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THE EXISTENCE OF ALMOST TRANSLATION INVARIANT

ULTRAFILTERS ON ANY SEMIGROUP

TALIN PAPAZYAN

(Communicated by Dennis Burke)

Abstract. We present a short ultrafilter proof of a result which has applications

in combinatorial number theory and which has previously relied on the theory

of compact semigroups.

The existence of non-fixed ultrafilters p on N such that whenever A g p one

has {x G N: A-x G p} G p , called almost translation invariant by Galvin, has

always been of interest because it is closely related to the validity of Graham-

Rothschild conjecture. In 1974, the conjecture was proved by Hindman [5] in

ZFC. Combined with the proof in [4] which used the continuum hypothesis this

yielded a CH proof of the existence of almost translation invariant ultrafilters.

In 1975, Glazer proved their existence without using the continuum hypothesis

[2]. His approach was to define an addition on ultrafilters on a semigroup S, so

that the almost translation invariant ultrafilters become idempotents and then

use Ellis' theorem (Lemma 2.9 of [3]) about the existence of idempotents in

compact right topological semigroups. In this paper, we prove directly the exis-

tence of such ultrafilters on any cancellative semigroup using ultrafilter approach

only.

1. Definition. Let (S,+) be a semigroup, not necessarily commutative, and let

ssf , 31 be filters on S. For any A ç S we define

QsJA) = {xgS: A-xGtf),

sf +& = {ACS:Sl<g{A)€äf},

where A-x = {yGS:y + xGA}.

The symbol + is just a notion for the above described operation on filters.

The fact that $f +3§ is a filter follows from steps (i) and (iii) of the following

lemma. (In [1], Lemma 5.15 shows that $f +£& is a filter on S and that +

is an associative operation on the set of filters. In the following discussion the

associativity of + is not needed.) All parts of the lemma are easy to prove.
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2. Lemma. Let s# ,¿% be arbitrary filters on S.

(i) VA,BÇS Qs/ (ADB) = Q/y n Q^ (B).
(ii) V^ç5 Q^(AC) ç (Si^lA))' ;  equality holds if s/ is an ultrafilter.

(iii) \fA,BçS,AÇB^Qs/(A)çÇis/(B).
(iv) s/ ç gg => y A C S Çlw(A) ç Qa(À) ■
(v) VyGSJAÇsnrJA-y) = Cis/(A)-y.

(vi) V^CSO^) = Qy(Û^).

3. Theorem. Le/ (5,+) be any semigroup, not necessarily commutative. Then

there exists an ultrafilter p on S such that VA G p O. (A) G p. If S is can-

cellative then there also exists a nonfixed ultrafilter p having the same property.

Proof. Zorn's Lemma gives the existence of a filter <^ax maximal with respect

to the property V'A g J^ax ßy- (A) g ^ax. (If S is cancellative, then the filter

S?~ = {A ç S: Ac is finite) has this property, so we may choose ,^ax to refine

& ; then any ultrafilter refining ^ is nonfixed.) Our aim now is to show

that J?"„„ is an ultrafilter. Let p be an ultrafilter containing .5F ov. Consider
iiiuA mux

^ = {ACS: Q. (A) g J^ax}. Using Lemma 2 we can show that !? is a filter

containing &     and VACS
max

Çîy(A) = {yGS:Çip{A-y)G9mJ
= {yGS: Qp(A) -yGS^J (Lemma 2(v))

so that V/leF Çl7(A) G S?  which implies that ^ax = 9e from the maximal-

ly of J^ax. Hence,

(1) VK5^ymas#fi^)^ma,

From Lemma 2 (ii) and ( 1) we can easily deduce that VA G p, VM G &~m!LX,

M nil (A) / 0 so that we can consider the filter SF' generated by {Q (A)C\M,

A G p, M € ■^maJ ■ Clearly 9T1 contains ^ax. Now, VA G p we have

Qp(A) G SF', that is A G SF' + p and since p is an ultrafilter it follows that

& + p = p. Next, using Lemma 2, we show that, for any A G p and any

M g .^ax, Cl    (Çi(A) n M) G F' : indeed,

and

n^fnjA) n m) = n7,+p(A) n çirjM) = np(A) n nr,(M)

Çl    (M)DÇi     (M).

Thus for B G 9*, Q^, (B)ef' and the maximality of ^ax gives 9~' = ^max.

So, for ail A G p, Ùp(A) G 5^ax, which implies that «5^ax = p by (1). Thus

f?     is an ultrafilter.   D
max
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In conclusion, we should point out that the structure of the above proof is

basically the same as that of Ellis' algebraic proof though the details differ.
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