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THE EXISTENCE OF LEAST AREA SURFACES
IN 3-MANIFOLDS

JOEL HASS AND PETER SCOTT

ABSTRACT. This paper presents a new and unified approach to the existence
theorems for least area surfaces in 3-manifolds.

Introduction. A surface F smoothly embedded or immersed in a Riemannian
manifold M is minimal if it has mean curvature zero at all points. It is a least area
surface in a class of surfaces if it has finite area which realizes the infimum of all
possible areas for surfaces in this class. The connection between these two ideas
is that a surface which is of least area in a reasonable class of surfaces must be
minimal. The converse is false; minimal surfaces are in general only critical points
for the area function. There are close analogies between these two concepts and
the theory of geodesies in a Riemannian manifold. Minimal surfaces correspond to
geodesies, and least area surfaces correspond to geodesic arcs or closed geodesies
which have shortest length in some class of paths. Any geodesic A in a Riemannian
manifold M has the property that it is locally shortest, i.e., if P and Q are nearby
points on A, then the subarc of A which joins P and Q is the shortest path in M
from P to Q. It can also be proved that minimal surfaces are locally of least area,
but the proof is difficult and involves substantial knowledge of the theory of partial
differential equations.

There are now a large number of theorems asserting the existence of surfaces of
least area in various classes. Surfaces of this type have become an important tool
in 3-dimensional topology. In this paper we present a new approach to the proofs
of these existence theorems. This yields a simplified and unified method for the
proof of the existence of minimal surfaces in 3-dimensional Riemannian manifolds.

In 1930 Douglas [Do] and Rado [Ra] independently showed that a simple closed
curve in Rn which bounds a disk of finite area bounds a disk of least possible area.
This result was extended by Morrey [Mol] in 1948 to a general class of Riemannian
manifolds, the homogeneously regular manifolds, a class which includes all closed
manifolds. Work of Osserman [O] and Gulliver [G] later showed that least area
disks in 3-manifolds were immersed in their interiors. More recently there has been
a series of new existence results for closed surfaces of least area in manifolds of
any dimension. It follows from work of Sacks and Uhlenbeck [S-UI] that if M is
closed and 7T2 (M) is nonzero then there is an essential map of the 2-sphere into M
which has least area among all essential maps. Sacks and Uhlenbeck [S-UII] and
Schoen and Yau [S-Y] independently showed that if /: F —► M is a map of a closed
orientable surface F, not the 2-sphere, into a closed Riemannian manifold M, such
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that /*: 71"! (F) —► 7Ti (M) is injective, then there is a map g oi F into M such that
o, equals /» up to conjugacy and o has least possible area among all such maps.

Each of the Douglas-Rado, Schoen-Yau and Sacks-Uhlenbeck theorems are about
the minimization of area in homotopy classes of maps. There is an alternative
approach to finding minimal surfaces known as geometric measure theory. The
techniques of this theory were used by Meeks, Simon and Yau [M-S-Y] to prove
the existence of surfaces of least area in certain isotopy classes in a 3-manifold. In
particular, if F is an incompressible embedded surface in a closed 3-manifold and I
is the infimum of the areas of all surfaces isotopic to F then either there is a surface
L isotopic to F with area I, or there is a one-sided embedded surface L' with area
1/2 such that the boundary of a regular neighborhood of V is isotopic to F.

In this paper we start with Morrey's result on the existence of least area disks and
the results of Meeks-Yau and Gulliver and Osserman on the regularity properties
of these disks. Meeks and Yau established that if the boundary of a 3-manifold has
positive mean curvature and if a least area disk has boundary properly embedded
in the boundary of the manifold, then the least area disk is embedded. This key
result is special to dimension three, as are most of the techniques used in this paper.
We use these results to establish the existence of surfaces which are of least area in
their isotopy classes, thus obtaining results similar to those of Meeks-Simon-Yau,
but without the use of geometric measure theory.

We begin by considering a minimizing sequence of embedded surfaces {Si}, i.e.
a sequence whose area approaches the infimum of all possible areas among surfaces
isotopic to a given one. Instead of directly examining the convergence of the se-
quence, we construct a new minimizing sequence by intersecting the surfaces Si
with small balls and replacing the intersections with least area disks. The problem
of convergence is reduced to that of convergence of a sequence of least area disks in
a 3-ball, and this is handled in Lemma 3.3, our key convergence result. We observe
in passing that this lemma implies the existence of curvature estimates for least
area disks embedded in 3-manifolds. These are special cases of curvature bounds
found by Schoen [S] by less geometric techniques. By the above methods we es-
tablish existence results in the embedded setting for both spheres and surfaces of
higher genus.

Having established existence results for least area embedded surfaces in 3-
manifolds, we turn to the existence theorems for least area maps which are not as-
sumed to be embeddings. Via topological techniques involving covering spaces and
cut and paste arguments, we show that when the ambient manifold is 3-dimensional,
the results of Sacks-Uhlenbeck and Schoen-Yau follow from the existence of least
area embedded surfaces. Thus one conclusion of our methods is that these results
can be deduced from geometric measure theory and topological techniques, without
resort to the analysis of Morrey, Sacks-Uhlenbeck and Schoen-Yau. However, since
we can establish the existence results for least area embedded surfaces without geo-
metric measure theory, another conclusion is that the proofs of all the existence
theorems follow from Morrey's theorem, the Meeks-Yau embeddedness result for
disks, and arguments involving 3-dimensional topology. Since the Meeks-Yau tech-
niques are basically topological, the net result is to concentrate the analysis involved
into Morrey's theorem. Note that the results of Sacks-Uhlenbeck and Schoen-Yau
also relied essentially on Morrey's theorem, but contain much additional analysis.
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In a sequel to this paper [H] additional existence results, many of them new,
will be established using the same basic technique. These include the existence of
surfaces minimizing area in a homology class, cases of surfaces with boundary, and
the existence of certain noncompact minimal surfaces.

This paper is organized as follows. In §1 we summarize the definitions which
we will use later. In §2 we survey the "well-known" material from minimal surface
theory which we will need. We include this because many of the proofs of these
results are either scattered through the literature or not written down, and because
one aim of this paper is to make this material accessible to those not familiar with
the techniques of minimal surface theory. In §3 we prove our key results on the con-
vergence of least area 2-disks in 3-balls. In §4 we apply these results to demonstrate
the existence of least area 2-spheres in 3-manifolds in various situations. This is the
main section of the paper. In §5 we show how similar methods to those of §4 can
be used to prove that certain 3-manifolds contain closed surfaces of positive genus
which are of least area. Up to this point, we have considered closed 3-manifolds
and surfaces only. In §6 we discuss the modifications needed to our arguments to
handle the cases where the surfaces and 3-manifolds have boundary, and the case
of noncompact 3-manifolds.

1. Preliminaries. We will work in the category of smooth manifolds and maps
unless otherwise specified. We will denote the boundary of a manifold M by dM and
its interior by int(M). A map /: (F,dF) —* (M,dM) of manifolds with boundary
is said to be proper if f~1(dM) = dF and the preimage of any compact subset
of M is compact. A 3-manifold M is irreducible if every embedded 2-sphere in M
bounds a 3-ball embedded in M. M is P2-irreducible if it is irreducible and contains
no embedded 2-sided projective planes. A 2-sphere embedded in a 3-manifold is
incompressible if it does not bound a 3-ball. An embedded surface F in M other
than a 2-sphere is incompressible if whenever D is a 2-disk embedded in M such that
Dn F = 3D, then dD bounds a 2-disk in F. Two-sided embedded surfaces other
than S2 are incompressible if and only if their inclusion is injective on fundamental
groups. One-sided embedded incompressible surfaces do not necessarily inject on
fundamental groups.

In a Riemannian manifold M, we will use the notation dM(x,y) for the distance
from x to y, and Bm(x,£) for the ball of radius £ centered at x. We drop the
subscript M if there is no ambiguity. A Riemannian manifold M is said to have
convex boundary if, given x in dM and e > 0, any two points of B(x, e) fl dM
can be joined by a geodesic A of M which lies in B(x,e). dM is strictly convex if
XDdM = dX.

If F is a surface, then an immersion f oi F in M induces a Riemannian metric
on F, by pulling back the quadratic form on each tangent space. The area of /
is defined to be the area of F in this induced metric. Clearly one can extend this
definition to maps which are smooth immersions almost everywhere. If one alters
/ to /' by composing with a diffeomorphism of F, the induced metric on F will
be altered, but the area of /' will be the same as that of /. In order to pick out a
particularly nice map which can be obtained from / in this way, one considers the
energy of the maps involved. To define energy, one needs a Riemannian metric on
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F and on M. Then the energy of a map /: F —> M is defined by

E(f) = \jF\df\2

whenever this integral exists. For maps of surfaces to 3-manifolds, the energy
integral can be locally expressed in a coordinate neighborhood U of F by

\IM^)+{%>di)dxdy>
where d/dx, d/dy form an orthonormal basis for TF\u with dual basis dx, dy, and
where (, ) denotes inner product given by the Riemannian metric on M. Note that
energy is defined for a much larger class of maps than smooth immersions, namely
maps in the function space L\, essentially the set of functions on which one can
integrate the squares of the functions and the squares of their first derivatives. Note
also that the energy depends on the choice of metric for F. When / is a smooth
immersion, the area of / is always less than or equal to its energy, whatever metric
is chosen on F. For surfaces in R3, this follows as the area of a map is locally
expressed by the formula

C s-l f Jff\ f

Area(f\D)= — x —   dxdy,Jd    dx      dy

where D is the standard unit disk and f\r> is a diffeomorphism that gives a coor-
dinate neighborhood of F. The area integrand satisfies

\\df/dx x df/dy]] = [\]df/dx\\2\]df/dy\\2 - (df/dx,df/dy)2Y'2
< ]]df/dx\\ ]\df/dy]\ < \(\\df/dx]]2 + \\df/3y\\2),

where the final expression is the energy integrand. Equality holds if and only if
(df/dx, df/dy) = 0 and ||3//9x|| = \\df/dy\]. If these conditions hold then / is
said to be almost conformal. f is conformal if the additional condition \df /dx\ ^ 0
also holds. By selecting appropriate coordinates, one can always find a metric on
F such that / is almost conformal and the energy and area of / are indeed equal.
This metric is unique up to a conformal diffeomorphism of F, and such coordinates
are called isothermal coordinates. For the existence of such coordinates see [Ch].

Finally, we give the definition of convergence which we will use in this paper.
This appears to be a somewhat nonstandard concept. Let {Fi} be a sequence of
embedded surfaces in the Riemannian 3-manifold M. We will say that the sequence
{Fi} converges to the surface F if the following conditions hold:

1. F consists of all the limit points of the sequence, i.e. given a sequence of
points Xi in Fi with limit x, then x lies in F, and each point of F is the limit of
such a sequence.

2. Given x in F and Xi in Fj as above, there is a disk neighborhood N of x
in F, disk neighborhoods Nt of Xi in Fi, and diffeomorphisms /: D —> N and
fi: D —► Arj, where D is the unit disk in R2, such that fi converges to / in the
C°°-topology on maps of D to M.

If the sequence {Fi} has no limit points, it will be convenient to say that {Fi}
converges to the empty surface.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEAST AREA SURFACES IN 3-MANIFOLDS 91

2. Results in minimal surface theory. We present here some results which
are used in this paper which are more or less well known in minimal surface theory
but may not be familiar to those outside the field. We start with a result which
states that the length of a curve gives an upper bound to the area of a least area
disk spanning the curve. This is a simple example of a set of inequalities called
isoperimetric inequalities.

LEMMA 2.1. Let M be a closed Riemannian manifold. There exist constants
a > 0 and 8 > 0 such that for any closed curve T contained in a ball of radius a,
there is a disk D spanning T with Area(D) < oLength(r)2.

PROOF. As M is closed, there is an a > 0 such that balls of radius a in Af are
taken to the unit ball in Rn by a map <p with uniformly bounded dilation. In Rn
the above inequality holds for the curve <p(T), with 8 = 1, by a computation of the
area of the disk D' formed by taking the cone over a point on <p(T). The ratio of
the areas of D' and <p~1(D') = D is bounded by a constant given by the dilation
bound on dip"1, which is bounded since M is compact. The result follows.

We next state a result relating, for sufficiently small r, the growth of area of a
surface in a ball of radius r to the length of the curve of intersection of the surface
and the sphere of radius r. This is known as the co-area formula. It does not
depend on the surface being minimal. Let M be a Riemannian manifold, let x be a
point in M and let B(r) be the ball of radius r about x in M with boundary S(r).
Let F be a surface meeting B(r), let A(r) be the area of F fl B(r) and when F
meets S(r) transversely let L(r) be the length of F fl S(r).

LEMMA 2.2. Ifris less than the injectivity radius of M at x and less than the
distance of x from dM, then d(A(r))/dr > L(r).

PROOF. For brevity we give the proof only for the case when M is 3-dimensional.
The general case is similar. For almost all values of r we can assume by Sard's
theorem that F D S(r) consists of a finite number of smooth curves on S(r). Let
Cy, e2, e%, be an orthonormal basis for TM in some neighborhood U oi F C\S(r),
such that ei is tangent to the curve FnS(r), e2 is tangent to F and normal to ey,
and e3 is normal to F. Let ojy, uj2, W3 be the dual basis of one-forms. Then the
formulas for the area Au(r) of F n U n B(r) and length Lu(r) of F n U f~l S(r) can
be expressed by

Ar/(r) = / wiAw2    and    Lrj(r) = I ojy.
JFnunB{r) JFnS(r)nu

Integrating Lrj(r) over r in U gives

/       Lu(r)dr=       \ ujy\dr = ujyAdr.
JFnu Ju \JFns{r)     J JFnu

Since wi and dr both have norm one, and since uiy A w2 restricted to F has norm
one, we have that wi A <jJ2 > uy A dr and so Au(r) > fFnu £f/(r) dr. The co-area
formula follows.

The next result, called the monotonicity formula, deals with the growth of the
area of a minimal surface. In applications it is often used to show that the area of
a minimal surface cannot be too small.
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LEMMA 2.3. Let M be a closed Riemannian manifold. There exists a > 0 and
P > 0 such that if D is a least area disk in M, x a point on D and if B(r) is a ball
of radius r < a in M centered at x with dD fl B(r) = 0, then the area of DO B(r)
exceeds pr2.

PROOF. Choose a as in Lemma 2.1. Let Dr denote the intersection of D with
the ball of radius r. DT in general consists of a collection of planar domains which
may not be disks. Each component of Dr however is least area rel boundary. The
intersection of Dr with dB(r) consists of a collection of curves {7,}. By Lemma
2.1 we can find a disk Ci in B(r) for each i which satisfies (A(Ci)) < ^length^j)2.
Since D was a least area disk we have that A(Dr) < £^ A(d) so that

^^ < 2>ngth(7l)2 < (^lengthf/*))   = length^)2.

Let A(r) be the area of Dr and let L(r) be the length of dDr = X^lengtM"/;).
Then \fA(r)/8 < L(r) and by the co-area formula, d/dr(A(r)) > L(r). Combining
these two inequalities gives that dA(r)/dr > \/A(r)/8. Since A(r) > 0 it follows
that A(r) > y(r), where y(r) = r2/48 is the solution to the O.D.E. dy/dr = \Jy/8,
2/(0) = 0. Thus we have A(r) > r2/48 and the result follows by taking P = 1/48.

The next lemma relates the lengths of curves in a surface to the energy of the
surface. One would like to be able to say that if the energy of a map of a surface
is small then it sends short curves in the domain to short curves in the image.
This need not be true in general, as indicated by Example 2.5, but the following
important lemma says that at least some curves have short image. It is often
referred to as the Courant-Lebesgue lemma. Note that the function £(8) in the
lemma is independent of x and /. Thus the lemma says that given a bound K
on the energy of / there is always some curve Cr, with r uniformly bounded from
below, whose image has short length.

LEMMA 2.4. Let K be a constant and let f be a smooth map of the 2-disk D2
to a Riemannian manifold M with the energy of f satisfying E(f) < K. Let x be
a point in D2 and let Cr be the set of points in D2 at Euclidean distance r from
x. Thus CT is a circle or part of a circle of radius r about x. Let 8 be a constant,
0 < 8 < 1. Then there is an ro with 8 < ro < \/8 such that length[f (Cro)] < £(8) =
2K/log(l/V8).

REMARK. Note that 2K/log(l/>/6) —> 0 as 8 -* 0. An important special case
is when x lies on dD. Note that it need not be true that the length of f(Cr) tends
to zero as r —► 0. Example 2.5, which follows the proof of the lemma, demonstrates
this.

PROOF. The energy E(f) is given in the region A = {8 < r < \/8} by

or, in polar coordinates, by
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Discarding the first term gives

1-ff1-\%2drdO<K.2jJAr\d9
Consider ro with 8 < ro < \f8 such that / \df(ro,0)/d9]2 dO is minimized. Then

2 JJa r |      d9      |
Integrating gives

i(logv^-log<5)/|^|2d0<K,

so that
f\df(ro,6)\2 M<       2K
J |   de   |     -iog(i/v^)'

The result follows.
EXAMPLE 2.5. We construct in this example a mapping / of the unit disk into

R3 of bounded energy with the property that there are circles about the origin Cr oi
arbitrarily small radius r whose image has length greater than one. This mapping
is depicted in Figure 1. To construct / we consider the function gk on D(l/k), the
disk of radius 1/fc in R2, defined by gk(r, 0) = 1 — (kr)l/k. Calculation shows that
fD,y/k) \dgk]2 = 7r/fc. gk is smooth except at the origin, and is zero on the circle of
radius 1/fc about the origin. If we let hk be a smooth function on the plane with
support on the disk of radius 1/fc, defined by smoothing gk near the origin and near
the circle of radius 1/fc in such a way that hk(0) is less than 1 but still greater than
1/2, we can arrange that ||a7ifc|| < ||a'afc|| at each point. Letting fc go to infinity we
have that E(hk) —* 0 and support(rifc) —> 0. Thus we can construct smooth "spike"
functions /„ with support on the disk of radius 1/2" whose value at the origin is
between 1/2 and 1 and such that

/ ||d/n||2 < 1/2".
JD(l/2n)

Spacing these spikes along the z-axis so that the function /„ is centered at the point
(1/n, 0), n = 2,3,..., we get a function h: D2 —► R with support on the interior
of the unit disk, with E(h) < 1 and with h(l/n,0) > 1/2 for n = 2,3,4,....
We now form the function f:D2—*R3by letting f(x,y) = (x,y,h(x,y)). Then
E(f) < 2ir + 1 but the image of the circle of radius 1/n under / has length greater
than 1 for n = 2,3,_

The following lemma, sometimes known as the maximal principle for minimal
surfaces, describes the intersection of two minimal surfaces near a point of tangency.

LEMMA 2.6. Let M be a Riemannian 3-manifold and let Fy, F2, be closed
minimal surfaces immersed in M. Suppose that Fy and F2 are tangent at a point
P. Then either Fy and F2 coincide or there is a C1 coordinate chart (x2,x2,x3)
about P in which Fy is given by x3 = 0 and F2 is given by x3 = Rea^i1 + ix2)n
for some n>2.

PROOF. In local coordinates the minimality of Fi and F2 yields a partial differ-
ential equation for their difference, expressed as a graph over their common tangent
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(Hi)
Figure i

plane. This equation is of the quasi-linear type. The proof proceeds by applying
a variation of the Hopf maximal principle of partial differential equations to the
equation for the difference of two minimal surfaces near a point of tangency [M-YI,
F-H-S].

We next summarize some of the basic existence and regularity theorems for
minimal surfaces and give sketches of their proof. Let M be a closed Riemannian
n-manifold. Let 7 be a simple closed curve in M. Let F be the class of maps / of
the two-disk D into M with E(f) bounded and such that / takes the boundary of
the two-disk homeomorphically onto 7.

THEOREM 2.7 (MORREY). There exists a map f in F such that E(f) =
inf{F(g)|o E F} and any such map is smooth.

REMARK. Morrey's result applies to a larger class of manifolds, namely the
homogeneously regular manifolds. These are discussed in §6. Morrey's result also
applies to the case where 7 is only topologically embedded, so long as 7 bounds a
disk of finite area.

PROOF. We give a very short sketch of the proof of this theorem. The proof for
Euclidean space, due to Douglas [Do] and Rado [Ra], can be found in [L].

One works in the Hilbert space of L2-functions from F to M which have bounded
energy, known as the L2-functions. Take a sequence of functions in F whose energy
converges to the infimum. Arguments similar to those of §4 establish that, with ap-
propriate reparametrization, this sequence is equicontinuous and has a subsequence
converging in L\ to a continuous limit / in F whose energy realizes the infimum.
One then proves the smoothness of / by estimates involving the homogeneous reg-
ularity and a bootstrapping process common in P.D.E. theory.

The least area disks whose existence is established in Theorem 2.7 have additional
regularity properties.

THEOREM 2.8 (GULLIVER, OSSERMAN). A least area map of a surface to
a 3-manifold, when restricted to the interior of the surface, is the composite of a
branched cover of the surface to another surface and an immersion of the second
surface into the 3-manifold.

REMARK. A least area torus in S2 x S1 can be constructed by composing the
double branched cover of a torus over the 2-sphere with the inclusion of the 2-sphere

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LEAST AREA SURFACES IN 3-MANIFOLDS 95

into S2 x S1 as one factor. This gives an example of a torus which is least area in
its homotopy class and factors through a branched cover.

PROOF. We give an outline of the proof of Osserman and Gulliver. Since being
immersed is a local property it suffices to prove this theorem for least area disks,
which is the case treated by the work of Osserman and Gulliver. Least area disks
can be parametrized to be least energy. They then give conformal harmonic maps.
Such maps have first derivatives which vanish at isolated points, and these are
called branch points. The map is an immersion away from these points. If the
least area surface has nonimmersed image, then there is a canonical representation
for the local picture around a branch point. Topologically the picture is the cone
over an immersed curve in the 2-sphere surrounding the branch point. There is a
process, well known to topologists and dating back to Dehn, of pushing the branch
point along a double curve, which reparametrizes the map in a neighborhood of
the branch point, without changing its image or its area. The resulting map has
the same area as the original map but is not immersed along an arc of what was
previously a double curve. Since the nonimmersed points of least area disks are
isolated, a small disk about this folding curve can be replaced by one of less area,
contradicting the assumption of the original surface being least area.

The next result states that with some assumptions on the boundary curve 7, a
least area disk is actually embedded.

THEOREM 2.9 (MEEKS-YAU). Let M be a compact Riemannian 3-manifold
whose boundary is strictly convex, and let 7 be a simple closed curve in M which is
null-homotopic in M. Then 7 bounds a least area disk D in M. If 7 is embedded
in dM then any such least area disk D is properly embedded in M. Moreover if D'
is another such disk with boundary 7 C dM, then int(D) fl D' is empty or D = D'.
If 7 is a simple closed curve disjoint from 7 bounding a least area disk D, then
Dr\D = 0.

REMARK. There is a similar result when the boundary of M satisfies a weaker
condition than strict convexity. This is stated in Theorem 6.3. If one does not
work in the smooth category, then one must make an additional assumption that
7 bounds a disk of finite area.

PROOF. The disk D can be shown to exist in the case where M has nonempty
boundary by extending the techniques of Morrey discussed in Theorem 2.7. As-
sume that the disk D is in general position and its boundary is an embedded
curve 7 on dM. One can then apply covering space techniques originally due to
Papakyriakopoulos [P], but used here in a Riemannian setting, to reduce the prob-
lem to the case where there are no triple points of self-intersection in the least area
disk. This is done by passing to a sequence of double covers of regular neighbor-
hoods of the disk, called a tower, until one reaches a cover where the boundary of
the regular neighborhood consists entirely of 2-spheres. 7 bounds two embedded
disks on the sphere component of the boundary on which it lies in this cover, and
it is not hard to see that one of them is smaller than the lift of D to this cover
unless this lift is embedded. If the lift is embedded, project down one stage to a
space two-fold covered by the previous one. In this cover the self-intersections of
the lift of D consist of pairs of identified simple closed curves on D. These can
be exchanged to give a new map of D2 into M with the same boundary as the
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old map and having the same area, but with the new map nonimmersed along the
former double curve of self-intersection. This contradicts Theorem 2.8 if this is a
least area disk. By a perturbation argument; cf. [F-H-S, §1] one can justify the
assumption that the disk D is in general position, proving the first embeddedness
result claimed in the theorem. The other statements follow similarly.

3. Convergence of least area disks. This section contains results on the
properties of least area disks and the convergence of sequences of such disks. Most
of these results do not seem to have been stated in this form before, and so we give
more detailed proofs than in the previous section. The first lemma states that the
least area disk spanning a simple closed curve lying on a small sphere lies in the
ball bounded by the sphere.

LEMMA 3.1. Let M be a closed Riemannian 3-manifold. Then there is an
£ > 0 such that for any point x in M, the ball of radius £ about x, B(x,£), has the
property that ifTC dB(x,£) is a simple closed curve and if D is a least area disk
in M which spans T, then D is properly embedded in B(x,£).

PROOF. From Theorem 2.7 we know that given a curve T as above there exists a
least area disk D in M with boundary T. We will show that if e is chosen sufficiently
small, D lies inside B(x,£).

We first pick an R > 0 such that the boundary of B(x, r) is strictly convex for
any x in M and any r with 0 < r < R. The existence of such an r follows from
the compactness of M. Consider now a curve T on dB(x,R/K) for K some large
integer. There is a constant Ck such that dB(x, R/K) has area less than Ck for
all x E M. Moreover Ck —► 0 as K —> oo. There is another constant 80 > 0,
given by Lemma 2.3, such that for any x E M, a least area disk F0 meeting x and
having no boundary in B(x,R/2) has area larger than 8q- Let e = R/Kq where
Kq is sufficiently large so that Ko > 2 and Ck0 < 8o- Now consider a curve T on
dB(x,£) bounding a least area disk D.

If D C B(x, R) and D does not lie in B(x, e) then there is an Ro with £ < Ro <
R such that Ro = sup{r|Z? C B(x,r)}. But dB(x,Ro) is convex and D meets
dB(x,Ro) and lies on its convex side. This contradicts the maximal principle,
Lemma 2.6.

Thus either D C B(x, e) or D intersects M — B(x, R). In the latter case we can
find a point x0 E B(x, R) such that B(x0, R/2) C B(x, R) - B(x, R/2) and x0 E D.
As dD cannot meet B(x0,R/2), Lemma 2.3 shows that D fl B(xo,R/2) has area
> 8o- But 80 > Ck0 for Kq large and T bounds a disk in B(x,£) oi area less than
Ck0, so that D cannot be a least area disk. Thus the least area disk lies in B(x, £).
Now Theorem 2.9 shows that D is properly embedded in B(x,e), concluding the
proof of the lemma.

We will need to know that least area disks do not wander too far even when their
boundaries are not simple closed curves lying on spheres. The next lemma states
that least area disks spanning short curves do not wander too far.

LEMMA 3.2. Let M be a closed Riemannian 3-manifold. Then there exists
r > 0 such that if £ < r and T is a closed curve of length less then £ contained in
B(x,e), then any least area disk D spanning T lies in the ball B(x,£).
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PROOF. The proof is similar to Lemma 3.1, but uses Lemma 2.1, the isoperi-
metric inequality, rather then the area of a 2-sphere on which the curve lies, to find
a disk with small area bounded by T.

In §4, we will consider the convergence of a sequence {Si} of 2-spheres in a closed
Riemannian 3-manifold M. We will consider a 3-ball X in M with strictly convex
boundary and will arrange that Si (~\X consists of a collection of disjoint least area
disks. We will then apply the following lemma, which contains the key convergence
technique of the paper. Part of the proof is based on ideas in [M-YII].

LEMMA 3.3. Let X be a compact Riemannian 3-manifold with strictly convex
boundary. Let {Di} be a sequence of properly embedded least area disks in X which
have uniformly bounded area. Then there is a subsequence {Di} which converges
smoothly in int(AT) to a properly embedded minimal surface T, which may be empty.

Let Xe denote X with an open £-neighborhood of dX removed. Then there is
a P > 0 such that the intersection of T with X£ consists of a collection of disjoint
embedded least area disks for each e with 0 < £ < p.

PROOF. Let £o > 0 be any constant. We show first that {Di} has a subsequence
converging on int(X£o). As £q is arbitrary this implies convergence on int (AT).

If the sequence {Dj} has no limit point in int(A£o), then the result is trivial. So
we suppose that P is a limit point which lies in int(A£o).

Recall that a least area map has least energy if it is parametrized conformally, and
that such a parametrization can always be found. Pick such isothermal parametriza-
tions of {D%} to get a sequence of maps fi: D —> X where /, is energy minimizing
for its boundary values. By composing with a conformal map of the disk and pass-
ing to a subsequence, we can assume that /,(0) —» P. In isothermal coordinates
the energy and area are equal, so that there is a constant K such that E(fi) < K
for all i.

Let C be a compact subset of int(D). We next establish the equicontinuity of /;
on C. Let x, y be two points in C with distance d(x, y) < 8y, where \f8[ < d(C, dX).
Then by Lemma 2.4 for any given i, there is a circle Cr of radius r about x with
8y < r < \f8~l such that fi(Cr) has length less than £(8y) = 2K/log(l/\/8y), and
£{8i) —► 0 as 8y —► 0. Now for £(8y) sufficiently small, fi(Cr) lies in a small ball B
in X of radius £(8y). From Lemma 3.2 it follows that the entire least area subdisk
bounded by Cr also lies in this ball. It follows that the distance in X between fi(x)
and fi(y) is less than 2£(<5i). Thus {fi} is equicontinuous on compact subsets of
int(D) and the Arzela-Ascoli theorem implies that there is a continuous function
/: int(D) —♦ X with a subsequence of {fi} converging pointwise to / on int(£>).

We show next that {fi} converges smoothly to / on compact subsets of int(D).
As above we can assume that a small disk of radius 8o about a point x, D(x, 8o), has
image lying in a coordinate ball B. We can identify this ball with the unit ball in 3-
space by a diffeomorphism, and the minimal surface equation in the corresponding
coordinates becomes:

A^^ + ̂ ^W  [dJldJl     dJldJl\
Ji       dx2       dy2 ki    kl\ dx  dx       dy  dy J '

where f\ denotes the jth component of fi and Tkl are the Christoffel symbols of the
metric on B. We can use this equation together with Sobolov and Lp estimates to
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deduce that fi is uniformly bounded in the Ck'a norm [M-YII]. Standard P.D.E.
arguments then give that / is smooth and that the sequence {/,} has a subsequence
converging smoothly in int(A) to /.

Next we show that given a > 0 there is an r with 0 < r < 1 such that the
annulus Ar of points in int(L>) lying within distance r of dD contains an essential
curve ai whose image under /, lies within X — Xa. This implies, in particular, that
/ is not a constant map. For each point y in dD and each small 8 we can find,
using Lemma 2.4, a curve Cr with 8 < r < \/8 whose image under fi lies within
e(8) of dX. By taking many such points j/fc on dD and stringing the corresponding
curves together, we can find annuli A(ri,rm) with 0 < r/ < rm < 1 and ri,rm —* 1,
such that each /, maps some curve fjj essential in A(ri,rm) within distance e(6) of
dX.

Figure 2

We next show that / is a least area map. If not there is a compact subdisk D' of
D such that f\D' is not least area. Thus there exists a disk D" with smaller area
and with the same boundary as D', and there exists a p > 0 with Area(/(£>')) —
Area(/(D")) > p. Now since / is the smooth limit of fi on int(D) there are disks
D\ such that fl(D'l) converges to f(D[) as i —► oo. In particular, for large i,

]Area(fl(D'l))-Area(f(D'l))]<p/2,

and fi(dD'i) is sufficiently close to f(dD[) so that f,(dD'l) U f(dD\) cobound an
annulus A in A with Area(A) < P/2. Since Area(A U f(D'f)) < Area(fi(D!i)
this gives a contradiction to the assumption that f, is least area, and we conclude
that D" cannot exist and that / is a least area map. Now / is minimal and a
smooth limit of embedded disks and thus has embedded image; if not then it would
have a point of transverse self-intersection which would also appear in a nearby
approximating surface. Conceivably / could factor through a branched cover, as in
the remark following Theorem 2.8. However if so then / could not be approximated
by embeddings in a neighborhood of the branch point. So / has no branch points
and is an embedding itself.

Since dX is strictly convex so is dXeo for sufficiently small £0. Thus the inter-
section of /(int(D)) with XSo contains only disks, and no planar domains.  For a
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planar domain would imply the existence of a least area planar domain in X — X£o
with boundary on dX£o, which contradicts the maximal principle, as such a sur-
face would meet a convex surface, namely dXa for some small a, on its convex
side without crossing it. Thus the intersection of /(int(D)) with X£o consists of a
collection of embedded disjoint least area disks.

It may happen that f(int(D)) is not the full limit set of {Di} in int(A£o) (see
Example 3.4 below). If so there is a point Py in int(A£o) which is not in f(int(D))
but is a limit point of the sequence {D,}. We can then repeat the above construction
using Pi instead of P, obtaining a new limiting map f1: int(D) —> X whose image
contains Py. The union of the images of / and f1 gives a collection of embedded
disjoint least area disks in X£o, as above. We then repeat this process for a point
P'2 if / U f1 does not give the full limit set of {Di} in X£o. Since the addition of
a component containing Pi added a finite amount of area estimable from below in
terms of e, via Lemma 2.3, and since the total area of / is finite and the area of
the maps in the sequence {fi} is uniformly bounded, it follows that after a finite
number of repetitions we recover the full limit set in X£o. Letting £o —> 0 and
letting T = f(D) U fl(D) U /2(L>) U f3(D) ■ ■ ■ we obtain the desired surface.

REMARK. It follows from the above proof that the curvature of any least area
disk in X is bounded above in X£o. For if not, take a sequence of least area
disks whose curvature blows up in X£o. Such a sequence cannot converge to a
nonbranched embedding, contradicting the above argument. This result is one of a
collection of such curvature estimates for minimal surfaces which are due to Schoen,
Simon, Yau and others (see [S] for the 3-manifold case).

EXAMPLE 3.4. The sequence of curves in the boundary of the unit ball in
R3, depicted in Figure 3, bounds a sequence of least area disks whose limit in the
interior of the ball is two disks.

In this example the convergence is complicated by the convergence of two arcs to
a single arc. In the following lemma we see that if this phenomenon is avoided, we
get convergence up to the boundary. Let H+ ,H~ ,S+ and S~ refer to the upper
and lower hemispheres of the 2-sphere and 1-sphere respectively.

/ width e \. / width 0 \

Figure 3
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LEMMA 3.5. Let X be a 3-ball with a Riemannian metric such that X has
strictly convex boundary. Let {Di} be a sequence of properly embedded least area
disks in X which converge to T as in Lemma 3.3. Suppose there is a smooth simple
arc To properly embedded in H+ and suppose there is a sequence of simple arcs
r2 C dDi such that Di fl H+ = Ti and {Ti} converges to Tq. Then a component
ofT extends smoothly to To- That is, there is a smooth map fo'- int(D) U S+ —►
int(M) U H+ and {fi} converges on int(D) U S+ to fo-

PROOF. Parametrize the sequence {A} to obtain energy minimizing maps
/,: D2 —* X. These energy minimizing maps are not unique, as conformal maps
of the disk leave the energy unchanged when composed with /. We now use a
standard technique to normalize {fi} so that the images of three points are fixed.
Let a, b, c be points in Tq such that dTo = a\Jb and c E int(ro), and reparametrize
/, conformally so that as i —► oo, /*( —1) —* a, fi(+l) —> b and fi(y/—l) —► c. As in
the proof of Lemma 3.3, the sequence {fi} is equicontinuous on compact subsets of
int(D). We will show that {fi} is equicontinuous on compact subsets of int(D)US+.
Let x be any point on S+, and fix a constant e > 0. For 6 sufficiently small Lemma
2.4 implies that the curve Cr defined in Lemma 2.4, for some r, 8 < r < \/8, has
image fi(Cr) of length less than e/2. Thus the endpoints ey, e2, of the arc on dD
containing x and running between the endpoints of CT have images lying within e/2
of one another. Since the maps {fi\S+} have images converging to r0, it follows
that if i is chosen sufficiently large, then the length of the image of the arc on dD
between fi(ey) and fi(e2) and containing x is no more than e. Thus for each fi
there is a value rj with 6 < rt < \/8 such that the boundary curve of the disk
D(x, r^ about x bounded by Cr and dD has image under fi oi length less than 2e.
By Lemma 3.2 we can conclude that the entire disk D(x,8) has image fi(D(x,8))
that lies within 2e of fz(x). Thus by starting with i large, we can assume that the
entire sequence {ft} maps D(x, 8) to within 2e of f(x), and we conclude that {fi}
is equicontinuous on compact subsets of int(D) U S+. The limit map / maps S+
to To- As in Lemma 3.3 the image of / may not consist of the entire set of points
to which {Di} accumulate, but / is nonconstant and its image intersects X£ in a
disjoint union of embedded disks for e sufficiently small. Finally, / is smooth on
D U 5+ by results of Hildebrandt [Hi].

LEMMA 3.6. Let X be a compact Riemannian 3-manifold with strictly convex
boundary. Let Ti be a countable collection of properly embedded least area disks in
X with the area ofTi uniformly bounded. Then there is a subsequence {T3} of {Ti}
which converges in int(A) to a countable collection T (possibly empty) of least area
open disks properly embedded in int(A). If {Ti} has a limit point in int(A) then T
is not empty.

Note. This convergence may be with multiplicity. A large number of disks in
{Tj} may converge to a single disk in T. Note also that we do not assume that the
disks in Ti are disjoint from one another.

PROOF OF LEMMA 3.6. First note that since dX is strictly convex, so is dX£
for e sufficiently small. Thus we can pick e small enough so that the intersection
of a least area disk with X£ consists of least area disks, as in Lemma 3.3. By the
monotonicity lemma, Lemma 2.3, only a finite number of components of {Ti} can
intersect X£. Picking one such component, if it exists, from each Tj, we obtain a
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sequence of least area disks {Dj}. A subsequence {Df} converges in Xe by Lemma
3.3. In the corresponding subsequence {Tj} of {Tt} we pick a second component
intersecting X£, if it exists, and obtain a new sequence of least area disks {Dj}.
Again Lemma 3.3 implies convergence of a subsequence on X£, possibly to the
same limiting disk as before. Since there is a uniform bound on the number of
components of {Ti} which meet X£, we repeat this process a finite number of times
to obtain a subsequence of {Tj} which converges in X£.   We call this sequence
{Ti,e}.

We next consider the intersection of {Tit£} with X£/2. As above we get a con-
vergent subsequence in X£/2, which we call {Tj^}. Proceeding in this way we get
sequences {Tjt„} converging in Xe/n, with {TjiW} a subsequence of {Tj>n_i}. Tak-
ing the diagonal sequence {Ti^} we get a sequence converging in int(X). The limit
is a countable, possibly empty, collection of open disks, intersecting Xe/n in a finite
collection of least area disks for any n > 1. It is nonempty by the construction if
there is a limit point of {Tj} in int(X).

4. Least area spheres. In this section we present some existence results for
2-spheres of least area in a closed 3-manifold. In Theorem 4.1, we use the results
of §3 to establish the existence of a least area 2-sphere among the family of all
embedded 2-spheres which do not bound a 3-ball. This argument is the heart of
our paper, and similar arguments will be applied in §5 to show that least area
embedded surfaces of higher genus also exist. In Theorem 4.2, we use Theorem
4.1 and some standard topological arguments to prove the existence of a least area
map among all homotopically nontrivial maps of the 2-sphere into a 3-manifold.
Theorem 4.3 extends this to find a finite collection of disjoint minimal 2-spheres
which generate 7r2(M) as a 7Ti (M)-module.

THEOREM 4.1. Let M be a closed Riemannian 3-manifold which contains
an embedded 2-sphere that does not bound a 3-ball. Let F denote the set of all
piecewise smooth embedded 2-spheres in M which do not bound a 3-ball, and let
I = inf {Area(S): S in F}. Then either there is an embedded sphere £ in F with
area equal to I or there is an embedded one-sided projective plane P in M with area
equal to 1/2 and with the boundary of a regular neighborhood of P an element of F.

PROOF. Let {Sj} be a sequence of embedded spheres in M, each in F, whose
area tends to /. as i —► oo. Cover M with the interiors of balls By, B2,..., Bn,
whose boundary in M is strictly convex, each having radius sufficiently small so
that the condition in Lemma 3.1 holds. We will form a series of new minimizing
sequences out of {Si}, so that the final one will converge. We first consider the
ball By. We can assume that Sj is transverse to dBj for each t, j by decreasing
the radius of Bj slightly if necessary. Let Tj be a simple closed curve in Sj fl dBy.
Suppose first that the intersection of Si with By consists of a single disk Di whose
boundary is Tj. Let D\ be a disk of least area in M which spans Tj. By our choice
of the Pt's, D't lies in By. We can form a new embedded 2-sphere S- by setting
Sj = Sj — Di + D[. Clearly Sj has area no larger than that of Si and does not
bound a 3-ball, so that Sj is an element of F.

In general, the intersection of Sj with By consists of a collection of planar sur-
faces. In this case, we alter S, by replacing Sj fl By with a collection of least area
disks spanning the curves of Sj fl dBy. These disks lie inside By and are embedded,
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by Lemma 3.1 and Theorem 2.9, and they are disjoint as their boundaries are dis-
joint. Thus we obtain a collection of embedded 2-spheres Si, E2,..., E^. Clearly
each Ej satisfies Area(Ej) < Area(St), and at least one T,j does not bound a 3-
ball. We denote this Ej by Sj. The new sequence (Sj) thus obtained still has the
property that limj_00(Area(Sj)) = /. Each member of this new sequence intersects
By in a collection of least area disks. Lemma 3.6 now gives a subsequence {Sj^}
which converges on int(Pi) to a union of least area open disks. Note that this limit
surface may be empty.

We next consider Sj,i C\B2. As before, form {Sj,i} by replacing Sj,! nP2 by least
area disks and picking a component Sj,i that does not bound a 3-ball. Lemma 3.6
gives a subsequence {Sj,2} which converges in int(S2) to a surface T2 which is a
union of open least area disks. Now Sit2C\(By—B2) consists of some subcollection of
the components of Sj,i D(By —B2), as Sj,2 was formed from Sj,i by discarding some
components. Thus the convergence of {Sj,i} on int(Bi) implies the convergence
of {^,2} on int(Si) - int(P2) to a surface which we denote by Ty. We will show
that Ti UT2 is a smooth subsurface of int(Si) U int(P2)- This is clear if By n B2 is
empty, so we assume that they intersect. As the convergence of {Sj,i} was smooth
on int(Pi), Ti meets dB2 Dint(Pi) in smooth open arcs. If this collection of arcs is
empty, it is again clear that Ti UT2 is smooth, so we consider a component E of Ti
such that E intersects dB2 fl int(Pi) and we consider an arc T of this intersection.
Then T is the limit of a sequence of open arcs {Fj} in dB2 fl int(Si), where Tj is a
component of Sj:i DdB2 nint(Bi). By construction, Tj forms part of the boundary
of a least area disk Ft in B2 which is a component of Sj,2 D B2. We let Aj denote
the closed arc dFt — Tt. Let x be any point of T. We will show that Ti U T2 is a
smooth surface in a neighborhood of x. The first step is to show that, near x, T2
is a smooth surface with boundary on T. Thus, in a neighborhood of x, Ty U T2 is
a continuous surface which is smooth except possibly for a bend along T. Then we
will show that no bending can occur.

Case 1. There is a constant e > 0 such that Aj n B(x,£) is empty for all i.
In this case, Lemma 3.5 implies that {Fj} converges in B2 to a surface which

extends continuously up to the boundary in a neighborhood of x in B2.
Case 2. The sequence Aj intersects each neighborhood of x.
Let Ci be a component of Ajnint(Pi) which contains a point yi such that yi —> x

as i —> 00. Since d and Tj are both components of Sj^ fl dB2 n int(Pi), and Sjt2
is embedded, we must have that both arcs converge to T. Thus Sj,2 is converging
with multiplicity at least two to E in int(Si) - int(S2)- In this case, we have to
consider how the disk Fj converges in int(P2)- Note that, for small values of e, the
intersection of Fj with B(x,£) n B2 consists of disjoint 2-disks. This is because F%
is a least area disk in B2.

Subcase 2(i). There is an e > 0 such that the disk of Fj n B(x,e) D B2 which
contains Tj in its boundary intersects dB2 n int(Pi) only in T, for all i.

In this case, the argument of Lemma 3.5 again implies that Fj converges to a
smooth surface in B2 which extends continuously up to the boundary in a neigh-
borhood of x in B2.

Subcase 2(ii). There is a sequence of points Xj on Tj which converges to x, and
a sequence of points yi on an arc Cj of Aj also converging to x and a sequence of
paths d, in F, joining Xi to yi such that the length of a'j —► 0 as i —► 00.
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We will show that this case is impossible, by using a cut and paste argument.
Choose a small half ball B in By — int(B2) centered on x such that E n B is a
disk Ey. Then, for large values of i, Si:2 D B has components L\i and L\2 which
are 2-disks such that L\i fl dB2 is contained in Tj and Dj>2 fl dB2 is contained
in Cj. We let Gj denote the disk formed from the union of .L\i and Dj,2 with a
thin strip about a'j. We also construct a 2-disk G[ by starting with the annulus
in dB between dL\i and dDi<2, removing a small segment running between the
two boundary components of the annulus near x, and adding two small disks D',
D" near x which fill in the circles formed by the boundary of the segment and the
boundary of the strip about dj (see Figure 4). That disks of small area actually do
exist can be seen by taking dj to be an arc in the intersection of the boundary of a
small regular neighborhood N of Ey with the surface Sj,2 f~l B2. dN intersects B2
in a disk, of small area compared to Ey, which is cut into two disks by dj. Note
that dj need not be chosen short, as long as the areas of D' and D" are small.

The area of Gj tends to at least twice the area of Ey as i —* oo. The area of Gf
becomes smaller than the area of Ey as i —* oo, because 9L\i and dDi^2 converge

Figure 4a

Figure 4b figure 4c
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to the same curve dEy and dB, and the area of the disks D', D" can be taken close
to zero. Thus there is a positive constant 8 such that Area(G[) < Area(Gj) —8, for
all large enough values of i.

Now consider the sphere Sj2 formed from Sj,2 by replacing Gj by Gf. If this
new surface is embedded for each i, we obtain a contradiction as follows. Because
{St,2} is a minimizing sequence, Area(S!i2) < I + 8 for large enough values of i.
This inequality together with the previous inequality relating the areas of Gj and
G[ shows that Sj 2 has area less than I and so must bound a 3-ball. But the union
of Gj and G\ is an embedded 2-sphere which bounds a 3-ball, by construction, so
it follows that Sjt2 itself must bound a 3-ball for large enough values of i, which is
the required contradiction.

If Sj 2 is singular, we argue in a similar way as follows. It is still true that the
area of Sj 2 is less than I for large enough values of i. Let X denote the 2-disk
obtained from Si>2 by removing Gi. Then Sj2 = G[ U X and clearly the double
curves of Sj 2 are disjoint and simple and are the intersection curves of the interiors
of G\ and of X. Each double curve in Sj2 bounds two 2-disks in Sj2. Out of all
these disks, let D be one of least possible area. Clearly D contains no double curves
in its interior and D is a subdisk of G\ or of A. Suppose that D lies in X. Let
D' denote the subdisk of Gf with the same boundary as D. Then D U D' is an
embedded 2-sphere of area less than that of Sj2, so it must bound a 3-ball. By
isotoping D' across this 3-ball, we obtain an isotopy of Gf which removes at least
one double curve from Sj 2 and simultaneously reduces its area. By repeating this
procedure we find boundary fixing isotopies of G\ and of X to new disks G" and
X" which have less area and which have disjoint interiors. Thus G" U X" is an
embedded 2-sphere of area less than / and so bounds a 3-ball. Now these isotopies
are all made in the complement of the 2-disk Gj, so it follows that the embedded
2-sphere Gi UX", which is isotopic to G" U X", bounds a 3-ball. Hence Sj,2 itself
bounds a 3-ball for large enough values of i, because Sj,2 = G% U X is isotopic to
Gj U X". This contradiction completes the proof that subcase 2(h) cannot occur.

As the above discussion applies to any point x of Ti fl dB2, we conclude that
Ti U T2 is a continuous surface which is smooth except possibly for bending along
the arcs of Ti C\ dB2. Suppose that Ti U T2 fails to be smooth along an arc T
of Ti fl dB2 at a point x of T. Choose a small ball B centered at x so that the
component of Ti U T2 which contains T meets B in a 2-disk H. As H has a bend
along G near x, it cannot be a least area disk. We let Bf' denote a least area
disk in B with the same boundary as Bf, and we choose a number a such that
0 < a < Area(H) - Area(H'). Now for large enough values of i, the intersection of
Sj,2 with B must include a 2-disk H, such that the //j's converge to Bf. Also the
curves dH, converge to dH. Thus the annulus Li on dB bounded by dH and dH%
has area which tends to zero as i —► 00. Hence, for large enough values of i, we
have Area(Lt) < a/4, and | Area(H%) - Area(H)\ < a/4. Now consider the surface
Sj 2 = Sit2 - Hx + L, + H'. For large values of i, we have

Area(St'2) = Area(Sj,2) - Area(Ht) + Area(Lj) + Area(rL')
< Area(Sj,2) - (Area(tf) - a/4) + a/4 + (Area(H) - a)
= Area(Sj,2) - a/2.
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Now Area(Sji2) < / + a/2 for large values of i, so that Sj 2 has area less than
I. If Sj2 is embedded, it must bound a 3-ball and hence so does Sj,2, which is-a
contradiction. If Sj2 is singular, we argue as before to obtain a contradiction.
This completes the proof of our claim that Ti U T2 is a smooth subsurface of
int(Bi)Uint(B2)-

A similar argument can now be applied to S3, B4,..., Bn to obtain a sequence
(Sj,n), i > lj of embedded 2-spheres which converges piecewise smoothly in M to
a smooth surface S. Note that S cannot be empty as any sequence of surfaces
in a compact manifold must have some limit points. It follows from the piecewise
smooth convergence that, for large values of i, Sj>n is transverse to the fibers of the
normal bundle in a tubular neighborhood of S. Thus Sjt„ covers S and it follows
that S must be a sphere or a one-sided projective plane. The convergence must be
with multiplicity one or two and Theorem 4.1 follows.

The previous arguments combined with the sphere theorem [P, Wh] (see also
[He]) from 3-dimensional topology now easily imply the existence of least area maps
of spheres into a 3-manifold among all those which are homotopically nontrivial.

Theorem 4.2 (Sacks-Uhlenbeck, Meeks-Yau). Let M be a closed Rie-
mannian 3-manifold such that ir2(M) is nonzero. Let Fo be the set of all smooth
maps of S2 to M which represent a nonzero element of ir2(M), and let Io =
inf{Area(/): / in Fq}. Then there is a map fo in Fo with area Io- Further fo
is either a smooth embedding or a double cover of a smoothly embedded projective
plane.

PROOF. First assume that M is orientable. Then the sphere theorem tells
us that F0 contains an embedding. Let F denote the set of embeddings in Fo,
and let I denote inf{Area(/)|/ in F}. As F is nonempty we want to apply the
arguments used in Theorem 4.1 to find either an embedded 2-sphere in F of area
I or an embedded one-sided projective plane of area 1/2 and with the boundary
of a regular neighborhood a member of F. The only difference in the situations is
that now we want to work with 2-spheres which are nonzero in 7r2(M), which may
be a stronger condition than simply insisting that the spheres do not bound balls.
These conditions on embedded spheres in a 3-manifold are equivalent if and only
if the Poincare Conjecture is true. However, we simply need to note that, when
doing surgery on an embedded 2-sphere which is a member of F, one of the two new
spheres must again be a member of F. Now the arguments of Theorem 4.1 apply.
It remains to show that Io = I, so that the least area 2-sphere we have obtained
in F is also least area in F0. This is true because given a singular 2-sphere in F,
the proof of the sphere theorem actually supplies one with an embedded sphere in
F which has less area. This completes the proof of Theorem 4.2 in the case when
M is orientable. When M is nonorientable, one first finds a least area sphere (or
projective plane) E in the orientable double covering M of M, and then notes that
E must be equivariant under the covering involution t of M, i.e. either rE = E
or rE fl E is empty. For otherwise one could cut and paste E and rE to obtain an
essential sphere or projective plane in M with area less than that of E (note that r
is an isometry of M). It follows that E covers an embedded surface in M and this
is the required sphere or projective plane in M. It is easy to extend this result to
the following result first proved by Meeks and Yau.
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THEOREM 4.3. Let M be a closed Riemannian 3-manifold such that tt2(M) is
nonzero. Then there exist disjoint smooth immersions fy, f2, ■ ■ ■ ,fk, from S2 into
M such that

(1) fy represents a nonzero element of ir2(M) and has area Io,
(2) [fi] E 7r2(M) is not in the iry(M)-submodule generated by [fy], [f2],..., [fi-y]

and f% has least area among all such maps,
(3) [fi], [/2]i ■ • •, [fk] generate n2(M) as a ■k\(M)-module,
(4) each fi is either an embedding or double covers an embedded projective plane.

PROOF. Theorem 4.2 provides us with fy. This map generates a 7Ti(M)-
submodule My of 7r2(M). Let F2 denote the set of embeddings of S2 in M which
represent an element of 7r2(M) - My, and let I2 = inf{Area(/): / in F2}. The
proof of Theorem 4.2 provides an embedded sphere in F2 of area I2 or an em-
bedded projective plane of area .("2/2 whose regular neighborhood has boundary
in F2. The key point here is that doing surgery on a sphere in F2 produces two
spheres of which at least one must also lie in F2. Now, as in Theorem 4.2, this
sphere is least area among all maps which represent elements of 7T2(M) — My. We
repeat this process to obtain a sequence of maps fy,f2,h,---, where fi is least
area among all maps which represent elements of 7T2(M) — Mj_i. These spheres
must be disjoint, as otherwise one could cut and paste to produce a sphere of still
smaller area. Now it follows that this process must eventually stop, i.e. there is fc
such that Mfc = 7T2(M), as there is a bound on the number of nonparallel disjoint
2-spheres and projective planes which M can contain [He]. This completes the
proof of Theorem 4.3.

5. Higher genus surfaces. In this section, we consider the problem of finding
least area incompressible surfaces of higher genus. First we consider the special
case when M is P2-irreducible and the surface is embedded. Theorem 5.1 states
that there is a least area surface in an isotopy class. Theorem 5.2 extends this
to reducible 3-manifolds. In Theorem 5.3, we use these results on the existence
of embedded least area surfaces to prove a result on the existence of least area
maps. If rr2(M) is zero, this result yields the existence of a least area map in an
incompressible homotopy class.

THEOREM 5.1. Let M be a P2-irreducible closed Riemannian 3-manifold and
let F be an incompressible closed surface embedded in M. Let!? denote the set of
piecewise-smooth surfaces in M which are isotopic to F, and let

J = inf{Area(G)| G inF}.

Then either there is a surface F' in f? and with area I or there is a one-sided
surface F" of area 1/2 and the boundary of a regular neighborhood of F" is in Uf .

PROOF. Let {Fj}, i > 1, be a sequence of surfaces in F whose areas tend to / as
i —► oo, and let By, B2,..., Bn be a finite collection of 3-balls chosen as in the proof
of Theorem 4.1 to cover M. As before, we can assume that Fj is transversal to dBj
for all i and j. Any curve of Fj n dBy is clearly null-homotopic in M and so must
bound a 2-disk in Fi, as F is incompressible in M. As in the proof of Theorem 4.1,
we replace these disks by disks of least area with the same boundary. We need only
carry this out for those curves which are outermost in Fj. We obtain a new surface
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Fj,i which is isotopic to Fj, as M is irreducible, and has less area than Fj. As
before, some subsequence of the Fj.i's must converge on int(jBi), and, by repeating
this argument for B2,..., Bn, we will obtain a minimizing sequence of surfaces in
.9~ which converges to a smooth surface F* in M. Since Fj naturally covers F* for
large enough values of t, it follows that either F* is in fF or F* is one-sided and the
boundary of a regular neighborhood lies in fF [J, Sc]. This completes the proof of
Theorem 5.1.

If M is a reducible manifold, the above argument works except that the surfaces
Fj>n need not be isotopic to F. Thus we obtain

THEOREM 5.2. Let M be a closed Riemannian 3-manifold and let F be an
incompressible closed surface embedded in M. Let IF denote the set of surfaces
embedded in M which are isotopic to the connected sum of F with some 2-spheres,
and let I = inf{Area(G)|G in SF}. Then either there is a surface F' in SF with
area I or there is a one-sided surface F" with area 1/2 such that the boundary of a
regular neighborhood of F" is in SF.

When one considers extending these results to the nonembedded case, one cannot
simply argue as in §4. We overcome this by passing to a certain covering of M.
However, as this covering is not compact, we need to pass back and forth between
M and this covering in order to guarantee the convergence of our surfaces.

THEOREM 5.3. Let M be a closed Riemannian 3-manifold, let F be a closed
surface other than the 2-sphere, let f: F —> M be an injective, two-sided map and
let SF denote the set of maps of F into M which induce the same action on rry(F)
as f, modulo conjugation in iry(M). If I = inf{Area(o)|o in SF}, then there is a
smooth immersion f of area I which is in S".

PROOF. As in the proof of Theorem 4.1, we cover M by a finite collection of 3-
balls By, B2,..., Bn. Let Mp be the cover of M with iry(Mp) = f*(iry(F)), so that
/ lifts to a map /: F —► Mp, which induces an isomorphism of fundamental groups.
Mp is covered by the lifts of By,..., Bn which we label Byti,..., Bn^, t > 1. In
§2 of [F-H-S], it is shown that if a is a 2-sided immersion of F into a 3-manifold
such that a induces an isomorphism of fundamental groups, then either g is an
embedding or there is an embedding a' obtained by cut and paste techniques from
g such that a' has less area than g and also induces an isomorphism of fundamental
groups. It follows that we can find a sequence of embeddings {fi}, i > 1, of F
into Mp, each inducing an isomorphism of fundamental groups, such that Area(/j)
tends to /. as i —► oo.

Let p: Mp —* M denote the covering projection and let fi = po fi. Thus /j lies
in SF. It would be convenient to be able to show that some subsequence of the
fi must converge to a map /, for then f = pf would be the required map of F
to M of least area. However, the noncompactness of Mp rules out this approach
(see Example 6.1), so we consider the convergence of the sequence of singular maps
fi: F —► M. As usual, we can suppose that fi is transverse to dBj for all i and
j. Thus fi is transverse to dBjk for all i, j and fc. We replace /j(F) n Bytk with
least area disks to obtain /j,i(F). Thus if fcty = p/j,i, then /j,i(F) intersects Bi in
a collection of embedded least area disks which may not be disjoint. Now Lemma
3.6 shows that there is a subsequence /, which converges on int(Bi) to a collection
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of embedded least area disks, possibly empty. We can repeat this procedure by
lifting fi to a map of F into MF. Again, we call these lifts /». Note that each
fi is an embedding. Now we alter these new embedded surfaces by replacing their
intersections with the Life's by least area disks. As before the projection of this
new sequence of surfaces into M has a subsequence which converges on int(S2).
As in the proof of Theorem 4.1, it follows that it converges on int(Bi) U int(S2).
Repeating, we eventually obtain a minimizing sequence of embeddings of F in Mp
whose projections into M converge to an immersion /' of F into M, whose area is
equal to I. This is the required map.

REMARK. This result was first proved by Schoen and Yau [S-Y] and by Sacks
and Uhlenbeck [S-UII]. They assume that F is orientable but do not assume that
F is two-sided. A topological argument extends their result to the case when F is
nonorientable and two-sided [F-H-S]. However, their technique can be extended to
cover all cases.

The condition of incompressibility for F in Theorems 4.1, 4.2, 4.3, 5.1, 5.2, and
5.3 can be replaced by a weaker condition, the "condition of cohesion" [C]. This
condition essentially states that no essential curve on F can have very short image
in M. More precisely, if 7 is an essential simple closed curve on F and the area
of F is less than I + £, then there is a constant C, depending on e, such that 7
has length greater than C. In the proof of Theorem 5.1, this ensures that when we
replace Fj fl Bj by least area disks to obtain Fj,!, then Fi^y must be isotopic to Fj.

6. The bounded and noncompact cases. In this section, we discuss how
the preceding sections need to be modified to handle the existence results when one
or both of the 3-manifold and the surface have boundary, and when the 3-manifold
may be noncompact.

When one considers surfaces with boundary, there are two natural ideas of a
least area map. In the first case, which we call the fixed boundary case, one takes
a proper map a: F —> M and considers all maps homotopic to 0 reldF. In the
second case, which we call the free boundary case, one considers all maps of F into
M which are properly homotopic to g. In this paper, we will restrict our attention
to the fixed boundary case, as our methods naturally extend to handle this case.

For noncompact 3-manifolds one can obtain some results similar to those of §§4
and 5 so long as one imposes conditions on the curvature of the 3-manifold and
conditions which prevent a minimizing sequence from going to infinity. However,
the following example shows that even in a well-behaved noncompact 3-manifold,
there are isotopy classes of closed surfaces which contain no least area surface, so
that Theorems 4.1 and 5.1 fail to hold when the 3-manifold is noncompact.

EXAMPLE 6.1. Let F be a closed Riemannian surface of area A, and let M be
F x R with the product metric scaled in the directions tangent to F by the function
ip(t) = 1 + e_t, t E R. Then there are no least area surfaces in the isotopy (or
homotopy) class of F x {pt}, as pushing any nontrivial surface in M in the direction
of increasing t will decrease its area. Note that the curvatures of M are bounded
and the injectivity radius is bounded from below. Note also that the infimum of
area in the isotopy class of surfaces isotopic to F x {pt} is equal to A, and this is
not achieved by any surface in the isotopy class.
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To modify the results in §1, we need to introduce the following condition on an
open manifold which was first discussed by Morrey [Mol] and was essential for his
solution of the Plateau problem in a Riemannian manifold.

A Riemannian 3-manifold M is homogeneously regular if there exist positive
constants fc, K such that every point of the manifold lies in the image of a chart <p
with domain the unit ball B(0,1) in R3 such that

fc|M|2 < 9ij(<Pix))vivj < -K1MI2 f°r afi x hi B(0,1),
where v is any tangent vector to x, g is the metric on M and gij its components.
This can be shown to be equivalent to M having sectional curvature bounded above
and injectivity radius bounded away from zero. Note that any closed manifold is
automatically homogeneously regular and hence so is any manifold which covers
a closed manifold. Note also that the manifold in Example 6.1 is homogeneously
regular. This condition was introduced by Morrey [Mol] and was essential for his
solution of the Plateau problem in a general Riemannian manifold. Morrey showed
that if M is a homogeneously regular manifold (of any dimension) and if 7 is a
simple closed curve in M which bounds a disk of finite area, then there is a disk
of least possible area bounded by 7. Further such a disk is smooth. In [Mol],
Morrey gives an example to explain why the condition of homogeneous regularity
is needed. In this example 7 bounds a noncompact surface of finite area but bounds
no compact surface. We will describe an example where 7 bounds a disk of finite
area in M, but no disk whose area equals the infimum of all possible areas of disks.
The example gives a complete metric on R3 with this property.

EXAMPLE 6.2. We take M to be R3 with a metric which we will describe below,
and we take 7 to be the circle x2 + y2 = 2, z = 0. We will start with the standard
metric a on R3 (which is, of course, homogeneously regular) and will alter it in the
region where x2 +y2 < 3, preserving the circular symmetry of the metric about the
z-axis. As a first step, we alter a in the region where 1 < x2+y2 < 3, so that the half
cylinder x2 + y2 = 2, z > 0 has finite area 1/2 and the disk x2 + y2 < 2, z = 0 still
has area 27r. Such a metric can, for example, be constructed by making the above
half cylinder isometric to a hyperbolic cusp, and smoothing off using a partition
of unity. We can do this in such a way that the lengths of vertical curves remain
unchanged, thus making it clear that the resulting metric is complete. We call this
new metric go- As the metric go is equal to a on the region where x2 +y2 < 1, it is
clear that any disk bounded by 7 has area greater than tt. If 7 does not bound a
disk of least possible area, this metric will serve as our example. Otherwise, we will
describe a sequence of alterations to go which introduce disks of less and less area
spanning 7, which will eventually produce the required example. Let Dn denote
the 2-disk x2 + y2 < 2, z = n. We will inductively construct a metric gn from gn-y
by altering gn-y in a neighborhood of Dn so as to reduce the area of Dn while
preserving the metric in a small neighborhood of the half cylinder x2 + y2 < 2,
z > 0. To construct gy, we choose a 1-parameter family of metrics gt, t in [0,00),
in which the area of Dy decreases as t —► 00. For each such metric, consider the
infimum, I(gt), of the areas of all 2-disks spanning 7. If 7 always bounds a disk of
area equal to I(gt), then it is easy to see that I(gt) is a continuous function of t.
By construction, it is decreasing and we can arrange that, for large values of t, it
is less than 1, by considering the disk spanning 7 formed by Dy and the annulus
x2+y2 = 2, 0 < 2 < 1. We pick the metric gt for which I(gt) equals 1 + 1/2 and call
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this gy. We choose gn similarly so that the infimum of areas of all 2-disks spanning
7 is 1 + l/2n, n > 1. The limit metric e^ is the required metric on R3. For, by
construction, the infimum of the areas of all 2-disks spanning 7 is 1 but there is no
2-disk of area equal to 1 which spans 7. Note that there is a punctured disk of area
1/2 spanning 7.

In [Mol] Morrey only considered the case of manifolds without boundary.
Clearly, some condition analogous to convexity will be needed for dM in order
to obtain existence theorems for least area surfaces lying properly in M. The ap-
propriate condition was introduced by Meeks and Yau [M-YIII]. They called it
Condition C, but we prefer the more descriptive phrase sufficiently convex. We use
the convention that the unit sphere in Rn has positive mean curvature with respect
to the inward pointing normal. A Riemannian manifold M has sufficiently convex
boundary if the following conditions hold:

1. dM is piecewise smooth,
2. Each smooth subsurface of dM has nonnegative mean curvature with respect

to the inward normal,
3. There exists a Riemannian manifold A^ such that M is isometric to a subman-

ifold of N and each smooth subsurface S of dM extends to a smooth embedded
surface S' in N such that S' DM = S.

We will also need the following definitions. A subsurface Y of the boundary of
a Riemannian 3-manifold M is convex if given y in the interior of Y, there is P
such that whenever 0 < e < P, any two points of B(y, e) fl dM can be joined by a
geodesic A of Af which lies in B(x, e). Y is strictly convex if A fl M = dX.

As we hope the name suggests, being sufficiently convex is a much weaker con-
dition on dM than being convex. For example, dM is sufficiently convex if it is
a minimal surface. Thus if My and M2 denote the closures of the two comple-
mentary components of a catenoid in R3, then both My and M2 have sufficiently
convex boundary, but clearly neither has convex boundary. In [M-YIII], Meeks
and Yau generalize Morrey's result to the case of homogeneously regular manifolds
with sufficiently convex boundary. A noncompact manifold with boundary will be
called homogeneously regular if the manifold N described above can be chosen to
be homogeneously regular.

THEOREM 6.3. Let M be a compact Riemannian 3-manifold with sufficiently
convex boundary, and let 7 be a simple closed curve in M which is null-homotopic
in M. Then 7 bounds a least area disk in M. If 7 is embedded in dM, then any
such least area disk D is either properly embedded in M or is embedded in dM.
Moreover, if D' is another such disk with boundary 7 in dM, then int(D) n D' is
empty or D = D'. If7) is a simple closed curve disjoint from 7 and bounding a
least area disk D, then either D fl D is empty or D and D are embedded in dM
with one contained in the interior of the other.

REMARK. The methods of Meeks and Yau can be used to establish the same
result when M is noncompact, so long as M is homogeneously regular.

The other lemmas in §2 also need to be modified. Lemma 2.1 is replaced by the
following.

LEMMA 6.4. Let M be a homogeneously regular 3-manifold with sufficiently
convex boundary.   There exist constants a > 0 and 8 > 0 such that for any closed
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curve T contained in a ball of radius a, there is a disk D spanning T with Area(D) <
oLength(r)2.

PROOF. In the case where M is compact with sufficiently convex boundary, the
techniques of [M-YIII] show how to embed M isometrically in an open homoge-
neously regular 3-manifold N so that for any simple closed curve T in M, some
least area disk in N which spans T lies in M. Now the proof of Lemma 2.1, and
the observation that the area of a least are disk is smaller than the area of the disk
constructed in Lemma 2.1, completes the argument in the case when M is compact.

When M is not compact, picking a sufficiently small gives that a ball of radius
a in M has sufficiently convex boundary, as its frontier will be convex. The above
argument now applies for this compact ball.

Lemma 2.2 needs no charge. Lemma 2.3 is replaced by the following result whose
proof is the same except that Lemma 6.4 is used in place of Lemma 2.1.

LEMMA 6.5. Let M be a homogeneously regular Riemannian 3-manifold with
sufficiently convex boundary. There exists a > 0 and a function P(r) defined on
the interval (0, a) such that if D is a least area disk in M, x a point on D, r less
than the distance of x from dM, and if B is a ball of radius r in M centered at x
with dD n B = 0, then the area of Df] B exceeds P(r).

Lemma 2.4 needs no change. Lemma 2.6 is replaced by the following.

LEMMA 6.6. Let M be a Riemannian 3-manifold with sufficiently convex
boundary, and let Fy and F2 be minimal surfaces immersed in M. Suppose that Fy
and F2 are tangent at a point P in the interiors of Fy and F2. Then either Fy and
F2 agree on an open neighborhood of P or there is a C1 coordinate chart (x1, x2, x3)
about P in which Fy is given by x3 = 0 and F2 is given by x3 = Rea^a;1 4- ix2)n
for some n > 2. In particular, if Fy is tangent to dM at an interior point of Fy,
then Fy lies in dM.

In §3, we need to restate all the results because we want to consider 3-manifolds
with boundary and so will also have to consider 3-balls in these 3-manifolds which
meet the boundary. Recall that, in the proof of Lemma 3.1, we used the fact that
small balls in a closed manifold have strictly convex boundary. When the ambient
manifold has boundary, we will use the fact that small balls have strictly convex
frontier. Lemma 3.1 is replaced by the following.

LEMMA 6.7. Let M be a homogeneously regular Riemannian 3-manifold with
sufficiently convex boundary. Then there is e > 0 such that for any point x in
M, the ball of radius e about x, B(x,£), has the property that if 7 C dB(x,£) is
a simple closed curve and if D is a least area disk spanning 7, then either D is
properly embedded in B(x,£) or D lies in dM.

Lemma 3.2 is replaced by the following. The proof is the same but uses Lemma
6.4 instead of Lemma 2.1.

LEMMA 6.8. Let M be a homogeneously regular Riemannian 3-manifold with
sufficiently convex boundary. Then there exists r > 0 such that if e < r and T is a
closed curve of length less than e contained in B(x,£), then any least area disk D
spanning T lies in the ball B(x,e).
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The replacement for our key convergence result, Lemma 3.3, needs to be more
complicated because, when considering the convergence of surfaces in a manifold
with boundary, we will need to consider 3-balls which meet the boundary. As we
are only going to consider the existence problem in the fixed boundary case, we
need the following result, which follows by combining the arguments of Lemmas
3.3 and 3.5.

LEMMA 6.9. Let X be a compact Riemannian 3-manifold with sufficiently con-
vex boundary, and let Y be a compact subsurface of dX which is strictly convex.
Let Y' denote the closure of dX — Y. Let T be a compact 1-manifold properly em-
bedded in Y', and let {Di} be a sequence of properly embedded least area disks in X
with Dj n F' = T, and with uniformly bounded area. Then there is a subsequence
{Dj} which converges smoothly in X — Y to an embedded minimal surface T with
boundary int(r). This surface is the union of a minimal surface properly embedded
in X — Y and a minimal subsurface ofY', either of which may be empty.

Let X£ denote X with an open e-neighborhood of Y removed. Then there is a
P > 0 such that the intersection of T with X£ consists of a collection of disjoint
embedded least area disks for each e with 0 < e < /?.

Lemma 3.5 needs to be replaced by the following.

LEMMA 6.10. Let X be a 3-ball with a Riemannian metric such that dX is
sufficiently convex. Let Y be a strictly convex subsurface of dX which contains H+
in its interior. Let {Di} be a sequence of properly embedded least area disks in X
which converge to T as in Lemma 6.8. Suppose there is a smooth simple arc To
properly embedded in H+ and suppose there is a sequence of simple arcs Tj C dDi
such that DiC\H+ = Tt and {Ti} converges to Tq. Then a component D ofT extends
smoothly to To- That is, there is a smooth map fo: int(D) U S+ —* int(M) U H+
and {fi} converges on int(D) U S+ to fo-

Lemma 3.6 is replaced by the following.

LEMMA 6.11. Let X be a compact Riemannian 3-manifold with sufficiently
convex boundary, and let Y be a compact subsurface of dX which is strictly convex.
Let Y' denote the closure of dX — Y. Let T denote a countable collection of 1-
manifolds each properly embedded in Y' and let Ti be a countable collection of
properly embedded least area disks in X with T% fl Y' = T for all i, and with the area
ofTi uniformly bounded. Then there is a subsequence {Tj} of {Ti} which converges
in X — Y to a countable collection T of simply connected minimal surfaces with
boundary int(r). Each surface is either properly embedded inX — Y or is embedded
in Y'.

Armed with the preceding results to replace the results of §§2 and 3, it is easy
to extend the results of §§4 and 5 on the existence of least area closed surfaces
to the case where M is a compact Riemannian 3-manifold with sufficiently convex
boundary. In Lemmas 6.9 and 6.11, the 1-manifold T will be empty for these
applications. It is also easy to extend these results to the case of surfaces with
boundary in 3-manifolds which need not be compact.

THEOREM 6.12. Let M be a P2-irreducible homogeneously regular Riemannian
3-manifold with sufficiently convex boundary and let F be an incompressible compact
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surface with nonempty boundary properly embedded in M. Let F denote the set
of piecewise smooth surfaces in M which are isotopic to F rel dF, and let I =
inf(Area(G)|G in F).  Then there is a surface F' in F with area I.

REMARK. Unlike the situation of Theorem 5.1, one cannot obtain a surface F"
double covered by F, as dF" must equal dF. We do not need to assume compact-
ness of M as the fixed boundary of F stops the minimizing sequence from converging
to the empty surface (see Example 6.1). The same applies to the following result,
a version of which was proved by Lemaire [Le].

THEOREM 6.13. Let M be a homogeneously regular Riemannian 3-manifold
with sufficiently convex boundary, and let F be a compact surface with nonempty
boundary. Let f be a proper two-sided injective map of F into M, such that f
embeds dF in dM, and let S denote the set of all maps of F into M which are
homotopic to f rel dF. Let I denote inf{Area(g)|a E S}. Then there is a smooth
immersion f of F into M with f E S and such that f has area equal to I.

REMARK. One can weaken the assumption that dF is embedded to the assump-
tion that F lifts to an embedding in Mp as in §5.
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