t̂k =
Γ(3k + 1/2)

36kk!Γ(k + 1/2)
, tk = −6k + 1

6k − 1
t̂k. (2.12)
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It is well-known, see e.g. [8, 10], that there exists a unique solution M to the above RH pro-
blem given in terms of Airy functions Ai . The matrix valued function M is the so-called Airy
parametrix and for the purpose of this paper we will not need its exact expression but refer the
reader to [8, 10] for this.

We now define Φ̂(ζ;x, T ) = Φ̂(ζ) by

Φ̂(ζ) = Φ(ζ)eθ(ζ)σ3M(ζ)−1, for ζ ∈ C \ Γ. (2.13)

A straightforward calculation, using (2.1)–(2.4), (2.7)–(2.10), and θ+(ζ)+ θ−(ζ) = 0 for ζ ∈ R−,
shows that Φ̂ satisfies the following RH problem.

RH problem for Φ̂:

(a) Φ̂ is analytic in C \ Γ.

(b) Φ̂+(ζ) = Φ̂−(ζ)v̂(ζ) for ζ ∈ Γ, where v(ζ) = v(ζ;x, T ) is given by

v(ζ) =





M−(ζ)

(
1 e−2θ(ζ) − e−

4
3
ζ3/2

0 1

)
M−(ζ)−1, for ζ ∈ Γ1,

M−(ζ)

(
1 0

e2θ(ζ) − e
4
3
ζ3/2

1

)
M−(ζ)−1, for ζ ∈ Γ2 ∪ Γ4,

I, for ζ ∈ Γ3.

(2.14)

(c) Φ̂(ζ) = I + O(1/ζ), as ζ → ∞.

Observe that the jump matrix v is indeed continuous on Γ and that it converges exponentially
to the identity matrix as ζ → ∞ on Γ. This RH problem corresponds to the RH problem [9,
(5.108)–(5.110)], and the only difference is that we now have a factor e±2θ (containing the x, T

dependence) instead of e±ζ(4ν+3)/2
in the jump matrices.

Proof of Lemma 2.3 (i). From (2.13) it follows that proving the solvability of the RH problem
for Φ is equivalent to proving the solvability of the RH problem for Φ̂. By general theory of the
construction of solutions of RH problems, this is reduced to the study of the singular integral
operator,

Cv : L2(Γ) → L2(Γ) : f 7→ C+

[
f
(
I − v−1

)]
, (2.15)

where v is the jump matrix (2.14) of the RH problem for Φ̂, and where C+ is the +boundary
value of the Cauchy operator

Cf(z) =
1

2πi

∫

Γ

f(s)

s − z
ds, for z ∈ C \ Γ.

Indeed, suppose that I − Cv is invertible in L2(Γ). Then, there exists µ ∈ L2(Γ) such that
(I − Cv)µ = C+(I − v−1), and it is immediate that

Φ̂(ζ) ≡ I +
1

2πi

∫

Γ

(I + µ(s))(I − v(s)−1)

s − ζ
ds, for ζ ∈ C \ Γ, (2.16)

is analytic in C \ Γ and satisfies (since C+ − C− = I) condition (b) of the RH problem for Φ̂
in the so-called L2-sense. However, as in [9, Step 3 of Sections 5.2 and 5.3], one can use the
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analyticity of v to show that Φ̂ satisfies jump condition (b) in the sense of continuous boundary
values, as well. Further, as in [9, Proposition 5.4], it follows from the exponential decaying of
I − v−1 as ζ → ∞ on Γ that the asymptotic condition (c) of the RH problem for Φ̂ is also
satisfied. We summarize that the RH problem for Φ̂ is solvable, with solution given by (2.16),
provided the singular integral operator I − Cv is invertible in L2(Γ).

First, we consider the case x, T ∈ R. For this case, we show that I − Cv is invertible by
showing that it is a Fredholm operator with zero index and kernel {0}. Exactly as in [9, Steps
1 and 2 of Section 5.3] one has that I −Cv is a Fredholm operator with zero index. In this step,
one does not need the restriction to real x and T . It remains to prove that the kernel of I −Cv

is {0}, and it is in this step that we will need the restriction that x, T ∈ R. This is (again) as
in [9, Section 5.3] but for the convenience of the reader we will indicate were we need x and T
to be real.

Suppose there exists µ0 ∈ L2(Γ) such that (I − Cv)µ0 = 0. One can then show that the
matrix valued function Φ̂0 defined by

Φ̂0(ζ) ≡ 1

2πi

∫

Γ

µ0(s)(I − v(s)−1)

s − ζ
ds, for ζ ∈ C \ Γ, (2.17)

is a solution to the RH problem for Φ̂, but with the asymptotic condition (c) replaced by the
homogeneous condition

Φ̂0(ζ) = O(1/ζ), as ζ → ∞, uniformly for ζ ∈ C \ Γ. (2.18)

Since µ0 = Φ̂0,+ (which follows from (2.17) together with (I −Cv)µ0 = 0), we need to show that

Φ̂0 ≡ 0. Showing that a solution of the homogeneous RH problem is identically zero, is known
in the literature as a vanishing lemma, see [9, 16, 17].

Now, let

Φ0(ζ) = Φ̂0(ζ)M(ζ), for ζ ∈ C \ Γ,

then it is straightforward to check, using (2.7)–(2.10), (2.14), and (2.18), that Φ0 solves the
following RH problem.

RH problem for Φ0:

(a) Φ0 is analytic in C \ Γ.

(b) Φ0 satisfies the following jump relations on Γ,

Φ0,+(ζ) = Φ0,−(ζ)

(
1 e−2θ(ζ)

0 1

)
, for ζ ∈ Γ1, (2.19)

Φ0,+(ζ) = Φ0,−(ζ)

(
1 0

e2θ(ζ) 1

)
, for ζ ∈ Γ2 ∪ Γ4, (2.20)

Φ0,+(ζ) = Φ0,−(ζ)

(
0 1
−1 0

)
, for ζ ∈ Γ3. (2.21)

(c) Φ0(ζ) = O(1/ζ)ζ−
1
4
σ3N , as ζ → ∞, uniformly for ζ ∈ C \ Γ.
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Further, we introduce an auxiliary matrix valued function A with jumps only on R, as follows,
cf. [9, Equations (5.135)–(5.138)]

A(ζ) =





Φ0(ζ)

(
0 −1

1 0

)
, for 0 < arg ζ < 6π

7 ,

Φ0(ζ)

(
1 0

e2θ(ζ) 1

)(
0 −1

1 0

)
, for 6π

7 < arg ζ < π,

Φ0(ζ)

(
1 0

−e2θ(ζ) 1

)
, for −π < arg ζ < − 6π

7 ,

Φ0(ζ), for − 6π
7 < arg ζ < 0.

(2.22)

Using (2.19)–(2.21) and condition (c) of the RH problem for Φ0 one can then check that A is a
solution to the following RH problem.

RH problem for A:

(a) A is analytic in C \ R

(b) A satisfies the following jump relation on R,

A+(ζ) = A−(ζ)

(
1 −e2θ+(ζ)

e2θ−(ζ) 0

)
, for ζ ∈ R−, (2.23)

A+(ζ) = A−(ζ)

(
e−2θ(ζ) −1

1 0

)
, for ζ ∈ R+, (2.24)

(c) A(ζ) = O(ζ−3/4), as ζ → ∞, uniformly for ζ ∈ C \ R.

Now, we define Q(ζ) = A(ζ)A∗(ζ̄), where A∗ denotes the Hermitian conjugate of A. The
matrix valued function Q is analytic in the upper half plane, continuous up to R, and decays like
ζ−3/2 as ζ → ∞. By Cauchy’s theorem this implies,

∫
R

Q+(s)ds = 0. Using the jump relations
(2.23) and (2.24) we then have,

∫

R−

A−(s)

(
1 −e2θ+(s)

e2θ−(s) 0

)
A∗

−(s)ds +

∫

R+

A−(s)

(
e−2θ(s) −1

1 0

)
A∗

−(s)ds = 0.

Adding this to its Hermitian conjugate, and using the fact θ+(s) = θ−(s) for s ∈ R− (which is
true since x, T ∈ R), we arrive at, cf. [9, Equation (5.146)]

∫

R−

A−(s)

(
2 0
0 0

)
A∗

−(s)ds +

∫

R+

A−(s)

(
2e−2θ(s) 0

0 0

)
A∗

−(s)ds = 0. (2.25)

This is the crucial step where we need x and T to be real. The latter relation implies that the
first column of A− is identically zero, and the jump relations (2.23) and (2.24) then imply that
the second column of A+ is identically zero, as well.

By writing out the RH conditions for each entry of A and using the vanishing of the first
column of A− and the second column of A+, the matrix RH problem reduces to two scalar RH
problems. The proof that the solutions of those scalar RH problems (and thus also the second
column of A− and the first column of A+) are identically zero, is exactly as in [9, Step 3 of
Section 5.3] using Carlson’s theorem, see [33], and we will not go into detail about this. We
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then have shown that A ≡ 0, so that also Φ̂0 ≡ 0 and thus µ0 ≡ 0. We now have proven that
I − Cv is invertible for x, T ∈ R, which implies that the RH problem for Φ̂ (and thus also the
RH problem for Φ) is solvable for x, T ∈ R.

Next, fix x0, T0 ∈ R. Above, we have shown that the singular integral operator I−Cv(· ;x0,T0)

is invertible. Since

I − Cv(· ;x,T ) =
(
I − Cv(· ;x0,T0)

) [
I +

(
I − Cv(· ;x0,T0)

)−1 (
Cv(· ;x0,T0) − Cv(· ;x,T )

)]
,

it then follows that I − Cv(· ; x,T ) is invertible provided

∥∥(I − Cv(· ; x0,T0)

)−1 (
Cv(· ; x0,T0) − Cv(· ; x,T )

)∥∥ < 1, .

where ‖ · ‖ denotes the operator norm. It is straightforward to check that there exist neighbor-
hoods V of x0 and W of T0 such that for all x ∈ V and T ∈ W,

∥∥Cv(· ; x0,T0) − Cv(· ;x,T )

∥∥ ≤
∥∥C+

∥∥ ∥∥v(· ; x0, T0) − v(· ; x, T )
∥∥

L(∞)(Γ)

<
∥∥(I − Cv(· ; x0,T0)

)−1∥∥−1
,

which implies that the operator I − Cv(· ;x,T ) is invertible. Hence the RH problem for Φ̂, and
thus also the RH problem for Φ, is solvable for x ∈ V and T ∈ W. This finishes the proof of the
first part of the lemma. 2

Proof of Lemma 2.3 (ii). It follows from the asymptotic expansion (2.10) of M together
with Φ = Φ̂Me−θσ3 , see (2.13), that we need to show that Φ̂ has a full asymptotic expansion in
powers of ζ−1. Insert the relation

1

s − ζ
= −

n∑

k=1

sk−1ζ−k +
sn

ζn(s − ζ)
, for n ∈ N,

into the solution Φ̂ of the RH problem for Φ̂, which is given by (2.16). We then obtain for any
n ∈ N,

Φ̂ = I +

n∑

k=1

B̂kζ
−k +

1

2πi

∫

Γ

sn(I + µ(s))(I − v(ζ)−1)

ζn(s − ζ)
ds, (2.26)

where

B̂k = − 1

2πi

∫

Γ
sk−1(I + µ(s))(I − v(s)−1)ds. (2.27)

As in [9, Proposition 5.4] one can check that the integral in (2.26) is of order O(ζ−(n+1)) as
ζ → ∞ uniformly for ζ ∈ C \ Γ. We then have shown that Φ̂ has the following asymptotic
expansion in powers of ζ−1,

Φ̂(ζ) ∼ I +

∞∑

k=1

B̂kζ
−k, as ζ → ∞, uniformly for ζ ∈ C \ Γ. (2.28)

From (2.10), (2.28), and the fact that Φ = Φ̂Pe−θσ3 it now follows that Φ has a full asymptotic
expansion in the form (2.5), where (with B0 = B̂0 = I)

Ak =

k∑

j=0

BjB̂k−j. (2.29)

11



It remains to show that the Ak are real-valued for x, T ∈ R. It is straightforward to verify

that for x, T ∈ R the matrix valued function −iΦ(ζ;x, T )σ3 is a solution to the RH problem for
Φ. By uniqueness we then have

Φ(ζ;x, T ) = −iΦ(ζ;x, T )σ3, for x, T ∈ R,

which yields

(
I +

∞∑

k=1

Akζ
−k
)
ζ−

1
4
σ3Ne−θ(ζ;x,T )σ3 =

(
I +

∞∑

k=1

Akζ
−k
)
ζ−

1
4
σ3Ne−θ(ζ;x,T )σ3 ,

and hence Ak = Ak for x, T ∈ R. This proves the second part of the lemma. 2

Proof of Lemma 2.3 (iii). We show that Φ and Ak are analytic in x, for x ∈ V. The
analyticity in T follows in a similar fashion. In order to show that Φ̂ (and thus also Φ) is
analytic for x ∈ V we need to show that, letting h → 0 in the complex plane,

lim
h→0

1

h

(
Φ̂(ζ;x + h, T ) − Φ̂(ζ;x, T )

)

exists. Consider the 2 × 2 auxiliary matrix valued function H(ζ;x, T ;h) = H(ζ) defined as
follows,

H(ζ) = Φ̂(ζ;x + h, T )Φ̂(ζ;x, T )−1, for ζ ∈ C \ Γ. (2.30)

Here we take h sufficiently small, so that Φ(ζ;x + h, T ) exists by part (i) of the lemma. It is
straightforward to check that H satisfies the following RH problem.

RH problem for H:

(a) H is analytic in C \ Γ.

(b) H satisfies the jump relation H+(ζ) = H−(ζ)vH(ζ) for ζ ∈ Γ, where

vH(ζ) = I + e−2θ(ζ;x,T )(e−2hζ1/2 − 1)Φ̂−(ζ;x, T )

(
0 1
0 0

)
Φ̂−(ζ;x, T )−1, ζ ∈ Γ1,

vH(ζ) = I + e2θ(ζ;x,T )(e2hζ1/2 − 1)Φ̂−(ζ;x, T )

(
0 0
1 0

)
Φ̂−(ζ;x, T )−1, ζ ∈ Γ2 ∪ Γ4,

vH(ζ) = I, ζ ∈ Γ3.

(c) H(ζ) = I + O(1/ζ), as ζ → ∞, uniformly for ζ ∈ C \ Γ.

Since vH(ζ) = I + O(h) as h → 0 uniformly for ζ ∈ Γ, where the O(h)-term can be expanded
into a full asymptotic expansion in powers of h, it follows as in [8, 10, 9] that

Φ̂(ζ;x + h, T )Φ̂(ζ;x, T )−1 = H(ζ) = I + hH1(ζ;x, T ) + O(h2), as h → 0, (2.31)

where H1 is a 2 × 2 matrix valued function independent of h. This yields,

lim
h→0

1

h

(
Φ̂(ζ;x + h, T ) − Φ̂(ζ;x, T )

)
= H1(ζ;x, T )Φ̂(ζ;x, T ),

which implies that Φ̂ (and thus also Φ) is analytic for x ∈ V.
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It remains to show that the matrix valued functions Ak are analytic for x ∈ V. By (2.16), it
is immediate that

Φ̂+(ζ) = I + µ(ζ), for ζ ∈ Σ,

so that µ is analytic for x ∈ V. By (2.27) it then follows that B̂k is also analytic for x ∈ V.
This yields, by (2.29) and (2.11), the analyticity of Ak, and hence the last part of the lemma is
proven. 2

2.3 Proof of Theorem 1.1 (i)

In order to prove the existence part of Theorem 1.1 we proceed as follows. Introduce, for
x, T ∈ R, a 2 × 2 matrix valued function Ψ(ζ;x, T ) = Ψ(ζ) by multiplying the solution Φ of the
RH problem for Φ to the left with an appropriate matrix independent of ζ,

Ψ(ζ) =

(
1 0

A1,12 1

)
Φ(ζ), for ζ ∈ C \ Γ. (2.32)

Here A1,12 is the (1, 2)-entry of the 2 × 2 matrix A1 = A1(x, T ) appearing in the asymptotic
expansion (2.5) of Φ at infinity. The important feature of this transformation is that Ψ satisfies
the RH problem for P 2

I , see Section 1.3, as we will show in the following proposition.

Proposition 2.5 The matrix valued function Ψ, defined by (2.32), is a solution to the RH
problem for Ψ, see Section 1.3, with Stokes multipliers s1 = s2 = s5 = s6 = 0, s0 = 1, and
s3 = s4 = −1, and with the asymptotic condition (c) replaced by the stronger condition

Ψ(ζ) = ζ−
1
4
σ3NΨ̂(ζ)e−θ(ζ)σ3 , (2.33)

where Ψ̂ has a full asymptotic expansion in powers of ζ−1/2 as follows,

Ψ̂(ζ;x, T ) ∼ I − hσ3ζ
−1/2 +

1

2

(
h2 iy
−iy h2

)
ζ−1

+
1

2

∞∑

k=1

[(
qk irk

irk −qk

)
ζ−k− 1

2 +

(
vk iwk

−iwk vk

)
ζ−k−1

]
, (2.34)

as ζ → ∞ uniformly for ζ ∈ C \ Γ. Here, y = y(x, T ) is given by

y = 2A1,11 − A2
1,12. (2.35)

Further, h = A1,12 and the qk, rk, vk and wk are some unimportant functions of x and T (inde-
pendent of ζ).

Proof. The fact that Ψ satisfies conditions (a) and (b) of the RH problem for Ψ follows trivially
from (2.32) together with conditions (a) and (b) of the RH problem for Φ. So, it remains to
show that Ψ̂ given by

Ψ̂ = N−1ζ
σ3
4 Ψ(ζ)eθ(ζ)σ3 , (2.36)

satisfies an asymptotic expansion of the form (2.34) with y given by (2.35). It follows from
(2.36), (2.32) and (2.5) that

Ψ̂(ζ) ∼ N−1ζ
σ3
4

(
1 0

A1,12 1

)[
I +

∞∑

k=1

Akζ
−k

]
ζ−

σ3
4 N

∼ N−1

(
∞∑

k=0

ζ
σ3
4 Ãkζ

−
σ3
4 ζ−k

)
N, (2.37)
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where

Ã0 =

(
1 0

A1,12 1

)
, and Ãk =

(
1 0

A1,12 1

)
Ak, for k ≥ 1.

Now, using the facts that Ã0,11 = Ã0,22 = 1, that Ã0,12 = 0 and that Ã0,21 = Ã1,12 = A1,12 we
find,

∞∑

k=0

ζ
σ3
4 Ãkζ

−
σ3
4 ζ−k

=
∞∑

k=0

[(
0 0

Ãk,21 0

)
ζ−k− 1

2 +

(
0 Ãk,12

0 0

)
ζ−k+ 1

2 +

(
Ãk,11 0

0 Ãk,22

)
ζ−k

]

= I + A1,12

(
0 1
1 0

)
ζ−1/2 +

(
Ã1,11 0

0 Ã1,22

)
ζ−1

+

∞∑

k=1

[(
0 Ãk+1,12

Ãk,21 0

)
ζ−k− 1

2 +

(
Ãk+1,11 0

0 Ãk+1,22

)
ζ−k−1

]
.

Inserting this into (2.37) and using (1.16) we arrive at,

Ψ̂(ζ;x, T ) ∼ I − hσ3ζ
−1/2 +

1

2

(
Ã1,11 + Ã1,22 i(Ã1,11 − Ã1,22)

−i(Ã1,11 − Ã1,22) Ã1,11 + Ã1,22

)
ζ−1

+
1

2

∞∑

k=1

[(
qk irk

irk −qk

)
ζ−k− 1

2 +

(
vk iwk

−iwk vk

)
ζ−k−1

]
, (2.38)

where h = A1,12 and where the qk, rk, vk, and wk can be written down explicitly in terms of Ãk

and Ãk+1. Now, note that since detΦ ≡ 1 (see Remark 2.2) and since, by (2.5),

det Φ = 1 + (A1,11 + A1,22)ζ
−1 + O(ζ−2), as ζ → ∞,

we have that A1,22 = −A1,11. This together with the facts that Ã1,11 = A1,11 and Ã1,22 =
A2

1,12 + A1,22 yields,

Ã1,11 + Ã1,22 = A2
1,12 = h2, Ã1,11 − Ã1,22 = 2A1,11 − A2

1,12 = y.

Inserting this into (2.38) the proposition is proven. 2

The idea is now to show that Ψ satisfies the linear system of differential equations (1.18)–
(1.21) with y given by (2.35), so that by compatibility of the Lax pair this y is a solution to
the P 2

I equation (1.4). Since by Lemma 2.3 the functions A1,11 and A1,12 are real-valued and
pole-free for x, T ∈ R we have that y itself is real-valued and pole-free for x, T ∈ R, so that the
first part of Theorem 1.1 is proven.

Proof of Theorem 1.1 (i). Recall from the above discussion that we need to show that
the matrix valued functions (note that, by Lemma 2.3 (iii) and (2.32), Ψ is differentiable with
respect to x)

U =
∂Ψ

∂ζ
Ψ−1 and W =

∂Ψ

∂x
Ψ−1, (2.39)
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are of the form (1.19) and (1.21), respectively, with y given by (2.35). Observe that, since Ψ
has constant jump matrices, the derivatives ∂Ψ

∂ζ and ∂Ψ
∂x have the same jumps as Ψ, and hence

U and W are entire.
First, we focus on U . By (2.33),

U = −∂θ

∂ζ
ζ−

σ3
4

(
NΨ̂σ3Ψ̂

−1N−1
)

ζ
σ3
4 +

(
O(ζ−1) O(ζ−2)
O(ζ−1) O(ζ−1)

)
, as ζ → ∞. (2.40)

Since det Φ ≡ 1 we obtain from (2.32) and (2.33) that det Ψ̂ ≡ 1, as well. Then, it is easy to
verify that

Ψ̂σ3Ψ̂
−1 =

(
1 + 2Ψ̂12Ψ̂21 −2Ψ̂11Ψ̂12

2Ψ̂21Ψ̂22 −1 − 2Ψ̂12Ψ̂21

)
≡
(

Q11 −iQ12

−iQ21 −Q11

)
,

and hence, by (1.16),

NΨ̂σ3Ψ̂
−1N−1 =

(
1
2(Q21 − Q12) −1

2(Q21 + Q12) − Q11

1
2(Q21 + Q12) − Q11

1
2(Q12 − Q21)

)
. (2.41)

The asymptotics of the functions Q11, Q12 and Q21 at infinity follow from the asymptotic be-
havior (2.34) of Ψ̂. We find, as ζ → ∞,

Q11 = 1 +
1

2
y2ζ−2 +

(
yw1 −

1

2
r2
1

)
ζ−3 + O(ζ−4), (2.42)

Q12 = yζ−1 + (r1 − yh)ζ−3/2 +
(1
2
yh2 − hr1 + w1

)
ζ−2

+
1

8
tζ−5/2 + uζ−3 + vζ−7/2 + O(ζ−4), (2.43)

Q21 = yζ−1 − (r1 − yh)ζ−3/2 +
(1
2
yh2 − hr1 + w1

)
ζ−2

− 1

8
tζ−5/2 + uζ−3 − vζ−7/2 + O(ζ−4), (2.44)

where t, u and v are some functions of x and T . Inserting (2.41)–(2.44) into (2.40) and using
the fact that,

∂θ

∂ζ
=

1

30
ζ5/2 − 1

2
Tζ1/2 +

1

2
xζ−1/2,

it is straightforward to check that,

U =
1

240

(
aζ + t 8ζ2 + 8yζ + b + eζ−1

8ζ3 − 8yζ2 + cζ + d −aζ − t

)
+

(
O(ζ−1) O(ζ−2)

O(ζ−1) O(ζ−1)

)
,

with

a = 8r1 − 8yh, (2.45)

b = 4y2 − 120T + 4yh2 − 8hr1 + 8w1, c = 4y2 − 120T − 4yh2 + 8hr1 − 8w1, (2.46)

d = 8yw1 − 4r2
1 + 120x + 120yT − 8u, e = 8yw1 − 4r2

1 + 120x − 120yT + 8u. (2.47)

Since U is entire, it contains no negative powers of ζ. In particular e = 0, so that

d = d + e = 16yw1 − 8r2
1 + 240x. (2.48)
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We now have shown that,

U =
1

240

(
aζ + t 8ζ2 + 8yζ + b

8ζ3 − 8yζ2 + cζ + d −aζ − t

)
, (2.49)

where a, b and c are given by (2.45) and (2.46), and where d is given by (2.48).
Next, we consider W . Observe that by (2.33),

W = ζ−
σ3
4 N

∂Ψ̂

∂x
Ψ̂−1N−1ζ

σ3
4 − ∂θ

∂x
ζ−

σ3
4

(
NΨ̂σ3Ψ̂

−1N−1
)

ζ
σ3
4 . (2.50)

From (2.34) we obtain

ζ−
σ3
4 N

∂Ψ̂

∂x
Ψ̂−1N−1ζ

σ3
4 = ζ−

σ3
4 N

(
−hxσ3ζ

−1/2 + O(ζ−1)
)

N−1ζ
σ3
4

=

(
0 0
hx 0

)
+ O(ζ−1/2), (2.51)

where hx denotes the derivative of h with respect to x. Further, using (2.41)–(2.44) together
with the fact that ∂θ

∂x = ζ1/2, we have

−∂θ

∂x
ζ−

σ3
4

(
NΨ̂σ3Ψ̂

−1N−1
)

ζ
σ3
4 =

(
0 1

ζ − y 0

)
+ O(ζ−1). (2.52)

Inserting (2.51) and (2.52) into (2.50), and using the fact that W is entire (so that W contains
no negative powers of ζ) we arrive at,

W =

(
0 1

ζ + (hx − y) 0

)
. (2.53)

We will now complete the proof by determining the functions a, b, c, d, t and hx exclusively
in terms of y, yx, yxx, and yxxx, using the compatibility condition

∂2Ψ

∂ζ∂x
=

∂2Ψ

∂x∂ζ
.

This condition is equivalent to
∂U

∂x
− ∂W

∂ζ
+ UW − WU = 0 and leads, after a straightforward

calculation, to

C0ζ
2 + C1ζ + C2 = 0,

where

C0 =

(
8(hx + y) 0

−8yx − 2a 8(hx + y)

)
, (2.54)

C1 =

(
ax + 8y(hx − y) + b − c 8yx + 2a

cx − 2a(hx − y) − 2t −ax − 8y(hx − y) − b + c

)
, (2.55)

C2 =

(
tx + b(hx − y) − d bx + 2t

dx − 2t(hx − y) − 240 −tx − b(hx − y) + d

)
. (2.56)
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Since C0 = 0 we deduce that hx = −y, and hence by (2.53) W is of the form (1.21), and that
a = −4yx. By (2.45) we then have,

r1 = −1

2
yx + yh. (2.57)

Further, since C1,11 = 0 we then obtain from (2.46) that

w1 =
1

4
yxx + y2 +

1

2
yh2 − 1

2
yxh. (2.58)

Inserting the expressions (2.57) and (2.58) for r1 and w1 into the expressions (2.45), (2.46) and
(2.48) for a, b, c and d, and using the fact that t = − 1

2bx (since C2,12 = 0) we arrive at

a = −4yx, b = 12y2 + 2yxx − 120T, (2.59)

c = −4y2 − 2yxx − 120T, d = 16y3 − 2y2
x + 4yyxx + 240x, (2.60)

t = −12yyx − yxxx. (2.61)

Inserting the latter equations into (2.49) we have that U is of the form (1.19). Note that the
fact that y satisfies the P 2

I equation now follows from C2,11 = 0. This proves the first part of
the theorem. 2

Remark 2.6 Note that, by Lemma 2.3 (iii), we can safely differentiate y and h with respect to
x, as we did in the above proof.

3 Asymptotic behavior of y(x, T ) as x → ±∞
In this section we will determine for fixed T ∈ R the asymptotics (as x → ±∞) of the particular
solution y(x, T ) of the P 2

I equation with no poles on the real line as constructed in the previous
section and given by, cf. (2.35),

y = 2A1,11 − A2
1,12. (3.1)

Here, A1 is the matrix valued function appearing in the asymptotic expansion (2.5) for Φ. So,
it suffices to determine the asymptotics (as x → ±∞) of the first row of A1 which we will do by
applying the Deift/Zhou steepest-descent method [8, 9, 10, 11, 12] to the RH problem for Φ.

3.1 Rescaling of the RH problem and deformation of the jump contour

Let z0 = z0(x, T ) ∈ R (to be determined in Section 3.2) and let Γ̂ =
⋃4

j=1 Γ̂j be the oriented
contour through z0 as shown in Figure 2. Here, the dotted lines are in fact Γ2 and Γ4, see Figure
1, and are not part of the contour. The precise form of the contour Γ̂ (in particular of Γ̂2 and Γ̂4)
will be determined below. Now, introduce the 2 × 2 matrix valued function Y (ζ;x, T ) = Y (ζ)
as follows,

Y (ζ) ≡





Φ(|x|1/3ζ), for ζ ∈ I ∪ II ∪ III∪ IV,

Φ(|x|1/3ζ)

(
1 0

1 1

)
, for ζ ∈ V,

Φ(|x|1/3ζ)

(
1 0

−1 1

)
, for ζ ∈ VI,

(3.2)

where Φ is the solution of the RH problem for Φ, see Section 2.1, and where the sets I,II,. . .,VI
are defined by Figure 2. Then, it is straightforward to check, using (2.1)–(2.3), (2.5) and (1.16),
that Y satisfies the following conditions.
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Figure 2: The contour Γ̂ =
⋃4

j=1 Γ̂j . Note that the dotted lines are not part of the contour.

RH problem for Y :

(a) Y is analytic in C \ Γ̂.

(b) Y satisfies the same jump relations on Γ̂ as Φ does on Γ. Namely,

Y+(ζ) = Y−(ζ)

(
1 1
0 1

)
, for ζ ∈ Γ̂1, (3.3)

Y+(ζ) = Y−(ζ)

(
1 0
1 1

)
, for ζ ∈ Γ̂2 ∪ Γ̂4, (3.4)

Y+(ζ) = Y−(ζ)

(
0 1
−1 0

)
, for ζ ∈ Γ̂3. (3.5)

(c) Y has the following behavior as ζ → ∞,

Y (ζ) ∼
(

I +
∞∑

k=1

Ak|x|−k/3ζ−k

)
ζ−

σ3
4 |x|−

σ3
12 Ne−|x|7/6θ̂(ζ;x,T )σ3 , (3.6)

where

θ̂(ζ;x, T ) =
1

105
ζ7/2 − 1

3
|x|−2/3Tζ3/2 + sgn(x)ζ1/2. (3.7)

3.2 Normalization of the RH problem for Y

In order to normalize the RH problem for Y at infinity we proceed as Kapaev in [24]. Introduce
a function g(ζ;x, T ) = g(ζ) of the following form,

g(ζ) = c1(ζ − z0)
7/2 + c2(ζ − z0)

5/2 + c3(ζ − z0)
3/2. (3.8)

where z0 and the coefficients c1, c2, and c3 are to be chosen independent of ζ (but possibly
depending on x and T ) in such a way that

g(ζ) = θ̂(ζ) + O(ζ−1/2), as ζ → ∞. (3.9)
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Figure 3: Contour plot of Re g for T = 0 and x > 0. The shaded areas indicate where Re g > 0.

If we let z0 = z0(x, T ) be the real solution of the following third degree equation (which has
one real and two complex conjugate solutions),

z3
0 = −sgn(x)48 + 24z0|x|−2/3T, for x 6= 0, (3.10)

and if we set

c1 =
1

105
, c2 =

1

30
z0, c3 =

1

36
z2
0 − sgn(x)

2

3z0
, (3.11)

then it is straightforward to verify, using (3.7) and (3.8), that for ζ sufficiently large,

g(ζ) = θ̂(ζ) +

∞∑

k=0

bkζ
−k− 1

2 , (3.12)

for some unimportant bk’s which depend only on x and T and which can be calculated explicitly.
The latter equation yields that for ζ large enough,

e|x|
7/6(g(ζ)−θ̂(ζ))σ3 = I +

∞∑

k=1

dkσ
k
3ζ−k/2, (3.13)

where the coefficients dk can also be calculated explicitly. Further, observe that by (3.13) we
have det(I +

∑∞
k=1 dkσ

k
3ζ−k/2) = 1, which yields

d2 =
1

2
d2
1. (3.14)

Another crucial feature of the g-function is stated in the following proposition, which is
important for the choice of the contour Γ̂, and which is illustrated by Figure 3.

Proposition 3.1 There exist constants c > 0, ε0 > 0 and x0 > 0 such that for x ≥ x0,

Re g(ζ) > c|ζ − z0|7/2 > 0, as Arg(ζ − z0) = 0, (3.15)

Re g(ζ) < −c|ζ − z0|7/2 < 0, as 6π
7 − ε0 ≤ |Arg(ζ − z0)| ≤ 6π

7 + ε0. (3.16)

Proof. With ζ = z0 + reiφ we have

r−7/2Re g(ζ) = c1 cos(7φ/2) + c2 cos(5φ/2)r−1 + c3 cos(3φ/2)r−2, (3.17)
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where by using (3.10) and (3.11)

c1 =
1

105
, c2 = − 1

15
sgn(x)61/3 + O(x−2/3), c3 = 6−1/3 + O(x−2/3), (3.18)

as |x| → ∞. Observe that the right hand side of (3.17) is a second degree equation in r−1, so
that it is straightforward to check that,

min(r−7/6Re g(ζ)) = c1 −
c2
2

4c3
=

1

350
+ O(x−2/3), as φ = 0, (3.19)

which yields already (3.15), and that

max(r−7/6Re g(ζ)) = c1 cos(7φ/2) − c2
2

4c3

cos2(5φ/2)

cos(3φ/2)
, as π/3 < |φ| < π. (3.20)

Further, since

cos(7φ/2) = −1, −cos2(5φ/2)

cos(3φ/2)
< 1.31, as φ = 6π

7 ,

there exists, by continuity in φ, a constant ε0 > 0 sufficiently small such that the following
estimates hold,

cos(7φ/2) < −0.99, −cos2(5φ/2)

cos(3φ/2)
< 1.31, as 6π

7 − ε0 ≤ |φ| ≤ 6π
7 + ε0.

This implies by (3.20) and (3.18) that

max(r−7/6Re g(ζ)) < −0.99c1 + 1.31
c2
2

4c3
< −0.00069 + O(x−2/3),

as 6π
7 − ε0 ≤ |φ| ≤ 6π

7 + ε0, (3.21)

which proves (3.16). 2

Remark 3.2 Recall that the contour Γ̂ (in particular Γ̂2 and Γ̂4) is not yet explicitly defined.
For now, we choose Γ̂2 and Γ̂4 to lie in the sectors where (3.16) holds.

We are now ready to normalize the RH problem for Y at infinity. Let S(ζ;x, T ) = S(ζ) be
the following 2 × 2 matrix valued function,

S(ζ) =

(
1 0

d1|x|1/6 1

)
Y (ζ)e|x|

7/6g(ζ)σ3 , for ζ ∈ C \ Γ̂, (3.22)

where Y , g and d1 are given by (3.2), (3.8) and (3.13), respectively. It is then straightforward
to check, using (3.3)–(3.5), using the fact that g+(ζ) + g−(ζ) = 0 for ζ ∈ (−∞, z0), and using
(3.6), (3.13), (1.16) and (3.14), that S satisfies the following conditions.

RH problem for S:

(a) S is analytic in C \ Γ̂.
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(b) S+(ζ) = S−(ζ)vS(ζ) for ζ ∈ Γ̂, where vS is given by,

vS(ζ) =





(
1 e−2|x|7/6g(ζ)

0 1

)
, for ζ ∈ Γ̂1,

(
1 0

e2|x|7/6g(ζ) 1

)
, for ζ ∈ Γ̂2 ∪ Γ̂4,

(
0 1

−1 0

)
, for ζ ∈ Γ̂3.

(3.23)

(c) S has the following behavior as ζ → ∞,

S(ζ) =

[
I +

(
1 0

d1|x|1/6 1

)
A1

(
1 0

−d1|x|1/6 1

)
|x|−1/3ζ−1

+

(
1
2d2

1 −d1|x|−1/6

∗ ∗

)
ζ−1 + O(ζ−2)

]
ζ−

σ3
4 |x|−

σ3
12 N, (3.24)

where the *’s denote unimportant functions depending only on x and T .

Remark 3.3 Note that by Proposition 3.1 the jump matrix vS on Γ̂1, Γ̂2 and Γ̂4 converges
exponentially fast (as x → ±∞) to the identity matrix.

3.3 Parametrix for the outside region

From Remark 3.3 we expect that the leading order asymptotics of Φ will be determined by a
matrix valued function P (∞) (which will be referred to as the parametrix for the outside region)
with jumps only on (−∞, z0) satisfying there the same jump relation as S does. Let

P (∞)(ζ) = |x|−
σ3
12 (ζ − z0)

−
σ3
4 N, for ζ ∈ C \ (−∞, z0]. (3.25)

Then, using (1.16) and the fact that (ζ − z0)
σ3
4
− (ζ − z0)

−
σ3
4

+ = e−
πi
2

σ3 for ζ ∈ (−∞, z0), we obtain
that

P
(∞)
+ (ζ) = P

(∞)
− (ζ)N−1(ζ − z0)

σ3
4
− (ζ − z0)

−
σ3
4

+ N

= P
(∞)
− (z)

(
0 1
−1 0

)
, for ζ ∈ (−∞, z0). (3.26)

Before we can do the final transformation S 7→ R we need to do a local analysis near z0 since
the jump matrices for S and P (∞) are not uniformly close to each other in the neighborhood of
z0.

3.4 Parametrix near z0

In this subsection, we construct the parametrix near z0. We surround the fixed point ẑ0, see
(1.2), by a disk Uδ = {z ∈ C : |z − ẑ0| < δ} with radius δ > 0 (sufficiently small and which
will be determined in Proposition 3.4 below as part of the problem) and we seek a 2 × 2 matrix
valued function P (ζ;x, T ) = P (ζ) satisfying the following conditions.
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RH problem for P :

(a) P is analytic in Uδ \ Γ̂.

(b) P+(ζ) = P−(ζ)vS(ζ) for ζ ∈ Γ̂ ∩ Uδ, where vS is the jump matrix for S given by (3.23).

(c) P (ζ)P (∞)(ζ)−1 = I + O(x−1), as x → ±∞, uniformly for ζ ∈ ∂Uδ.

We start with constructing a matrix valued function satisfying conditions (a) and (b) of the
RH problem. This is based upon the auxiliary RH problem for M with jumps on the contour
Γσ, see Section 2.2. The idea is that, by (2.7)–(2.9), the matrix valued function M(|x|7/9f(z))
will satisfy conditions (a) and (b) of the RH problem for P if we have appropriate biholomorphic
maps f on Uδ which satisfy the following proposition.

Proposition 3.4 There exists x1 ≥ x0 > 0 and δ > 0 such that for all |x| ≥ x1 there are
biholomorphic maps f = f(· ;x, T ) on Uδ satisfying the following conditions.

1. There exists a constant c0 such that for all ζ ∈ Uδ and |x| ≥ x1 the derivative of f can be
estimated by: c0 < |f ′(ζ)| < 1/c0 and | arg f ′(ζ)| < ε0 with ε0 defined in Proposition 3.1.

2. f(Uδ ∩ R) = f(Uδ) ∩ R and f(Uδ ∩ C±) = f(Uδ) ∩ C±.

3. 2
3f(ζ)3/2 = g(ζ) for ζ ∈ Uδ \ (−∞, z0].

Proof. One can verify, using (3.18), that there exists x1 ≥ x0 > 0 sufficiently large and δ > 0
sufficiently small, such that for all |x| ≥ x1 the function f(ζ;x, T ) = f(ζ) defined by

f(ζ) =

(
3

2
c3 +

3

2
c1(ζ − z0)

2 +
3

2
c2(ζ − z0)

)2/3

(ζ − z0)

=

(
3

2

g(ζ)

(ζ − z0)3/2

)2/3

(ζ − z0), (3.27)

is analytic for ζ ∈ Uδ, and that f is uniformly (in x and ζ) bounded in Uδ. By Cauchy’s theorem
for derivatives we then also have that f ′′ is uniformly (in x and ζ) bounded in Uδ for a smaller
δ. Then, there exists a constant C > 0 such that

|f ′(ζ) − f ′(z0)| =

∣∣∣∣
∫ ζ

z0

f ′′(s)ds

∣∣∣∣ ≤ C|ζ − z0|, for all |x| ≥ x1 and ζ ∈ Uδ.

Since, by (3.18), f ′(z0) = (3
2c3)

2/3 ≥ const > 0 for |x| large enough, this yields that for all
|x| ≥ x1 (for a possible larger x1) the functions f are injective and hence biholomorphic in Uδ

(for a possible smaller δ) and that they satisy part 1 of the proposition.
The second part follows from the first part (for a possible smaller δ). The last part follows

from the second part and from (3.27). 2

Now, let |x| ≥ x1 and σ ∈ (π
3 , π) (we will specify our choice of σ below), and recall that the

contour Γ̂ is not yet explicitly defined. We suppose that Γ̂ is defined in Uδ as the pre-image of
Γσ ∩ f(Uδ) under the map f (so Γ̂ depends on the parameters x and σ), where Γσ = ∪4

j=1Γ
σ
j

is the jump contour for M , as defined by (2.6). Then, we immediately have, by (2.7)-(2.9) and
part 3 of Proposition 3.4, that M(|x|7/9f(ζ)) satisfies conditions (a) and (b) of the RH problem
for P . Moreover, for any invertible analytic matrix valued function E in Uδ, one has that

P (ζ) = E(ζ)M(|x|7/9f(ζ)), for ζ ∈ Uδ \ Γ̂, (3.28)
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satisfies also conditions (a) and (b) of the RH problem for P . We need E to be such that the
matching condition (c) is satisfied as well. Let

E(ζ) = |x|−
σ3
12 (ζ − z0)

−
σ3
4 (|x|7/9f(ζ))

σ3
4 , (3.29)

which of course is an invertible analytic matrix valued function in Uδ. Then, using (2.10), (2.11)
and (3.25) we have,

P (ζ)P (∞)(ζ)−1 = I + ∆1|x|−1 + ∆2|x|−4/3 + O
(
|x|−7/3

)
, (3.30)

as x → ±∞ uniformly for ζ ∈ ∂Uδ and σ in compact subsets of (π
3 , π), where ∆1 and ∆2 are

given by

∆1 =
1

f(ζ)

(
ζ − z0

f(ζ)

)1/2 (
0 0
t1 0

)
, ∆2 =

1

f(ζ)2

(
ζ − z0

f(ζ)

)−1/2 (
0 t̂1
0 0

)
, (3.31)

and where t1 and t̂1 are unimportant constants given by (2.12). We then have shown that P
defined by (3.28) satisfies the conditions of the RH problem for P . This ends the construction
of the parametrix near z0.

3.5 Final transformation

We will now perform the final transformation. Recall that the contour Γ̂ is still not yet explicitly
defined. We will now define it in terms of the (sufficiently large) parameter x.

Consider the fixed point ẑ0 + δe
6πi
7 (which depends only on sgn(x)) on ∂Uδ. Since z0 → ẑ0

as x → ±∞, see Remark 1.2, there exists x2 ≥ x1 sufficiently large such that for all |x| ≥ x2,

6π

7
− ε0 < arg(ẑ0 + δe

6πi
7 − z0) <

6π

7
+ ε0,

where ε0 is defined in Proposition 3.1. From Proposition 3.4 we then know that for |x| ≥ x2

there exists σ = σ(x) ∈ ( 6π
7 − 2ε0,

6π
7 + 2ε0) such that f−1(Γσ

2 ) ∩ ∂Uδ = {ẑ0 + δe
6πi
7 }. By the

symmetry f(ζ) = f(ζ) we then also have f−1(Γσ
4 ) ∩ ∂Uδ = {ẑ0 + δe−

6πi
7 }. We now define Γ̂ in

Uδ (for |x| ≥ x2) as the inverse f -image of the contour Γσ. Outside Uδ, we take Γ̂1 ∪ Γ̂3 = R,
Γ̂2 = {ẑ0 + te6πi/7 : t ≥ δ}, and Γ̂4 = {ẑ0 + te−6πi/7 : t ≥ δ}. Note that by Proposition 3.1,

Re g(ζ) > c|ζ − z0|7/2 for ζ ∈ Γ̂1 \ Uδ, (3.32)

Re g(ζ) < −c|ζ − z0|7/2 for ζ ∈ (Γ̂2 ∪ Γ̂4) \ Uδ. (3.33)

Further define a contour ΓR as ΓR = Γ̂ ∪ ∂Uδ . This leads to Figure 4. Note that ΓR ∩ Uδ

depends on x. However, the part of ΓR outside Uδ is independent of x.

Now, we are ready to do the final transformation S 7→ R. Define a 2 × 2 matrix valued
function R(ζ;x, T ) = R(ζ) for ζ ∈ C \ ΓR as

R(ζ) =

{
S(ζ)P (ζ)−1, for ζ ∈ Uδ \ ΓR,

S(ζ)P (∞)(ζ)−1, for ζ elsewhere,
(3.34)

where P is the parametrix near z0 given by (3.28), P (∞) is the parametrix for the outside region
given by (3.25), and S is the solution of the RH problem for S.

By definition, R has jumps on the contour ΓR. However, S and P have the same jumps on
ΓR ∩Uδ. Further, S and P (∞) satisfy the same jump relation on (−∞, ẑ0 − δ). This yields that
R has only jumps on the reduced system of contours Γ̂R (which is independent of x), shown in
Figure 5.

Using (3.34), (3.24) and (3.25) one can now show that R is a solution of the following RH
problem on the contour Γ̂R.
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Figure 4: The contour ΓR = Γ̂R ∪ ∂Uδ . The part of ΓR inside Uδ depends on x. The rest of ΓR

is independent of x.

RH problem for R:

(a) R is analytic in C \ Γ̂R.

(b) R+(ζ) = R−(ζ)vR(ζ) for ζ ∈ Γ̂R, with vR given by

vR(ζ) = P (∞)(ζ)vS(ζ)P (∞)(ζ)−1, for ζ ∈ Γ̂R \ ∂Uδ. (3.35)

vR(ζ) = P (ζ)P (∞)(ζ)−1, for ζ ∈ ∂Uδ. (3.36)

(c) R(ζ) = I + O(ζ−1) as ζ → ∞.

Remark 3.5 Observe that by (3.30), (3.32) and (3.33) we have as x → ±∞,

vR(ζ) =

{
I + ∆1|x|−1 + ∆2|x|−4/3 + O(|x|−7/3), uniformly for ζ ∈ ∂Uδ,

I + O(e−c|x|7/6|ζ−z0|7/2
) uniformly for ζ ∈ Γ̂R \ ∂Uδ ,

(3.37)

for some constant γ > 0, and where ∆1 and ∆2 are given by (3.31). As in [8, 9, 10], this yields
that R itself is uniformly close to the identity matrix,

R(ζ) = I + O(x−1), as x → ±∞, uniformly for ζ ∈ C \ Γ̂R.

Remark 3.6 Since R(ζ) = S(ζ)P (∞)(ζ)−1 for ζ large one can use (3.24), (3.25), and the fact

that (ζ − z0)
σ3
4 = ζ

σ3
4

[
I − 1

4z0σ3ζ
−1 + O(ζ−2)

]
as ζ → ∞, to strengthen condition (c) of the

RH problem for R to

R(ζ) = I +
R1

ζ
+ O(ζ−2), as ζ → ∞, (3.38)

where R1 is a 2 × 2 matrix valued function depending on x and T with (1, 1) and (1, 2) entries
given by,

R1,11 = −z0

4
+

1

2
d2
1 + |x|−1/3A1,11 − d1|x|−1/6A1,12, (3.39)

R1,12 = −d1|x|−1/6 + |x|−1/3A1,12. (3.40)

From (3.37) it follows, as in [9], that

R1 = −Res (∆1, z0)|x|−1 − Res (∆2, z0)|x|−4/3 + O(|x|−7/3), as x → ±∞,

so that by (3.31),

R1,11 = O(|x|−7/3), R1,12 = O(|x|−4/3), as x → ±∞. (3.41)
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Figure 5: The reduced system of contours Γ̂R independent of x.

3.6 Proof of Theorem 1.1 (ii)

We now have all the necessary ingredients to prove the second part of the main theorem.

Proof of Theorem 1.1 (ii). Recall that y = 2A1,11 − A2
1,12. Using (3.39) and (3.40) one can

then write y in terms of the (1, 1) and (1, 2) entries of R1,

2A1,11 =
1

2
z0|x|1/3 + 2|x|1/3R1,11 − d2

1|x|1/3 + 2d1|x|1/6A1,12,

A2
1,12 = |x|2/3R2

1,12 − d2
1|x|1/3 + 2d1|x|1/6A1,12,

so that

y =
1

2
z0|x|1/3 + 2|x|1/3R1,11 − |x|2/3R2

1,12. (3.42)

Inserting (3.41) into the latter equation we obtain precisely (1.5). This finishes the proof of
Theorem 1.1. 2

Acknowledgements

We are grateful to Arno Kuijlaars for careful reading and very useful remarks and discussions.
We also like to thank Maurice Duits for stimulating discussions.

The authors are supported by FWO research project G.0455.04, by K.U.Leuven research
grant OT/04/24, by INTAS Research Network NeCCA 03-51-6637, and by the European Sci-
ence Foundation Program Methods of Integrable Systems, Geometry, Applied Mathematics
(MISGAM). The second author is Postdoctoral Fellow of the Fund for Scientific Research -
Flanders (Belgium).

References

[1] P. Bleher and A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert
problem, and universality in the matrix model, Ann. Math. 150, no. 1, (1999), 185–266.

[2] P. Bleher and A. Its, Double scaling limit in the random matrix model: the Riemann-Hilbert
approach, Comm. Pure Appl. Math. 56, no. 4, (2003), 433–516.

25
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sembles and the general Painlevé II equation, arxiv:math-ph/0508062, to appear in Ann.
Math.

[7] T. Claeys and M. Vanlessen, Universality of a double scaling limit near singular edge points
in random matrix models, arxiv:math-ph/0607043, to appear in Comm. Math. Phys.

[8] P. Deift, “ Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach”,
Courant Lecture Notes 3, New York University, 1999.

[9] P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou, Uniform as-
ymptotics for polynomials orthogonal with respect to varying exponential weights and ap-
plications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52,
no. 11, (1999), 1335–1425.

[10] P. Deift, T. Kriecherbauer, K.T-R McLaughlin, S. Venakides, and X. Zhou, Strong asymp-
totics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl.
Math. 52, no. 12, (1999), 1491–1552.

[11] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems.
Asymptotics for the MKdV equation, Ann. Math. 137, no. 2, (1993), 295–368.

[12] P. Deift and X. Zhou, Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math.
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no. 3, (1992), 601–622.

[18] P.J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys B 402, no. 3,
(1993), 709–728.

[19] R. Gordoa and A. Pickering, Nonisospectral scattering problems: a key to integrable hier-
archies, J. Math. Phys. 40, no. 11, (1999), 5749–5786.

26



[20] T. Grava and C. Klein, Numerical solution of the small dispersion limit of Korteweg-de
Vries and Witham equations, arxiv:math-ph/0511011.

[21] A.R. Its and V.Yu. Novokshenov, “ The isomonodromic deformation method in the theory
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analogue to the first Painlevé equation, arxiv:nlin.SI/0507026.

[27] N.A. Kudryashov and M.B. Soukharev, Uniformization and transcendence of solutions for
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