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In the following paper we establish conditions for the existence of an infinite,
simple point spectrum (and properties of the corresponding eigenfunctions {cp,,})
for the integral operator

(1) (T<p)(x)=  |   K(x,s)cp(s)ds,     az^xzZb.

Throughout K(x, s) is assumed to be real valued and continuous for A x A (A=[a, i>]
is a finite closed interval of the real line). For definiteness we fix the domain 2(T)
of the integral operator (1) as the Hubert space L2(A); it should be emphasized
at this point that K(x, s) is not necessarily a symmetric kernel. It will be clear
from the subsequent analysis that the nature of the spectral set of T is unaltered
for any of the alternative specifications S>(T) = LP(A), 1 z% p z% oo.

It is well known that T is completely continuous. Therefore, the eigenvalues
A = {X0,Xy,X2,---} form a discrete set which may be infinite, finite or empty.
Each eigenvalue is of finite algebraic and geometric multiplicity and 0 is the only
limit point of {X,} if A is not finite. Finally, the spectrum of the transformation T,
apart from point spectrum A, can contain only the origin. Let r(T) denote the
spectral radius of T, i.e.,

(2) r(T)=  max|A¡|.

For X>r(T) the Neumann expansion applies (convergence is understood in
the sense of the operator norm) :

(rrt  \ — 1 OO rrim

'-t) -.?.£■

The iterated operator Tm is associated with the iterated kernel Kin)(x, s) defined by

(4) K(n)(x,S)=   f   ». Í   K(x,Sy)K(Sy,S2)-K(Sn-y,S)dSy-dSn-y.
Já    Jà

Specifically,
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2 SAMUEL KARLIN [Octobbr

(5) T"cb(x) = f   Kin)(x,s)cb(s)ds    (a^x^b).

It is also familiar that the conjugate operator

(6) T*\Ks) = i   K(x,s)i¡/(x)ds

possesses the same spectrum as T.
The existence of eigenvalues for (1) is known in two cases. The first, that of

symmetric kernels, is classic. For example if K(x,s) = K(s,x) and K is positive
definite, i.e.,

K Í*1'*2''"'*") = det || K(xi;x;) || >0
fj\ \ xi,X2, •••,x„l

a ^ xi <x2 < ••• < xn ̂  b, n = 1,2,3,■■•,

then T possesses a countable set of positive eigenvalues A = {X¡}f=0 and a cor-
responding complete orthonormal set of eigenfunctions (cb¡(x)}f=0.

In the case in which the kernel K(x,s) is symmetric and, moreover, satisfies
not only (7), but the more extensive system of inequalities

K (?uX2*'"'x')-attt\K{x,,Sj)\Z0,

a ^ xt < x2 < ■■■ < x„ ^ b; a ^ sx < ••• < s„^b; n = 1,2,3,■■-,

it is proved by Gantmacher and Krein [1] that the eigenfunctions {<£¡}fLo enjoy
elaborate oscillation properties. Specifically, each Xt is of multiplicity 1 and the
functions cb„(x) obey the inequalities

(9) oí0; x1''-;m-1)=det(|^,)|r»oV7=i)^o
\Xi,X2,-     , Xmf

for all choices a ^xt < x2< x3< •■■ <xm^b; m = 1,2,3,---. This inequality
implies that </>¡(x) has precisely i zeros and zeros of successive eigenfunctions
strictly interlace. Once a determination of signs is made as to which sign should
be taken in ± cb„(x) then the sign in (9) can be made explicit. In fact, under the
stipulation <pn(a) > 0 (we remark it can be proven that cbn(a) ̂  0 for all n), then
(9) can be written more precisely in the form

(10) (_ir<«-i>/W°'  Y1''"'m"1)>0 [2].
\xux2,---,     xm /

The second class of operators (not necessarily self-adjoint) for which the
isextence of some eigenvalues and eigenfunctions is demonstrated are those
induced by non-negative kernels. The familiar Frobenius-Perron-Jentzsch theorem
(see Theorem 1 below) asserts that if K(x,s) is strictly positive on A x A then
the spectral radius r(T) > 0 is an eigenvalue whose eigenmanifold possesses a
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1964]     THE EXISTENCE OF EIGENVALUES FOR INTEGRAL OPERATORS 3

strictly positive function. Observe that this proposition merely affirms the existence
of only one eigenvalue contrasting to the symmetric case in which, if T is not
finite dimensional, the existence of a countable spectral set is guaranteed. The
strictness postulate is essential in the sense that if K(x,s) is assumed only non-
negative, then as shown by the example of the Volterra kernel

(11) (Vf)(x)= ¡Xf(s)ds= ¡''M(x,s)f(s)ds
Ja Ja

whose associated kernel M(x, s) = 0 or 1 according as x < s or s zi x shows that
no eigenvalues need exist. The fact that M(x, s) is not continuous is not relevant
to the example since the same result obtains if M(x,s) is continuous but with
support confined to the region s ^ x.

In this paper we obtain an extension of (10) to the nonsymmetric operator (1)
by postulating a condition slightly stronger than (8). In order to formulate our
results, we need to introduce some new concepts and discuss their relevance.
A kernel K(x,s)eC° (i.e., infinitely continuously differentiable) is said to be
extended totally positive (abbreviated ETP) if

(12) detf3 /fifo'M"       >0,    n = 0,l,2,...;x,seAxA.

It is not difficult to prove that (12) implies (8) with strict inequality [3J.
At this point it is convenient to fix some notation and terminology. Let

(13) Ap = {x = (xy,x2,---,xp)\a <Xy<x2< ••• <xp<b}

denote the open simplex and

(14) Ap = {x = (xy,x2,---,xp)\a ^ Xy S x2 è — ûxPûb}

its closure in Ep. Notice that by our notation A = Äy. Sometimes it is useful to
work with

(15) Ap = {x = (xy,x2,---,xp)\a^Xy <x2<- ■ < xp g b}.

The kernel
(16) K   (x s) — k(Xl'Xl'   ''Xp\     x — (xi'x2,'",xp)e^p'

\ Sy, s2,-",sp j     s = (Sy, s2,"-iSp) e Ap,

is defined on Ap x Ap and is called the compound kernel of order p induced by
K(x,s). The operator T[p] is defined on L2(AP) as in (1) by the kernel (16) where
Kip](x, s) is extended to the boundary of Äp by continuity.

A compound kernel obeying the conditions (8) with strict inequality on Ap x Ap
describes a strictly positive function there which, however, necessarily vanishes
on at least part of the boundary (e.g., when x, = x,+l for some i).

If K(x, s) is of class Cœ, there exists a useful way of associating with K a kernel
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4 SAMUEL KARLIN [October

defined on Äp x A~p which may retain  strict positivity even on this extended
domain.

Let

(17) "ito =1, x e A,
up(-*) =       Il    (X]-x,)x =(*i>*2> -,Xp)eAp   (p«>2).

By suitably invoking the mean value theorem it is easy to see that

K(x,s)
(18) up(x)up(s)

can be extended continuously to Ap x A (p = 1,2, ••■) (see [3; 4]).
Definition. A kernel K(x,s) e C°° is said to be ETP(x) if

(19) Lp(x,s) = fe^- > 0 for xe Ap, SeAp;
up\x)

ETP(s) if
K(x,s)(20) Lp(x,s)=       '    > 0 for xeAp, jgAp

ttp\S)

and ETP (with no reference to x or j) if

K(Jc,s)
m„(x)m.(j)

(21)        M[p](^ j) =       \' ;■- > 0 for   x e Ap, s e Ap    (p = 1,2,3,-).

We prove in [4] the interesting fact that the definitions (12) and (21) are
equivalent. Its method consists of a judicious exploitation of the mean value
property (cf. [3]). It is also shown that if (8) is non-negative and K(x,s) e C° then
the functions L[p](x,s), Lp(x,s) and Mlp-¡(x,s) axe each non-negative (not neces-
sarily positive) on their domains of definitions.

One more bit of notation. lffi,f2,--- denote a sequence of C00 functions defined
on [a,b], we extend

7r(x1'x2''"'x) = detll/^)ll'       *6A"
\ X1,X2, "sXp/

to x e Ap as the continuous extension of

(22)
f( h 2'->p )

FJ   *> 2>--->P   \ \x1,x2,--,xpJ
\xL,x2,-,xp ) up(x)

The * symbol will always occur with the interpretation as indicated above.
With these definitions in hand we state the principal theorem of this paper.

(Theorems 1 and 2 of §2 serve primarily as auxiliarly assertions.)
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1964]     THE EXISTENCE OF EIGENVALUES FOR INTEGRAL OPERATORS 5

Theorem 3. Let K(x,y) be of class C° and ETP on [a,b~\. Then the operator
T possesses a countable set of simple positive eigenvalues

(23) X0> Xy > X2> ••• > X„> ■■■

decreasing to zero. There exists no other nonzero spectrum apart from the
origin. Let <p0(x),cpi(x),cb2(x),--- denote the corresponding eigenfunctions
(each uniquely determined except for a multiplicative factor). Then

(24) signeW °'  l'"',r  )>0     (xeAr)
\ Xy,X2, •■■ ,Xr J

where sr is appropriately + 1 or — 1.

We will discuss in §4 the relevance of the inequality (24) with regard to oscil-
lation properties of the eigenfunctions.

A general class of kernels which satisfy the conditions of this theorem have the
form

(25) K(x,s) =   r euMxit)ev(s)mdcT(t),   a^x,s^b,

where u,v are of class C00,u'(x) ■ v'(x) > 0, a(x) and ß(x) are strictly increasing
functions and do is a sigma finite positive measure with an infinite number of
points of increase. The integral is assumed to converge absolutely for a ¿L x,
s í£ b. A special case of (25) is

K(x,s)= I anlu(x)J[v(s)Y
H = 0

(a„ ^ 0 for all n and > 0 for infinitely many n).
The verification that (25) is ETP is done in [3].
The result of Theorem 3 can be generalized in many ways. For example, one

can consider TJ(x) = \baK(x,s)f(s)dp(s) where dp is a suitable measure on
[a, 6] subject to certain requirements.

Secondly, it is clear that since the eigenfunctions T and Tk are identical and
the eigenvalues are simply related (X to Xk), it suffices that our analysis apply to
some iterate T*°, rather than to T itself.

We shall indicate some of these extensions in §4 as well as a statement of
other results pertaining to the nature of the eigenfunctions {</>„}"= 0- We intend
to publish elsewhere these more refined assertions concerning the structure of the
eigenfunctions {cpn}.

In §2 we develop several variations on the Fi obenius-Perron-Jentzsch theorem
which will be required in the detailed proof of Theorem 3.

2. The Frobenius-Perron-Jentzsch theorem and some ramifications. We preface
our study of the spectral characteristics of (1) with a discussion of two theorems
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6 SAMUEL KARLIN [October

essential to the proofs of our main result. Throughout this section (unless stated
explicitly to the contrary), we will assume K(x,s) is continuous on the closed
rectangle S x S where S is a compact subset of some Euclidean space such that
S = S°(S° = interior of S).

The first theorem we need is a form of the Frobenius-Perron-Jentzsch theorem
concerning the largest eigenvalue of non-negative matrices or of integral operators
with non-negative kernel.

Theorem 1. IfK(x,y) TtOonS x S and r(T) = spectral radius ofTis positive,
then

(i)   r(T) is an eigenvalue of T.
(ii) There exists a non-negative eigenfunction corresponding to the eigen-

value r(T).

The proof of Theorem 1 can be found in numerous sources (see [5; 6; 7],as
typical).

The subsidiary hypothesis that r(T) > 0 rules out the possibility of T being
quasi nilpotent as in the case of the Volterra operator (11).

A useful characterization of the spectral radius as introduced in [7] will be
helpful for our present purposes.

Let \¡/*(s) be a fixed continuous everywhere positive function on S. A real
number y is said to be admissible if there exists a non-null continuous function
cb(s) ̂ 0(seS) such that

(26) (Tcb)(x)^ycb(x),       xeS,

and <p is normalized so that

f  qb(s)il/*(s)ds = l.

We also write (26) compactly as Tcb ̂  ycb. Let T
0 e T and it is easy to verify that T is bounded. Let

(27) y0=supy.

Complete continuity of T implies y0eT (cf. [7]), while positivity of K(x,s)
implies

T"cb0 ̂  ?o^o

as a consequence of Tcj)0 ̂  y0</>0.
Since r(T) = lim„_ „ \\ Tn ||1/n, we see that whenever T is positive then r(T) ^ y0.

If it is known that r(T) > 0 then Theorem 1 tells us that r(T) itself is admissible
and so r(T) = y0. This is the desired characterization of r(T) by (27) as a
supremum.

{y|y admissible}. Clearly
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1964]     THE EXISTENCE OF EIGENVALUES FOR INTEGRAL OPERATORS 7

In particular, if K(x,s) is strictly positive on S x S then plainly T includes
positive numbers and so r(T) = y0. Actually, for K(x,s) > 0 on S x S the con-
clusions of Theorem 2 are valid.

Theorem 2. Suppose K(x,s) > Ofor each xeS and all seS° = interior of S
(remember that S = S°). Then

(i)   r(T) = y0>0.
(ii) y0 is a simple eigenvalue possessing a strictly positive eigenfunction

cb0(x); the characteristic manifold of y0 is one-dimensional and y0 is a simple
pole of the resolvent R(X,T) = (XI -T)~%.

(iii) // X is an eigenvalue of T, A # y0, then | X \ < y0.
(iv) (T/y0)n converges to the one-dimensional projection operator on the

eigenmanifold Jt(y0) = {cb\(T — y0I)cb = 0}. Moreover, L2(S) decomposes into
the direct sum J?(y0) © %(y0) where <?/(y0) is a complementary invariant sub-
space on which T has spectral radius less than y0.

We refer the reader to [5] or [7] for details of the proof. In connection with
(iv) see also [8].

Theorem 2, in the form in which we have just stated it, is not adequate for our
purposes. The hypothesis that K he strictly positive on S x S° is more than will be
fulfilled in our applications. The vanishing of K(x, s) for x e Bd Scannot be avoided
in  some circumstances.

For example, suppose we assume that K(x,s) is ETP on A x A. In particular
K(x,s) > 0 for A x A and so Theorem 2 is applicable. On the other hand the
compound kernel K[p](x,s) is positive only for Ap x Ap and in fact vanishes on the
boundary of Kp x Ap. This necessitates investigating the validity of Theorem 2
in such a situation.

It is, therefore, of some intrinsic interest, as well as crucial for our applications
below, that the following form of Theorem 2 does hold:

Theorem 2'. Assume K(x,s) is positive on S° x S°, while K(x,s) may vanish
when x and/or s lie on the boundary of S. However, assume there exists a con-
tinuous function u(x), positive on S° such that

„,     .       K(x,s)G(x,s) = -W-
u(x)

is continuous on S x S and positive on S x S° (i.e., G(x,s) can be extended to the
boundary in x so as to remain positive).

Then conclusions (i)-(iv) of Theorem 2 remain valid except cb0(x)/u(x) is
asserted to be positive on S rather than cj>0(x) itself.

Proof. If cb(x) is positive on S° and continuous on S, then so is cf> = Tcb, and
we have that
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8 SAMUEL KARLIN [October

$(x) _ (Tcb)(x)
u(x) u(x)

is continuous and positive in S.
Now for some a > 0

Tá(x) ^    é(x)      „7, . .     r. .

This shows that y0 > 0 and so r(T) = y0 > 0 and (i) is correct.
Notice that if 0O = O is an eigenfunction of y0 then we have that cp0(x)/u(x) is

positive on S. If 0(x) is any other real eigenfunction associated with y0, then we
can by a suitable choice of ó ensure that

cp*(x) = cb(x)     5 cp0(x)
u(x)      u(x)        u(x)

be zero somewhere in S and otherwise non-negative. But Tcb* = y0cp* entails
that cj>*(x)/u(x) is positive on S or identically zero. By the constructions,
only the second alternative can hold and therefore cp is a multiple of cp0. This
shows that the eigenmanifold of y0 is one-dimensional.

Next, let !^02ï0 be the unique eigenfunction of T* for y0. It follows readily
that i¡/0(s) > 0, s e S°. Using this fact, the proof of the assertion that the algebraic
multiplicity of y0 is 1 is now standard and will be omitted (see [7, pp. 921-
922]).

We claim that if Tcb^y0cp and cb^0(tp continuous and ^0), actually equality
holds. We exhibit the usual proof (cf. [7]). If inequality holds for some x, then
since ip0(s) > 0, s e S°, we have

(28) (Tcp-yocp,il/o)>0.

(Here, (v, w) denotes the inner product of the functions v and w.) But

0 < ((T - y0r)<P^o) = (<P,(T* - yoWo) = 0,

an absurdity. This contradiction proves the assertion to  the effect that if
Tcp ̂ y0tp, cpyâO, then Tcp = y0tb.

We turn now to (iii). Consider the relation

(29) Tcp* = Xcp*,        |A|=v0/A,

with cb* non-null. Taking absolute values, we obtain

(30) T(|^|)^y0|^| = |T^|.

(Here, | <f>* \ denotes the function | tp*(x) \.) As we have just proved, equality
must then hold in (30). Written out this asserts
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1964]    THE EXISTENCE OF EIGENVALUES FOR INTEGRAL OPERATORS 9

I f K(x,s)cb*(s)ds\ m \ K(x,s)\4>*(s)\ds
I Js I     Js

for all x. This requires that the values K(x,s)cb*(s) for all s lie along a single ray
in the complex plane. But K(x, s) > 0 for x,seS° x S° and therefore cb*(s) lie on a
single ray in the complex plane. This property is incompatible with (29) since X
is not positive. The contradiction implies the validity of (iii). The proof of (iv)
depends only on (iii) (see [8]). This completes the proof of Theorem 2'.

The content of the corollaries that follow summarize those applications of
Theorem 2' that we will require.

Corollary 1. Let K(x,s)>0 for a<x, s<b and suppose there exists
u(x) > 0 (a < x < b) such that

(31) «,,,) . ^>

is continuous on Ax A and positive for (a ^ x ^ b,a < s < b); then (i)-(iv) of
Theorem 2' hold for the operator T.

Corollary 2. Let K(x,s) beETP(x)(see(19)); then (i)-(iv) of Theorem 2' hold
for the operator

(32) (W)(x)= j-L- íKíp¿x,s)f(s)ds,    x,seAp.

Corollary 3. Suppose (31) is ETP(x); inen (i)-(iv)o/ Theorem 2' hold for the
operator (32).

In each case the desired conclusion cannot be obtained directly from Theorem 2
because of the possibly nonstrictness of the positivity of the kernel of the relevant
operator.

3. Proof of Theorem 3. Before embarking on the proof of the main theorem,
we review some terminology and preliminaries. The following formula is excep-
tionally useful in the subsequent analysis.

a. Let X, Y and Z represent subsets of the real line. If

(33) C(U)=^YA(^,n)B(n,i:)da(n),     £eX,£eZ,

where a is a sigma finite regular measure and the integral converges absolutely,
then

(34) C[Plll)=[-[A[p,(lr))Bm(r\,l)da(ñ),        l e AP(X), Ç e Ap(Z),
jA„(y)J

where
AP(X) = {l = (Ai,-,Q\Zi < Ç2 < - < Zp,ZteX},

etc.
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10 SAMUEL KARLIN [October

The proof of (33) appears in [9, Problem 68, p. 48].
Let us introduce the following notation: if fy,f2,---,fp are functions each

defined on the interval At = [a,b], we define their exterior or wedge product
/i A/2 A ••• A/p to be that function defined on the simplex Ap by

(/1 A ». A/„)(x) = det \\f,(x¡) \[jmx = f(1'2' y ) ,

x = (xy,-,xp)eAp.

It is clear that (35) vanishes identically whenever any two component functions
coincide (say/¡ =f¡ for some i and; (1 g i < j g p)).

Now identifying X = Y = [a, b~\, Z = the discrete finite set {1,2, ••-,?},
Atf,ti) = K(Z,tj), B(n, 0 =f,(n), C(Ç, 0 = (Tf,)(0 and applying (34) yields the
important formula

(36)        T/1AT/2A-AT/p = T[p](/1A/2A-A/P),       p = l,2,-.
With the formula (36) in hand, we are now prepared to present the proof of

Theorem 3. For ease of exposition, the proof will be divided into a series of steps.
For ready reference we repeat its statement here as given in the Introduction.

Theorem 3. Let K(x, y) be of class C00 and ETP on [a, b]. Then the operator
T possesses a countable set of simple positive eigenvalues

(23) X0 > Xy > X2 > ■■■ > X„ > •••
decreasing to zero. There exists no other nonzero spectrum apart from the
origin. Let <p0(x), cpy(x), cp2(x), ••• denote the corresponding eigenfunctions
(each uniquely determined except for a multiplicative factor). Then

(24) signsrO*( °*  1'"',r ) >0        (xeAr)
\Xy, X2,  ■••, XrJ

where zr is appropriately + 1 or — 1.
Let A = {X0, Xy, X2, •••} denote the nonzero eigenvalues of T arranged so that

r(T) = \X0\-lz\Xy\^\X2\>-.
The set A may be empty, finite or countable. We recall (cf. Introduction) that

the only possible limit point of A is zero.
1. The hypothesis requires, in particular, that K(x, s) > 0 on A x A. Owing

to Theorem 2, we conclude that X0 — r(T) > 0 is a simple eigenvalue, X0>\ X, |,
i = 1,2,". provided any such X¡ exist and that the associated eigenfunction cb0(x)
is strictly of one sign. Thus (24) is verified for r = 0.

We also know from (iv) of Theorem 2 that the Hubert space L2(A) can be
decomposed as a direct sum

(37) L2(A) = Jt(X0) 6 ^o(Ao)
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1964]     THE EXISTENCE OF EIGENVALUES FOR INTEGRAL OPERATORS 11

where Ji(X¿) is the characteristic manifold of the eigenspace belonging to X0,
the linear space spanned by cb0(x). Here ^0(X0) denotes the complementary space
such that the operator T restricted to ^0 has a spectral radius | A«, | < X0.

It is, a priori, conceivable that this spectral radius is zero (i.e., Ai does not
exist or equals zero) and then T is quasi nilpotent on ^0(X0). This will certainly
happen if XL does not exist. Actually in the course of our analysis we prove that

\X1\>0.
2. Consider now the compound kernel of order 2

Km(x,s),       xeA2,seA2,

and corresponding operator T[2V The hypotheses of the theorem plainly guarantee
that T[2] is completely continuous and satisfy the conditions of Corollary 2.
Appealing to Corollary 2 we conclude that y2 = r(Tm) > 0 is a simple eigenvalue
and no other eigenvalue of T[2] exists with modulus y2. Moreover, part (iv) of
Corollary 2 tells us that

rw-t ft

(38) 5SL
'2

converges to a nontrivial projection operator on v^[2](y2) (the characteristic
manifold of y2).

We will now prove that At > 0 and y2 = XqXy. Suppose first to the contrary
that y2>A0 | A«, |. We write/1 = a10o4-i/'1, permissible by (37) andf2 = a2cb0 + i¡/2
v/hexe \j/¡ e W0(X0) (i = 1, 2). Then letting y2 = y2/X0 > \ X1 | we obtain by (36) that

^■ifiAfi)

Now T"cb/X"0 converges strongly for any cb. In addition T"\¡//y2 -» 0 for all \// e *%0
since the spectral radius of T restricted to 4«?0 is | Ax | < y2.

Therefore T^yKfi A f2) -* Oforany/jeL^AO (i = l,2).But the linear span
of all functions of the form/j A f2 are dense in L2(A2). It follows that the limit
of the sequence of operators T"2]/y2 must be zero in contradiction of (38). This
shows that 0 < y2 g A0 | X11, and so | Aj | > 0. Let cb^x) be an eigenfunction
associated with At. Then (36) yields

(40) Tr^oA^^AoA^oAtf-«)
which shows that X0Xt is an eigenvalue of T[2] since cbi and cb0 axe linearly in-
dependent. By Corollary 2, part (iii) applied to T[2] we infer that A0Aj = r(T[2^) = y2
and therefore At > 0 and Ax > | A¡ |, i = 2,3, •••.

The proof of the last assertion goes as follows :
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12 SAMUEL KARLIN [October

Since X0Xy = y2 = r(Tr2]) and X0X2 are eigenvalues of T[2¡ with eigenfunctions
((po A <Pi) and cb0 A 4>2 respectively, we conclude on the basis of Corollary 2,
part (iii)

X0Xy > | X0X2 I or Xy > I X2 |.

Moreover, again by virtue of Corollary 2, part (ii), we have that cp0 A cby is
strictly of one sign on A~2 and this is (24) established now for the case r = 1. The
same corollary shows that X0Xy is a simple eigenvalue of Tl2y It now follows that
Xy is an eigenvalue of T of geometric and algebraic multiplicity 1. Indeed, let cpy
and cp* be two eigenfunctions of T for Xy. Then tp0/\(py and cb0/\<P* are
eigen-functions of Tf2] for X0Xy = y2. But ^[2¡(y2) is one-dimensional and so
cp0A(oi.cpy + ßcb*)= 0 for some real constants a and ß. But eigenfunctions 0O
and acpy + ßcp*y bMong to distinct eigenvalues (X0 and Xy respectively) and there-
fore are indépendant; thus acpy + ßcp* = 0, i.e., the geometric multiplicity for Xy
is 1. Now suppose that (T - Xyl)2<}> = 0. Since dim^/lj) = 1, it follows that
T0 — Xycb = acpy for some real a.

We form (T[2] — y2/[2])W>o A <t>) which by direct computation gives

(41) (T[2] - y2Im)(cp0A$) = aX0(cb0 A cby)

and so

(42) (rm-y2/[2])2«>oA<£) = 0.

But the algebraic multiplicity of T[2J for y2 is 1. The relations (41) and (42) are
consistent with this fact only if a = 0. This shows that (T — Xyl)2<p = 0 implies
(T — Xyl)4> = 0 which means that Xy has simple algebraic multiplicity.

With the existence of X0 and Xy in hand and their respective properties, we may
rewrite the decomposition (37) as a direct sum

(43) L2(I) = JZ(X0) e Ji(Xy) 0 *!

such that J%(X¡) = the characteristic manifold of X, (i = 0,1) each of which is
one-dimensional and T restricted to °Uy has spectral radius \X2\. (Once more
we point out that if X2 does not exist then T restricted to %y is quasi nilpotent.
However, we will, in fact, prove below in paragraph 3 that | X21 > 0.)

3. Consider now the compound operator of order 3, T[3] whose corresponding
kernel is

Km(x,s),      xeA3, seA3.

Trivially, T[3] is completely continuous. By Corollary 2, we have that y3 = r(Tl3^) > 0
is a simple eigenvalue of Tm. The remaining spectrum of T[3] is contained in the
circle | X | < y3. We also know on the basis of Corollary 2, part (iv) that
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converges to a nonzero projection operator on the one-dimensional manifold
^#l3](y3). We now prove that y3 = AoA^A^. To this end, suppose first to the
contrary that y3 > AqAj | A21 and set y3 = y^/X^X^. Then y3 > | X21. By the same
methods as in (39), we deduce that

Tr.3] (A.   A A   A ja  .. /T"^o A   T"<Pi A   T
y3

/T"ón      T"ô,       T"é\(cboAcbiA ■» = \~-p-A -j^LA y1]

tends to zero for \j/ e ^¿2, and similarly
rr^n rw-in

and
Trf^iA^AW

all converge strongly to zero as n -» oo. Using (43) as we have previously used (37),
this implies that T"3]/y3 converges to the zero operator contradicting (44). It follows
that y3 S ^o^i | ̂ 21 and so | A21 > 0. The existence of a nontrivial eigenfunction
cb2(x) corresponding to X2 is now assured. Thus, we write Tcb2 = X2cb2. Referring
to (36) we see that cj)0/\cb1/\<l>2 is an eigenfunction of T[3] with eigenvalue
XqX^. Applying Corollary 2, we may conclude that y3 = XaX^X2 (i.e., A2 > 0) and
<¡>o A 4>i A <b2 is the unique (apart from a multiplicative constant) eigenfunction
associated with y3. Moreover, cb0/\<l>i/\cb2 maintains a strict sign for xeÄ3.
The proof that X2 > | A31 is done as before.

The proof that dim^#(A2) = 1 is identical to the proof that dim^AJ = 1.
To show that A2 is of algebraic multiplicity 1, now suppose (T — X2I)2cb = 0. This
implies Tcb = X2cf> + acb2 for some real a. A direct computation gives

(45) (T[3] - y3/[3])(^0 A </>i A 4>) = aX^cbo A <t>i A <b2

and this is only possible if a = 0. Thus A2 is of algebraic multiplicity 1. In summary,
the preceding analysis has established (24) for the case r = 2.

The pattern of the proof is now clear. The general step is accomplished with
the aid of an induction procedure. Actually, the arguments for T[3] embodies
virtually all the general reasoning with trivial adjustments. The proof is therefore
complete.

By referring appropriately to Corollary 3 in place of Corollary 2 for the preceding
analysis, we may extend the assertion of Theorem 3 to the following situation.

Corollary 4. Let K(x,s) be continuous and suppose

Kixu-,xp\

(46) W-      *'&•'»'
is continuous and strictly positive on the set Ap x Ap where
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«(*)=[    FI   (Xj-xt)]  IKxyaXb-x,)   (p = l,2,-).
Lpa;>ièi J ¡=i

Moreover, assume that Lp(x,s) can be extended to the closure Ap x Ap so that
it remains continuous and strictly positive (r = 1,2, ••■)•

Then the nonzero values of the spectrum of the operator T consists of a count-
able number of simple positive eigenvalues

(47) X0> Xy > ••• > X„> ■■■

decreasing to zero. The corresponding eigenfunctions satisfy

(48) signepO*(  °'  1,'"'M>0    (p = 1,2,3,-)
\ *1> x2' '">xp/

for all

(49) a<Xy zix2<¡ ••• gxp<b.

It is worthwhile to emphasize that under the present set of hypotheses, strict
inequality in (48) need not hold when Xy = a and/or xp = b as contrasted with
assertion (24).

4. Extensions.
A. The result of Theorem 3 can be generalized. To this end, we merely require

that K(x,s) is continuous, (8) is satisfied and for each k there exists some iterate,
say the r^th such that Krk(x,s) is ETP(x) or order k. The last condition means
that (19) is assumed to hold only for p 5¡ k.

Let us examine the validity of Theorem 3 under these hypothesis. Let
T = {X,}f=0 denote such eigenvalues of the operator T of (1), as may exist arranged
in decreasing order of magnitude, i.e.,

(50) \X0\^\Xy\^\X2\^-.
Each eigenvalue is to be repeated as frequently as its geometric multiplicity.

Let {<p¡(x)}f=0 represent the related eigenfunctions. We do not know of the
existence of any of the X, as yet. Our aim is to establish their existence and elaborate
the properties of the corresponding eigenfunctions.

Let rt be such that K(ri\x,s)>0. The spectrum of Tri consists of the set
{%*}?= o with the same set of eigenfunctions {cp,(x)}™0. According to Jentzsch's
theorem with strictly positive kernel, we have

(51) X'¿ > 0
and the existence of a corresponding eigenfunction cp0(x) which is strictly positive
on \a,b~\. Moreover Xq1 exceeds in absolute value every other eigenvalue of Tri.
The inequality implies that the spectral radius of T is positive and equal to | X01.
By virtue of the Theorem 1 applied to non-negative kernels we know that \X0\ is
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an eigenvalue of T possessing an associated non-null non-negative eigenfunction
cb0(x). But Aq'= |A0|p>0 is a simple eigenvalue for Tr> and therefore A0 = |A0|
is a simple eigenvalue for T whose eigenmanifold is spanned by cb0(x). We also
conclude due to the property K(r"(x,s) > 0 that A0 is a simple eigenvalue for T*
whose eigenfunction if/0 is strictly of one sign. It then follows that A0 is of simple
algebraic multiplicity.

By virtue of the simple nature of the eigenvalue A0 and since manifestly
A0>|A,|, i = 1, 2, •••, we obtain a decomposition of L2 as a direct sum
L2 = J¡f(cb0) © A$o) where T restricted to S(cb0) has spectral radius | At | and
J?(cbo) is the eigenmanifold spanned by cb0.

Next passing to the compound operator of order 2, we have by the assumption
that

Kr2i(X,S) . . .   . .
, , (x,seA2;u(x) = x2-xl)

U\X)

is continuous and strictly positive for x e A2 and seA2.
Arguing in terms of the operators T""2 and its iterates we deduce exactly as in

Theorem 3, the existence of | At | > 0 such that

Ar02A? > 0

and X'qX'i is the spectral radius of T[2y This means that the spectral radius of T[2]
is nonzero and since Tl2] ̂  0, Theorem 1 tells us that X0XX > 0 is an eigenvalue
for T[2] and therefore Ax = |A«J >0. Since Ao2At2 has simple algebraically and
geometrically multiplicity the same follows for Xi}Xl and consequently the same for
Xl. Continuing in this way, we deduce the results of Theorem 3, under the condi-
tions as stated at the start of this section. Also recognizing that the eigenfunction
set is unchanged under the iteration of the operator, i.e., T, T' have the same set
of eigenfunctions, we obtain

Theorem 4. Let K(x,s) be continuous on Ax A and assume that (8) holds.
Suppose that for each integer k > 1 there exists an integer r^l with the
property that K(rk)(x,s) is ETP(x) or order k with respect to a g x ;g b, a < s < b.
Under these conditions the conclusions of Theorem 3 hold.

B. The result of Theorem 4 can be extended in certain situations even when
K(a,s) = 0 and/or K(b,s) = 0. Assume that (8) holds. Also, suppose that there
exists a function u(x), strictly positive in (a, b) and vanishing appropriately at the
endpoints and that for each integer k there exists an integer rk such that

is» —*&*•*>,—
n (*j ~ xi) n «w

käj>«gi      i=i
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is continuous and strictly positive on Ak x Ak. The function u(x) is here playing
the role of Y\(xj — x,) for that part of the boundary of Kk at which Xy = a and/or
xk = b.

Virtually duplicating the proof of Theorem 4, we obtain

Theorem 5. Under the condition expressed in (52), the operator T, induced
by the kernel K(x,s), possesses a countable set of positive eigenvalues

X0> Xy > X2 > ••• >0

decreasing to zero. Each eigenvalue has simple algebraic and geometric multipli-
city. Let <Po(x),cpy(x),tp2(x),---, denote respective eigenfunctions and let

te>-Wr i=(U'2'--
Then

BMx' x   2,'",r1)>°  f°ran*e±>-
\ Xy,   X2,      ---¡Xp j

Actually, the functions <pt(x)(i = 0,1,2, •••) are the eigenfunctions of the integral
operator whose kernel is

» ni    \     K(x, s)   . .
M(x's) = i¡(xru(s)-

This function has the property that for each integer k > 0 there exists an iterate rk
such that M(rk)(x, s) is ETP for a i% x i% b, a < s < b and Theorem 4 applies.

We close this paper by reviewing some of the more refined oscillation structure
of the eigenfunctions {^„(x)}„°°=0 valid under the hypothesis of Theorem 3. For
example, it is easy to prove that (24) implies that

cp(x) = £ c,cp,(x), c, real, Scf > 0,
i=P

has the property

(53) p S S(cp(x)) Í Z(cp(x)) è q

where Z(cp) denotes the number of zeros of cp counting multiplicities and S(cp)
represents the number of variation of sign of the function 0(x) as x traverses
[a, b]. Two important consequences of (53) are that

(54) S(^(x)) = Z(^(x)) = i

and the property that the zeros of cp,(x) and cp,+i(x) strictly interlace.
The assertions (53) and (54) are essentially contained in Gantmacher and

Krein [1] in a context in which the existence of eigenfunctions is assured by the
assumption that K(x,s) is symmetric.
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Let D(x,y,X) denote the resolvent kernel

D(x,y,X) = K(x,s)+l   lzi^f...r    KÍX'Sl'"Stt)ds1ds2-dsn.
n = l        n-       Ja        Ja \s>sl""si>/

Under the conditions of Theorem 3 we can prove that

U(x) - aD(x, a,X) + ßD(x, b, X)       (a, ß real, a2 + ß2 > 0)

satisfies

(55) k - 1 £ S(U(x)) = Z(U(x)) ̂ k + 2

for A located in the interval Xk<X<Xk+1 where X0,X1,X2,--- denote the eigen-
values of the integral operator (1).

The zeros of U(x) and V(x) = yD(x,a,X) + SD(x,b,X) where y, Ö axe real and
satisfy aô — ßy ^ 0 strictly interlace. Finally the resolvent kernel D(x, y, X) is
related to the eigenvectors by the formula

D(x,a,Xk) = ckD(x,b,Xk) s dkcbk(x)

where ck and dk axe appropriate constants.
These last results and other refinements and extensions will be elaborated

elsewhere.
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