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Abstract. We investigate the existence of traveling wave solutions to the one-

dimensional reaction-diffusion system ut = δuxx − 2uv/(β + u), vt = vxx + uv/(β + u),

which describes the acidic nitrate-ferroin reaction. Here β is a positive constant, u and v

represent the concentrations of the ferroin and acidic nitrate respectively, and δ denotes

the ratio of the diffusion rates. We show that this system has a unique, up to translation,

traveling wave solution with speed c iff c ≥ 2/
√
β + 1.

1. Introduction. Traveling waves of liquid-phase chemical reactions have received a

lot of attention due to their thermodynamical and biological importance; see, for example,

[1,3,8]. One of the examples comes from the acidic nitrate-ferroin reaction [6,9,10]. In the

investigation of traveling waves, one of the important issues is how wave velocity depends

on the initial concentrations of the reactants in the acidic nitrate-ferroin reaction. For

this, Pota et al. [6, 9, 10] have established a two-variable reaction-diffusion model, from

which a simple formula for wave velocity is derived. In addition, the theoretical values

obtained from this formula are in good agreement with the experimental ones.

Our aim in this paper is to provide a rigorous proof for the existence of traveling wave

fronts to the reaction-diffusion system proposed in [6, 9, 10]. Let u and v represent the

concentrations of the ferroin and acidic nitrate respectively, and δ denote the ratio of the

diffusion rates of the ferroin and acidic nitrate. Then a dimensionless reaction-diffusion

system describing the acidic nitrate-ferroin reaction reads [7, 9]

ut = δuxx − 2uv

β + u
,

vt = vxx +
uv

β + u
,

(1.1)
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where β is a positive constant.

By a traveling wave solution of system (1.1), we mean a solution of system (1.1) of

the form

(u(x, t), v(x, t)) = (U(z), V (z)),

with z = x − ct, which connects the stable steady state (0, 1/2) at z = −∞ to the

unstable steady state (1, 0) at z = ∞ (see [4,7]). Here the wave speed c is a constant to

be determined and the wave profile (U, V ) is a pair of nonnegative functions satisfying

the system

δU ′′ + cU ′ − 2UV

β + U
= 0, (1.2a)

V ′′ + cV ′ +
UV

β + U
= 0, (1.2b)

on R, together with the boundary conditions

(U, V )(−∞) = (0, 1/2), (U, V )(+∞) = (1, 0), (1.3)

where the prime indicates differentiation with respect to z. Consequently, to show the

existence and uniqueness of a traveling wave solution to system (1.1) is equivalent to

showing the existence and uniqueness of a nonnegative solution to system (1.2)-(1.3).

The existence and uniqueness of traveling wave solution to system (1.1) has been

studied by the author in [4]. For the case 0 < δ ≤ 1, it was shown that there exists

cmin > 0 such that system (1.1) has a unique, up to translation, traveling wave solution

with speed c iff c ≥ cmin. Moreover, if δ = 1, then cmin = 2/
√
β + 1, and if 0 < δ < 1,

then an estimate for cmin is given by

2/
√
β + 1 ≤ cmin ≤ (2/

√
β)[(

√
2 + 1)/

√
δ + 2(

√
2 + 1)].

For the case δ > 1, it was shown that system (1.1) has a unique, up to translation,

traveling wave solution with speed c if c ≥ 2/
√
β. On the other hand, system (1.1) has

no traveling wave solution with speed c if c < 2/
√
β + 1.

Since the above result is incomplete, the author in the present paper continues to

study this problem. Employing the idea proposed by [2], we acquire an optimal result,

which is stated in the following theorem.

Theorem 1.1. For δ > 0, the system (1.1) has a unique, up to translation, traveling

wave solution with speed c iff c ≥ c∗ := 2/
√
β + 1.

In view of [4], we know that the nonnegative solution of system (1.2)-(1.3), if it exists,

is unique up to a translation. Besides, system (1.2)-(1.3) has no nonnegative solution if

c < c∗, and the admissible speed set,

S := {c ∈ R| system (1.2)-(1.3) admits a nonnegative solution},
is closed. Therefore, to prove Theorem 1.1, it suffices to show that (c∗,∞) ⊂ S. Hereafter,

let c > c∗ be given. We will show that system (1.2)-(1.3) has a nonnegative solution.

We make an outline of our approach. By imposing appropriate boundary conditions,

we first consider system (1.2) in a finite interval [−l, l], and show that there exists a

solution, denoted by (Ul, Vl), to the boundary value problem via the Schauder fixed
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point theorem. With the help of super- and sub-solutions, we get an upper bound and

lower bound for this solution. Besides, applying an a priori estimate for a derivative

of solutions to the second-order linear equations, we show that, for a given l0 > 0, the

derivatives of Ul and Vl are uniformly bounded in [−l0, l0] for all l > l0. Then we can use

the Ascoli-Arzela theorem and a diagonal process to get the solution of system (1.2)-(1.3)

by passing to the limit l → ∞. We remark that system (1.2) has no maximum principle.

Here we only need to apply the maximum principle for a single equation to compare the

super/sub-solutions with the solutions.

The remaining parts of this paper are organized as follows. In Section 2, we construct

the super- and sub-solutions. In Section 3, we derive some a priori estimates for solutions

to the second-order linear equation which will be used in Section 4. In Section 4, we

consider system (1.2) in a finite interval [−l, l]. Then Section 5 is devoted to the proof

of our main result by passing to the limit l → ∞.

2. Construction of super- and sub-solutions. In this section, we construct super-

and sub-solutions which will be used in Section 4. For simplicity, we set

p(s) := s2 − cs+
1

β + 1
.

Since c > c∗, the equation p(s) = 0 has two positive roots λ and λ+ d, where

λ =
1

2
·
(
c−

√
c2 − 4

β + 1

)
and d =

√
c2 − 4

β + 1
.

In addition, p(s) < 0 when s ∈ (λ, λ+ d).

Lemma 2.1. The function V +(z) := e−λz satisfies the equation

(V +)′′ + c(V +)′ +
1

β + 1
V + = 0, (2.1)

for all z ∈ R.

Proof. Since p(λ) = 0, it follows that

(V +)′′ + c(V +)′ +
1

β + 1
V + = p(λ)V + = 0, ∀z ∈ R.

�
Select 0 < γ < min{c/δ, λ}. Then c − δγ > 0 and γ − λ < 0. Since e(γ−λ)z → 0 as

z → ∞, there exists z0 > 0 such that

e(γ−λ)z ≤ β + 1

2
γ(c− δγ), ∀z ≥ z0,

which yields

(c− δγ)γe−γz ≥ 2

β + 1
V +(z), ∀z ≥ z0. (2.2)

Set M = eγz0 . Then M > 1 since γ, z0 > 0.
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Lemma 2.2. The function U−(z) := max{0, 1−Me−γz} satisfies the inequality

δ(U−)′′ + c(U−)′ − 2U−V +

β + U− ≥ 0, (2.3)

for all z 
= z0.

Proof. For z < z0, the inequality (2.3) holds immediately since U− ≡ 0 in (−∞, z0).

For z > z0, U
−(z) = 1−Me−γz and 0 < U− < 1. So we have

1

β + 1
≥ U−

β + U− . (2.4)

A simple computation, together with (2.2), (2.4), and the fact that M > 1, yields

δ(U−)′′ + c(U−)′ = Mγ(c− δγ)e−γz ≥ 2

β + 1
V +(z) ≥ 2U−V +

β + U− .

Hence (2.3) holds. �
Choose 0 < η < min{γ, d}. Then 0 < η < γ and p(λ+ η) < 0. Select

K > max{M,−M/[(β + 1)p(λ+ η)]}.

Set z1 = lnK/η. Then z1 > z0 > 0 since z0 = lnM/γ, K > M > 1, and η < γ.

Lemma 2.3. The function V −(z) := max{0, V +(z)−Ke−(λ+η)z} satisfies the inequality

(V −)′′ + c(V −)′ +
U−V −

β + U− ≥ 0, (2.5)

for all z 
= z1.

Proof. For z < z1, the inequality (2.5) holds immediately since V − ≡ 0 in (−∞, z1).

For z > z1, V
− = V + −Ke−(λ+η)z and U− = 1 −Me−γz. Then a simple computation

gives

(V −)′ = (V +)′ +K(λ+ η)e−(λ+η)z

and

(V −)′′ = (V +)′′ −K(λ+ η)2e−(λ+η)z.

Noting that

U−

β + U− =
1

β + 1
− βMe−γz

(β + 1)(β + 1−Me−γz)
,

it follows that

U−V −

β + U− =

(
1

β + 1
− βMe−γz

(β + 1)(β + 1−Me−γz)

)(
V + −Ke−(λ+η)z

)

=
1

β + 1
V + − 1

β + 1
Ke−(λ+η)z

− βMe−(λ+γ)z

(β + 1)(β + 1−Me−γz)
+

KβMe−(λ+γ+η)z

(β + 1)(β + 1−Me−γz)

≥ 1

β + 1
V + − 1

β + 1
Ke−(λ+η)z − βMe−(λ+γ)z

(β + 1)(β + 1−Me−γz)
.
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Therefore,

(V −)′′ + c(V −)′ +
U−V −

β + U−

≥ (V +)′′ −K(λ+ η)2e−(λ+η)z + c(V +)′ + cK(λ+ η)e−(λ+η)z

+
1

β + 1
V + − 1

β + 1
Ke−(λ+η)z − βMe−(λ+γ)z

(β + 1)(β + 1−Me−γz)

= −Ke−(λ+η)zp(λ+ η)− βMe−(λ+γ)z

(β + 1)(β + 1−Me−γz)

(by (2.1) and the definition of p)

≥ M

β + 1
e−(λ+η)z − M

β + 1
e−(λ+γ)z

(since K > −M/[(β + 1)p(λ+ η)] and 1−Me−γz > 0)

=
M

β + 1
e−(λ+η)z

[
1− e−(γ−η)z

]

≥ 0 (since γ − η > 0 and z > z1 > 0).

The proof of this lemma is therefore completed. �

3. Some auxiliary lemmas. In this section, we will establish some a priori estimates

for solutions of the inhomogeneous linear equation

w′′(z) +Aw′(z) + g(z)w(z) = h(z). (3.1)

For this, we need the following lemma.

Lemma 3.1. Let A be a positive constant and let g be a continuous function on [a, b].

Suppose that φ1 and φ2 are the unique solutions of the second-order linear equation

L[y] := y′′ −Ay′ + g(z)y = 0

on [a, b] such that

φ1(a) = 0, φ′
1(a) = 1 (3.2)

and

φ2(b) = 0, φ′
2(b) = −1. (3.3)

Then we have the following estimates for φ1 and φ2:

|φ1(z)|+ |φ′
1(z)| ≤ e(K1+A+1)(b−a) (3.4)

and

|φ2(z)|+ |φ′
2(z)| ≤ e(K1+A+1)(b−a), (3.5)

for all z ∈ (a, b), where K1 = ‖g‖C[a,b]. If, in addition, g ≤ 0, then the Wronskian of φ1

and φ2, denoted by W (φ1, φ2), can be estimated by

|W (φ1, φ2)(z)| ≥
1

A
(eA(b−a) − 1) > 0, (3.6)

for all z ∈ (a, b).
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Proof. To prove (3.4) and (3.5), we rewrite the equation L[y] = 0 as a first-order

system

Y ′ = B(z)Y, (3.7)

where

Y =

[
y

y′

]
and B(z) =

[
0 1

−g(z) A

]
.

Consider z ∈ (a, b). It is easy to see that any solution Y of (3.7) satisfies the integral

equation

Y (z) = Y (a) +

∫ z

a

B(τ )Y (τ )dτ, (3.8)

and therefore

‖Y (z)‖ ≤ ‖Y (a)‖+ (K1 +A+ 1)

∫ z

a

‖Y (τ )‖dτ,

where ‖ · ‖ denotes the absolute norm and we have use the fact that ‖B(·)‖ = max{|g(·)|,
A+ 1} ≤ K1 +A+ 1. Hence one can easily deduce that

‖Y (z)‖ ≤ ‖Y (a)‖e(K1+A+1)(z−a). (3.9)

Replacing a by b in (3.8) and arguing as above, we also get that

‖Y (z)‖ ≤ ‖Y (b)‖e(K1+A+1)(b−z). (3.10)

Now if we choose Y = [φ1 φ′
1]

T , then ‖Y (z)‖ = |φ1(z)| + |φ′
1(z)| and ‖Y (a)‖ = 1.

Therefore (3.4) follows immediately from (3.9). In a similar way, we get (3.5) by selecting

Y = [φ2 φ′
2]

T in (3.10).

Now we prove (3.6). Applying Abel’s formula and noting that W (φ1, φ2)(b) = −φ1(b),

we get that

W (φ1, φ2)(z) = −φ1(b)e
A(b−z). (3.11)

To estimate φ1(b), we introduce the function

ρ(z) =
1

A
(eA(z−a) − 1),

which is the unique solution of the second-order linear equation ρ′′ − Aρ′ = 0 on [a, b]

such that

ρ(a) = 0, ρ′(a) = 1.

For z ∈ (a, b), noting that ρ ≥ 0 and g ≤ 0, we see that the function ψ := φ1 − ρ satisfies

ψ′′ −Aψ′ + gψ = −gρ ≥ 0

and

ψ(a) = ψ′(a) = 0.

Then it follows from [11, Theorem 13 of Chapter 1] that ψ ≥ 0 and hence φ1 ≥ ρ on

[a, b]. In particular,

φ1(b) ≥ ρ(b) =
1

A
(eA(b−a) − 1) > 0. (3.12)

Combining (3.11) and (3.12), we finally obtain that

|W (φ1, φ2)(z)| = φ1(b)e
A(b−z) ≥ 1

A
(eA(b−a) − 1) > 0.

The proof of this lemma is therefore completed. �
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Indeed, we get the following two lemmas for a priori estimates.

Lemma 3.2. Let A be a positive constant and let g and h be continuous functions on

[a, b]. Suppose that w ∈ C([a, b]) ∩ C2((a, b)) satisfies the differential equation (3.1) in

(a, b) and w(a) = w(b) = 0. If

−K1 ≤ g ≤ 0 and |h| ≤ K2 on [a, b],

for some constants K1, K2, then there exists a positive constant K3, depending only on

A, K1, and the length of the interval [a, b], such that

‖w‖C([a,b]) ≤ K2K3. (3.13)

Proof. First, we note that both w′(a+) := limz→a+ w′(z) and w′(b−) := limz→b− w′(z)

exist. To see this, let z̄ ∈ (a, b) be fixed. Integrating equation (3.1) from z̄ to z and re-

arranging the resulting equation, we obtain that

w′(z) = w′(z̄)−A(w(z)− w(z̄))−
∫ z

z̄

g(τ )w(τ )dτ +

∫ z

z̄

h(τ )dτ,

for any z ∈ (a, b). Since w, g, and h are right-continuous at point a, the right-hand limit

on the right-hand side of the above equation exists at a. Hence w′(a+) exists. Arguing

as above, we get that w′(b−) exists.

Let φ1 and φ2 be as in Lemma 3.1. Consider any point z ∈ (a, b). Multiplying (3.1)

by φ1, integrating the resulting inequality from a to z, and then using integration by

parts, we get that

φ1(z)w
′(z)− (φ′

1(z)−Aφ1(z))w(z) + w(a) =

∫ z

a

φ1(τ )h(τ )dτ, (3.14)

where we have used (3.2) and the fact that L[φ1] = 0 and w′(a+) exists. Similarly,

multiplying (3.1) by φ2, integrating the resulting inequality from z to b, and then using

integration by parts, we deduce that

−φ2(z)w
′(z) + (φ′

2(z)−Aφ2(z))w(z) + w(b) =

∫ b

z

φ2(τ )h(τ )dτ, (3.15)

where we have used (3.3) and the fact that L[φ2] = 0 and w′(b−) exists. Note that

w(a) = w(b) = 0. Multiplying (3.14) and (3.15) by φ2 and φ1 respectively and then

summing up, we finally get that

W (φ1, φ2)(z)w(z) = φ2(z)

∫ z

a

φ1(τ )h(τ )dτ + φ1(z)

∫ b

z

φ2(τ )h(τ )dτ,

which gives that

w(z) =
φ2(z)

∫ z

a
φ1(τ )h(τ )dτ + φ1(z)

∫ b

z
φ2(τ )h(τ )dτ

W (φ1, φ2)(z)
.

This, together with the assumption that |h| ≤ K2, implies that

|w(z)| ≤ K2 ·
|φ2(z)|

∫ b

a
|φ1(τ )|dτ + |φ1(z)|

∫ b

a
|φ2(τ )|dτ

|W (φ1, φ2)(z)|
.

Finally, using (3.4), (3.5), and (3.6), one can easily deduce from the above inequality

that (3.13) holds. �
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Lemma 3.3. Let A, g, and h be as in Lemma 3.2. Suppose that w ∈ C([a, b])∩C2((a, b))

satisfies (3.1) in (a, b). If ‖w‖C([a,b]) ≤ K0 for some constant K0, then there exists a

positive constant K4, depending only on A, K0, K1, K2, and the length of the interval

[a, b], such that

‖w′‖C([a,b]) ≤ K4. (3.16)

Proof. Let φ1 and φ2 be as in Lemma 3.1. Consider any point z ∈ (a, b). Multiplying

(3.14) and (3.15) by φ′
2 and φ′

1 respectively and then summing up, we deduce that

W (φ1, φ2)(z)(w
′(z) +Aw(z)) + φ′

2(z)w(a) + φ′
1(z)w(b)

= φ′
2(z)

∫ z

a

φ1(τ )h(τ )dτ + φ′
1(z)

∫ b

z

φ2(τ )h(τ )dτ,

which yields

w′(z) =
φ′
2(z)[

∫ z

a
φ1(τ )h(τ )dτ − w(a)] + φ′

1(z)[
∫ b

z
φ2(τ )h(τ )dτ − w(b)]

W (φ1, φ2)(z)
−Aw(z).

This, together with the assumptions that |h| ≤ K2 and |w| ≤ K0, implies that

|w′(z)| ≤
|φ′

2(z)|[K2

∫ b

a
φ1(τ )|dτ +K0] + |φ′

1(z)|[K2

∫ b

a
|φ2(τ )|dτ +K0]

|W (φ1, φ2)(z)|
+AK0.

Using (3.4), (3.5), and (3.6), one can easily deduce from the above inequality that (3.16)

holds. �

4. The system in a finite interval [−l, l]. In this section, we consider the system

δU ′′ + cU ′ − 2UV

β + U
= 0 in (−l, l), (4.1a)

V ′′ + cV ′ +
UV

β + U
= 0 in (−l, l), (4.1b)

together with the boundary conditions

(U, V )(−l) = (U−, V −)(−l), (U, V )(l) = (U−, V −)(l). (4.2)

We will apply the Schauder fixed point theorem to show the existence of solutions of

(4.1)-(4.2). For the reader’s convenience, we state the theorem in the following.

Lemma 4.1. Let E be a closed convex set in a Banach space and let T : E → E be a

continuous mapping such that TE is precompact. Then T has a fixed point.

Let l > z1. For convenience, we set Il := [−l, l], X := C(Il)× C(Il), and

E := {(U, V ) ∈ X| U− ≤ U ≤ U+ ≡ 1 and V − ≤ V ≤ V + in Il}.

It is easy to verify that E is a closed convex set in the Banach space X equipped with the

norm ‖(f1, f2)‖X = ‖f1‖C(Il) + ‖f2‖C(Il). Since U− and V − are nonnegative, it follows

that U ≥ 0 and V ≥ 0 for any (U, V ) ∈ E.
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Lemma 4.2. For a given (U0, V0) ∈ E, there exists a unique solution to the boundary

value problem

δU ′′ + cU ′ − 2UV0

β + U
= 0 in (−l, l), (4.3a)

V ′′ + cV ′ +
U0V0

β + U0
= 0 in (−l, l), (4.3b)

(U, V )(−l) = (U−, V −)(−l), (U, V )(l) = (U−, V −)(l). (4.3c)

Moreover, this solution (U, V ) satisfies U > 0, V > 0, and U ′ > 0 in (−l, l).

Proof. Note that system (4.3) is not a coupled system, so we can deal with the exis-

tence and uniqueness of U and V separately. Since l > z1 > z0 > 0 > −l, the definition

of U− and V − implies that U−(−l) = V −(−l) = 0, U−(l) > 0, and V −(l) > 0.

Since the equation for V is an inhomogeneous linear equation, the existence and

uniqueness of V can be easily obtained by [5, Theorem 3.1 of Chapter 12]. Moreover,

since V ′′ + cV ′ ≤ 0 in (−l, l) and V (±l) ≥ 0, it follows from the maximum principle that

V > 0 in (−l, l).

Now we treat the existence and uniqueness of U . For this, we first consider the initial

value problem

δU ′′ + cU ′ − 2UV0

β + U
= 0, (4.4a)

U(−l) = (U−)(−l), U ′(−l) = m, (4.4b)

where m is a constant. By the existence and uniqueness theorem, for each m the initial

value problem (4.4) has a unique local solution U(z,m), and this solution can be con-

tinued as long as U + β > 0. When m = 0, U(z, 0) ≡ 0 due to the uniqueness. For any

fixed m < 0, since U(−l,m) = (U−)(−l) = 0 and U ′(−l,m) = m < 0, it follows that

there exists δ > 0 such that U(z,m) < 0 for all z ∈ (−l,−l+ δ]. On the other hand, one

can easily deduce from (4.4a) that(
ecz/δU ′

)′
=

2

δ

UV0

β + U
ecz/δ,

where the prime denotes differentiation with respect to z. Then an integration of the

above equation gives

ecz/δU ′(z,m) = me−cl/δ +

∫ z

−l

2

δ

U(τ,m)V0(τ )

β + U(τ,m)
ecτ/δdτ, (4.5)

which implies that U(z,m) < 0 and U ′(z,m) < 0 as long as U(z,m) exists for z > 0.

For any fixed m > 0, we can use a similar argument as that for m < 0 to discover that

U ′(z,m) > 0 and U(z,m) > 0 as long as U exists for z > 0, so that the solution can be

continued to the interval Il. Note that U−(l) > 0 due to l > z1 > z0 and the definition

of U−. From the above discussion, we see that U(l,m) = U−(l) unless m > 0.

Next, we show that there exists m∗ > 0 such that U(l,m∗) = U−(l) by using the

shooting method. To this end, we consider m > 0. For z ∈ (−l, l], recalling that

U(z,m) > 0 and V0(z) ≥ 0 in (−l, l], we deduce from (4.5) that

U ′(z,m) ≥ me−c(z+l)/δ.
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Then an integration of the above equation from −l to l gives

U(l,m) ≥ mδ

c
(1− e−2cl/δ) > U−(l)

if m is sufficiently large. Note that U(l, 0) < U−(l) since U(z, 0) ≡ 0 and U−(l) > 0.

Since U(z,m) is a continuous function of m for m ≥ 0, there exists m∗ > 0 such that

U(l,m∗) = U−(l).

Finally, set U(z) := U(z,m∗). Then U is a solution of (4.3a) with U(−l) = (U−)(−l)

and U(l) = (U−)(l). This gives the existence of U . In addition, we see from the above

discussion that U > 0 and U ′ > 0 in (−l, l). Applying the maximum principle, we can

easily get the uniqueness of U . Hence we complete the proof of this lemma. �
Now we define the mapping T : E → X by

T (U0, V0) = (U, V ), ∀(U0, V0) ∈ E,

where (U, V ) is the unique solution of the boundary value problem (4.3). It is obvious

that any fixed point of T is a solution of the problem (4.1)-(4.2).

Lemma 4.3. TE ⊆ E.

Proof. For a given (U0, V0) ∈ E, let

(U, V ) := T (U0, V0).

We claim that V − ≤ V ≤ V + on Il. Observing that 0 ≤ U− ≤ U0 ≤ U+ ≡ 1 and

0 ≤ V − ≤ V0 ≤ V +, we get that

U−V −

β + U− ≤ U0V0

β + U0
≤ V +

β + 1
,

so that

V ′′ + cV ′ +
U−V −

β + U− ≤ 0 (4.6)

and

V ′′ + cV ′ +
V +

β + 1
≥ 0, (4.7)

for all z in (−l, l). Set w1 = V −V −. Since V − = 0 and V ≥ 0 in [−l, z1], it follows that

w ≥ 0, ∀z ∈ [−l, z1]. (4.8)

From (4.3c), we know that w1(l) = 0. In addition, (2.5) and (4.6) give that w′′
1 (z) +

cw′
1(z) ≤ 0 for all z ∈ (z1, l). It follows from the maximum principle that w1 ≥ 0 in

[z1, l]. This, together with (4.8), implies that V − ≤ V in Il. With a similar argument,

we also get that V ≤ V + in Il.

Now we show that U− ≤ U in Il. Since U− ≡ 0 in [−l, z0] and U ≥ 0 in [−l, z0], it

follows that

U ≥ U− in [−l, z0]. (4.9)

Hence it remains to show that U ≥ U− in (z0, l]. Since V0 ≤ V +, it follows that

2UV0

β + U
≤ 2UV +

β + U
,
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so that

δU ′′ + cU ′ − 2UV +

β + U
≤ 0 in (z0, l). (4.10)

For simplicity, we set ψ(ξ) = ξ/(β + ξ). Then (2.3) and (4.10) imply that the function

w2 := U − U− satisfies δw′′
2 + cw′

2 − q(z)w2 ≤ 0 in (z0, l), where

q(z) =

⎧⎨
⎩

2V +(z) · ψ(U(z))− ψ(U−(z))

U(z)− U−(z)
, if U(z) 
= U−(z),

2V +(z) · ψ′(U(z)), if U(z) = U−(z).

By means of the mean-value theorem, we see that q is nonnegative in (z0, l). In addition,

from (4.9) and (4.3c), we know that w2(z0) ≥ 0 and w2(l) = 0. Hence the maximum

principle asserts that w2 ≥ 0 in [z0, l]. Hence U− ≤ U in [z0, l].

Finally, we show that U ≤ U+ in Il. Since U+ ≡ 1 and V0 ≥ 0, we see that U+

satisfies

δ(U+)′′ + c(U+)′ − 2U+V0

β + U+
≤ 0 in (−l, l),

and U+(±l) = 1 ≥ U−(±l) = U(±l). By a similar argument as in the proof for U− ≤ U

in [z0, l], we get that U ≤ U+ in Il. �

Lemma 4.4. T is a continuous mapping.

Proof. For given (U0, V0) and (Ũ0, Ṽ0) in E, let

(U, V ) = T (U0, V0) and (Ũ , Ṽ ) = T (Ũ0, Ṽ0). (4.11)

It is easy to see that w1 := U − Ũ satisfies w1(−l) = w1(l) = 0 and

w′′
1 +

c

δ
w′

1 + g(z)w1 = h1(z).

Here,

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

−2V0(z)

δ
· ψ(U(z))− ψ(Ũ(z))

U(z)− Ũ(z)
, if U(z) 
= Ũ(z),

−2V0(z)

δ
· ψ′(U(z)), if U(z) = Ũ(z)

and

h1(z) = −2

δ
· ψ(Ũ(z))(V0(z)− Ṽ0(z)),

where ψ is given in the proof of Lemma 4.3. Noting that 0 ≤ U, Ũ ≤ 1 and 0 ≤ ψ′(ξ) ≤
1/β for 0 ≤ ξ ≤ 1, we can apply the mean-value theorem to deduce that

0 ≤ ψ(U(z))− ψ(Ũ(z))

U(z)− Ũ(z)
≤ 1

β
, for U(z) 
= Ũ(z). (4.12)

Together with the fact that δ > 0, 0 ≤ V0 ≤ V +, and 0 ≤ ψ′(U(z)) ≤ 1/β, we find that

−K1 ≤ g ≤ 0 with

K1 =
2

δβ
· ‖V +‖C(Il).

In addition, since 0 < ψ(Ũ) ≤ 1, it is easy to see that

|h1| ≤
2

δ
· ‖V0 − Ṽ0‖C(Il).
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Then Lemma 3.2 asserts that there exists a positive constant C1, depending only on δ,

c, K1 and l, such that

‖w1‖C(Il) ≤
2C1

δ
· ‖V0 − Ṽ0‖C(Il),

which, together with definition of w1, implies that

‖U − Ũ‖C(Il) ≤
2C1

δ
· ‖V0 − Ṽ0‖C(Il). (4.13)

Set w2 = V − Ṽ . Then w2 satisfies w2(−l) = w2(l) = 0 and

w′′
2 + cw′

2 = h2(z),

where

h2 = ψ(Ũ0)Ṽ0 − ψ(U0)V0.

It is easy to see that

h2 = Ṽ0

(
ψ(Ũ0)− ψ(U0)

)
+ ψ(U0)(Ṽ0 − V0). (4.14)

Since 0 ≤ U0, Ũ0 ≤ 1, we can apply the mean-value theorem to get that

|ψ(Ũ0)− ψ(U0)| ≤
1

β
|Ũ0 − U0|,

and therefore ∣∣∣ψ(Ũ0)− ψ(U0)
∣∣∣ ≤ 1

β
‖Ũ0 − U0‖C(Il).

Together with the fact that

|Ṽ0| ≤ ‖V +‖C(Il), |ψ(U0)| ≤ 1, and |V0 − Ṽ0| ≤ ‖V0 − Ṽ0‖C(Il),

we deduce from (4.14) that

|h2| ≤
1

β
· ‖V +‖C(Il)‖U0 − Ũ0‖C(Il) + ‖V0 − Ṽ0‖C(Il).

Then Lemma 3.2 asserts that there exists a positive constant C2, depending only on c,

and l, such that

‖w2‖C(Il) ≤
C2

β
· ‖V +‖C(Il)‖U0 − Ũ0‖C(Il) + C2‖V0 − Ṽ0‖C(Il),

which, together with the definition of w2, implies that

‖V − Ṽ ‖C(Il) ≤
C2

β
· ‖V +‖C(Il)‖U0 − Ũ0‖C(Il) + C2‖V0 − Ṽ0‖C(Il). (4.15)

Using (4.11), (4.13), (4.15), and the definition of the norm ‖ · ‖X , we obtain that

‖T (U0, V0)− T (Ũ0, Ṽ0)‖X
= ‖(U, V )− (Ũ , Ṽ )‖X
= ‖U − Ũ‖C(Il) + ‖V − Ṽ ‖C(Il)

≤ C2

β
· ‖V +‖C(Il)‖U0 − Ũ0‖C(Il) +

(
2C1

δ
+ C2

)
· ‖V0 − Ṽ0‖C(Il)

≤ C3(‖U0 − Ũ0‖C(Il) + ‖V0 − Ṽ0‖C(Il))

= C3‖(U0, V0)− (Ũ0, Ṽ0)‖X , (4.16)
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where C3 =
C2

β
· ‖V +‖C(Il) +

2C1

δ
+ C2.

For a given ε > 0, we choose 0 < δ < ε/C3. Then, by (4.16), we have

‖T (U0, V0)− T (Ũ0, Ṽ0)‖X < ε,

for any (U0, V0), (Ũ0, Ṽ0) ∈ E such that ‖(U0, V0) − (Ũ0, Ṽ0)‖X < δ. This shows that T

is a continuous mapping. Hence the proof of this lemma is completed. �

Lemma 4.5. T is precompact.

Proof. For a given sequence {(U0,n, V0,n}n∈N in E, let (Un, Vn) = T (U0,n, V0,n). Since

U− and U+ are bounded in Il, and U− ≥ 0, we can easily see from definition of the set

E and Lemma 4.3 that the sequences

{U0,n}, {V0,n}, {Un}, {Vn},
{
2UnV0,n

β + Un

}
, and

{
2U0,nV0,n

β + U0,n

}

are uniformly bounded in Il. Then, by Lemma 3.3, it follows that the sequences

{U ′
n} and {V ′

n}

are also uniformly bounded in Il. Therefore, we can use the Arzela-Ascoli theorem to

get a subsequence {(Unj
, Vnj

)} of {(Un, Vn} such that

(Unj
, Vnj

) → (U, V ),

uniformly in Il as j → ∞, for some (U, V ) ∈ E. Hence the set T (E) is compact in E. So

T is precompact. �
In Lemma 4.3, Lemma 4.4, and Lemma 4.5, we have proved that the mapping T satis-

fies all the assumptions of Lemma 4.1. Hence T has a fixed point, which is a nonnegative

solution of system (4.1)-(4.2). So we have the following theorem.

Lemma 4.6. System (4.1)-(4.2) admits a solution (U, V ) on Il. Moreover,

0 ≤ U− ≤ U ≤ 1 and 0 ≤ V − ≤ V ≤ V + (4.17)

on Il.

5. The proof of the main result. Now we are in a position to prove the main

results.

Proof of Theorem 1.1. Let {ln}n∈N be an increasing sequence in (z1,∞) such that

ln → ∞ as n → ∞ and let (Un, Vn), n ∈ N, be a solution of system (4.1)-(4.2) with

l = ln. For any fixed N ∈ N, since the function V + is bounded above in [−lN , lN ], it

follows from (4.17) that the sequences

{Un}n≥N , {Vn}n≥N , and

{
UnVn

β + Un

}
n≥N

are uniformly bounded in [−lN , lN ]. Then we can use Lemma 3.3 to infer that the

sequences

{U ′
n}n≥N and {V ′

n}n≥N
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are also uniformly bounded in [−lN , lN ]. Using (4.1), we can express U ′′
n and V ′′

n in terms

of Un, Vn, U
′
n and V ′

n. Differentiating (4.1), we can use the resulting equations to express

U ′′′
n and V ′′′

n in terms of Un, Vn, U
′
n, V

′
n, U

′′
n and V ′′

n . Consequently, the sequences

{U ′′
n}n≥N , {V ′′

n }n≥N , {U ′′′
n }n≥N and {V ′′′

n }n≥N

are uniformly bounded in [−lN , lN ]. With the aid of the Arzela-Ascoli theorem, we can

use a diagonal process to get a subsequence {(Unj
, Vnj

)} of {(Un, Vn)} such that

Unj
→ U,U ′

nj
→ U ′, U ′′

nj
→ U ′′

and

Vnj
→ V, V ′

nj
→ V ′, V ′′

nj
→ V ′′,

uniformly in any compact interval of R as n → ∞, for some functions U and V in C2(R).

Then it is easy to see that (U, V ) is a nonnegative solution of system (1.2) and satisfies

(4.17) and U ′ ≥ 0 over R. From the definitions of U− and V +, we see that U−(z) → 1

and V +(z) → 0 as z → ∞. This, together with (4.17), implies that

(U, V )(+∞) = (1, 0). (5.1)

Now it remains to show that (U, V )(−∞) = (0, 1/2). We divide the proof into several

steps:

Step 1. We claim that

(U ′, V ′)(+∞) = (0, 0). (5.2)

Integrating equation (1.2a) from 0 to z gives that

δ[U ′(z)− U ′(0)] + c[U(z)− U(0)] =

∫ z

0

U(τ )V (τ )

β + U(τ )
dτ. (5.3)

Since U(+∞) exists, we see from (5.3) that U ′(∞) exists iff the improper integral∫ ∞

0

U(τ )V (τ )

β + U(τ )
dτ (5.4)

converges. Indeed, the improper integral (5.4) is convergent, since otherwise it diverges

to ∞. Then (5.3) gives that U ′(∞) = ∞ and therefore U(∞) = ∞, a contradiction to

the fact that U(∞) exists. Hence U ′(∞) exists. Moreover, one can easily verify that

U ′(∞) = 0 due to U(+∞) = 1. Similarly, integrating equation (1.2b) from 0 to z and

arguing as above, we also get V ′(∞) = 0.

Step 2. We claim that (U, V )(−∞) exists and 1 > U(−∞) ≥ 0, V (−∞) ≥ 0. Since

U is nondecreasing and 0 ≤ U ≤ 1, it follows that U(−∞) exists and 0 ≤ U(−∞) ≤ 1.

Note that U(−∞) 
= 1. Otherwise, the monotonicity of U implies that U ≡ 1, which,

together with (1.2a), gives that V ≡ 0, a contradiction to the fact that V ≥ V − > 0 in

(z1,∞).

To show the existence of V (−∞), we need to claim that V ≤ 1/2 on R. From (1.2),

we deduce that

δU ′ + 2V ′ + c(U + 2V ) ≡ K,

for some constant K. Letting z → ∞ in the above equation and using (5.1) and (5.2),

we discover that K = c. Therefore,

δU ′ + 2V ′ + c(U + 2V − 1) ≡ 0. (5.5)
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Set W1 := U + 2V − 1. Since U ≤ 1, we can use (4.17) to get that

W1(z) ≤ 2V ≤ 2V + ≤ 2e−λz, ∀z ∈ R. (5.6)

In addition, since U ′ ≥ 0, we can use (5.5) to deduce that

W ′
1 + cW1 = (1− δ)U ′ ≤ 0 (5.7)

on R, if δ ≥ 1. Multiplying (5.7) by the integrating factor ecz, one can easily deduce that

[eczW1(z)]
′ ≤ 0, which, together with (5.6), implies that

eczW1(z) ≤ ecz
∗
W1(z

∗) ≤ 2e(c−λ)z∗
,

for any −∞ < z∗ < z < ∞. Letting z∗ → −∞ in the above inequality and noting that

e(c−λ)z∗ → 0 due to λ < c, we get W1(z) ≤ 0 and therefore U + 2V ≤ 1 on R. This,

together with the fact that U ≥ 0, implies that V ≤ 1/2 on R. Now we consider the case

δ < 1. Set W2 := δU + 2V − 1. Since U ≤ 1 and δ < 1, it follows from (4.17) that

W2(z) ≤ 2V ≤ 2V + ≤ 2e−λz, ∀z ∈ R.

In addition, since c > 0, δ < 1, and U ≥ 0, we can use (5.5) to deduce that

W ′
2 + cW2 = c(δ − 1)U ≤ 0

on R. Arguing as the proof for W1 ≤ 0, we can easily get W2 ≤ 0 and therefore

δU + 2V ≤ 1 on R. This, together with the fact that δU ≥ 0, implies that V ≤ 1/2 on

R.

Now we claim that V (−∞) exists and V (−∞) ≥ 0. Since V (∞) = 0 and V (z1 +1) ≥
V −(z1+1) > 0, we can use the mean-value theorem to infer that there exists ξ1 > z1+1

such that V ′(ξ1) < 0. Multiplying (1.2b) by the integrating factor ecz, one can easily

deduce that

[eczV ′(z)]
′
= −ecz

UV

β + U
≤ 0,

which implies that eczV ′(z) is nonincreasing. Therefore, for z > ξ1, e
czV ′(z) ≤ ecξ1V ′(ξ1)

< 0. Thus V ′ < 0 in [ξ1,∞). Let ξ2 := inf{z| V ′ < 0 in [z,∞)}. Then ξ2 = −∞
or a finite number. If ξ2 = −∞, then V ′ < 0 over R. This, together with the fact

that 0 ≤ V ≤ 1/2, implies that V (−∞) exists and V (−∞) ≥ 0. If ξ2 is a finite

number, then V ′(ξ2) = 0, which together the monotonicity of eczV ′(z), implies that

eczV ′(z) ≥ ecξ2V ′(ξ2) = 0 for z ≤ ξ2. Hence V ′ ≥ 0 in (−∞, ξ2]. This, together with the

fact that V ≥ 0, implies that V (−∞) exists and V (−∞) ≥ 0.

Step 3. We claim that

(U ′, V ′)(−∞) = (0, 0). (5.8)

Integrating equation (1.2a) from z to ∞ and recalling that U(∞) = 1 and U ′(∞) = 0

gives that

−δU ′(z) + c[1− U(z)] = 2

∫ ∞

z

U(τ )V (τ )

β + U(τ )
dτ. (5.9)

Since U ≥ 0 and U ′ ≥ 0, equation (5.9) implies that∫ ∞

z

U(τ )V (τ )

β + U(τ )
dτ ≤ c

2
,
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so that the improper integral ∫ ∞

−∞

U(τ )V (τ )

β + U(τ )
dτ (5.10)

converges. Letting z → −∞ in (5.9) and recalling the fact that U(−∞) exists, we infer

that U ′(−∞) exists. Furthermore, since U ′ ≥ 0, it follows that U ′(−∞) ≥ 0. Indeed,

U ′(−∞) = 0. Otherwise, U ′(−∞) > 0, which implies U(−∞) = −∞, a contradiction to

the fact that U(−∞) exists. By a similar argument, we also get V ′(−∞) = 0.

Step 4. We claim that (U, V )(−∞) = (0, 1/2). Since both U(−∞) and V (−∞) exist,

the convergence of the improper integral (5.10) implies that

U(−∞)V (−∞) = 0. (5.11)

On the other hand, letting z → −∞ in (5.5) and using (5.8), we get that

U(−∞) + 2V (−∞) = 1. (5.12)

Recall that U(−∞) 
= 1. Then (5.11) and (5.12) yield (U, V )(−∞) = (0, 1/2). This

completes the proof of this theorem. �
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