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1. Introduction. Many mathematicians have done a lot of work on the existence

of limit cycles of the Lienard equation

and many good results have been obtained (see [5]-[7]). It is worthwhile to generalize

these results to more general nonlinear equation. Huang [3] [4] considered the existence

of limit cycles of the equation

In this paper we use a new method to deal with the existence of limit cycles of the

equation (2) and obtain some new results. Our results generalize the well-known theorems

of Dragilev [1] and Filippov [2].

2. A system equivalent to (2). Our basic idea in this paper is to find a closed

orbit of a two-dimensional system equivalent to the given equation. There are several

ways of obtaining such an equivalent system. It is well-known that each of the systems

(3) lX/ = y

and

(4) ί*'=y-F(χ)

where F(x) = J*/(s)ds, is considered to be a system equivalent to the Lienard equation

(1). For the general equation (2), it is quite easy to consider an equivalent system

(5) \

corresponding to (3), but until now, we have never seen any method generalizing the

equivalent system (4) for the more complicated equation (2). In this paper, we offer
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2 K. WANG

such a method.
We assume that the following conditions hold:
(i) f(x\ g(x), η(y\ φ(y) are all continuous and locally Lipschitzian.
(ii) η(y) > 0, ψ(y) > 0 for all y; xg(x) > 0 for all x φ 0.
Letting x'=y, we have y'= -f(x)η(y)y-ψ(y)g(x). Let

<\ Γ ds

Then the inverse function of u = u(y) exists and is denoted by y = s(u). It is easy to see
that s(u) is monotone increasing and differentiable. Let w = F(x) + u(y). Then we can
reduce the system (5), and hence the equation (2), to

(x' = s(w-F(x))

\w'=-H(w-F(x))g(x),

where H(u) = ψ(s(u))/η(s(u)), which is positive and continuous.
If η(y)= 1, φ(y)= 1, then (2) becomes the Lienard equation (1) and the equivalent

system (6) becomes (4).

3. Limit cycles of (2).

THEOREM 1. In addition to the condition (i), suppose the following conditions are
satisfied:

(1) f(x)>0, or/(x)<0; butf(x)Φ0for 0 < | x | « l ,
(2) xg(x)>0,x*0,ψ(y)>0,
(3) η(y)^0 or η(yH0, but η(y)φ0for 0 < | y | « l .

Then the equation (2) has no closed trajectory.

PROOF. Consider the equivalent system (5). Letting

where G(x)=^g(s)ds, we have

Φ(y)
It is easy to see that (5) has a unique singular point (0, 0). If (5) has a closed trajectory,
it must encircle the point (0, 0). An integration will yield a contradiction, and the
theorem is proved.

EXAMPLE 1. The equation
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has no non-trivial periodic solutions.

Set R(ύ) = η(s(ύ))s(u)/ψ(s(uj), and suppose

f±α) ds
(iii) — = + oo, and there are continuous, increasing, non-negative functions

Jo i(s)

ϋ\(r), E2(r) such that £Ί(r)-> + 00 as r-» + 00 and that

E2(u2 - u x ) > R(u2) - R(ux) > E ^ - ut) for u2>ux,

or

±0° ds

— = + 00, R(u)^> ± 00, w-> + 00, and there is a number E% > 0 such that

o Φ) — ut) > R(u2) — R(ut) > 0 for u2>u1 .

LEMMA 1. If the conditions (i)-(iii) hold, then each of the posititive half-trajectory

L\ and the negative half-trajectory L^ of (6) passing through the point A(x, F(x)) must

cross the w-axis or tend to the point (0, 0).

PROOF. It is easy to see that the curve w = F(x) and the w-axis are the vertical

isocline and the horizontal isocline, respectively, in the direction filed defined by (6).

It is sufficient to prove that the positive half-trajectory L\ must cross the negative

half w-axis or tend to the point (0, 0) on the region G: x > 0, w < F(x).

Let L\ be represented by (x(t\ w(ί)). Since the function x(t) and w(ί) are decreasing

as long as (x(t\ w(ί)) remains in G, if L\ does not cross the negative half w-axis and if

L\ is bounded, then L\ must have a unique limit point D. Then D should be a singular

point, and D is the point (0, 0), because the point (0, 0) is the unique singular point of (6).

If L\ is unbounded, it must have a vertical asymptote x — a>0. Since

dw -g(χ)

dx R(w-F(x))

from (iii), we have dw/dx^0 as w-> — oo. This is a contradiction, and the lemma is proved.

LEMMA 2. If the conditions (i)—(iii) hold and

(7) lim sup F(x) = + oo lim inf F(x) = - oo ,
x-* + oo x-* — oo

or

(8) G ( ± o o ) = ± o o , F(x)>k1, x>0; F{x)<k2, * < 0 ,

then the positive half-trajectory Lp of "(6) passing through any given point P(0, wP), w F / 0 ,

must cross the curve w = F(x).

PROOF. We only prove the case where w P >0. Suppose that Lp stays above the
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curve w = F(x). Then from the given conditions, w is decreasing while x is increasing
unboundedly along Lp.

If (7) holds, we have a contradiction, that is, Lp crosses the curve w = F(x), since

im supF(x),
x-* + oo

If (8) holds and

then along Lp we have

0 < w — F(x)<wP — F(x)<Wp — k1 .

Thus,

dw __ H(w-F(x))g(x)<

dx s(w — F(x))

where

σ= inf > 0 .

It follows that

This is a contradiction, and it proves that Lp crosses the curve w = F(x).
By the same argument, we can prove this lemma in the case wP<0.

THEOREM 2. If the conditions (i)-(m) hold and if
(iv) G( + ρo) = ±oo,/(0)<0, and there are M>0, k±>k2 such that F{x)^kxfor

x>M and F(x)^k2 for x< — M,
then (6) has at least one closed trajectory.

PROOF. We can assume kί >0, because under the transformation z= — x, the type
of the equation (2) is unchanged.

First of all, we construct an annular region surrounded by two boundary curves.
Let

Cw-Fix)s(u)du

"Jo TO""
V(x,w) = G

Then we have

(9) V (x n ) - - J > - f (*»/(*)
( 6 ) ' H(w-F(x))
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Since/(0)<0, there is an xo>0 such that/(x)<0 for xel-x0, *<>]• T a k e a number c
so that 0<c<min{G(xo), G(-xo)}. The closed curve Lx: V(x,w) = c is contained in
the region {(x, w): —x0^x^x0,\w\<oo}. From (9) we have V[6)(x, w)^0 along Lv

Therefore, we can take Lx as the interior boundary.
Now, let us construct the exterior boundary. Suppose \F(x)\<e, \g(x)\<b for

| x | ^ M . We have w-F{x)>d-e for w^d.
From (iii), for any given ε>0, if d>0 is sufficiently large,

0<dw/dx<ε for —M<x<0, w>d,

-ε>dw/dx>0 for 0<x<M, w<d.

Take a point U on the line x = — M so that wv > Id. If d is sufficiently large, the
positive half-trajectory Ly passing through U must cross the positive w-axis at a point
P, cross the line x = M at a point β. The value of w on the section UPQ of L^ is more
than d, and the value of | wQ — wv | could be sufficiently small.

From Lemmas 1 and 2, as / increases, Ly must cross the curve w = F(x) at a point
i?, and cross the line x = M again at a point S. Take a point T on the line x = M so
that w τ<min(-2J, ws) (See Figure 1).

FIGURE 1.

By the same argument we can prove that Lj must cross the negative w-axis at a
point F, cross the line x= — M at a point ίF provided rfis sufficiently large. The value
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of w on the section TVW of L$ is less than — d, and the value of | wτ — ww | could be
sufficiently small. From Lemmas 1 and 2, as / increases, Lj will cross the curve w = F(x)
at a point Z, cross the line x= — M at a point H and wH>0.

If wH ^ >%, we can take

L2 = UPQRSΌ 5TU TVWZHUΈΌ

as the exterior boundary.
If >% >wι/, then wH>d, and hence as / increases, L j will cross the positive w-axis

at a point P\ cross the line x = M a t a point β r, cross the curve w = F(x) at a point R\
and cross the line x = M again at a point *S". Let

"w-k2s(u)duC

Jo
We have

dq_

dw g(x)H(w-F(x)) H(w-k2)

if x^M. Therefore

ΓWQ' CWQ

J w s , ' X 2 W ^ ) w s

 l l

Similarly,

if
(6)

and hence

q(W)-q(H)^ Γ
We have

dq_

dx

- R(w - k2)) g(x)(R(w - F(x)) - R(w - k2))

R(w-F(x)) R(w-F(x))

Therefore,

dq_

dw (6) \R(w-F(x))\

Thus, if d<0 is sufficiently large, the values of \q{T)-q{W)\ and \q{H)-q{Q')\ can
be sufficiently small, and we can take d> 0 so large that
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-q(S')> — E1(k1-k2)(wQ,-ws,)>0.

Hence, ws> > wτ. We can take

L2 = TVWZHP'Q'R'S' u S'T

as the exterior boundary (See Figure 1). Thus the theorem follows from the

Poincare-Bendixson theorem.

4. The Filippov Transformation. It is well-known that the Filippov transforma-

tion is a powerful tool in the study of the Lienard equation. By the aid of the equivalent

form (6), we can use the Filippov transformation to investigate the equation (2).

Let

: = Zi(x)= Γ
Jo

g(s)ds when ( - l ) / + 1 x ^ 0 , / = 1 , 2 ;

and denote their inverse functions by x = xi(z), i=\, 2, z^O. Substituting them in to

(6), we get two new systems:

(10) ^ = - R ( w - F 1 ( z ) ) , z ^ O ;
aw

and

(11) ^=-R(w-F2(z)), z^O;
aw

where FI(z) = F(x i(z)), 2 > 0 , ι = l , 2.

LEMMA 3. Consider the equation

(12) ^-=-R(w-F(z)), z ^ O ,
aw

and assume that R(u) is continuous and satisfies the condition (Hi7), and that F(z) is

continuous, F(0) = 0, andF(z) < ayJ~z{F{z) > - a^j~z)for§ <z<δ, where a < -yJS/E%. Then

the solution curve of (12) passing through the point B{F(z\z) must cross the w-axis at

points A and C with wA^0, wc<Q(wA>0, w c ^0), when z > 0 is arbitrarily given.

PROOF. From the condition (iii')? we have

(13) -R(w-F(z))^E%(F(z)-w) when w-F(z)^0,

and

(14) E${F(z)-w)^~R(w-F{z)) when w-F(z)^0 .



8 K. WANG

If F{z)<ciyJ z , consider the equation

(15) ^ JT
dw

It is obvious that below the curve w = F(z) we have

w) > E%(F{z) - w) ̂  - R(w - F(z)).

Under the transformation z — u2, the equation (15) becomes

(du
— = aEfu — Eιw

(16) *

~di~ U'

It is easy to see that the unique singular point (0, 0) is a spiral provided

Therefore, all trajectories of (16) below the curve w = JF(z) intersect the negative w-axis,

and all trajectories of (15) below the curve w = F(z) have the same property. Thus, it is

easy to see from the comparison theorem that the solution curve of (12) passing through

the point B must cross the negative w-axis at a point C with w c < 0 .

By an argument similar to that in Lemma 1, we can prove that LB must cross the

positive w-axis at a point A with wA^0.

By the same argument we can prove the case in which F(z)> —a^J z .

LEMMA 4. Consider the system (6) and its equivalent equations (10), (11), and

suppose the following condition is satisfied:

(v) There exists a number δ > 0 such that F2(z) ^ Fx{z) but F2(z) ψ Fx(z)9 F^z) < ajT,

F2(z)> — a^j z when 0 < z < δ for 0<a<y/S/E*

Then we can construct a simple closed curve Lt such that

(a) (0, 0)e S9 the region encircled by Lx;

(b) each trajectory of"(6) passing through a point on Lί will enter S as t increases.

PROOF. From (v) and Lemma 3, taking 0<z<<3 and the points B(F1(z), z),

E{F2{z\ z), we see that the solution curve LB | ( 1 0 ) of (10) passing through the point B,

and the solution curve LE | ( 1 1 ) of (11) passing through the point E will both cross the

w-axis at points A9 C and F9 D, respectively, with w ^ 0 , w c < 0 , wF>0, wD*ζ0.

Consider the equations

(17) Ύ-=»( ~l,*
dz Riw—F^z))

and

(18)
dz R(w-F2(z))
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From (v) we have

and

F2(z)-w^F1(z)-w for

F2(z)-wψF1(z)-w for

Therefore, on EF we have

0 >
dw

dz

dw

(17) dz (18)

and hence the curve BA will be below EF. It follows that wA < wF. By the same argument
we can prove that wc<wD (See Figure 2).

= Fί(z)

w = F2(z)

FIGURE 2.

Returning to the (x, w)-plane, let the points B\ E' be the image points of B, E,
respectively. Let G be the first intersection point of the positive half-trajectory Lp
passing through F of (6) and the line x = xB, and then wG>ww. Let H be the first
intersection point of LQ of (6) and the line x — xE, and then wH< wE>.

Take Lί = E7FG\j^Bf uίfcHυHE' (See Figure 3). The lemma is proved.

THEOREM 3. In addition to the conditions (i), (ii), (Hi'), (v), suppose
(iv') G(± oo)= + oo there are M>0, k1>k2 such that F(x)^k1 for x>M, and

F(x)^k2 for x<—M\ and there are x2<0<x1 such that F(x)<0 for 0<x<x1, and
F(x)>0for x2<x<0.

Then (6) has at least one closed trajectory.
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H

FIGURE 3.

PROOF. It is easy to verify that the equivalent equations (10) and (11) satisfy the

conditions of Lemma 4. Let Lx be the closed curve given in Lemma 4. We can take

the closed curve Lγ as interior boundary of an annular region mentioned in the proof

of Theorem 2. The construction of the exterior boundary is the same as that in Theorem

2. So we complete the proof of this theorem by the Poincare-Bedixson theorem.

REMARK. Theorem 3 is a generalization of Dragilev's Theorem in [1].

LEMMA 5. Consider the equation (12), and suppose that R(u) is continuous and

satisfies the condition (iii') and that F(z) is continuous with F(0) = 0 and that there is a

number z o > 0 such that F(z)<a^J z (resp. F(z)> —a^Jz)for z^z0 where a<y/8/E$.

Then the solution curve Lκ (resp. LM) passing through any point K(wκ, 0), wκ<0 (resp.

M(wM, 0), wM > 0) must cross the w-axis at a point R with wR ^ 0 (resp. N with wN < 0).

PROOF. We only prove the case where F(z)<a^J z .

If Lκ does not cross the line z = zθ9 then it must cross the curve w = F(z), and next,

cross the positive w-axis at point R with wR^0.

If Lκ crosses the line z = z 0 at a point P, then the trajectory LP | ( 1 5 ) of (15) passing

through P must cross the line z — z0 again at another point P\ The point P' will be above

the curve w = F(z), because for a point (z, w) below the curve w = F(z), we have

dz

dw
> 0

(15)

Furthermore, we have
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dz

dw (15)

dz

dw (12)

therefore, LP | ( 1 2 ) will be on the left hand side of PP' and does not cross PP'. It follows
that Lp\{ί2) must cross the curve w = F(z) at a point Q. When w>F(z),

dz

dw ( 1 2 )

so LPI ( 1 2 ) will cross the positive w-axis at a point R with wR ^ 0. The lemma is proved.

LEMMA 6. Under the conditions (i), (ii), (iii') Suppose that

(vi) R(u) = (L + ε(u))w, εiψeC^R^R), ε(w)->0, ε'(φ-»0 as | w|->oo;

(vii) there is a number zo>δ such that

\Fl(z)-F2(z))dz>0,
Jo

and Ft(z)>F2(z), Fx(z)>-a^ z, F2{z)<aj z for z>z0, 0<a< JS/Et
lfwx(z\ w2(z) are the solutions of (\Ί) and (18) satisfying the initial value condition

^(0) = w2(0) = w0, respectively, then there is a number d>0 such that w1(z0)<w2(z0)for
\wo\>d.

PROOF. Since w1(0) = w2(0) = w0, from (17), (18) we have

0 R(W2(Z) ~ F2(l
. - I Γ

Jo

R(w2(z)-F2(z))R(Wl(z)-F1(z))

where ξ is a value between w^z)—Fx(z) and w2{z)—F2(z). Let
we have

•ί0
Suppose that \F^z)\<a, i=l, 2, ZG[0,Z O ] . Take M>a so large that

Z° - - , and ^ < M .Λ(M-α) | Λ ( ~ M + Λ ) |

Then, if I w01 > 2M, we have
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1 1

dz

forz6[0,zo],i=l,2.
It follows from (iii') that

min(R(M-al \ R(-M+a) |)

dz
as | w 0 | - » o o ,

and then, \w£z)\->oo as | w o | - κ x ) , i = l , 2, | w2(z) — w 1(z) |-^0 as | w 0 | ->oo for z e [ 0 , z 0 ] .

Therefore, L(ξ)->L and L(ξ)w2

0/R(w1(z)-F1(z))R(w2(z)-F2(z))-+l/L as |w 0 |-+oo. This

implies that /2->0, /3->0 as |wo |->oo. From (vii) we have I1>0. Thus the lemma is

proved.

THEOREM 4. If the conditions (i), (ii), (iii')? (v)—(vii) are satisfied, then the system

(6) has at least one closed trajectory.

PROOF. From Lemma 4 we can construct a closed curve which is the interior

boundary of an annular region. Now, let us construct the exterior boundary.

Taking a point K(wκ, 0), wκ<0, from Lemmas 3 and 5, we conclude that the

solution curve Lκ\(11) of ( l l ) passing through the point K must cross the w-axis at a

point R with wR>0. Suppose that wR converges to wM as wx-> — oo.

If wM> oo, then we take point M=(wM, 0). From Lemmas 3 and 5 LM| ( 1 0 ) must

cross the w-axis at a point N with wN<0, and LN | ( 1 1 ) must cross the w-axis at a point

P with wP < 0, wP < wM. Returnning to the (x, w)-plant, we take L2 = MNP u PN which

can be an exterior boundary.

When w M =oo, suppose w^z), vPx(z) and w2(z), w2(z) are solutions of (17), (18)

satisfying the initial value conditions wx(0) = w2(0) = wκ, vPi(O) = w2(0) = wR, respectively.

From Lemma 6 we have w 1(z 0)<w 2(z 0), Wi(zo)<w2(zo) provided \wκ\ is sufficiently

large. Thus, the point ^(W^ZQ), Z 0 ) is below the point D(w2(z0), z0), and the point

^(^1(^0)9 zo) i s below the point £/(w2(z0), z0). The solution curve Ls | ( 1 0 ) of (10) passing

through the point S must cross the line z = z0 again at a point β with wQ<ws. From

(vii), ^ ( ^ ^ ^ ( z ) for z>z0. By the comparison theorem, the section SQ of the trajectory

of (10) will be on the left hand side of DU, the section of trajectory of (11), and SQ

does not cross DU (See Figure 4). Returning to the (x, w)-plane, let the points D\ S\

Q\ U\ V be the images of the points D, S, β, U, V, respectively. Let

L2 = V'KU'D'RS'Q' u Q'V

Then we can take L2 as the exterior boundary (See Figure 5). From the

Poincare-Bendixson theorem, the theorem is proved.

REMARK. Theorem 4 is a generalization of a theorem due to Filippov [2], which

corresponds to the case where η(y)=\ and ψ(y)= 1.
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= Fι(z)

l+X 7 2

K
(wo, 0)

FIGURE 5.

FIGURE 4.

EXAMPLE 2. The equation

Qr

v

has a non-trivial periodic solution.

PROOF. Here, f(χ) = x2-l, g(x) = x9 η(y) = (l+y2)/(2+y2\ ψ(y) = π-arc tuny,
u = u(y) = JQ dt/η(ή=y + arc tan y. It is easy to see that 1 ̂  u\y) ^ 2. Therefore, the inverse
function of u(y) is also an increasing function which is denoted by s(u), and l/2< J'(M)< 1.
We also have

where

(2 + y2)2 2+y

and we have the estimate
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It is not difficult to see that the condition (iii) is satisfied, and it is easy to verify that
the conditions (i), (ii) and (iv) are also satisfied. Hence Theorem 2 yields the conclusion
of this example.

Suppose P(z) is a continuous differentiable, increasing, nonnegative function defined
on [0, oo), and denote its inverse function by p(u). Consider the equation

(19) ^-=-E2(w-P(z)),
dw

where the function E2(r) is the function mentioned in (iii).
Let u = P(z\ Then

du dz du —E2{w — u)

dw dw dz p'(u)

and therefore, we obtain the equivalent system of (19)

~=-E2(w-u)

(20) \ *
-=P(U).

If P(0) = 0, p'(0) = 0, and p'(u) ̂ 0 for w^O, then the point (0, 0) is the unique singular
point of (20).

The following assumptions are needed:
(iv") P(z) is a function satisfying the conditions above and such that the unique

singular point (0, 0) of (20) is a focus or a center or a center-focus.
(v') There is a number δ > 0 such that F2(z) ^Fx{z) but Fx(z)φF2(z)9 Fx(z) < P(z),

F2(z)>-P(z) for 0<z<δ.
(vii') There is a number z%>δ such that Fί(z)>F2(z), Ft(z)> -P(z\ F2(z)<P(z)

for z>z*, and

f
Jo

E1(F1(z)-F2(z))dz>09

where the function E^r) is the function mentioned in (iii).
If we assume (iv") holds, then the same argument applies with a^J z replaced by

general P(z). Corresponding to Lemmas 3,4,5, the following Lemmas 7,8,9 are obtained.

LEMMA 7. Under the conditions (iii) and (iv"), ifF(z) < P(z) (resp. F(z) > — P(z))for
0<z<δ, then the solution curve LB of (12) passing through the point B(F(z), z) must cross
the w-axis at points A and C with wA^0, wc<0 (resp. wA>0,

LEMMA 8. If the conditions (iii), (iv") and (v') are satisfied, then we can construct

a closed curve satisfying the same properties as there in Lemma 4.
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LEMMA 9. Under the conditions (iii) and (iv"), if the function F(z) is continuous

with F(0) = 0, and if there is a number zo>0 such that F(z)<P(z) (resp. F(z)> — P(z)\

then the solution curve Lκ (resp. LM) of (12) passing through the point K(wκ, 0), wκ<0

(resp. M(wM, 0), wM>0) must cross the w-axis at a point R with wR^0 (resp. N with

wN^0).

LEMMA 10. Under the conditions (i), (ii), (iii), (iv") and (vii'), ifw^z), w2(z) are the

solutions 0/(17), (18), respectively, andw1(0) = w2(0) = w0, then there are numbers zo>z%

and d>0 such that W^ZQ)<w2(z0) for \wo\>d.

PROOF. Let J{w0) = (Riw^z) - F^z)))/!*^). We have

1 tE2(\w1(z)-w0-F1(z)\)^u W 1 ^Mw^-Wp-F^l)

R(w0) R(w0)

Since wx(z) — w0-•0 as | w01 ->• oo. Therefore, </(wo)-> 1 as | w0 \ -• oo. By the same argument,

we can prove that

^ - f ^ . as | ^ K » .

For any zo>z*, we have

(21) R2(w0)(w2(z0) - W l (z 0 ) ) = f Z °(R(w2(z) -
Jo

V(W 2(Z)-F 2(Z))- JR(W 1(Z)- JF 1(Z)))( π / / x " : : r / x „, - i ^
Jo

Since

I Λ(w2(z) - F2(z)) - R(Wl(z) - F^z)) | < E2(\ wx(z) - w>2(z) | +1 Fx(z) -

and |HΊ(Z)—w2(z)|->0, ze[0,z o ] , as | w o | ^ o o , we have

I wΛ{z) - w2{z) I +1 F^z) - F2{z) I = 0(1) , | w01 - oo ,

and then

Thus, 72-»0 as I vco|-»oo. Let

K(r) = min(E1(r),E2(r)).

We have



16 K. WANG

(22) 7 1 = Γ(R(w2(z)-F2(z))-R(w1(z)-Fι(z))dz> Γκ(F1(z)-
Jo Jo

= Γκ(F1(z)-F2(z))dz+ !'°(K(F1(z)-
Jo Jo

-K(F1(z)-F2(z)))dz = :I3+I4.

Since the function K(r) is uniformly continuous on [α,/?], where α= — 1
(F1(z)-F2(z)), jS=l+sup0^ z < Z o(F1(z)-F2(z)), and | w2{z)-w1(z)\-+0 as |wo|-»oo, we
get /4->0 as I w0 |->oo. From (vii') we have / 3 >0. From (21) and (22), we get

K ) ( 2 ( 0 ) l ( 0 ) ) 2 + /3 + /4 .

Therefore,

provided | w01 is sufficiently large. The lemma is proved.

THEOREM 5. If the conditions (i)-(iii), (iv"), (v') and (vii') are satisfied, then (6)
has at least one closed trajectory.

By Lemmas 7 through 10, the proof of this theorem is similar to the one for
Theorem 4.
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