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Abstract. In this paper, we study a fourth order semilinear parabolic equation on
the infinite real line. We show that in a certain parameter range, this equation has
propagating front solutions (solutions tending to 0 at + co and advancing to the
right with a speed ¢) which leave behind them a periodic pattern in the laboratory
frame. This is thus an example of spontaneous pattern formation.
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1. Introduction

In this paper, we discuss the existence problem for a certain type of parabolic
equation motivated by the physical problem of dendrite formation. It has been
pointed out (for several years, by now) that some of the parabolic (integro-)
differential equations which are considered in connection with solidification and
dendrite formation show, at least in numerical, and also in some physical
experiments a very intriguing behaviour. One observes, in general, a one-parameter
family of propagating fronts, and it seems that “most” initial data converge to a
particular front, thereby leading to a selection of the propagation speed. It is
furthermore conjectured that this selected speed coincides with that speed for which
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the travelling front happens to be marginally stable under linear perturbations. This
subject, and the corresponding conjecture, have been studied by many authors. In
particular, J. Langer has given a careful analysis of the situation. See [ 2] for a review
and Langer and Miiller-Krumbhaar [4] for a detailed analysis of a more realistic
equation.

The conjectures mentioned above have been corroborated in a beautiful, and
totally independent analysis of a related problem by Aronson and Weinberger [1].
See also the work by Bramson [7]. They consider equations of the form

QU(x, 1) = 02U(x, 1) + f(U(x, 1)), (1.1
where
f(0y=0,/(1)=0,1(0)>0,f(U)> 0for Ue(0, 1).

(The standard example of such a function is f(U) = U — U3.) For these equations,
Aronson and Weinberger prove the existence of fronts and locate the marginal
speed. They further show the strong result that all positive initial conditions U 4(x)
with compact support (which do not die out as time advances) will eventually form a
front which moves with the marginal speed. Their techniques of proof rely on a
clever use of the maximum principle for the positive solutions of (1.1).

In dendrite formation, one observes a formation of sidebranches, ie., of
“modulations” of the shape of the tip of the dendrite as one moves back from the tip.
In this paper, we begin the study of a simple equation for which the formation of
fronts with modulated bulk behind the front has been conjectured. Thus these fronts
advance at some constant speed, and leave in the laboratory frame a pattern which,
as we shall see, resembiles a sinusoidal function. In marked contrast, Egs. (1.1) cannot
lead to such fronts, since they only form fronts which are constant in the bulk. It
should also be clear that the maximum principle cannot be applied because the
solution will turn out not to be positive in the bulk, and because the equation is
fourth order.

The simplest equation with a modulated front seems to be the complex amplitude
equation

o U=0aU+U-U|UP, (1.2)

which can be shown to form “spirals.” However, it seems that initial conditions with
compact support will all tend to the fixed phase solution, which is not modulated. Tt
seems to us that the Eq. (1.2) presents a somewhat less interesting problem than the
equation to be discussed below.

The equation we study here is

3 UG, D= (e — (1 + 83)U(x, t) — Ulx, 1)%, (1.3)

with UeR. This equation has been analyzed by Dee and Langer [3]. In the present
paper, we prove that for sufficiently small but positive ¢ Eq. (1.3) has a two-parameter
Samily of fronts, parametrized by the speed ¢ ( > 4) of the front and the periodicity w
(or the amplitude) of the pattern which is formed in the bulk. For convenience, we
restrict attention to the case ¢ — 4 = O(¢*/?) and 1 — w = Ofe). The estimates for the
general case would not be very different, and in fact somewhat easier, since the
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parameter range we consider includes the marginally stable case, whereas in the
other cases there seems to be no marginality present. In this paper, we prove the
existence of fronts for Eq. (1.3). Work on the linear stability analysis of these fronts is
in progress.

2. The Equation for the Front. Statement of the Main Theorem
Dee and Langer [3] consider the equation
0. U(x, 1) = (e~ (1 + 3)))U(x, 1) — U(x, 1)>, (2.1)

with UeR. We prefer to perform a trivial scaling and to consider the equation in the
form

0, U(x, 1) = (6 — (1 + 822U (x, t) — eU(x, t)>. (2.2)

The stationary solutions to Eq. (2.2) are those which do not depend on the time t. We
shall call them S(x), and in fact, they will depend, in addition to ¢ on a second
parameter, w, which will be the wavelength of their period. We shall not write this ¢
and o dependence explicitly. A front is a solution U of Eq. (2.2) which satisfies the
following special conditions: Define

Ulx, t) = W(x,nx — cnt), (2.3)
where ¢ =#?2, and assume U(x, t) solves Eq. (2.2). Decompose W(x,,x,) as

Wixy,xp) = ), €™ W,(x,), (2.4)

neZ

and decompose similarly the stationary solution

S = 3 emoxis, (2.5)

neZ

We say that Wis a front asymptotic to S and moving with speed nc if

lim W,(x,) =0, (2.6)
and
im W,(x,;)=3S,, (2.7

for all neZ. This means that in a frame moving with speed 7c, one sees at + oo the
zero solution of Eq. (2.2), while at — oo (i.e. in the variable x,!) one sees one of the
stationary solutions. Note that this also means that in the laboratory frame, the
front advances with speed #c, leaving behind a pattern which does not move.

How do these fronts look? For small ¢, and in the case w = 1, the fronts have
essentially the form

1 . .
Wixy, x,) = W(l(xz)e‘x‘ + I(xz)e™™), (2.8)



42 P. Collet and J.-P. Eckmann

where | is the real solution of the amplitude equation
Al +cl +1—-13 =0, (2.9
with the conditions I(— o) =1, I(+ o) =0, i{x) > 0 for all x.
Our main result is the

Main Theorem. For every K >0, for c >4 sufficiently close to 4, and for ¢>0
sufficiently small, there exist for every w satisfying

11—’ < Ke

a front asymptotic to a stationary solution with wavelength w and moving with speed
eY2¢. This solution is locally unique (modulo translations and a choice of phase).
For convenience, we shall assume ¢ < 41/10, cf. Eq. (5.18).

3. The Existence of Stationary Solutions

Before we can attack the front problem, we need to control the stationary sotutions.
In this section, we prove the existence of stationary solutions, and we bound them
appropriately. Setting the time derivative equal to zero, we see from (2.2) that the
stationary wave equation takes the form

&S — (1 + 82)28 — &S3 = 0. (3.1)

We look for real solutions of the form

Sx)=Y S,e", with S_,=§,eC, (3.2)
neZ
and S, =0 for even n. We may, and shall, impose in addition S, =S _,eR, thus
breaking the translation invariance of Eq. (3.1). This will also imply S_, = §,eR. A
very good approximation to S(x) is given by

8(x) = I'cos(wx), (3.3)
where I is the positive root of
(1 —w?)?=¢(1 —3I%/4). (34

This choice of I" solves the projection of Eq. (3.1) onto cos wx, (see below). We fix a
K >0, and we shall study the existence problem for stationary solutions and for
fronts only for w’s satisfying

0<(1—w?? < Kel. (3.5)

We expect the marginally stable fronts to lie in this parameter range. The restriction
of (3.5) to a small parameter range makes some of the estimates simpler, but seems
not essential. We now write S(x) = 3(x) + s(x), and we view s as the unknown for
which we solve the existence problem. The equation for s is

F3
es — (1 + 8225 — 38825 — 3685 — e5® — 8Tcos 3wx =0,
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since

83’—8§3—(1~w2)2§=r<8—

2 3
3e£ (- w2)2> COS WX — %cos 3wx. (3.6)

We decompose s as

s(x)= ) s,e"%, withs_,=5,eC,s,eR. (3.7

neZ

Obviously, s,=S, for n# + 1, and s, =8, —I'/2. We obtain the following
equations, for neZ,

5 22 3el?
(8“(1 —hnw ) )Sn_ 4 (Sn—2+2sn+sn+2)_6Rn(s9r)=Oa (38)
with
ir
Ry(s, )= ( Z SpSq + Z Spsq)
2 ptg=n—1 ptg=n+1
I—'3
+ Y 8SSe (03 + 0 —3)- (3.9
ptgt+r=n 8

We rewrite this system in the following form. For n = 1, using s, =s_, and Eq. (3.4),
we have

§;=—

2 (/35?2
4

szl g st Ry(s, r)> = G,(s). (3.10)

The cases n# + 1 lead to equations of the form
2

& ir
Snz_(l_n2w2)2_8+38F2/2< 4 (Sn—2+sn+2)+Rn(s5r)>EGn(S)' (311)

Choose now any p >0 and define
Ish =3 e""|s,. (3.12)

We denote by B, the space of sequences {s,,ncZ}, equipped with the above norm,
and we want to view Egs. (3.10),(3.11) as fixed point problem in this space. The terms
occurring in R, can then be bounded as follows: As an example,

Z & o Z SPSQ

< Z 8*ﬂ1P+qJ|Squ|

ne? ptq=n pgel
< X e Mis,le s, = s, (3.13)
p.geZ
Also, we have the inequalities
Y e sl e MY e s, (3.14)
nel - neZ

and

sl e "] (3.15)
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Combining these estimates, we get

1+¢2° 2eP
G < sl + —=—ls? + 57z s> (3.16)
and hence,
_ g2° g7 4 ¢ 2
E1GI S - Hsl+ ISP 4+ 57z 51, (3.17)

Since G, is multilinear, it is easy to calculate and estimate the tangent map, DG, and
one gets
e TP 4gf

)
2T

& |1 DGy(s)w] é( Il +3!|S|lz> Twi. (3.18)

For the cases n# + 1, we have similar equations

Y #MG(5)| < 0@+ ) s +e s>+ [P +e7%),  (3.19)

and
Y e MIDG ()W S O e~ + 677 |Is|| + IsI2) | wl. (3.:20)

n# 1

We now restrict p to the interval 0 < p < 1/4, and we choose 7 satisfying 1 — 3p
> 1 > p. [tis easy to check from (3.17) and (3.19) that for sufficiently small ¢ one has

1Ge)E <&, iffs] <e, (3.21)
where G = {G,},.,- Similarly, one finds from (3.18) and (3.20)

IDG(s) = O(e), iffis] <e, (3.22)

with p=min(t — p,2p). We apply the contraction mapping principle to the
equation G(s) =s, and the above estimates imply the

Proposition 3.1. Let 1 —3p >t > p > 0. For sufficiently small ¢ there is, for every o
satisfying Eq. (3.5), a solution to Eq. (3.1). It is of the form

S(x) = I" cos wx + s(x), (3.23)

with s(x) =Y 5,e""%, {s,},.2€B,, and |s| <& Such solutions are unique.
n

Remark. One has the bounds which are better than those of the proposition:
|sqlls— o] <e*.

Proof. Use the identities (3.9), (3.10), and 7 > p.

4. The Equation for the Front as a Fixed Point Problem

We begin with a formulation of the front problem. We want to view the front as the
perturbation of a periodically modulated amplitude equation. This is done in the
present section. We formulate the problem as a system of differential equations in
these perturbations. In later sections, we shall give the definitions of adequate
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function spaces in which these equations will be seen to have solutions. The existence
of these solutions will follow from an application of the contraction mapping

principle.
We now consider functions W of the form
W(x,nx — cn*t) 4.1
solving the equation
O W= —(1+32°W+eW—eW3, 4.2)

where ¢ = #2. We decompose W as

Wixy,x0) = ) " W(x,), (4.3)

neZ

and we look for a solution satisfying
W (+ 0)=0, W (—wx)=S,, (4.4)

where S, is the component of the stationary solution, with the corresponding o,
discussed in Sect. 3. We shall also require W_, = W,, i.e., we look for real functions
W. Since S, =0 for even n, we require also W, =0 for even n.

Since we have x; = x and x, = nx — cy’t, we see that W solves

— 120, W =n*W — (1 + 0} + 20,0, + n03)*W — n*W?, (4.5)
where 0, =0/0,,, for i =1,2. The equation for W, is then
W, — (1 — i?w? + 2ignwad, + 203> W, + n*cd, W, = . ; w,W,W,. (4.6)
ptatr=n
We shall use, throughout, the notation
U= on. 4.7
It is now natural to consider the one parameter family of linear operators 4, defined
by
AW () =2 Wx) — (1 = @2) + 2inud, + n* 02> Wix) + n?cd Wix).  (4.8)
Upon expansion, we find
A, = —&20% — 4ie>? oy — e(2(1 — p?) — 4u*)or
+ (sc — 4ie 2 p(1 — p2)o, + (e — (1 — p2)P)id. 4.9)

We want to view the system of Eqgs.(4.6) as a fixed point problem. We can
rewrite (4.6) as

AeWy=n> Y W,WW,. (4.10)
ptgtr=n

We guess an approximate solution and transform the problem somewhat. We shall
call main sector the sector n =+ 1. Note that the equation for n =1 is the complex
conjugate of the one for n = — 1. In the main sector, we make an ansatz of the form

Wix) = S;wi(x), wi(x)=Kx)+ a(x)+ ib(x), 411
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where a and b are real functions. The function [ solves the amplitude equation
41"(x) + cl'(x) + l(x) — P(x) = 0, 4.12)

with the conditions I(x)=0,{(—o0)=1,{c0)=0. We also break translation
invariance by requiring /(0) = 1/2. With this choice of I, it will be seen that a and b are
small, in an appropriate function space.

In the sectors n # + 1, we set

W, (x) = W(x)+ w,(x), forn#=+1, (4.13)
with
W(x) = S,l(x). (4.14)

Here, the choice of the function [ as an amplitude is somewhat arbitrary. In fact, any
“nice” function with value 1 at — oo and value 0 at + oo would do. But we stress
again that in the main sector, the choice of | is crucial for what follows.

We denote w = {w,},.,. In the sectors n # t 1, the equation takes the form

ned*

Agwy=n* Y W,W,W,—S5,A4,l(x)=:h(w). {4.15)

ptgq+r=n

The interesting sector is the main sector where all terms will be seen to be at least of
order n?. We first define ) * as the sum over the set of p,q,r for which

p+aq+r=1, |pl+lgl+irl#3.

We note for later use that this implies, because p, g, r are odd, that

Ipl+lgl+1r[ 25 (4.16)
Now we write the equation in the main sector as
SiAwy = 35InPw |lw 1> =2 Y *W, W, W,. 4.17)
We next define
B,=n"%4,. 4.18)

Note that 4, is of order @ — 1. Because w — 1 = O(y?), seemingly singular terms in
B, will stay bounded as # —0. We will prove this fact in detail later. Our final form
for the equation in the main sector is now

B,w, —wyw,|* = %(Z*WquWr —wy w21 — 3S%)> =:h,(w). (4.19)
1

This equation will be analyzed in Sect. 9. Our strategy will be to study in detail the
operator B, and to view B, — B, as a perturbation. This perturbation will be small
for small # since we are assuming 1 — w = O(n?).

Note that by the definitions in Sect. 3, 35% is close to 1. Furthermore, since S,, is
small for n# + 1 the cubic term in £, is also small. In Sect. 9, we shall essentially
invert the operator

L:w— B,w—w|w|?,
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and write (4.19) as
wy =L h (w). (4.20)

Infact, we shall first perform a translation in function space, by l asin (4.11), and then
invert the operator acting on the translated variable. Thus, Eq. (4.19) leads to a fixed
point equation with a small right-hand side. We also invert the 4, (in Sect. 7) and
write (4.15) as

w, = A7 (). 4.21)

Although the sum defining h,, is not restricted, there is a factor #> which renders the
right-hand side of (4.21) small. Thus it should be intuitively clear that the existence
problem for the propagating wave has been reduced to a fixed point problem with
small right-hand side, so that the contraction mapping principle can be applied.

5. Properties of the Amplitude Equation
In the following discussion, we fix ¢ > 4, and we consider the equation
4"+ cl' + (1 -1%=0. (5.1
We are only interested in solutions / which satisfy
0<Ix)< L, (5.2)
(—ow)=1 U+ 00)=0, (5.3)
and to break translation invariance, we shall require
0)=1. (5.4)

This problem has been extensively discussed in Aronson and Weinberger [ 1], and
we rely on some of their results. However, we shall need some additional estimates
which we derive shortly. It is known that the solutions to (5.1)—(5.4) satisfy

I'(x)<0, forall xeR. (5.5)

We want to discuss in detail the decay of the solution near + oo and its approach to 1
near — co0. To do this, we need first an a priori bound on the derivative of I. The
minimum of I’ (i.e. the maximum of | I'|) is attained when [” = 0. Hence we have, for all
xeR,

1
I'x)z — = sup z(1—-29)= — A, (5.6)
Cze[0, 1]

where A = 2/(33/2¢). We also need an upper bound on !’ (i.e. a lower bound on |!'}).
Since —1 <P —[<0and ! <0, we have

1S 4Pl S0+ cA=2/3%",
and hence 4" = — I+ I° — ¢l implies

<% 5.7)
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It follows that for every x, heR, one has
|\U(x + h)—I'(x)] < h/4. (5.8)
Therefore, there is a function o,(x, k) satisfying |o,(x, h)| < ¢/4, such that

A(x + h) = — cl'(x + h) — I(x + B)(1 — (x + h)?)

= —cl'(x) + ho {x, h) — I(x) + *(x) — xjrh asl'(s)(1 = 31(s)?)

= — cl'(x) — U(x) + B(x) + ho»(x, h).
Here, |o,(x, h})| < ¢/4 + 24 < ¢/2. Integrating again, with respect to h, we get
Al'(x + hy = 4l'(x) + h(I*(x) — I(x) — cl'(x)) + h*c 5(x, h), (5.9

with a bound {o;(x, h)| < ¢/4.
We now fix an xeR and we denote p =I(x), and o =p — p>. Note that g is
positive. We assume now that

o a?
r in{ —, — |. 5.1
|(x>|<mm<2c, 160) (510)
(Since o < 1 and ¢ > 1 the second term of the min is the smailer.) We shall show that

(5.10) leads to a contradiction. In fact, combining (5.10) with the definition of g, we
get

PP —p—cx)< —g—,

so that for h, = o/c we find

9

I(x)® — Ux) — cl'(x) — hya3(x, — hp) £ — T (5.11)
Combining (5.9), (5.10) and (5.11), we see that
AF(x — hy) > 41(x) + ho-i— >0,
a contradiction. Hence we have shown the
Lemma 5.1. There is a positive function F(p,c), such that
—A=-—2/33%) < I'(x) £ — F(l(x), c). (5.12)

One has

_ 3 332
F(”’c)=<p 2cp L 16Z) >

We next give an upper bound on ! at + co. From (5.1) and (5.4), we have, for
x =0,

41"(x) + cl'(x) + 2U(x) = (x)(I(x)* - ) 0. (5.13)
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We now consider the roots

—ct(*—12)12
S

of the polynominal 4z2 + cz + 3/4. By the maximum principle (see Aronson and
Weinberger [1]), the inequality (5.13) implies that [ is bounded above by a solution v
of the equation 4v” + cv’ + 3v/4 = 0. Clearly

v(x)=oa, e+ +oa_e-*, (5.14)
with

o, o =10)=1/2,

5,6, +2_6_=I0).

Therefore, a, = +(I'(0)—0./2)/(6, —5_). By (5.6), we see that there is a
constant C, such that uniformly in ¢ = 4, we have |a, | < C,/2. Since 0 > 6, > _,
we find

I(x)< C.e’**, asx— + 0. (5.15)

We next improve this a priori estimate. Equation (5.1) and inequality (5.15) imply

Al"(x) + cl'(x) + I(x) = B(x) £ C3e¥+. (5.16)

For ¢=4 we have 6, = — 1/4, so that for ¢ sufficiently close to 4 we find
130, | > 5/8. We consider now the equation

4w’ +cw' +w= Cie ™8, (5.17)

Since e 3*8 > ¥+ for x = 0, the solution of Eq. (5.17) will be an upper bound on [
{for x = 0), provided w(0) = 0), w'(0) = I'(0). We define y, and y_ as the roots of the
polynomial 4z% + cz + 1, ie,,

_ —cx(c2—16)'12

Vi 3 (5.18)
Then we get the solution, valid for 4 < ¢ < 41/10,
w(x) = C,(c)e" ™ + Csc)e’ + Cylc)e ~>¥8, (5.19)

with
Calc) = C1/(41/16 — 5¢/8),
Cyle) + Cse) = 1(0) — Cyle),
Cale)y+ + Ciley- =1(0) + 5C4(¢)/8.
Clearly, one can find solutions to (5.20). Note, however, that they diverge as ¢ — 4.

For x 20, (¢ — 4)?x < 1, it will still be possible to bound the quantity

x{2
w(x)

T (5.20)
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which in turn leads to a bound for . Observe first that
Y4 +1/2Z20((c - 4", (5.21)

as long as ¢ is bounded (which we assume). We can now write, omitting the ¢-
dependence of the C;,

Coe’* 4+ Cye’ = (Cy+ Cy)e' + C3e“"<e(y" Tre 1). (5.22)
By using Taylor’s formula to second order, and denoting § = (¢ — 4)*/2, we see that

this leads to a bound
1 O(&x)é 1 0(5):)52 2
< O(1)e%% 4 0<—>—e———’C + 0<->i—x. (5.23)

x/2

1+x

i) 5) 1+x 5) 1+x

This implies the required bound and hence the

Lemma 5.2. For 0 < (c —4)}2x < 1, the solution I(x) of Egs. (5.1)-(5.4) satisfies
2

I(x) fi —<0(1). (5.24)

We next give a lower bound on I(x) for x = 0.

Lemma 5.3. With the definition (5.18) of v, , we have the bound

Ix) =z Le'+, (5.25)
Proof. By Lemma 5.1, we have
1 2

By the maximum principle, it is again clear that [ is bounded below by the solution v
of the equation

4v"(x) + cv'(x) + v(x) =0, (5.27)
with the initial conditions v(0) = I(0),v'(0) = I'(0). We find v(x)=a e+ +a_e 7
where
oy o =1/2, oy, +oa_y_=I0) (5.28)
Thisimplies a, —a_ = (I'(0) + cl(0)/8)/A, where A = (c* — 16)*/2/8. By (5.26), we find
o, >o_. We rewrite
o(x) = w(x)e’+*, w(x)=oa, +a_e 24, (5.29)

Note that w(0) = 1/2. Now if ¢ _ = 0, then w(x} =2 «, > 1/4,since o, +a_ =1/2 and
a, >o_. Ifa_ <0, then w(x)= —2Aa_e 24*> 0, so that w(x) > w(0) = 1/2. The
assertion follows from I(x) = v(x) = e’ +*w(x).

We next deduce an upper bound on |/'(x)| for x = 0.

Lemma 5.4. For every ¢ > 4, there is a constant C4(c), such that

\I(x)]| < Csle)e’, for all x 2 0. (5.30)
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Proof. By definition, ! satisfies the equation

AT 4 el + 111 = 12) =0, (5.31)
We set v =12, so that
W'+ o+ (1 = P)=0. (5.32)
Setting next v(x) = y(x)e /2, we get
2/(x) + eH4I)e 1 x) (1 — 12(x)) = 0. (5.33)
Therefore
2y'(x) = yAx)e“*x)(1 — I*(x)) =0, (5.34)
and hence
)}21);’2(&)) = e H(x)(1 — PP(x)) £ e™*(x) < Cle)el 47, (5.35)
by (5.19). This implies
R e (5.36)

where A = (c2 — 16)1/2/8. Substituting the definition of y, we see that

C(C)(e(A —c¢/8)x __ e—cx/4)

[F(x)] = e~y 12(x) < |(0) e +

4A +¢/8)
< const. 478 = const. ¢'**, (5.37)
We have used the inequality A4 — ¢/8 > — ¢/4. The assertion is proved.

The preceding argument can also be used to provide a lower bound on |I'].
Starting with Eq. (5.35), we get from [(x) < 1/2 the inequality

2 7
y—ly/—z((% > 3 0694(x), (5.38)

Upon integrating as before, we get from (5.25),
4yt2(x) — 4yt A(0) 2 [drigelrHrer, (5.39)
0

Using again the definition of y, one easily reaches the following conclusion.

Lemma 5.5. The function |I'|is bounded below: There is a constant Cg(c) > O such that
for every x =0, one has

) 2 Colc)er. (5.40)

We also need a bound on I'/l which is uniform in ¢. For this, we consider y = I'/L.
Since y ="/l — (I'/l)2, we see that y satisfies the equation

4y +@y* +cy+ 1 —13) =4y + P(y,x) = 0. (5.41)
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The roots of P(, x) are at

" ()= —c+(c? —16(1 — l(x)%))*/? -

0.
- 8

Assume there is an x, for which y(xo) <r_(xo). Then Eq. (5.41) implies
Y'(xg) = — P(y(xo), xo)/4 <0,
and thus y(x) <r_(x,) for all x = x4, since r_ is increasing. This implies

Y(x) < — P(¥(xg), xo)/4 <0 for all x = x,,

and hence y(x) diverges linearly to — co as x — oo. For every ¢ > 4, this contradicts
the inequalities (5.25) and (5.30). Hence, we have, for all x =0,

'e)| e+ (c? — 16)12
Ix) |~ 8 )
We can use the above argument to produce an upper bound on I'/l. We observe

that (5.41) implies that if y(x,) > r .{x,) for some x, = 0, then y'(x,) < 0. Therefore,
we must have, for all x >0,

(5.42)

Hence, we find, for x =0,

y(x) £ max((0), 7, (x)).
I'(x) 1)

i) émi”( i)

We next bound [ near — 0. These bounds are more straightforward than those
near + co because 1 is an unstable solution of Eq. (5.1).

; Ir+(0)|>- (5.43)

Lemma 5.6. For all ¢ near 4, the function I(x) satisfies near — oo a bound of the form

1= Cyef* < I(x) < 1, (5.44)
where
_ 2 3912
p= C+(cg+3 ) (5.45)

Proof. We set u(x) =1 — l(x), and then we see that u satisfies
du" + e —2u+3u*—uP=0.
The linear equation
4" +cv' —2v=0 (5.46)
has only one solution which decays at — co, namely
v(x) = const. ef*, (5.47)

Therefore, u'/u— f§ as x » — oo, provided u is bounded. In fact, u(x) is the unstable
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manifold of the flow defined by the equations
u =s, (5.48)

’

§'= —%s+%u—%u2+£u3.
The unstable direction at (0,0) is fu = s, and hence by the existence of an unstable
manifold, there is a u, such that 0 <u, < 1/2, and

[s(u) — Bul <u?, for 0Su<u,. (5.49)

One can find (by choosing possibly a smaller positive uy) an x,, such that u(x,} = u,.
Then Eq. (5.49) implies upon integration, for x < x,,

e+ =0 < y(x) < e~ Mo, (5.50)

By choosing again u, smaller if necessary, we may achieve

3(B—-ud?) 2 5p. (5.51)
Substituting in Eq. (5.49), we get, for x =< x,,
Is(w)/u — | < ug? o3, (5.52)

This inequality leads, after integration, to

3
[Tog u(x) — B(x — xo) — loguy| < “é/ZE,

so that for x < x,,
—3ub/218 ,Bix —x0) 3ud/2/p (% — xo)
uge 0 e Su(x) Suge™o Pe ) (5.53)
Thus we have shown the required bounds for x < x,.

We now extend this bound to all negative x. Since I[(0} = 1/2 = u(0), and u'(x) > 0,
we sec that for xe[x,,0] one has

u(xo) = ulx) = u(0).
Thus for all ¢ near 4, there are constants C, >0 and Cg < o0 such that
C,eP* S u(x) £ Cgel™. (5.54)

The lemma is proved.
Our next bonds are on I near — 0. In this case, we differentiate Eq. (5.1), and we
set u(x) = I'(x). Then the equation for u is

4y’ + e +u(1—31%)=0. (5.55)

For x near — oo, the solution is governed by the equation 4u” + cu’ — 2u = 0, which
has constant coefficients and which we have already discussed above. The variation
of the coefficients, due to [ decays faster than ¢* near — oo, and hence we find by
methods totally analogous to the ones used above the

Lemma 5.7. For all ¢ near 4, the function I'(x) satisfies near — co a bound of the form

0 < Coe* < —I'(x) < C,pe™, (5.56)
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where f was defined in Eq. (5.45).

Remark. The methods used above show that all higher derivatives of l at + 0 or — o0
decay at the same rate as | and U, (respectively as 1 — [ and ' near — o).

6. The Space H,

We define a weight function m which will serve for our norms:

x/2

mx)=e >+ (6.1)

1+]x]
where ¢ < f and f§ was defined in Eq. (5.45).

Definitions. We denote H, x the space of functions defined by

H, = {f|f:{(—00,X]>C, fe%(— 0, X]), (S_UPX]If(X)IM(X)<OO}s (6.2)

and we write | |y . for the corresponding norm.
(2%

Lemma 6.1. For ¢ >» 1 and x < X one has the bounds
m(x) | dye " )/m(y)<O(q") (6.3)
and
X
m(x) [ dy e** " /m(y) < O(g ™). (6.4)
Proof. The proof is straightforward. We distinguish the cases x = 0 and x £ 0 and

the integrals (6.3) and (6.4). We first note the obvious bounds

const. e®” ify<0

. 6.5
const. (1 +y)e ¥?* ify=0 (6.5

l/m(y) = {

Noting that ¢ =0O(1) and ¢> 1, we get the asserted bounds by straightforward
integration.
The following inequalities will be used in Sect. 9. Define

g =™ | dsf()e,
ie.g=(1+0d)" 1
Lemma 6.2. If |f nHa,X is finite, then

191, < OIS, ,- (6.6)

Proof. Note that | f(s)| < || fllu, O(1)(1 + s)e~%2 for s = 0. Similarly, if s <0, then f
decays like e™*. Therefore, if x <0, we find

o) £ 1y, O™ | dse** SO | 1 .
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On the other hand, if x =0, then we have
gx) O™ )+ )1 f g, -
Lemma 6.3. If X >0 and q> 1, then one has for all x < X,

m(x) —gq(X—x
) X0 <, (6.7)

Proof. The proof is obvious from the definition of m.

7. The Spectrum of the Linear Problem

We give here bounds on the spectrum of A, when w is near 1 and n # + 1. Then we
deal with the case n = 1. The characteristic polynomial of 4, is

Pfq)=n*— (1 —(u+n9)*)? + in’cq, (7.1)

when u = wn. Note also that we have the natural correspondence g = —id,. We are
interested in the roots of P,, which we shall call g, ;, j=1,...,4. To simplify the
notation, we shall assume throughout u > 0, the case of u <0 being equivalent.

Lemma 7.1. For sufficiently small n >0 and for u> 1.5, the roots q, ; of P, satisfy

1qn,51 = Ou/n). (7.2)
For nu £ '3, one has
[Im g, ;1 = O((u/n)''?), (7.3)
and
[P(n )| = O 12). (7.4)
For y*® < yu<n~13, one has
H 1/4 1/2
Img, | gO(l)mm((W)n > (nu) )’ (7.5)
and
|Po{da ) = O ut72). (7.6)
Finally, if nu=n~*73, then
[Img, ;| = O(u'*n =34, (1.7)
and
| Pi{an, ) = O(n)*’*) = O ). (7.8)

Proof. We proceed by asymptotic analysis. Consider first the case nu < '3, (The
exponent 1/3is somewhat arbitrarily chosen. In fact, any number < 1/2 would do for
our purpose.) We set

p=up+nq (7.9)
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and study the polynomial
Ro(p) =n* = (1 = p*)* + icyp — icyp. (7.10)

It is now useful to change variables by setting p = ¢ + #/z, where oe{+ 1, —1}. We
shall pursue the case ¢ = 1, the other one being analogous. Then we get the equation

—1
— 2+ 2z 0P+ iczt®

—icz® =0. (7.11)
Under the condition nu < 5'/3, the solutions of this equation are approximated by
those of the equation

iczYy — 1)/n + 42> =0. (7.12)
Substituting back, we find that for small # one has p~ + 1+ 2(icy(x — 1))*/3, ie.

+1— )\
axT 'uir2<ic(#q )> . (7.13)

This implies (7.3) and (7.2) for the values of yu considered thus far. We now note that
Ri(p) = 4p(1 — p?) + icy, from which (7.4) follows.

Next, we analyze the case yu >~ !/3. Then it is adequate to change first variables
as in (7.9), and to set then p = 1/z. The equation is now

n2z* — (22 — 1)* + icnz® — icnuz* = 0. (7.14)
Its solution is approximated by the solution of
zHenu=1. (7.15)
Thus, we get

— p+ (fenu)t*
Gy (7.16)

with a choice of four phases for the fourth root. Since nu>»1, and
|pn.;l = O((np)"'*), we see that

| Py )| = 11 RGP )| = O(n7*1>74). (7.17)

The inequalities (7.2) and (7.7) follow.
Finally, consider 43 < nu < » /3. With the change of variable (7.9), we are led
to the approximate equation

(p* — 1) +icnu=0, (7.18)
whose solutions are
p= £ (1 (ienw) ). (7.19)
+ 1 + (i 12
g= T ECTE —p (7.20)

n
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The bound on Im g, ; follows. We also have

| P,(q.;)) = 41 py ;1 (cnm) 0, (7.21)

by (7.18) and the explicit form of R, The required bounds follow now from obvious
minorizations of the square root in (7.20) (and of its imaginary part). The lemma is
proved.

Corollary 7.2. For sufficiently small n >0 and for u> 1.5, one has the bounds

O(n) ifpu <yt
Tm(g, JPdgn ) 2 § Op®™)  ifn'P <nu<n™ 17

O((nuy*™*) ifpuzy™*" .2
The following identities will be useful later.
Lemma 7.3. For 0 <k <2 one has
i i _o, (7.23)
=1 P4,
i ! ! (7.24)

' (q— 4. )Plar) P

Jj

Proof. We use contour integration. In the first case, we have

i qr; 1 dz 7*

ZPUG.) 2wyl Pl

as is easily seen by letting r tend to co. In the second case, we have, for sufficiently
large r,

i 1 _ 1 i dz n 1
j=1 (‘1 - qn,j)P:L(qn,j) B 27—” [z|=r(q - Z)Pu(z) Pu(q)

The assertion follows as before.

We now begin our study, for the case n # + 1, of the operator 4} on the space
H, ». Here, we fix, once and for all, a (large) positive constant X, which will be chosen
adequately in later stages of the proof. The constant o is choosen larger than 8, where
Bis the rate of decay of I’ near — co. Consider again the characteristic polynomial P,
defined in (7.1). We number the roots of P, in such a way thatImg, ;> 0forj=1,2,

Img, ;<0 for j=3,4. For each y, and X as above, we define an inverse 4, ' as
follows.

(A“lf)( ) Z T i eilIn,j(x"y)f ) Xd eldn.(x~y) 795
X)= —_ - — f(y. .
g P P P(d,,) b j=3,4£ Y P.(qn;) /o (7:23)
The norm on H, y was defined by

I, = sup 1f(x)Im(x), (7.26)

xe(— o,X}
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where

x/2
m(x)=e "+

1+ x|
Bounding A, ' amounts thus to controlling expressions of the form
x f( )eiqn,j(x—y)
mix) [ dy?
- @ Pu(qn,j)

or

X iqn, j(y — %)
e

We pursue the first case only. We are led to bound an integral of the form

) | dylem =),

which by Lemma 6.2 is bounded by O(|Im g,, ;| ~*). Thus the norm of A, is bounded
by the inverse of [Im (g, )P,(qy ;)| which, by Corollary 7.2, is bounded below by O(n).
Thus we see that

147 f s, SO0 ) f s, (7.27)

Note that somewhat better bounds are possible by using the explicit form of
Corollary 7.2.
We shall need the following better bound which holds when fis differentiable.

Lemma 7.4. If fis once continuously differentiable then one has
(A7l S OM0 ™l + 1S, )
Proof. We rewrite (7.25) as follows

) x a glan.i(x=y) ) Xd ayei""'f"“”) () (7.28)
A1) (0 = ; - Zig Py
( M f)( ) i 21 .f Y =) qn JPﬂ(q ) y j=3,4£ Y ’_lqn,qu(qn.j)

and then integrate by parts. We obtain

x elani(x =)

(4, )x)=— j=21 , :foo dny/(Y)

+ Z}:dy

j=3,4

£l i(x =)
—~iqn, ;P {dn.;)
4 iqn, j(x — X)
: f(x/) _ f(X)e : (7.29)
=1 —lqn,jpu(qn,j) j=3,4 lqn _]P (qn J)
The boundary terms at x can be bounded using (7.24) (for g =0) and contribute

S
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o f HHM. The norm of the boundary terms at X is bounded by
1 m(x)
123,41 G, Puld,, ) (X)

Using Lemma 6.3, and Lemma 7.1, this leads to a bound
O™ ") fl, (7.31)

Combining these bounds with a bound on the integrals in (7.29) which is the same as
the one leading from (7.25) to (7.27), we get

A Ny, SO 21 f 4 1 ). (7.32)

We next discuss the roots of the polynomial P, (defined in (7.1)) for the case n =
+1. Two of the roots may be confluent in this case. We write

e~ may (X “ f “H (7.30)

w=1—py?, c=4+nt. (7.33)
Setting g =i/2 + y, we get the equation
4y* + n(—i/2 + t/2 — dip + OQY)) + n*(O(y) + O(1)) = 0. (7.34)

This implies that there are two roots, possibly equal, satisfying | y| < O(n'/?), so that
the first two roots of P, are

qu:%-i-O(ﬂ”z), forj=1,2. (7.35)
To locate the two other roots, we set #g + w = —w—y. The equation for y is then
7% — (1 —(w + y)*)? — 2icyw — icny = 0. (7.36)
The small roots of this equation are approximated by those of
—4y* —icny — 2ien = 0, (7.37)
since w — 1 = O(»?). Thus we find
2 ic\'?
qu:wg+<2’7 ) +0(1), forj=3,4... (7.38)

The following result will be useful in Sect. 13.

Lemma 7.5. For 0=k <3, and feH,yx, the function 0A, ' f exists and has the
representation

zqn ;(x=y)

(054, P f)(x) = Z fdy(qnj)" Pl )f(y)

X etqn gx=y)

— % favlig, =5 f() (7.39)
iF3.4x P(4.))
Proof. Consider the definition (7.25) of A, '. The assertion follows now readily by
differentiating this expression and observing that the boundary terms at x drop
because of Lemma 7.3.
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We next study the operator 4, acting on quadruples of derivatives. Assume
f(x)= ¢, Then

(Aon/)(X) = P,fg)e’™,

where the characteristic polynomial of the differential operator A, is given, as in
(7.1, by

Poq) =n"— (1 —(wn+ng)*)* + incq. (7.40)

Denote g, j=1,...,4, the roots of P,,. To each function feC?, we associate the
quadruple:

JE, i (), i3 (), 172" (x).

If we write {---| for row vectors and |---) for column vectors, we see that the
eigenvectors ¥ of A, are mapped to |1,4, ;47,45 ;> The projection P{ onto
the eigenvector

Ien,j>=|15Qn,jsqr?,j9q3,j> (741)
is given by
PP =le, ;> { Py, PPy PPy, PP, (7.42)
where
S Poilq)
Ph.q" = —— (7.43)
mgo ' (q - qn,j)Pam(qn,j)
With these definitions, it is easy to check that
POe,=0;1e,,, foralljk=1,..4 (7.44)

We now formulate bounds on the PY), .
Lemma 7.6. For n#1,m=0,...,3, and j=1,...,4, one has

PO, < O(1)ns/2 =212 4m, (7.43)
Proof. First we note that by (7.43), and (7.2) one has

4
P, (q)=—n* _ﬂl(q =), (7.46)
j=
and hence
3-m
| P )P S 1*0( sup 1q,,1)° " 2 11“0<%> : (7.47)
k=1,..., 4

Similarly, using (7.4), (7.6), and (7.8), we see that

1/|P,,ga )1 £ O~ >2u~ 3. (7.48)
Thus,

[P, < O(1)n™2 =22, (7.49)
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as asserted.

Lemma 7.7. When n=1 one has

o1 ifm=0
|P3), + PPLIS < O ifm=1,2, (7.50)
O(n®?) ifm=23.
Moreover,
[Pl + 1P < O(1), (1.51)
and
[(g1.2 ~ 41.)PE £ O(1). (7.52)

Proof. Note that when n = 1, the bounds on P{" and P diverge because two roots
(say ¢, and g, ,) can be arbitrarily close and could even coincide. However,
PP + PP stays bounded, as we show now. Let us denote ¢, ;,q, , the two roots
near i/2, and ¢, 3,4, 4 the two other roots. By the definition of P{,,, we have

1,m>

3 1 !
(1) (2) = ’ )
mz P+ Pin” Pw(q){(q_‘11,1)P;>(Q1,1)+(Q,_ Q1,2)P;>(q1’2)} 59

By the identity (7.24), we see that this is equal to

1 1
—P 1. .54
w(q){(q —4q1,3)P(4q1,3) +(q —q1,4)Py (%,4)} " (759

Note now that for j = 3,4, one has | P,(q, )| = O(y*n~*n~/?), by (7.35) and (7.38).
Therefore, we find from (7.53) and (7.54) the bound (7.50). The proof of Eq. (7.51} is
easier and is left to the reader. To prove (7.52), we note

P.(q) _ 1 e-ai)4—495)a—4a14)
@—91.29Pu(d12) 12— 4d11 Q12— 91.30d12 —41.4)
and hence, by (7.35) and (7.38),

[(dy.2 — a5, )PP SO~ %/n~%) = O(1).

The lemma is proven. For further use, we also note two identities which are easily
derived from (7.39)

?

3 Dok a1 o 3 x p(l) qk plan,i(x—Y)
kZO(PL,)kawanlf)(x) = kZO< Z j' dy_—————f(y)

ifT2 - P,(q,
X P(lkq € pldn,(x—¥)
- y— ) ). (7.55)
=3,4£ Pu( n,j)

By (7.43), this projects onto the term with j = [. More precisely, this means e.g. in the
case [ =1, that

etqn 1{x=y)

Plany) fO). (7.56)

i (1) . x)__ j’ dy
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8. A Stable Manifold Theorem for Maps with Unbounded Linear Part

This section deals with the existence of a stable manifold in the case when the linear
part of the evolution equation is unbounded. We shall use this theory to control the
front problem at x = + co. Here, we consider, first on a purely formal level, an
equation of the form
d—X:AX+F(X), (8.1)
dt
with X in some separable Banach space B, 4 unbounded, but with spectrum away
from the imaginary axis, F maps a neighborhood of 0in B to B and is a twice Fréchet
differentiable function satisfying F(0) =0, F'(0) = 0.

We want to study Eq. (8.1); however if 4 is truly unbounded above, then the flow
itself is not defined for positive t. We shall nevertheless be able to define a stable
manifold W¥, tangent to the “linearly stable space” E°, i.e. the spectral sub-space of 4
corresponding to the left half-plane of its spectrum. We denote E* the unstable
subspace and we assume that P°, and P¥, the respective spectral projections, are
bounded operators.

The construction of W* is possible because it can be formulated in terms of the
semigroups e*”, ¢~ 4%, 1 = 0, and these semigroups are defined. Here, A° = P°4, and
A¥=P"4. In order to formulate the problem in terms of these semigroups, we
consider evolution equations on the stable manifold itself.

As usual, W* will be viewed as the graph of a function @: E* — E*, and in fact we
shall prove the existence of @ on a small ball Bf in E®, (of radius r, centered at 0). We
need to control the flow on W* (where it will be seen to be defined for all t = 0), and
we denote 2 the solution (for fixed @) of

d
EWD =AY+ Gy, (8.2)
where .2: ES - E°, and

G'oly) = P°F(y, (), yeF’.
This is the flow in W?*, projected onto E®, The solution of (8.2) is formally given by

t
Yl =e"" + [d1e® " TIG oy . (8.3)
0
The flow ¢, on W* itself must be of the form

*ato)~otirm)
\ow) "\ o))

which, upon differentiation, and restriction to the second component, leads to the
equation (on E)

d
DO, Pl—o= A0 + T, (84
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X
where G%(x) = P*F < o (x)>'
Equation (8.4) is equivalent to
@ = — [dre "Gy L. (8.3)
0

We shall solve the existence problem for the stable manifold by considering the
system (8.3), (8.5), using techniques similar to those found in [5].
Given @, we solve (8.3), and this will define the right-hand side of (8.5), i.e. a map
@ — C(D). We shall show that the operator C is a contraction of a sufficiently small
ball of functions, so that (8.5) has a solution by the contraction mapping principle.
We now describe in detail the assumptions on A4. In fact, A4 derives from two
semigroups, corresponding intuitively to the positive and the negative parts of the
spectrum of A. The Banach space B is a direct sum B = E*® E*. By P* and P", we
denote the corresponding projections. We assume that 4° and — A" are the
generators of two equicontinuous semigroups of Class C, in the sense of Yosida [6],
on E* and E* respectively. Finally, A is the direct sum of 4°and 4" on their respective
domains in E° and E*. Furthermore, we assume there is a constant D > 0 such that
the semigroups satisfy the bounds

sup max(e*” || 4| g, e*" [l e ™" || ) £ D, (8.6)

tz0

with 1*> 0, A*> 0.

We make the following continuity and differentiability assumptions on F: With
the same constant D as above (for convenience) one has

I FOe I < Dmax(fl x|l |y [1.)% (8.7)
| DF(x, p)(x', Y < Dmax (]| x I || y Ly max(ffx"{ls, ¥ ),
on a neighborhood of (0,0).

We shall fix below a small» > 0, and a ¢ > 0. We write B* for the ball of radius r in
E* centered at 0, similarly B; for the ball in E*. We define

A, ,={P:B-E" ®0)=0,
” dj(x)_d)(y)“uéo-”x_y“sa for X,yEBf}-
We also define, for @, WeA, ,, the Lipshitz distance

4,0, %) = supl 2~ ¥

xeBy H x”s
x#0

Theorem 8.1. Under the above assumptions, the operator C has for every ¢ > D and
Jor every sufficiently small r >0 a unique fixed point in A, .

Proof. Forevery @A, ., wefirst show the existence and study the properties of %,
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solving {8.3). We want to describe i ® as an element of a set B, of functions
={y:R* x Bi5 Bi|[Yo(x) =x, $(0)=0 forallt>0,
sup [ Y(x) =y Wl S allx =yl

(20
We equip the set B, , with a Lipshitz distance
X)— () |l
o ) = supsup U VL,
tz0 xiBO ”x“s

It is easy to verify that B, , is a complete metric space for this distance.
We first study Eq. {8.3). Assume that yeB, ., and @€A, , and denote H (i) the
right-hand side of (8.3), i.e,

t
H o), = e** + [dre79G .. (8.8)
0

We shall show that H  is a contraction in B, ,, if r is sufficiently small. From

Hl//z(x) bW lssolx—yl
[P0 (x)) — @D = ol dx) — b D,

and

120 LNl S ol < o lix s

we deduce

max(||y.() s, [| 200 ) < max ([ () lls, o 1Y) ) = (0 + o).

Therefore, we have
| H o) (x) — H ()W) s < (De’”‘ + idre—mt“’Dzr(ﬂ + 02)2) fx—ylls.

This implies H 4(y)eB, , if

rD*(o + %)

D
t—

<o,
S

which is always possible if ¢ > D, and r > 0 is sufficiently small.
We now show that H, is a contraction. We have

1 H o()x) — H o }(X) |5

= jdfe_w_r)Dz(l + 0)o + o) | Y (x) — ¥rix) ll
<orD¥1 + )| x Hsidre_ As(’“”dgr(lp, W'

< orD*(1 + a)? HXH% W) S 3l xsdy (Vs ¥,
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provided
20rD?(1 + 6)% < A%

Therefore, H , is a contraction and has a unique fixed point in B, . This fixed point is
called ¥ @

We next study the map C defined by the right-hand side of (8.5). We first show
that C maps A, . into itself. If @A, ,, then we have, as before,

[ @y 2(x) = @y P, S o* | x =yl
and therefore,
D*a + d*)*r

1C(@)(x) - C( @)W . < 7

x—ylls,

salx=yls

for sufficiently small ». In other words, C maps A, , to itself. We next show that Cisa
contraction. Note that

Guqﬁol//r(p - Gu‘l’ol//rwz (GL:DOlvbrq) - G“q)ol/j;ll) + (GI:DOED;P_ Gu‘l’olrl,tw)'

Using estimates of the same form as above, we find

@) — Il =1+ a)sup 200 — X1,
+supl @) — P )
2 2
=L (14 opsupl 29— w9,

+ 1 xlld (@, F)).

In order to estimate y.2(x) — ¥ ¥(x) we use Eq. (8.3). We have
t
1,200 — ¥ ()l = (f)dre*“"‘” | oo 2(x) — Gt (x) |-

From this we get
D3(¢ + o?)r
iS
(1 + o) sup|y.20x) — ¥ P s + x| d o (D, F)).

20

If D*(c + a?)(1 + o)r < A%/2, then we get

Sl;'p ” lpta)(x) - l//,lP(X) Hs §

D*(c + o)
)hs “ X HsdAr((pn q/)z

and taking r smaller, if necessary, we see that C is a contraction. Therefore, C has a
fixed point, as asserted.
A straightforward extension of the above methods, cf. [5], shows that if Fis k

sup [ 2(x) =y F ()l <2
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times Fréchet differentiable, then so is @. Note that this bound will always contain a
factor r.

We now apply the above theory to Eq. (4.10) near + oo, calling the space variable
t instead of x. We define the space B through the following construction. To each
function feC?, we associate the quadruple:

fOATH®,i72 f1 (0,170,

Given a quadruple fy,..., f3 (e.g. the quadruple associated to a function fe%” as
above), we define a decomposition

(fO’...9f3):b;+bﬁ7

where

2 4

by= ) bujen; bui= Z by, s>

J= J=
and with ¢, ; as defined in Sect. 7. When n = 1, the first sum extends from 1 to 3 and

the second over j = 4 only. We can decompose naturally b} (or b%) as a quadruple,
namely

2
bf‘vm = Z b"»fq":j’ m= 0’ 1> 27 3.
j=1

We define

lb;‘n* = sup bfx,m'})n_m>
0 3

=ms

where y, = |wn|/y (an approximation to the root of maximum modulus of (7.1)). We
define analogously | b}, ., and when n = 1, the first sum extends from 1 to 3 and the
second over j =4 only.

We now define B as the space of sequences of pairs

by = (b, b})

as above. We equip B with the norm

Ibllg =supn™?"n® max(|byl . 1ala, «)» (8.9
where p, > 0 will be fixed later.
The operator A of Eq. (8.1} is formally defined by
Aen,j = qn,jen,ja

i.e. 4, restricted to the component n of B is really n*4,,,. Associated with this
definition there is a natural decomposition of B into E® and E*. If we number the g, ;
insuchaway thatImg, ;> Oforj=1,2whenn # +1(andforj=1,2,3whenn=1),
then

E*={blb, ;=0 for j#1,2(and 3 when n=1)}.
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It follows at once from the bounds on the g, ; in Sect.7 that (8.6) holds with A°,
A>1/4,and D=1.

We next analyze the nonlinear term F in Eq. (8.1). To an element beB and a value
of t there corresponds a value of W, at t. In fact, we have

4
W)= > b,
i=1
Note now that by virtue of Eq. (4.10), we have

4
Fn:jgan,jen,j=|O=0,0>Nn>9
where
N,=n"2 Y W,WW,
ptgtr=n

We now bound this expression. Note that the sum over p + g + ¥ = n above can be

absorbed through the norm on B:
poalel+a+ =) ,
— 55— 30n7?), 8.10
p+g+r=n p3q3r3 - ( ) ( )
gt 0

uniformly in . This leads to
IN,| SOy~ 277" blj5.
We now note that
F, e,;=P$10,0,0,N,>=e, ,PI5N,.

We use now the bounds on P, ,, given in Lemma 7.1 and 7.6. We start with the case
n# +1. We have

‘Fi,ml g (|P;T%q3,1| + |P$5Z)Sq3,2“5m,3|Nn|’
so that

| Folus < O(D)n™ 203203 =30 ™30~ 2720 b 3
= O(1)n~ Y2y =32 0 =3 |3,

We next analyze the case n = 1. We consider, as in Sect. 7, the operator

2
P = z \ej><P(1j,)07P(1j,)1aP(1j,)2:P(1j,)3‘a 8.11)
=
where PY),, is defined by (7.43). We estimate similarly P and P{Y, but we give details
only for P{"?, Writing P{"? as |e, { »<e} |+ e, ,> e} ,|, we may estimate this
quantity conveniently by considering

leg,1><ef 1 +ef l+e ,—ep p<ef ] (8.12)

We first look at e} | + e} ,,i.¢., we want to bound P{!), + P?), . This has been done in
Lemma 7.7.
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We next consider the second term in (8.12). We have
ley,—er 1) z]laCI1,zaQ§,2aQ?,2>‘\1:41,1751%,1#?,0
=@ =910, 1,411 + 412,971 +q1,1G12 + 4120

We now use Eq. (7.52), the decomposition above, and
3
Fsl,m = .zlp(lj,)mqun,leamJ'
=
But we have seen that for m =3,
|PCodt s + P2gT 21 < O(n°%) + O(1),

and

|P$qt 5] < O(1).

1.m

Therefore
|F{ly,e SOy~ 2 71 b 3

Thus we see that if
bl g = O3, (8.13)
the constant D in Eq. (8.7) can be chosen O(y~2). Thus we have shown the
Proposition 8.2. The nonlinearity of Eq. (4.10) is bounded by
IF<lly < O(~2)[ b3,

An analogous bound holds for F*. Furthermore F is differentiable in B and the
derivatives satisfy similar bounds.

The last assertion follows by polarization. In view of Proposition 8.2 we see that
for the front problem at + co, Theorem 8.1 holds with an r of order O(#1°), and with
a @ which is bounded, together with its derivatives, by O(n~*).

9. Properties of the Linear Operator in the Main Sector

In this section, we start with the analysis of the differential equation for the main
sector. As we have seen in Eq. (4.19), it is of the form

— 22" — dinwz” — (2 — 6wHz" + (¢ — 4i(1 — wHw/n)z’
+ (1 = (1 — )z —z|z]> =h, ©.1)

where ¢ >4, c—4=0(y), n>0 and n=¢'? and we impose the boundary
conditions

A+00)=0, 2(—o0)=1. 9.2)

We shall describe later the nature of the inhomogeneity k; in any event, h, when
restricted to the interval ( — oo, X, is in the space H, ;. We view z as a perturbation
of the solution [ =1, > 0 of the second order equation

4"+l +1— 1P =0. 9.3)
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The existence of such solutions, and a detailed analysis of their properties have been
discussed in Sect. 5. We shall make extensive use of these results. We decompose z
into its real and imaginary part, and we write

z=1+a+ib. (9.4)

This leads to a system of two coupled real fourth order equations in @ and b, and we
view this system as a perturbation of the corresponding second order system. It is of
the form

4a" 4+ cd 4+ a—3al* =k, + Reh, 9.5)
4b" +cb' + b —bl? =k, +Imh,
where

2 " 2 7 a 1_('02 ’ !

ki =9*(1" + a") — 4nwb” + 6(1 —*) " +a")—4 ol +a)
1— 22
+ (——?L(l +a) + 3a* 4+ a® + ab? + b2,
n

2 111 " 2\L" I_wz ’

ky=n*b"+ dno(l” +a")+ 6(1 —w?)b" — 4 b (9.6)

1— 232
+(—ﬂ—flb+2abl+a2b—b3.

Our final aim is to show the existence of a solution to Eq. (9.1) (or, equivalently, Eq.
(9.6)) by an application of the contraction mapping principle. With this aim in mind
we study first the linear operator L on the left-hand side of (9.6),where L is of the form

" ’ 2
L<a>=<4a +cd +a—3al >:<L1a>. ©.7)
b 4b" + cb’ + b — bl? L,b
Clearly, L is diagonal and hence we can study the inverse of Lin a and b separately.
In other words: The original problem is a perturbation of two real decoupled second
order equations.
The function space we consider controls the decay of the functions at + oo and

— 0. In Eq. (5.45), we have defined f as the rate of decay of I' at — co. We now
choose o < . We also choose a (large) positive constant X,

X =Clog(n™ %), 9.8)

with C sufficiently large. The space on which we study L™ is now H, x. It was
defined in Sect. 6, but we recall the corresponding norm: We defined
x/2

m(x)=e "+ T+l

The norm of f, f:(— w0, X]— C is given by

1S\, , = supX]If () [m(x). ©.9)

xe(— oo,
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Proposition 9.1. For X as defined in (9.8)and for sufficiently smalln > 0, the maps L{ *
and L;' are bounded operators from H, x to itself. Their norms are bounded by

(log(n™1))*.

Remark 9.2. Similar estimates show that for g = I'/l or g = I"/l', one has the bounds

1@x—9)" f I, , S1lognl® || f I, -

Proof of Proposition 9.1. We consider first the operator L,. Its inversion is based on
the observation that because | solves (9.3), we have, for any twice differentiable
function g,
r r
Lyg=@4024co,+1—1P)g= 4<6x + 7 + §>‘<6X — 7>g. 9.10)

(In fact, the second term equals

l// l/ 2 l/ 2 Cl,
4029 +cogrda| ——+(=) (=) == g
axg+cxg+< l+<l> <l> 4l>g)

We now note that the equation

y —(logu)y=v 9.11)
has the solution
yx) = u(x)-(const + f ds v(s)/u(s)>. (9.12)
Since we have
L, = 4(0, + (log [(x)e™*))(0, — (log I(x)) ), (9.13)

we find that L; ! f is of the form

—cs/4 s

oa _jw dtl(t)e™!* f(t). (9.14)
Our choice of boundary condition will become clear later. Since I' solves the
equation

0§ 4
L= | &

Al el + 1 =3I =0, ©.15)

we have for the case of L,:

17 ll/
L1g=4(6 +ll, +c> <a —l—,)g. (9.16)

Therefore, we find that L7 * f is of the form

(X) e —csf4 s

ds e A1, 9.17)

We now start to bound the integrals in (9.14) and (9.17). By linearity, we may assume
It f ]lH = 1. By our definition (9.8) of X, and the restriction (3.5) on ¢, we have X <
(c—4)° 172 . Therefore, (5.24) holds. In fact, this bound fails for X = o0, and this is the

Ly f(x)=
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reason for our introduction of X. For s <0, we find, using the definition of m,

[ dile* £()] SO() § dre*e)| f Iy, < Ofe*14) 9.18)
When X 2520, we see from (5.24) that
jdtl(t)e“/‘*f(t) < O(l)f dre™e "2t + 1))> < O(1)(s + 1)3. 9.19)
0 0

We next assume x < 0. Then we have 1> [(x) = 1/2 and hence, by the definition
(9.14), and by (9.18),

Im(x)L; ' f(x)] £ O(L)e™ | dse™ s/t < O(1). 9.20)
When X = x = 0, we find, using Lemma 5.2 and Lemma 5.3, and the bounds (9.18),
(9.19),

Im(x)L; ! f(x)| £ 0(1)m(x)l(x)<1 + ?dse"”/“ez”/s(s + 1)3>
0

SOX*) = (log(n™1)*. 6.21)

Thus we have obtained the asserted bound on L 1.
The case of L; ! is similar. For s £0, we have, by Lemma 5.7,

N

[ dil e ()

— 0

<O(1) | deePe e | £,

— 0

< O(1)et# el +as, (9.22)

For s 20, we have, by Lemma 5.4,

' [ dir e £(z)
4]

S O(1)[dee” (e + 1)
0

S O(1)(s + 1)2el+ Te=12s, 9.23)
Next, we assume x < 0 and bound the second integral in (9.17). Using Lemma 5.7, we
find

mE)LT T f(x)] S O()e™@ 0% | dsecs4e ™ 2Bsg8+eld+s < O(1), (9.24)

o0

When x >0, we use Lemma 5.5, and we find

Im(x)Li* f(x)]
< O(l)e‘“ +1/2)x<1 + f dse ™54 245l +C/4*1/2)S(S + 1)2>
- 0

< O(1)e 19" (x + 1)° < O {log ). (9.25)

This completes the proof of Proposition 9.1. The proof of Remark 9.2 is left to the
reader.
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We now come back to our main problem. Equation (9.5) can be written as
a=L{'(k; + Reh),
b= L5k, +Imh). 9.26)
We now decompose
ky=ki,+kyy, withk,, =n?a"” —4dnwb”,
ky=ky, +kyy, with kyy = 52" +dnwa”. 9.27)

We want to write L; 'k;, as a differential operator acting on (a,b) plus a ‘small’
remainder.

Proposition 9.3. There are bounded (linear) operators Oy;,i= 1,2, j= 3,4, on H, 4,
with a norm bounded by |logn|®, such that for all feH, y which are four times
differentiable, one has

ALTI04f = f7 — gf’ + 0.1, 9.28)
ALTO* =" — % 1+ 0,1, (9.29)
AT = f =+ @— U0y, (9.30)
4L;%§f=fﬂ—2f+mx—Fﬂr‘Ouf (9.31)

Proof. We consider first D!, where D = 0, — g for some function g. We may write
0, =D + g and expand. One has then the following identities.

D', =D YD+g)=id+ D7 g, 9.32)
D '32=D"'D+gy=D"'D(D+g)+D gD +g)
=d,+g—D7'¢g+D7 g% (9.33)

(we have used gD = Dg — ¢'). Similarly,
02 =D(D + g)* + gD(D + g) + ¢*D + ¢°
=Dd2 + Dgd,—g'(D +g) + Dg> —2g'g + g°
=D+ Dgd,—Dg' +¢" —g'g+Dg*> 299+ g
so that
D73 =02+gd,~g +9*>+D g —3¢g+ g%} 9.34)
Finally,
03=D(D +g)® + gD(D + g)* + g*°D(D + g) + ¢°D + ¢*
= D03 + Dgo2 — g (D + g)* + Dg?d, ~2¢'g(D + g) + Dg® — 3g'g* + g*.
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We have the two identities
~g(D+9*=—¢'DD+g)—g'gD+g)
=—Dg'0,+g"(D+9)—Dg'g+(g9) —9'9*
=—Dg0,+Dg" ~g"+9'9g—Dgg+9"9+¢) —d9’
and
—299'(D+g)= —2Dg'g + 2g'g) —24'g*.
Collecting these terms, we get

D710t =0+ g2+ g%0.+ 9> —g0.+9" — 349

+D7Hg*—6g'9> —g" +49"g +3(g)*} (9.35)
=03+ 039 — 30,9 + 0,9 + 9> —5g'g +3¢"
+ D Hg*—~6g9* —g” +4g"g + 3(9)*}. (9.36)
Going back to our original problem, we have
L; =400, —g1)(0«— 92), (9.37)

with g, =1l"/l, g, = —l"/l' — ¢/4. We thus find
4L71aY =(0,—g,) " (0. —g,) ' 0%a
= (0. —92) {0} + 039, — 30,9, + 0,91 + 91 — 59191 + 341 }a
+4L7 gt — 64191 — g7 + 4419, + 391} (9.38)
Using the techniques of Sect. 5, cf. in particular the vicinity of Eq. (5.41), we see that

g1 92, and their derivatives are bounded (by O(1)). Thus the last bracket above is
bounded and we find

14LT ) f ., SO logal*| £l .
by Proposition 9.1. Reapplying the identities for &%, we get
4L7'a™ =(07 + 9,0, — g2 + gDa+ (0. — g2) " *{g1 — 3919, +gi}a
+0.91a+ 9190+ O3a (9.39)

=a"+(g,+g.)d + (93 + 91— g5+ 9:9.)a+ Oua

c
=g"——d + O;a.
4 5

Here, and below, all O; denote bounded (linear) operators on H, x, with norm
bounded by O(|log#n|?), as is seen by applying Proposition 9.1 and Remark 9.2.

In the case of the third derivative, we need a somewhat more detailed analysis of
the “error term.” We have, using Eq. (9.34),

4L;103 =(0,—g,) " {0:+ 091 — 291 + 97 + (0, —g1) " g} — 3919, +93}}
=0, 491+ 9>+ (0, —92) {—gr+95+ 919, — 291 + 97}
+(0x—g2) "0, —g1)" {91 — 3919, + g3} (9.40)



74 P. Collet and J.-P. Eckmann
Thus, we get

4L =b — zb + (9, —I"/l)”1Ogb. (9.41)
The other cases are now analogous:

AL; Y bY = b — %b’ +0,b, (9.42)

AL;'a" =da — ga + (@, — /D' Oga. (9.43)

The proof of Proposition 9.3 is complete.
The expressions a; — L; 'k;;, j=1,2 (with a, = a, a, = b) can now be written as

a— L%k, =a—3in*a" + %ﬂza' + nwb’ — ’725 —0(a,b), (9.44)

b—L; ks =b—3n*b" + l%ﬂzb’ —nod + n%a — 0.(a,b).

Here O,, i = 1,2 is of the form
0, =18, —9)"'0;; + 10y, (9.45)

where the O;; are bounded linear operators from H, x @ H, x to H, y, with norm
bounded by O(|log#/|3), and g ="/ or g =1/L.

We study next the operator M defined by the right-hand side of Eq. (9.44)
(without the terms O;) in Fourier space, using techniques analogous to those of
Sect. 7. We see that the correspondence 0, — iq leads to the matrix (with constant
coefficients)

2.2 a2
nq m-qc . ne
1 _
+ 4 + 16 inwq i 046
2.2 .2 '

. fc nq m-qc

— — 1
inwq + 4 + 4 T3

The characteristic polynomial of this matrix, when expressed in the variable
p =#nq/2, is of the form

, 2 ne . 2
Ap)=(1-p +n1p§ + Z—Zza)p . (9.47)

For = 0, this polynomial has the roots p = + 1, and one can check that for small ,
the four roots are of the form

ic\!/?
Pia=1+ 771/2<§> + O),
(9.48)
c

172
Psa=—1% ’7“2i<§> + O(n).
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We have used »? — 1 = O(n?). We also define g; = 2p,/5. The inverse of the matrix
(9.46) is of the form R(g)/A(nq), where R is given by

22

in*qc . ne
1 — Kb
+ 4 + T3 inwg + 1 049
. ne n’q® | inqe .

If we denote by r the pair of functions r,,7,, we can define M~* as follows:
5y RarO) ey
T30 T Alng /2

o R@Y) -y
_j:22,4xdyAl(’1qj/2)n/2e o 50

(M™*r)(x) =

Proposition 9.4. The operator M~ is defined as a bounded linear map from
H, x ®H, x to itself. Its norm is bounded by O(n~1). If g =1"/l' or g =1/, then the
norm of M~ 48, — g)~ ! is bounded by Oy~ 1/?).

Proof. We first observe that R(q;) is O(1). Given the identities (9.48), we see that

B S
|4 (nq;/2n/2| =

To bound the norm of the operator M~ from H,y to itself, (in fact, from
H, x ® H, 4 to itself, but we use the same notation for the norm on the direct sum),
we use again the estimates from Sect. 6. Note that |Im ¢;| = O(y ~ /%) > 1. Therefore,
we find that

Oy~ *2). (9.51)

My, SO0 Yy, .

i.e., the inverse of M is bounded by O 1).

We next bound M~ 1(0, — g) !, with g as in the statement of the proposition. We
consider first M~Y(0, + 1)7 1. Setting s = (0, + 1) 'r, we see that M~ !s leads to
integral expressions as in (9.50), which can be integrated by parts. E.g. forj = 2,4, we
get expressions of the form

j‘ qJ)S (y) e““(x_”,
ig;x "~ A'(nq;/2n/2
plus boundary terms. When taking the sup (over x) of these expressions (after
multiplying by the weight factor m(x)), we find that the boundary term at X is
critical. Using the techniques leading to Lemma 7.4, we see that
IM @+ 1)l SO0 1) 0,8, - 9.53)
We have || d,s o S Ml £ @, + 1) 'r I, o and by Lemma 6.2, this is bounded
by O(HrHHM). Thus we have shown

M@+ 1) e, <002 S . 9.54)

(9.52)
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From this we get the inequality
IM 0, ¢) S, SO0 )@+ D@ —9) S .,
<00~ "), ,»
where the last inequality follows from
O+ D=9 ' =1+(g— D0, —9 !

and (9.54). The Proposition 9.4 is proved.
In Sects. 12 and 13, we shall need to study the operators

P@ (—id "M, for m=0,...,3. (9.55)

These operators exhibit strong cancellations, which come about as follows. The
projection P is associated with the operator A, while M is the “quotient” of 4,
and the second order operator (L,, L,). Thus, the large eigenvalues of 4, and of M
almost coincide, leading to the cancellation which we study now. We have

x  UR
(—i(?xM‘lr)(x)zj:zm‘w yZ*(vrfq%);% iaj(x =)
X UR(g)r(y)
— d _—1_ fqjtx=y) 9.56
&Y T g 2 056

Here, U; is the matrix
U= Req; —Img; .
Img; Reg;
The boundary terms at x have cancelled by a mechanism analogous to that of
Lemma 7.3. For the second derivative, we find

. i  UR(g ()
~ s . _ STV Gigga=y)
((—i8,)*M ™ 'r)(x) ,-:213 YA (a2’
=3 Jy SR ey, URG)

A'(nq;/2)m/2 =14’ (mg;/2m)2”
(9.57)

ji=2.4

Similarly, we find

L iPM ) (x) = i ELRW(_)
((—i0,)°M ~1r)(x) F”fwd Atna, 2
- x U?R(qj)r(y) igj(x—y)
I S gy mia®
3 UZR(g)r(x) $ UiR()Dr)
E1A g 2m2 &1 Alng/2m/2

igj(x—y)

j=2,4

(9.58)

The matrix D is given by



Existence of Dendritic Fronts 77

Instudying (9.55), we are faced by a product of matrices of the type of U;. To simplify
notation, we write, however, all expressions in scalar form, except where the
matricial cancellation will be crucial. We see from (9.56)—(9.58), that (9.55) is an
integral plus a sum of boundary terms. We start by bounding the integral

+j'dy (4, — 491,04, — 41.2)(g;-1,3) R(g;)r(y) P
1 (91,4 = 91,0G1,4 — 91,14 — q1,3) A'(ng;/2)n/2
The signs and integration limits are as in (9.50). By (7.35) and (7.38), we have

411,912 =12+ 0@,
41,3-91,4= —2/n+O0n" 12).
We are lead to a matrix multiplication (g; — g, 3)R(q;), expressed for legibility in the
p;=n4,/2,
1/2< 14+0m'?)  ip+ 0(,71/z)><1 +p}+O(n) —2ip;+ 0(11)> 002
—ip;+0'?) 1+0"?) J\ 2ip;+OMm) 1+ p;+ O '

e

(9.59)

J

(9.60)
Note now that the quotients in (9.59) lead to the bounds

(4~ a1, —q1.2) — 07,
(1.4 = 91,014~ 91.2Md1.4 — 41.3)
Combining this with (9.60) and (9.51) we see that the norm of (9.59) in H, y is
bounded by
o Hrily, - (9.61)

We next study the boundary terms.

Lemma 9.5. We have the bounds

¢ UR(@g) B & UiR(qg) -
2 o), Bt i PO YAEE 2
L dnayonz =00 X ag o = O

Proof. The proof is similar to the proof of Lemma 7.3 and is left to the reader.
We now summarize our results, by multiplying the various estimates. We have
already summed the integrated terms. The boundary terms for m = 2 contribute

OMn™2n 1y 27y, , = Ot )1, (9.62)
and for m =3, we get
Or¥(1 ™ [l + 172 Dr . ) =00~ rly,  + O )| Driy, . (9.63)

We can improve the above estimates, as in (9.53).

Proposition 9.6. One has the bound

3
> P (—io ™M™ L+ D)™ 's

m=0

<O )]sy,

Hz.X
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10. Perturbation Theory

In Sect. 9, we solved equations of the form

a
L<b> =h. (10.1)

We now show how to obtain an approximate solution to any given order N of
Eq. (9.5) with h =0, which we now write as

Lu=K(u)+v. (10.2)

Here, the unknown u has two components u,,u,. Furthermore,
s du + cuy +uy — 3u l?
Uy duty + ety + uy —upl? )

k()= (k)

1
K, (uy,uy) = n?uf — dnowy + 6(1 — w?ui — 4

with

—w?

ouy

1 . wz 2
+ (—72—)141 + 3udl + ud + uu3 + udl,

1—
Ky(uy,uy) = nuy + dnouy + 6(1 — o?us — 4 A
n

1 — wz 2
+(*72-Lu2 + 2u gyl + vPu, —ud.

Finally, we have v = (vy,v,) with

1 — w2 1 — w2)?
vy =01+ 6(1 — )"~ "o+ (————(ZU ) I
f Yl
v, =4dnol”.

We can solve iteratively Eq. (10.2) by using the results of Sect. 9 and the bounds on /
from Sect. 5. We define

uO:—O, uj:LglK(uJ'_l)‘FL_lU.

We fix, once and for all, an integer N (the degree of approximation). The constants
below will depend on N but not on 7.

Proposition 10.1. One has the bound
| Ly~ Kuy) vy, < O(n" logy|*>.
Proof. We consider first the operator L™, By Proposition 9.1, we have

1L ull, , < Hognl® fully,
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An easy extension of this result leads to the bound, for M < 2N + 2,

sup | 0LL” 'uly, , < |logn|*supldiuly, - (10.3)

M JEM

We next analyze K. Let us assume that
sup || du Iy, S1 for M <2N +2.
jsM '

Then it is immediate from the definition of K that

sup |6 Kully, < 0(1)(77. szp4(| ully,  + sup (| 0u Ilﬁ,x>- (10.4)
JEM+ ’ js '

j=M

Since K is multilinear, we find by polarization, that

sup| 24K (w) = K() b,

<0() sup || & — ) nﬂu,x< -+ sup(l8fuly,, + Ol ||HM>>. (10.5)

JEM+4

It is here that we shall gain a small factor per iteration, see below. Note now that

sup [[0in 1l <nllognl® (10.6)

jS2N+4

Combining (10.3), (10.5) and (10.6), we get recursively for 2 < p < N + 1, the two
inequalities

sup )Il iy Iy, , < O llogn |,

JEAN+1-p

sup 2l|<3§;(u,,—up_l)llnav,(é0(1)17110557115 sup zliai(up-l—urz)lluu-

JEAN+1-p)+ JEAN+2-p)+
The assertion of the proposition follows from

Luy — K(uy) —v=Luy— Luy ., ;.

11. The Fixed Point Problem

Before proceeding with the problem, we summarize the situation as it appears at this
point. In Sect. 4, we transformed the existence problem for the front to the form (cf.
(4.19)),

Bw; —w,|w,[? = h(w), (11.1)

and (cf. (4.15)),
AWy =h (W), n# +1 (11.2)

In previous sections, we have solved the problems

Bowy —wilw;[>=h, (11.3)
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and
ApnWn=h, (11.4)

for any given h (in the appropriate space H, x), by giving explicit inverses, on
(— 00, X7]. In the case of Eq. (11.4), the inverse has been defined by the integral (7.25).
We call this particular inverse A_,!. Note, however, that for n# +1, 4, has a
two dimensional null space in H, y, which is spanned by the functions

eiqn,m’ and eiQn,Zx’

where ¢, , and g, , are the two roots of the characteristic polynomial (7.1) with
negative imaginary part. We denote

Tn,{,{ — éeiqn,x(x—X) + Cei'In,Z(x_X)_ (1 1_5)
The most general solution of (11.4) for fixed A is then
Wn=A(;"1h_ Tn‘é,g, i,CEC.
(The requirement that w, = w_, will force relations between the ¢ and { for n and
—n)
In the case n = 1 (we shall not explicitly mention the case of negative n any more),

the situation is similar, but somewhat more complex. In Sect. 10, we found an
approximate solution (/,0) + uy for Eq. (9.1), with A = 0. We make the ansatz

=lo)e(i)

We find for given h the equation
a k K, +Reh
L) ={ "+ . 11.
<b> (ku) <K22+Imh (116
The terms K, are obtained as follows. We set (instead of (9.4))

z=l+4uy+a+i(uy+b).

Substituting into (9.1), we get an equation of the form (9.5) with the same left-hand
side but with different right-hand sides. We find

Kj2=Kj21+Kj21+Kj2K! fOrj=1,2

where

and

1 —w?)?
L—nz—)a + 3@+ a® + ab? + b2,
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1 —w?
i

Kayx =6(1— )b’ —4 Y

1~ 22
L)y | abi+ a2 — b,

Finally, the terms coming from uy occur in K ;, ;, which is a bounded operator from a
ball of radius 1 in H, y ® H, x to H, y, with norm bounded by O(x{log #|°). The null-
space of L is easily seen to consist, in H, y, of the function (I'(x), 0). In fact, all other
possible candidates are seen to have the wrong behavior at — o0, Aninverse L™ ! of L
has been defined by (9.14) and (9.17), and we denote below L™ this particular
inverse. The most general solution of the problem

L(") - (ql), (11.7)
b q:
for given ¢, q, is therefore

a\ @\ (TTON_ (4
(0)- ()" ) e

Tt=t<l,/l(l)(0)>. (11.9)

where we define

We next consider the term

ki) nf %\ O(a,b)
-t <kn>‘(M ”(b) (02(a,b)>’ (110

cf. Eq. (9.44). Here, Q,, O, were given in (9.45). We denote M~ the inverse of M
given by (9.50). Then the equation

a t
M{ ="
<b> <t2>’
for given t,,t, has the solution

a _4ft
<b)=M 1<t:>—T1,u, (11.11)

where Ty ., = &vy +{v,, and v, v, are the two eigenvectors of M with eigenvalue
zero (corresponding to p,, p, in (9.48)).

In the interval [X, c0), we viewed the equation of the fronts as a dynamical
system. Equations (4.6) can be written as a flow

ay
L =AY + F(Y), (11.12)

dr
where

Y={w"|lneZ, m=0,12,3}, (11.13)
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and the upper indices denote derivatives. 4 is the obvious operator induced from the
left-hand side of (4.10) while F is the (non-linear) operator induced from its right-
hand side.

We now formulate the existence problem for the fronts in terms of a fixed point
problem, in a space of the functions w,,n # + 1, and a, b, augmented by parameters
£, .7 The construction will be based on the following trivial but important
observation. Assume O is an operator (such as L, M, or A,,), and that g is in its null
space, i.e. Ogsz0. Denote by O™' an inverse of 0. Then the following is true: For
every (eC, if f solves

f+Lg=0""h (11.14)
(assuming O~ 'h is defined), one has
Of—h=0.

This is the way in which we shall use the free parameters &, {, 7, which we discussed
above.

We shall now define two Banach spaces F and G, and a map S from a ball B,
around 0 in F to G. The map S will be seen to be differentiable. Define r by

r=1{80)ll¢.

We shall show that there is a number ¢ > 0 such that
1) The ball By, of radius ¢ in F is contained in B,

2) r<o inf (DS, 1| L.
yeBg s

These two conditions imply the existence of a y,e By, such that S(y,) = 0. The
map S will be constructed in such a way that y, will produce a solution of the system
(4.6).

The number p, > 0 will be fixed later on. We shall not mention any more the
condition w_, = w,, and we shall only consider n = 0,n odd.

Definition of F. The space F is a direct sum of two Banach spaces F=F; @F,,
where
F,={w=(a,b, (wn)ne{3,5,7,,..})9 a, b, WneHa,X}3 (11.15)
FZ = {E = (T3 (ém Cn)ne{l,lS,,,‘})’ TER, gn» CnEC}, (1 116)

with the norms

IWle, = lall, 2170 + 1Bl 7177 +supn 2 "nlw,

nz3
IE [k, =m(X){SL>1§H1"“"n3(lfnl + ICHI)} +lzl.

In the above definition, there is a slight abuse of notation, since we used w earlier to
denote the set of w, for all nincluding n = + 1, while we now switch to the translated
variables a and b. We define the notation w, = [ + a + ib, where [ denotes henceforth
what used to be called [ + uy. The factor m(X) serves balancing purposes.
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Definition of G. The space G is a direct sum of three Banach spaces G =
G, ®G,®G,. The first will break translation invariance, the second will be
isomorphic to F,, and the third will be identified with the derivatives of the w, at X,
so that the theory of Sect. 8 can be naturally applied. We consider therefore vectors
X of the form

X =(X)enizs. ) Xn€RY (11.17)
and we define a norm on such vectors:
1Xllg, =m(X)supn =" sup n|x,, |3, ", (11.18)
n 0smg3

where y, = |u|/4 (an approximation to the root of maximum modulus of (7.1)),
W= on.

Definition. Thereis a natural map Ifrom X to B, as defined in Sect. 8. The norm of Tis
1/m(X) and the norm of I ! is m(X). We consider in B the space E i.e. the unstable
subspace of the family of operators induced by the {4,,,} on these derivatives. This
space is a direct sum of two dimensional subspaces for each of the components of B,
except for n =1, where it is 1-dimensional. We denote by P* the corresponding
projection. We now define P to be the projection of I~ 1P“B onto the vectors whose
component x, ¢ equals 0. The component x, , of X will be considered as an element
in the Banach space G,. We now define

G, =R, (11.19)
G;=F,, (11.20)
G, =PI 1 P"B. (11.21)

Definition of S. The operator S has three components, corresponding to the
components of G. The first component is

SW(w, Z) = §,1(0) + S, (a(0) + ib(0)) — S /2. (11.22)

If SY(w, £) = 0, then we have broken the translation invariance of the solution, by
fixing W,(0) = S,/2. We define the second component of the operator S by giving its
image on each of the components of F,. For n # 1, we define

SPw, E) =w, — Ao hy (W) + T,y 1 (11.23)

and for n=1 we define
a

SP(w, 5) = ( )

—M-! (L_ 1 ( Rehy(w) + K y,(w) > . (01(“')))
Imh (W) + K5(W) O, (w)
Before proceeding with the definitions, we verify that SPw, Z) = 0 implies that we

have solved (9.1) (on (— 00, X]). Indeed, using (11.14), and (11.11), we see upon
multiplying by M that

a -1 Re hy(w) + K »(w) _ O (w)
M<b>+ f=t (Imhl(w)+K22(w)> (Oz(w))

> + M_ 1 T‘c + Tl;ét,@‘l
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Using now (11.10), we see that
a ki, +K
T =L—1 11 12 -1 )
<b>+ ’ <k21+K22 LW

Applying again (11.14), and (11.6)—(11.8), we sce that we have solved (9.1).
Finally, we define S® by

S®(w, Z) = P4I~*PIT(w, Z) — 17 *@((1 — PHIT(w, £))). (11.25)
Here, we define for n23,0<m <3
T(w, Z) = (= i0,)"(— 8P (w, Z) + w, + S,)(X), (11.26)
while for n =1, we define
TM(w,E)=S,(— i@x)"‘( —(1-M1Q)SP(w, E) + <Z) + (é))(X). (11.27)

Here Q is defined as follows: In Sect. 9, we have found in Eq. (9.45) terms #20;,.
These are linear operators acting on the pair (a, b). The operator Q is defined by

u 2 O;,(u,v)
= . 11.28
Q<U> 1 (022(%0)) ( )
The existence of the function @ has been shown in Sect. 8. The above definitions
(11.26), (11.27) are somewhat more complicated than might seem necessary, but they
will make the estimates less difficult. In particular, the terms linear in w are cancelled,
and by the results of Sect. 9 this implies that the derivatives in (11.26), (11.27) exist.

We again note that if S®)(w, £) = 0, then we will have solved the matching problem
at X. The constant X was fixed to be Clog(y~ ') in Eq. (9.8).

12. Bounds on the Approximate Solution

Here, we bound S(0), but we simultaneously estimate some of the terms of S(w, &)
when

Iwle, + 1 Elg, <o, (12.1)

for some (small) 6. We start by bounding the inhomogeneities 4,. By the results of
Sect. 3, we have, for n# + 1,

|S,] = s, S g+, (12.2)
and, when n=1,
sy <n®, (12.3)

where 0 < p < 1/4 can be chosen arbitrarily. We shall choose p = 1/5 henceforth. We
have, for n # + 1, by (4.13), (4.14),

W (x) = S, l(x) + w{x), (12.4)



Existence of Dendritic Fronts 85

so that, by (12.2),

sup  [W,(x)| £ O@*"* D 4 gprry, (12.5)
xe(— 0,X]
and
W, —Sullly,, = O(on™"/|n|3). (12.6)

By (4.11) and (3.7), we find, with I" defined by (3.3),

W, =T +s)(+a+iby=SI+a+ib), (12.7)
so that
sup |Wi(x){ =0(1), (12.8)
xe(— ,X]
and
Wy =Sy, < On™). (12.9)

The expansion of h,(w) leads to the following expression (all sums are over
p+q+r=n),

hiwy=n> 3. (S04 wp)(SJ+w)(S,I+w,)

pgr # £ 1

+ 342 (Sl +w S+ w)S,(l+ a+rib)
p 2 q q.

pg#£1

+3n2 Y (S,l+w,)SH(I+ a+ qib)(I + a+ rib)
e
+5? S3( + a+ pib)(I + a + qib)(I + a + rib) — S,A,,l.  (12.10)
par=ztl
(The last sum is only present if n = + 3.) Note now, that by the construction of the
stationary solution,

(1 — (1 +n20?)?)S,=n2 Y 5,585, (12.11)

ptqgtr=n

When w =0, we have, by (12.11),
hn(O) = 7’2 z SquSrl3 - SnAwnl = Sn((nz - (1 + n2w2)2)l3 - Awnl) (1212)

ptgqtr=n

The terms in (12.10) which do depend on w are bounded as follows, using (12.5),
(12.6), and the fact that ¢ is small

|n13 | A (w) — h,(0) ”me = 0(0112){71”""’ + nﬁl“"l*l) + npl(lnl—»z) + 53!,1,791}
= O(an?=2rt i), (12.13)
Note that the sum over p + g + r = nin the definition of h, has been absorbed by the
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bounds (12.2), (12.3), (12.6), since

pyllpl +lal+rl —1nl)

n

——rre— 2 0(n 73, 12.14
ptqtr=n P343r3 o (n ) ( )
p.gut 0
uniformly in .
We next analyze h,(w). We have, cf. (4.19),
1
h1(W)=‘S—1(Z*WquWr“W1lW1\2(1 - 38%))5 (1215)

where wy =1+ a + ib. Recall that 3 * is the sum over | p| + |g| + |7| # 3. Asin the case
of h,,n# 41, we can expand
hiwy=Y* (S,I4+w)S,+w)(S,I+w,)
Pgr¥ 1
+3 3 * (S w)S,l+wy)S (I + a+rib)
p;q:ﬁl
+3 3% (S, + w,)SHI + a+ qib)(I + a + rib) — w, |w, [*(1 — 383). (12.16)
quriitll
Similarly, when w=0, using (12.2), (12.3), which imply, among other things,
1 —35%2 = O(5®), we get
hy(0) =3"*S,S,S.> — P(1 - 383) = O(n*C "V + )P = Om®)P.  (12.17)
Also,
I3y (W) = hy(O) Iy, , = Olon>** V) + O(on*?) = O(on™). (12.18)

We now start bounding S(0) itself. This means in particular that in the above
estimates w = 0. We first consider S, Note that [(0) = 1/2. Therefore, using the
definition (11.22), we find

S®0,0)=0. (12.19)
Next, we consider S, when n# +1. We have, using the identities leading to
Eq. (3.8),

S20,00=— A, 0> Y PS,S,S.—S,Au) (12.20)

ptgtr=n

= - Ac;nl (13(’?2 - (1 - nZwZ)Z)Sn - SnAaml) = — SnAc:nl lna

where [, is a polynomial in the derivatives of I (up to fourth order) with coefficients
which are bounded by O(n*). We now note that

1], = 0@, for j=0,....4
Therefore, we have, by Lemma 7.4,
Ao bl , < O(n*n ~172). (12.21)
We finally analyze S/2(0,0). Since O, and O, are linear in a and b, we have

Re h(0) + Ku(O))

S@(0,0)= —M~L7!
10.,0) <Imh1(0)+K22(0)
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We have bounded 4, in (12.17), and we consider now K ,, and K, ,. Note that K, ,(0)
and K,,(0) are in H, x. For later use, we also note that L; 'K ;,(w) is of the form

L7 'K (W) =n(@,—g) 10, + 1?0, + L; 103, (12.22)
where the O

ij»J = 1,2, are bounded linear operators from H, y ® H, x to H, y, with
norm bounded by O(|log#]%), and g =I"/l' or g =1/l and 0j3 has norm O([w|g )
when [[w |y < 1. This follows by obvious (easier) variants of the calculations leading
to Proposition 9.3 and to Eq. (9.45). Applying now Proposition 9.1, 9.4 and 10.1 to
the terms h; and K;,, we see that

12 1SPA0,0) Iy, , < O~ 12 4y =172 712 log |10 < O 27,

provided we take 8p — 1 > 2p, and N of Sect. 10 sufficiently large. We can now take
the sup over n and we find

n~°1S¥(0,0) e, + snti;; nn =P | S0, 0) I, , (12.23)

<O 2T7) + O)supn > "n’|S, Iy~ 2

nx3

< O 2*71) + On?)supy® ~ P Ty Pt DS |y L2 +ent D)

nx3
S0@'2Tr,
provided we choose 4p, < 3p — 1/2. Summarizing, we have finally found
1812X0,0) |1y, = O /27 7). (12.24)

We study next the third component of S. We begin by analyzing the casen # +1,
and we fix n. Recall that P* and P*® are the spectral projections of A,, onto the
unstable and stable subspaces, cf. Sect. 7. We have bounded these projections in
(7.45). We can now consider the term S,/ in T,, cf. (11.26). Then we have

IPO{(~ 12", m=o....3]l6,

< O()m(X) sup [P, [|((—i0)"D(X)IS,ln~*" sup 1 g} [n.
0=mz3 0Em' <3 (1225)
Using (12.2) and the bounds (7.47), (7.48), this is bounded by
O(I)m(X)n—p1\71[+2p(\nl+1)r’4<ﬁ)3n—3/2’u—1/2n3Xe—X/2
n
< O(HZﬂ)n(Zp—pl)(lnl~3),16pf3p; ~12y3 < 0(,729), (12.26)

provided 2p — 1/6 > p,.
We next consider the other term in T,, namely S2(0,0) = — 8,411, cf. (11.26)
and (12.20). We have

I PYS,Agn lnllg, < O(1)m(X) sup |PF,(—id,)"
0gms3

X (Agn LYRONS, )~y ™, (12.27)
It is easy to check from the definition of 4_,!, and using (7.23), that J, and 4!
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commute up to boundary terms at X . Leaving the detailed discussion of the latter to
the reader, we bound (12.27) by

3
O(l)m(X)n“(%) 7’]— 3/2lu~ 1/21,] - 1/2H4n2p(|n|+l)nﬂ)lln['uSXe*X/Z’ (1228)

Using, from left to right, (7.47), (7.48), Lemma 7.4, the definition (12.20) of I, and the
bound (12.2) on §,. Simple arithmetic leads to the bound

O(nzp)'uwﬂn-l+6p-3pl,,(29~pl)(tnl‘3)_ (12_29)
Thus, if we require 2p — 1/3 > p,, then we have the bound
I PPS, A g, < Ot /2y =ra)lri=3), (12.30)
We next consider the case n = + 1. Note that by Eq. (11.27), we have

!
T{(0,0) = S4(— iax)"'( —(1-=M~'Q)S{(0,0) + <0>>(X)-
We begin by bounding the contribution of the second term to S©.
3
POILLIL S = ey u> X, P, mIm(X)
m=0

_ (=10, — q1, (=10, — g1 2)(—i0, ~ gy 3)
(41,4 = 41.001,4 — 91.2)d1,4 — 91.3)
Using the bounds (7.35), (7.38), and the decay of I, we see that

| POIL LTy g, = O(n*2~r. (12.32)

We next consider the term in (11.27) which contains S{¥(0,0). Note that its
ingredients, h(0), K ;, are all either derivatives of I, or multiples of I°, see (12.17),
(12.15) and the description of K, after (12.22). Hence, using the same arguments as
above, we get again a bound of order O(/?). Therefore, we see that

IPT1(0,0) (g, < O('2 7). (12.35)

We can now combine these bounds with those of (12.30) and take the sup over n.
We obtain

(X)ley .  (12.31)

1P*T(0,0) g, < O@*2771).

We will have to know that the solution of the problem in [ — co, X) arrives in this ball
when considered as a function in G, as above. But this will follow from the size of
m(X), provided X > Cllog#| for some sufficiently large C. Indeed, it is easy to see
that

I'T(0,0) g, < O ~*")
By the definition of T this yields

1

(1 = PIT(0,0) i = el

O@~").
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We now apply Proposition 8.2, and Theorem 8.1. We get

1

10((1 = PTT0,0) 4 00 ), ons

It follows that

1
ISV0,0) 16, = O™+ OG22,

where K > 0 is independent of #. At this point, we use that X is large, and we get
I1S%90,0)|lg, =O(n>~»), (12.36)
If we combine now (12.19), (12.23), and (12.36), we see that we have shown the

Theorem 12.1. There is a p >0 such that the map S, acting on (0,0)eF; @ F, is
defined and has an image which is bounded in norm by O(n”), provided 7 is sufficiently
small.

Remark. p =1/5 works.

13. Bounds on the Tangent Map

In this section, we shall bound the tangent map §S. We shall use throughout the
following notation. We denote the “variation” of a function F by JF. This is the
Fréchet derivative of F. It is a linear operator on the tangent vectors, which we
always denote by (dw, 0=) (and similar notations for their components). We will
bound the operator 6S on a ball

Iwle, +1E M, <0, (13.1)
and we shall in fact do this for o = 5172+ #/2,
Theorem 13.1. For every (w, E) satisfying (13.1) with ¢ as above, one has
OS = an upper triangular matrix + small remainder, (13.2)
and this matrix will be given in detail in Eq. (13.16).

Proof. We first bound dh,(w)ow. Note that by (12.10), it is easy to elaborate all the
terms of this expression, and we get a bound very similar to (12.13), because 4, is a
polynomial in its arguments, namely

|1l 1 SR (W)OW [y, < O w flg 7?21+ 0u0. (13.3)

Next, we consider dh,(w). The same remarks as above lead to the bound for ok, cf.
(12.15), similar to (12.18),

1ohy (W)ow [l < O(1) | ow [l 1. (13.4)
If we consider (11.24), then we see that 58 has terms of the form
_ . _.[ Redh(w)+ 0K (W) _.f 00(w)

MLt ! d M™! . 13.5

L <1m Shy(w) + 0K pp(w) ) " 50,(w) (13:5)

In (12.17), (12.18) we have bounded 4, ; in (12.22) we have bounded L; 'K ,; and in
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(9.45) we have bounded O;. All these bounds were without the factor M~*'. To
bound the variations, we observe that K, is linear plus cubic. This implies by
polarization a bound on L; '6K ;,(w)dw. Similarly, the O, arc linear, so that bounds
follow from (9.45). The action of M~ ! is now controlled by applying Proposition 9.4.
We finally get the bound

1P 68w, Z)(Ow, 0F) — 5(;’) M Ty — Ty penor, Ia

< O()(n'*|logn> + O~ 2a)) [ ow, g, (13.6)
Note that by the choice of o, this is bounded by
On* /2| 6wy I, -

We next consider (13.3). By (7.27), the inverse of A, is bounded by O(y~*).
Therefore, we see that

[n| 3y~ A Lo, (w)ow ”Hax <0(1)|| ow ”Fln— 1y2=20,
In terms of S{?, this implies

In[n= 1" 0S{P(w, E)(OW, 68) — 0w, — T, st 01, I, , S O 10wl 7' =20

e (13.7)

We next analyze the variation of §'*. We claim that the only terms with “large”
variations in (11.25) are those coming from the operators T,. We begin with the case
n = 3. We first observe that

STIAw, E)(0w, 65) = (—id,)"(— 6S{P(w, E)(0w, 65) + 0w, + T, s5z,.50,)(X)
= (—i0,)"(Ap Oh(W)OW + T, 5, 5, H(X). (13.8)
By Lemma 7.5, these expressions exist. To bound them, we observe first that
(OT(w, Z)(6W, 65) — (—i0 )" T, e, 50, )X) = (—i0,)" A, Sh,(W)ow.  (13.9)

We consider now the projections of this quantity on E* and E°. Using the integral
representation Eq. (7.55), we get

| POOT(w, Z)(0W, 05) — (—i0)" T, 5.0l 6,

<n” 3/2M— 1/2772—2p1 +p1in) H Sw HFln—pﬂnt

1
—_<—n1/2—2p1_r_l_§“5w“l?l. (13.10)

Note next that T is an injection of F, into G, =F as can be seen from

I T omstntnll 6, = 1H{ Tustnorainlle, = 165 [y, (13.11)
Similarly, we have

(( - lax)m Tn,&é,.,ég,,)(X) = 55;;‘1;':’, t 5qurrnn,2 p (]312)
asis seen immediately from the definition (11.5). By (7.44), we have, on the “sector” n,

P{(~i0)"T, 5¢,00,0 (X) =0, (13.13)
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and »
P10 T 55,06, (X) = (0, 6L,). (13.14)
It remains to study the case n = 1. We have to consider
ST (w, E) (6w, 05)
= SI(~iax)'"< —(1 =M™ 'Q)SP(w, Z)(ow,Z) (6w, %) + 5(Z>>(X).
Note that

_ _ a _.._.{ Redh (w)+ 0K, ,(w)
SP(w, Z) (6w, 65) =(1 ! -M'L! '
oSy (W, Z)(0w,05) =(1+M Q)(S(b) L (Iméhl(w)-i—éKzz(w)
_.{00,(ow) B a 4
1 1 _ 1 1
+M (502(5“,)) M Q5<b>+M T+ Ty se, 000

Substituting into the above equation, and using Proposition 9.6, and (13.6) we get

[ PLAST y(w, Z)(0wW, 05) — [(—id,)"(1 - M QUM ™' Ty, + Ty g, a2 ) g,
<n V' el owly, St owllg, .

Note that by (9.63) and (11.28), we find
[PPI(— i2"M™ QM ™ Ty + T g, 56, < O ) 65
Finally, it is immediate to see from (11.22) that
3SU(w, Z) (6w, 6E) = §,(6a(0) + i6b(0)). (13.15)

Summarizing, we have shown that S is, up to smaller terms, a “matrix” of the
following form:

We label the columns by “1”, 7, “n”, and ¢, {,,, denoting thus in short the subspaces
of F{(“1” and “n”), respectively of F,. Similarly the rows will be denoted G (= C),
G,(“1” and “n” as above) and G;(n), respectively G;(1) (for the components of G).
Then we see that S is, up to terms which vanish like some power of 4, of the form

’ T 1 n [IRe e
G, 0 5a(0) + i6b(0) 0 0 0
_ éa 0
Gz(l) M lTar 0 (Sb 0 Tl,&{;,é{; 0
G,(n) 0 0 ow, 0 Thstust,
G,(1) 0 0 0 PY—i0)T, g0, (XD
G,(n) 0 0 0 0 PH(=i0 T, 65,00, HX)

(13.16)
Note that we have written the matrix elements as functions, rather than in the
conventional way. As an example, we should write, instead of T, 5, 5, cf. (11.5), only
T,, and define
T,:R? - G4(n),

uRe eiqn,l(x—X) + vRe eiqn,z(x—X)>

ulm el 1x =% + v Im eln2x—X) (1317)

T(u,v)= (
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We have preferred the more symbolic notation for its legibility.

We want to argue now that the matrix in (13.16) is invertible. This would be
obvious if it were upper triangular. It is not, but the following simple change of
coordinates in function space will bring it to triangular form. Instead of the variables
(a,b) and , we consider the variables

a a i [@ _(I/(0)
D) o

and 7. It is obvious that this brings the matrix to upper triangular form. Note also
that this change of coordinates is invertible, and by the methods leading to (9.53), we
see that from the differentiability of (7, 0) one has

IM™ T g, = O(1). (13.19)

Here, we define the inverse of M slightly differently from Eq. (9.50) by replacing the
upper limit X of integration by + co. The integrals exist and lead to (13.19) as can be
easily checked. Hence (13.16) is invertible, with inverse bounded by O(1) uniformly
in 5. It follows that S is invertible, with inverse bounded uniformly in . Hence the
operator S has a fixed point in the ball defined by (12.1), when # is sufficiently small
and this fixed point is a solution of the existence problem for the fronts. The Main
Theorem is proven.
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